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In vivo targeting of de novo DNA
methylation by histone modifications in
yeast and mouse
Marco Morselli1*, William A Pastor1, Barbara Montanini2, Kevin Nee1,
Roberto Ferrari1, Kai Fu1, Giancarlo Bonora1,3, Liudmilla Rubbi1, Amander T Clark1,
Simone Ottonello2, Steven E Jacobsen1,3,4*, Matteo Pellegrini1,3*

1Department of Molecular, Cell and Developmental Biology, University of California,
Los Angeles, Los Angeles, United States; 2Biochemistry and Molecular Biology Unit,
Department of Life Sciences, Laboratory of Functional Genomics and Protein
Engineering, Parma, Italy; 3Eli and Edythe Broad Center of Regenerative Medicine
and Stem Cell Research, University of California, Los Angeles, Los Angeles, United
States; 4Howard Hughes Medical Institute, University of California, Los Angeles, Los
Angeles, United States

Abstract Methylation of cytosines (5meC) is a widespread heritable DNA modification. During

mammalian development, two global demethylation events are followed by waves of de novo DNA

methylation. In vivo mechanisms of DNA methylation establishment are largely uncharacterized.

Here, we use Saccharomyces cerevisiae as a system lacking DNA methylation to define the chromatin

features influencing the activity of the murine DNMT3B. Our data demonstrate that DNMT3B and

H3K4 methylation are mutually exclusive and that DNMT3B is co-localized with H3K36 methylated

regions. In support of this observation, DNA methylation analysis in yeast strains without Set1 and

Set2 shows an increase of relative 5meC levels at the transcription start site and a decrease in the

gene-body, respectively. We extend our observation to the murine male germline, where H3K4me3

is strongly anti-correlated while H3K36me3 correlates with accelerated DNA methylation. These

results show the importance of H3K36 methylation for gene-body DNA methylation in vivo.

DOI: 10.7554/eLife.06205.001

Introduction
In multicellular organisms, every cell type possesses the same genetic information, but manifests

a different phenotype. Chromatin plays a fundamental role in both the establishment and

maintenance of each cell’s state. Many players contribute to chromatin states, including nucleosome

organization, histone post-translational modifications, and non-coding RNAs (Chen and Dent, 2014;

Maze et al., 2014; Quinodoz and Guttman, 2014). Another mechanism for maintaining the state of

a cell through cell division is the methylation of cytosines at position 5 (5meC), a widespread heritable

DNA modification found in prokaryotes, plants, several fungi, and animals (Iyer et al., 2011).

In mammals, DNAmethylation plays a fundamental role in processes such as imprinting, X-chromosome

inactivation, transposon inactivation, and gene expression regulation (Smith and Meissner, 2013).

Dysregulation of DNA methylation is a common feature in cancer (Eden et al., 2003; You and Jones,

2012) and a variety of human diseases are caused by defective imprinting (Peters, 2014).

Methylation is mainly found at symmetric CpG dinucleotides, where it is introduced by the de novo

DNA methyltransferases (DNMT3a and DNMT3b) and can be copied faithfully during DNA replication

by the activity of a ‘maintenance’ DNA methyltransferase, DNMT1 (Law and Jacobsen, 2010).

However, DNA methylation is not static throughout mammalian development. In fact, 5meC can either
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be lost by a passive mechanism, such as the failure to maintain DNA methylation through cell division

or by an active mechanism such as the removal of methylcytosine, typically via an oxidized

intermediate (Pastor et al., 2013).

Demethylation and de novo methylation can occur in a locus-specific manner, typically in concert

with the activation or silencing of promoters or enhancers. However, global demethylation and de

novo methylation events can also occur during development (Pastor et al., 2013; Seisenberger et al.,

2013). For example, most DNA methylation is progressively lost between fertilization and the

formation of the blastula and global de novo DNA methylation then occurs coincidently with

implantation of the embryo. This de novo methylation event largely shapes the methylation pattern of

the animal, with additional changes occurring in somatic tissues, which contribute to cellular identity.

In the germline however, a second reprogramming event occurs. After specification of the germ cells,

most DNA methylation is lost during early primordial germ cell (PGCs) development. Unlike in early

embryogenesis, imprints are erased during this period. Genome-wide de novo methylation then

occurs before birth in the male germline and upon oocyte maturation in females (Smallwood et al.,

2011). This de novo methylation event establishes the imprints that are inherited in the next

generation.

Considering the importance of local and global de novo methylation events in imprinting, gene

regulation and cellular identity, it is important to understand how the de novo DNA methyltrans-

ferases are targeted to the correct genomic regions. DNMT3 proteins do not have strong sequence

preferences beyond CpG dinucleotides (Dodge et al., 2002). We therefore sought to determine

which factors are critical for the targeting of de novo DNA methyltransferases.

Active de novo DNA methyltransferases possess three different domains: the catalytic domain,

found at the C-terminus of the protein, an ADD domain and a PWWP domain (Figure 1A) (Law and

Jacobsen, 2010). In contrast, the inactive DNMT3L possesses only a functional ADD domain.

The ADD domains of all three DNMTs have been shown to preferentially bind histone 3 tails that lack

methylation at lysine 4 (H3K4me0) (Ooi et al., 2007; Zhang et al., 2010), and this binding has been

recently shown to relieve DNMT3a auto-inhibition (Guo et al., 2015). This is consistent with the

observation that genomic regions bearing H3K4 methylation are generally depleted of 5meC

(Singh et al., 2013). The PWWP domain of several proteins has been shown to bind H3K36

eLife digest In animals and other multicellular organisms, there are many different types of cells

that each perform particular roles in the body. This is possible because the genetic information—

which is the same in all cells—is controlled so that only a subset of all the genes within an individual

cell are ‘switched on’ at a particular time.

Genetic information is contained within molecules of DNA, which are wrapped around proteins

called histones. The genes in regions of DNA where these histones are packed tightly together tend

to be switched off, while genes in regions of DNA that are loosely packed tend to be switched on.

The level of packaging is controlled by the addition of ‘methyl’ tags to the histone proteins.

These tags can also be added directly to the DNA in a process called DNA methylation. Enzymes

called methyltransferases add the tags to the DNA, which tends to switch off the gene. The locations

of the methyl tags can be copied when the DNA replicates before the cell divides so that the pattern

of DNA methylation can be passed on to its daughter cells. However, it is not clear how the

methyltransferases are able to target particular regions for methylation.

To address this question, Morselli et al. introduced a methyltransferase called DNMT3b into

yeast, a single-celled organism that does not normally add methyl tags to its DNA. The experiments

show that the activity of the enzyme is affected by the presence of methyl tags on certain histone

proteins. For example, a methyl tag at one particular site on a histone, called H3K4, prevents the

DNMT3b enzyme from adding methyl tags to DNA. However, a methyl tag at another site called

H3K36 promotes DNA methylation.

Morselli et al. found that these two histone sites had similar effects on DNA methylation in mouse

sperm cells. Morselli et al.’s findings may be useful in the future development of treatments for

cancer and other diseases that are caused by defects in DNA methylation.

DOI: 10.7554/eLife.06205.002
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methylation (Vermeulen et al., 2010), and indeed the DNMT3a-PWWP domain has also been shown

to interact with the tri-methylated lysine 36 of histone H3 (H3K36me3) in vitro (Dhayalan et al., 2010).

The importance of these histone-binding domains in targeting DNA methyltransferase activity in vivo

is still unclear. It is also possible that the PWWP domain’s primary function is to bind DNA and not

nucleosomes (Dhayalan et al., 2010). Recently, it has been reported that the PWWP domain is

important in specifying the localization of DNMT3b in mouse embryonic stem cells (Baubec et al.,

2015).

Figure 1. Distribution of induced DNA methylation in Saccharomyces cerevisiae. (A) Murine DNMT3 proteins with known domains: PWWP, ADD

(ATRX–DNMT3–DNMT3L), and C-5 methyltransferase domain (not functional in DNMT3L). Accession numbers: DNMT3a = O88508; DNMT3b = O88509;

DNMT3L =Q9CWR8. (B) Constructs used in this study. The empty vector (EV) is pYES2 (Life Technologies). DNMT3b expression is controlled by the GAL1

promoter. (C) Levels of 5meC in different dinucleotide contexts. The gray dotted line represents the unconversion rate. (D) Metagene plot of CpG

methylation in cells expressing DNMT3b during logarithmic and stationary phase. EV (strain not expressing DNMT3b). Exponential and stationary strains

1–6 are derived from the W303 strain, while stationary strains 7 and 8 are in a BY4741 background.

DOI: 10.7554/eLife.06205.003

The following figure supplements are available for figure 1:

Figure supplement 1. Chromosome-wide view of DNA methylation and genomic features.

DOI: 10.7554/eLife.06205.004

Figure supplement 2. Distribution of 5meC around TSS and TTS.

DOI: 10.7554/eLife.06205.005
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While there has been extensive characterization of DNMT3 in vitro, a comprehensive analysis of the

mechanisms guiding the activity of a de novo DNMT in vivo is still incomplete. To address this

question, we introduced DNMT3b into an organism that has no endogenous DNA methylation

machinery, the budding yeast Saccharomyces cerevisiae, to study the chromatin components

affecting the activity of a mammalian de novo DNA methyltransferase. This system has several

advantages over the study of DNA methylation in mammalian cells. Yeast has conserved histone

sequences and many residues are modified at the same sites as those found in higher eukaryotes.

However, unlike mammalian cells, yeast cells can be easily manipulated and the small size of their

genome reduces costs associated with next-generation sequencing-based approaches. Moreover,

yeast has already been used to show the importance of the N-terminus of histone H3 in targeting the

DNA methylation complex (Hu et al., 2009).

Our data show that the chromatin template guides the activity of DNMT3b. DNMT3b preferentially

deposits methylation in linker DNA compared to nucleosomal DNA. Also, DNMT3b activity correlates

positively with H3K36me3 and negatively with H3K4me3. In fact, mutation of the H3K36

methyltransferase Set2 decreases DNA methylation over regions that would normally contain

H3K36me3. Thus the marks themselves, as opposed to genomic features that correlate with these

marks, are responsible for targeting DNA methylation. We also demonstrate that the pattern of H3K4

and H3K36 methylation in embryonic male germ cells accurately predicts which regions undergo de

novo methylation, indicating that the mechanism observed in yeast is conserved in mammals.

Results

Ectopically expressed DNMT3b methylates yeast genomic DNA
S. cerevisiae does not have any endogenous cytosine DNA methyltransferases, and its DNA is

therefore unmethylated. To study the activity of a de novo methyltransferase in this organism, we

introduced the murine DNMT3b under the control of the inducible GAL1 promoter (Figure 1B). We

measured the levels of 5-methylcytosine (5meC) in these strains using whole genome bisulfite

sequencing (WGBS) (Supplementary file 1A). We observed significant levels of 5meC of DNA

extracted from the exponentially growing and stationary phases of the same strain culture (Figure 1C

and Supplementary file 2A), with higher methylation levels observed in stationary phase. CpG

dinucleotides were preferentially methylated, as expected from the previously characterized activity

of mammalian DNMT3. The methylation levels of CpG dinucleotides range from 3.3 to 7.7%,

depending on the yeast strain analyzed. These levels are about 10–20 times higher than the average

of other dinucleotides levels (Supplementary file 2A), and well above the bisulfite non-conversion

rate of 0.27%, as estimated from an unmethylated lambda DNA spike-in.

Despite some level of variability, we observe methylation across the entire yeast genome

(Figure 1—figure supplement 1A,B). When mapping reads to the genome we only retain those that

map to a single position. As a result we do not obtain methylation estimates for regions that contain

repetitive sequences, such as the rRNA containing regions in chromosome XII.

We also observed a striking methylation distribution within genes (Figure 1D), with low levels at

the transcription start site (TSS) and increasing methylation in the gene body, reaching a maximum

close to the transcription termination site (TTS). The same pattern is found in mammals (Lister et al.,

2009; Chodavarapu et al., 2010), suggesting that equivalent mechanisms regulating DNMT3 activity

in mammalian genes might also be present in yeast.

DNMT3b preferentially methylates linker DNA
In yeast, nucleosomes are well positioned at the beginning of a gene, with nucleosome-free regions

(NFRs) immediately upstream of the TSS and downstream of the TTS (Brogaard et al., 2012). When

average levels of 5meC are calculated around the TSS, we observed a periodicity of about 170 bp

(Figure 1—figure supplement 2). A similar periodicity is also observed at the TTS. This suggested

that nucleosomes might influence the activity of de novo DNMTs.

To address this question, we measured nucleosome positioning genome-wide using micrococcal

nuclease-digested chromatin and deep-sequencing (MNase-seq) (Supplementary file 1B and

Supplementary file 3A,B). We profiled the distribution of methylated cytosines at the TSS

(Figure 2A), TTS (Figure 2B), and around each nucleosome center (Figure 2C).
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From these analyses, it is evident that DNMT3b preferentially methylates non-nucleosomal DNA.

We observe a 50% increase in the methylation of linker DNA compared to nucleosome bound DNA

(Figure 2C). We also observe a slight 10 bp periodicity of methylated CpG (Figure 2D), another

feature shown in higher eukaryotes that reflects the periodicity of the DNA helix (Klug and Lutter,

1981).

Impact of DNA methylation on yeast nucleosome position and gene
expression
We considered the possibility that introducing 5meC would alter nucleosome distribution or gene

expression in yeast. However, a comparison of DNMT3b-expressing and non-expressing strains

showed no detectable change in nucleosome positioning by MNase treatment near the TSS, TTS

(Figure 2—figure supplement 1A,B and Supplementary file 3C), or elsewhere in the genome.

RNA-seq analysis identified some differentially expressed genes (about 5% of the total number of

genes, with an equal number of up- and down-regulated transcripts) between the strain expressing

and non-expressing DNMT3b grown to stationary phase (Figure 3 and Supplementary file 1C and

Supplementary file 4A). The down-regulated genes showed enrichment for branched-chain

aminoacid biosynthesis genes, while the up-regulated ones were enriched in ribosomal biogenesis

Figure 2. Influence of nucleosome positioning on DNA methylation. Average distribution of nucleosomes and DNA methylation (CpG context) around

(A) Transcriptional Start Site (TSS), (B) Transcriptional Termination Site (TTS), and (C) nucleosome centers. (D) Meta-nucleosome plot of CpG methylation.

a.u. = Arbitrary units.

DOI: 10.7554/eLife.06205.006

The following figure supplement is available for figure 2:

Figure supplement 1. Differences in nucleosome occupancy between DNMT3b-expressing and non-expressing yeast strains.

DOI: 10.7554/eLife.06205.007
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genes (Supplementary file 4B–F). However, these changes are likely due to stress response pathways

that are triggered by the overexpression of MmDNMT3b, rather than by the changes in DNA

methylation itself. In support of this view, when the levels of CpG, CpHpG, and CpHpH methylation in

the up- and down-regulated genes were compared, no significant difference was evident

(Figure 3—figure supplement 1). Moreover, the methylation levels of the differentially transcribed

genes were not different from that of other members of the same Gene Ontology (GO) term

(Figure 3—figure supplement 2). Since DNA methylation machinery is not native in yeast, it is likely

that proteins able to recognize and mediate 5meC effects are also absent.

DNMT3b activity is associated with specific histone tail modifications
We next sought to test whether the observed levels of 5meC could be explained by the underlying

distribution of specific histone tail modifications. To address this, we mapped the distribution of

DNMT3b and of specific histone residue modifications via ChIP-seq in both the DNMT3b-expressing

and wild type (wt) (non-expressing) strains (Supplementary file 1D).

We found that, as expected, DNMT3b co-localizes with methylated regions (Figure 4A). The

distribution of DNMT3b is also consistent with the distribution of DNA methylation across the gene

body (Figure 4—figure supplement 1). We also observed that DNMT3b and 5meC are strongly anti-

correlated with H3K4me3 and positively correlated with H3K36me3 (Figure 4B and Figure 4—figure

supplements 2–4). By examining the distribution of histone marks across gene bodies, we found that

H3K4me3 is concentrated at the promoter while H3K36me3 levels peak near the 3′ end of the gene

(Figure 4—figure supplement 1). These observations suggest that the ADD and PWWP domains of

DNMT3B play a role in targeting the activity of the enzyme. H3K4me1 shows a weak positive

Figure 3. Differences in RNA expression between DNMT3b-expressing and non-expressing yeast strains.

The expression difference in RNA expression between DNMT3b and EV strains is plotted on the x axis, and false

discovery rate (FDR)-adjusted significance is plotted on the y-axis (–log2 scale). Upregulated and downregulated

RNAs shown in red and green, respectively. Significantly expressed RNAs have a fold change bigger than two with

a FDR smaller than 0.1.

DOI: 10.7554/eLife.06205.008

The following figure supplements are available for figure 3:

Figure supplement 1. DNA Methylation in up- and down-regulated genes.

DOI: 10.7554/eLife.06205.009

Figure supplement 2. DNA Methylation in ribosomal biogenesis genes.

DOI: 10.7554/eLife.06205.010
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Figure 4. Correlation between histone marks and DNA methylation. (A) Genome-wide distribution of nucleosome, 5meC, DNMT3b, H3K36me3,

H3K4me1, H3K4me3, and RNA polymerase II. (B) Spearman correlation coefficients between 5meC, histone marks, RNA polymerase II, DNMT3b

and mRNA average levels for protein coding genes. (C) Prediction of DNMT3b levels using DNA methylation, H3K4 and H3K36 trimethylation,

RNA polymerase II and nucleosome distribution as predictors. The y-axis shows the adjusted R2 value between the predicted linear model and

observed values.

DOI: 10.7554/eLife.06205.011

The following figure supplements are available for figure 4:

Figure supplement 1. Metagene plot of ChIP sequencing in a DNMT3b-expressing strain.

DOI: 10.7554/eLife.06205.012

Figure supplement 2. Relationship between transcription and 5meC or histone marks levels.

DOI: 10.7554/eLife.06205.013

Figure supplement 3. Relationship between DNA methylation and histone marks levels.

DOI: 10.7554/eLife.06205.014

Figure 4. continued on next page
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correlation with both 5meC levels and DNMT3b. This might be due to the specific distribution of

H3K4me1 within the gene body, partially overlapping to the H3K36me3 modification (Figure 4A and

Figure 4—figure supplement 1).

5meC and DNMT3b distribution are also inversely correlated with gene transcription and Pol II

abundance (Figure 4B, Figure 4—figure supplements 2E–F, 3A). Both H3K4me3 and H3K36me3

correlate positively with transcription (Figure 4B, Figure 4—figure supplement 2C–D). Since yeast

genes are very small relative to mammalian genes, H3K4 methylation can spread well into the gene

body (Figure 4—figure supplement 2B–C) and limit the deposition of 5meC in highly transcribed

genes. In support of this observation, we find that a higher level of H3K4me3 in the last third of the

gene, is associated with a lower level of DNMT3b or 5meC (Figure 4—figure supplement 4).

To determine whether the methylation of H3K4 and H3K36 is sufficient to explain the observed

DNA methylation of our DNMT3b strains, we constructed a simple linear model of DNA methylation

based on our ChIP-seq data. We used linear multivariate regression to model whether the distribution

of one or a few histone marks, nucleosome positioning or RNA polymerase II occupancy could predict

the levels of DNMT3b or 5meC (Figure 4C and Figure 4—figure supplement 5). Strikingly, we found

that H3K4me3 and H3K36me3 levels are sufficient to predict the distribution of both DNMT3b and

5meC with very high accuracy. The prediction could only be slightly improved by using additional data,

suggesting that H3K4me3 and H3K36me3 are the key factors in determining the targeting of DNA

methylation (Supplementary file 5).

Deletion of histone lysine methyltransferases affect DNA methylation
distribution
To determine whether H3K36me3 has a direct role in the recruitment/activity of DNMT3b in vivo, we

measured the DNA methylation distribution in three mutant strains: set1Δ, set2Δ, and dot1Δ

(Supplementary file 1E). In yeast, Set1 is responsible for the methylation of H3K4, Set2 is the

methyltransferase for H3K36, and Dot1 catalyzes the methylation of H3K79. We included the dot1Δ

strain as a control, since we do not expect its activity to influence the binding of DNMT3b. If the

modification of H3K36 plays a role in DNMT3b activity we would expect a reduction in DNA

methylation levels in gene bodies, which are the primary H3K36me3 positive regions.

Due to an impact of the set mutations on global transcription, the levels of the induced DNMT3b

and the resulting DNA methylation were lower in deletion strains than the wt. Nonetheless, the

resulting 5meC levels were still significantly higher than background levels found in the wt strains

(Figure 5A and Supplementary file 2B). To account for the variations in global methylation levels we

adopted two types of normalization: the first normalized by the total amount of DNA methylation in

the sample and the second was based on the expression of DNMT3b measured via RT-qPCR

(Figure 5B and Figure 5—figure supplement 1). Both strategies gave similar results (data not shown).

As expected, we see no significant differences in 5meC distribution in dot1Δ strains compared to wt

(Figure 5B). In contrast, in the set1Δ strain, we found that regions close to the TSS, with high

H3K4me3 and low DNA methylation in a wt strain, contain methylation levels that are not significantly

different from other regions outside of the gene (Figure 5B,C). This suggests that H3K4 methylation

plays an active role in suppressing DNA methylation in the wt, and that this effect disappears in the

set1Δ strain (Figure 5D).

In a set2Δ strain, 5meC levels are reduced over gene bodies compared to wt strains (Figure 5C).

Moreover, in this strain maximum levels of DNA methylation peak outside of the gene, where

H3K36me3 is not present (Figure 5B). Thus, in this mutant strain DNA methylation is redistributed

from gene bodies (H3K36me3-rich regions) to intergenic regions compared to the wt, suggesting that

H3K36me3 is responsible for recruitment of DNMT3B (Figure 5C,E).

Figure 4. Continued

Figure supplement 4. Relationship between H3K4me3 and 5meC or histone marks levels.

DOI: 10.7554/eLife.06205.015

Figure supplement 5. 5meC levels prediction using chromatin marks.

DOI: 10.7554/eLife.06205.016
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Figure 5. Effect of histone lysine methyltransferase deletions on the distribution of DNA methylation. (A) Metagene plot of CpG methylation in set1Δ and

set2Δ cells expressing DNMT3b. Differently from Figure 5B, 5meC levels are not normalized. Replicates of the same strain are represented as dotted

lines. Data from BY4741-derived strains. BY4741 = Wild type (wt); EV = Empty vector. (B) Metagene plot of CpG methylation in set1Δ, set2Δ, and dot1Δ

cells expressing DNMT3b. set1Δ, set2Δ are in a BY4741 background, while dot1Δ is in a W303 background. 5meC levels are normalized by DNMT3b

Figure 5. continued on next page

Morselli et al. eLife 2015;4:e06205. DOI: 10.7554/eLife.06205 9 of 21

Research article Developmental biology and stem cells | Genomics and evolutionary biology

http://dx.doi.org/10.7554/eLife.06205


Correspondence between H3K36me3 and early DNA methylation in
mammalian cells
To extend our findings in yeast, we sought evidence to determine whether H3K36me3 also promotes

de novo DNAmethylation in mammals. The mouse germline is an excellent model for such studies. The

mouse germline is specified from the epiblast at E7.25 and then progressively loses DNA methylation

through subsequent rounds of cell division. By E13.5, almost all DNA methylation has been lost (Popp

et al., 2010; Seisenberger et al., 2012). In male germ cells, cell division halts, and the de novo

methyltransferases and their co-factor DNMT3L are expressed between E13.5 and birth, when the

genome undergoes global de novo DNA methylation (Seisenberger et al., 2012; Kobayashi et al.,

2013). Thus in this setting, DNA methyltransferases are introduced into hypomethylated cells, and are

therefore an ideal model to study the targeting of de novo DNA methylation.

We mapped DNA methylation in the male germline at E16.5, P2.5, and P10.5 (Supplementary file

1F) (Pastor et al., 2014), and obtained E13.5 DNA methylation data from published sources

(Seisenberger et al., 2012). Consistent with previous observations about the timing of de novo DNA

methylation in the developing mouse germline, global CpG methylation rises from 7% at E13.5 to 55%

at E16.5 and reaches at 75% by P2.5 (Figure 6A). Previous studies have shown that the entire male

germline genome is methylated by default, except for regions of H3K4 methylation such as TSSs which

antagonize de novo DNA methylation (Singh et al., 2013). However, charting the progression of DNA

methylation over time, it is apparent that there exist ‘early methylating’ regions that reach their final

methylation state by E16.5 and ‘late methylating’ regions that undergo substantial DNA methylation

between E16.5 and P2.5. We observed that heavily transcribed regions of chromosomes showed much

higher DNAmethylation at E16.5 than less transcribed regions (Figure 6B). Furthermore, while the TSS

of active genes was unmethylated, gene bodies of actively transcribed genes were typically early-

methylators (Figure 6B,D). Thus, transcriptional initiation correlates negatively with de novo DNA

methylation while transcriptional elongation correlates positively with de novo methylation.

In light of the data from yeast, we considered that the trends noted above could be caused by the

underlying chromatin environment, with H3K4me3 antagonizing and H3K36me3 promoting de novo

DNA methylation. Since transcriptional elongation causes H3K36me3 deposition, we asked whether

the association of transcriptional read-through with DNA methylation could explain the observed

phenomenon. To test this hypothesis, we analyzed published H3K4me3 ChIP-seq data (Lesch et al.,

2013) and performed H3K36me3 ChIP-seq on sorted germ cells of pooled E13.5 testis

(Supplementary file 1G). H3K4me3 at E13.5 correlates with low DNA methylation at all subsequent

time points (Figure 6D,E). Genes with high H3K36me3 levels at E13.5 showed significantly elevated

gene-body DNA methylation at E16.5, consistent with H3K36me3 accelerating DNA methylation

(Figure 6B,C,D,F). This trend was still apparent at P2.5 (Figure 6F). Thus, H3K36me3 appears to

direct DNA methylation in mammalian cells.

Discussion
Our study aimed to identify chromatin features that affect the activity of mammalian de novo DNMTs

in the establishment of DNA methylation. The expression of the murine DNMT3b in a host with no

detectable levels of 5meC led to the methylation of CpG dinucleotides at different levels depending on

the specific chromatin context. The presence of the H3K4me3 mark inhibits the activity of DNMT3b,

while H3K36me3 promotes DNA methylation. This suggests that the activity of DNMT3B is guided by

Figure 5. Continued

expression measured by RT-qPCR. Two replicates for each strain are shown (solid and dotted line). (C) Metagene plots of CpG methylation ratio between

the mutant and its wt counterpart. Two replicates for each mutant strain are shown (solid and dotted line). Wt ratios (=1) are represented by the horizontal

dashed line (green or blue). (D) Boxplots showing levels of DNA methylation in the wt (left) and set1Δ strain (right) of 200-bp genome bins sorted into

deciles by H3K4me3 level. (E) Boxplots showing levels of DNA methylation in the wt (left) and set2Δ strain (right) of 200-bp genome bins sorted into

deciles by H3K36me3 level. The dashed red line represents background levels of DNA methylation due to incomplete bisulfite conversion (>99.7%).

DOI: 10.7554/eLife.06205.017

The following figure supplement is available for figure 5:

Figure supplement 1. DNMT3b transcript levels in different yeast strains.

DOI: 10.7554/eLife.06205.018
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Figure 6. H3K4me3 and H3K36me3 distribution predicts de novo DNA methylation pattern in male germline. (A) Genome-wide CG methylation levels

during murine development as measured by bisulfite sequencing. (B) RNA-seq, and ChIP read abundance and relative DNA methylation levels are plotted

across chromosome 14. Note the correspondence between RNA-seq and H3K36me3 ChIP levels and rapid DNA methylation between E13.5 and E16.5.

(C) Boxplots showing the difference of DNA methylation levels between E13.5 and E16.5 of 1 Mb genome bins sorted into deciles by H3K36me3 level.

(D) RNA-seq and ChIP read abundance and DNA methylation levels are plotted relative to transcriptionally active genes. The gene promoters contain

high H3K4me3 and are not methylated, while the gene bodies contain high H3K36me3 and are methylated rapidly. (E) Metaplots showing DNA

methylation level ±1000 bp relative to the TSS of genes sorted into deciles by H3K4me3 level. (F) Metagene plots showing DNA methylation across gene

bodies sorted into deciles by H3K36me3 level.

DOI: 10.7554/eLife.06205.019
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the interactions of the ADD and PWWP domains with histone tails. It has been recently shown (Baubec

et al., 2015) that in embryonic stem cells the PWWP domain is responsible for the targeting of DNMT3b

to regions enriched for the H3K36me3. Similarly to our finding in yeast, the reintroduction of DNMT3b

into methylation deficient DNMT1/DNMT3A/DNMT3B triple KO (TKO) ES cells partially restores 5meC

levels. Methylation levels are higher at H3K36me3 sites, a trend eliminated by the ablation of the

H3K36me3 methyltransferase Setd2 (Baubec et al., 2015). Our findings are in agreement with the

Baubec et al. observations, both in a system where other factors guiding DNA methylation are absent

(yeast), and during a period of biologically important de novo DNA methylation (germ cells).

In our yeast system, we detected an anti-correlation between transcript levels and DNA

methylation, while we found a positive correlation in germ cells as was shown in ES cells (Baubec

et al., 2015). According to our findings, the levels of DNA methylation are guided by the presence of

two transcription-dependent marks: H3K4 and H3K36 methylation. The discrepancy between the

findings in yeast and germ cells can be explained by the difference in the length of their genes. Yeast

genes are relatively small compared to genes in higher eukaryotes so, H3K4 methylation can spread

within the body of the gene, thus preventing the binding of the DNMT3-ADD domain to the

N-terminus of histone H3 and reducing its activity. In contrast, in mammals, H3K4me is localized to the

start of the gene, and does not spread significantly within the gene body. Hence, highly transcribed

genes in mammals show a strong enrichment of H3K4me3 around the TSS and H3K36me3 into the

gene-body, shaping their intragenic DNA methylation distribution.

The observation that transcriptional elongation is linked to DNA methylation has been noted in many

contexts in addition to male germ cells. In mature oocytes, which have intermediate global levels of CpG

methylation (∼50%), similar to male E16.5 PGCs, actively transcribed gene bodies have far higher levels

of DNA methylation than less transcribed genes and intergenic regions (Smallwood et al., 2011;

Kobayashi et al., 2012). Also, in oocytes, intragenic CpG islands show far higher DNA methylation than

other CpG islands (Smallwood et al., 2011). Transcriptional read-through is a common feature of

maternally imprinted loci (Weaver and Bartolomei, 2014) and ablation of an upstream promoter

prevents proper methylation of the imprinted Gnas locus (Chotalia et al., 2009). In mammalian soma,

inactive X-chromosome shows higher promoter methylation, consistent with its silent state, but

markedly lower intragenic methylation (Hellman and Chess, 2007). Transcriptional elongation is also

correlated with DNA methylation in tumor cells (Jin et al., 2012). It has been suggested that

transcriptional read-through could ‘open’ chromatin for DNMTs, or that heterochromatin is physically

inaccessible to DNMTs. We suggest however that direct recruitment of DNMTs by H3K36me3 is the

most likely mechanism for the correlation between transcriptional read-through and DNA methylation.

H3K36me3 functions both to suppress intragenic transcriptional initiation through recruitment of

histone deacetylases, and to promote DNA methylation. These marks likely cooperate to induce

lasting silencing of transcriptional initiation at target loci (Figure 7, Figure 7—figure supplement 1).

Intragenic TSSs originating at transposons have the potential to generate truncated or transposon/

gene hybrid transcripts that could be deleterious to cell survival. H3K36me3 and DNA methylation

could cooperate to silence these transposons in the germline and other periods of de novo

methylation, and to maintain silencing through development. Moreover, where multiple TSSs exist for

a gene, as in many imprinted loci, H3K36me3-mediated DNA methylation may serve to ensure the

dominance of one promoter in a given cell type.

A number of H3K36 methyltransferases exist in mammals but only one, SETD2, can catalyze the

conversion of H3K36me2 to me3 (Wagner and Carpenter, 2012). Setd2−/− mice exhibit profound

vascular defects and die at E10.5–E11.5 (Hu et al., 2010), while Setd2−/− are defective for

differentiation toward endoderm (Zhang et al., 2014). Setd2 is also a tumor suppressor mutated

frequently in leukemia (Zhu et al., 2014). It will be important to determine how loss of Setd2 affects

the distribution of DNA methylation in the germline and soma, and whether loss of Setd2 contributes

to aberrant methylation in cancer.

More broadly, targeting of DNMT enzymes by association with H3K36me3 could explain

methylation distribution across plants and animals. All catalytically active DNMT3-family methyl-

transferases in animals contain PWWP domains, and accordingly, gene body DNA methylation is

observed in all animals that have retained DNMT3 enzymes. Preferential methylation of gene bodies

over intergenic regions is observed for invertebrates such as honey bees (Apis mellifera), sea squirts

(Ciona intestinalis), sea anemones (Nematostella vectensis) (Zemach and Grafi, 2003; Feng et al.,

2010). While the relationship between relative gene expression and gene-body methylation varies
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across these species, there is a strong correlation between gene-body H3K36me3 in Drosophila

melanogaster genes and DNA methylation of homologous gene bodies in other invertebrates (Nanty

et al., 2011). DNA methylation is also associated with gene bodies in zebrafish (Danio rerio) (Zemach

and Grafi, 2003) and in mammalian contexts as discussed above. Finally, some chlorophyte algae

have a ‘chlorophyte-type cytosine methylase’, which evolved independently of DNMT3-family

methyltransferases, which is fused to two PWWP domains (Iyer et al., 2011). Thus, H3K36me3 could

be relevant to DNA methylation targeting throughout the plant and animal kingdoms.

Materials and methods

Experimental methods

Yeast strains, plasmids, media and culture Conditions
All the plasmids, primers, and strains used in this study are listed in Supplementary file 6A,B. Murine

DNMT3b isoform 1 was amplified from the plasmid pCR-Blunt II-TOPO and subcloned into pYES2 (Life

Technologies, Carlsbad, CA) using HindIII and BamHI. All the plasmids were introduced in yeast using the

standard Lithium Acetate Procedure (Gietz and Schiestl, 2007). Mutant yeast strains set1Δ and set2Δ were

kindly donated by the Kurdistani Lab (UCLA), while the dot1Δ strain (W303 background) was prepared

via PCR-mediated gene disruption (Wach, 1996) using primers listed in Supplementary file 6C.

All the yeast strains were grown at 30˚C in SC + Galactose 2% without uracil (Sunrise Science, San

Diego, CA, cat 1652 and 1485-100) overnight. The next morning, cells were diluted to 0.3 OD600/ml

and grown to mid-log phase (0.8–1 OD600/ml) or to stationary phase (5–6 OD600/ml or for 24–30 hr).

Figure 7. Proposed model for de novo DNA methylation establishment. Model proposed for the targeting of DNMT3 during events of de novo 5meC

establishment after genome-wide erasure of DNA methylation. Our model suggests that the presence of transcription-dependent histone modifications,

such as H3K4me3 and H3K36me3, determines the activity of DNMT3b in vivo.

DOI: 10.7554/eLife.06205.020

The following figure supplement is available for figure 7:

Figure supplement 1. Factors affecting DNA methylation deposition.

DOI: 10.7554/eLife.06205.021
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Yeast WGBS libraries preparation
DNA was collected from yeast cells according to Hoffman (2001) with minor changes. Briefly, about 5

OD600 of yeast cells were disrupted by vortexing for 6 min in a Disruptor Genie (Scientific Industries,

Inc., Bohemia, NY) in the presence of an equal volume of breaking buffer, acid-washed glass beads and

phenol:chloroform (1:1). After the addition of TE buffer, aqueous phase is transferred into a new tube

and precipitated with ethanol. The nucleic acid pellet is resuspended in TE buffer and treated for 1 hr at

37˚C with RNaseA, followed by incubation for 1 hr with 2 mg/ml proteinase K in the presence of 1% SDS

at 60˚C. The resulting solution is treated twice with phenol:chloroform (1:1), once with chloroform and

ethanol precipitated. The DNA pellet is resuspended in EB buffer (Qiagen, Valencia, CA). Between 500

and 1000 ng of extracted yeast DNA is added to 2 ng of λ unmethylated DNA (Promega, Madison, WI,

D1521) and the mixture is sonicated with a Covaris S-2 to obtain fragments in the 200–300 bp range

(Total time: 6 min; Duty cycle: 10%; Intensity: 5; Cycles/Burst: 200; Mode: Frequency sweeping). The

reagents used in the library preparation are from the Illumina TruSeq DNA Sample Prep kit v2 (Illumina,

San Diego, CA). End-Repair, purification and dA-tailing steps are performed according to

manufacturer’s instructions. Ligation is performed according to the protocol except that 1 μl of

Illumina TruSeq Adapters is used in the final reaction. The ligation reaction is purified using 1.2 vol of

AMPure XP beads (Beckman Coulter Inc. Indianapolis, IN,) and DNA fragments with a 170–350 bp

range are enriched using 0.7 and 0.3 vol of AMPure XP beads in the first and second size-selection step,

respectively. Samples are treated with bisulfite (EpiTect kit, QIAGEN) according to manufacturer’s

protocol, except that two consecutive rounds of conversion are performed, for a total of 10 hr of

incubation. Half of the converted DNA is amplified using MyTaq Mix (Bioline, Taunton, MA,) and

Illumina TruSeq PCR Primer Cocktail according to the following protocol: initial denaturation at 98˚C for

30 s; 12 cycles of 98˚C for 15 s, 60˚C for 30 s, 72˚C for 30 s; final extension at 72˚C for 5 min. The final

product is purified using AMPure XP beads before being submitted for sequencing. Libraries were

sequenced with an Illumina HiSeq 2000 system using 50 bp or 100 bp single-end reads.

Yeast MNase-seq libraries preparation
Nucleosome mapping has been performed according to Rando (2010) with minor modifications.

Stationary phase yeast culture (≈6 OD/ml) is cross-linked with 1% formaldehyde for 20 min with

occasional rotation at room temperature. The reaction is quenched with glycine for 5 min at room

temperature. About 60 OD of yeast cells are washed twice with PBS buffer and then resuspended in

2 ml of Z buffer (1 M sorbitol, 50 mM Tris-HCl pH 7.4 with freshly added 10 mM β-mercaptoethanol)

containing 3.6 mg of Zymolyase-20T (from Arthrobacter luteus, AMS Biotechnology, Cambridge,

MA,) and incubated at 37˚C in agitation. After 45 min the same amount of Zymolyase is added and

each sample which is incubated for an additional 45 min at 37˚C in agitation. Spheroplasts are then

pelleted by centrifugation for 5 min at 4˚C at 1500 g. The pellet is washed once with NP-buffer, then

resuspended in 1.6 ml of NP-buffer and divided in three tubes. An increasing amount of MNase

(Sigma, N3755, St. Louis, MO,) is added to each tube: 0.25 U, 0.5 U, and 1 U. After incubation for 20

min at 37˚C, each reaction is stopped by the addition of SDS and EDTA to a final concentration of 1%

and 10 mM, respectively. The reaction is then treated with 0.2 mg/mg of proteinase K (NEB, Ipswich,

MA) at 65˚C overnight. The sample is then purified with two rounds of phenol:chloroform (1:1) and the

aqueous solution precipitated. The resuspended DNA pellet is treated for 1 hr with RNase A at 37˚C.

For the naked DNA digestion, 200 ng of extracted DNA is incubated at 37˚C with 0.01 U of MNase.

After 7 min the reaction is stopped as described before. Both naked and RNaseA-treated nucleosomal

DNAs are then purified using 1.8 vol of AMPure XP beads and the libraries prepared using NEBNext

DNA Library Prep Master Mix Set for Illumina (NEB, E6040S) with few modifications of the

manufacturer’s protocol. Only the digestion pattern obtained with 0.5 U of MNase was used for the

library preparation. The DNA is end-repaired (in half of the suggested volume), dA-tailed, and 1 μl of
Illumina TruSeq Adapters is added to a 40 μl ligation reaction. Purification after each step is

performed using AMPure XP beads according to the protocol. The size selection step is carried out

with 0.8× of AMPure beads in the first step and 0.2× of AMPure XP beads in the second step. Half of

the DNA is amplified using Illumina PCR Master Mix and Illumina TruSeq PCR Primer Cocktail (TruSeq

DNA Sample Prep kit v2) with the following protocol: initial denaturation at 98˚C for 30 s; 12 cycles of

98˚C for 15 s, 60˚C for 30 s, 72˚C for 30 s; final extension at 72˚C for 5 min. The final product is purified

using AMPure XP beads before being submitted for sequencing. Libraries were sequenced with an

Illumina HiSeq 2000 system using 50 bp single-end reads.
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Yeast RNA-seq libraries preparation
RNA was collected from 5 OD of yeast cells (Collart and Oliviero, 2001). Approximately 500–1000 ng

of extracted yeast RNA are used to prepare RNA-seq libraries using Illumina TruSeq mRNA Library

Prep Kit v2 according to manufacturer’s instructions. Libraries were sequenced with an Illumina HiSeq

2000 system using 50 bp single-end reads.

RT-qPCR
Quantitative RT-PCR was used to determine the relative expression of DNMT3b in wild-type and

mutant yeast strains. Briefly, 1 μg of total RNA was subject to polyA enrichment using TruSeq

oligo-dT magnetic beads (part # 15026778, Illumina) and reverse transcribed using SuperScript III

(cat # 18080-044, Life Technologies) according to manufacturer’s instruction. An equal amount

of cDNA was used for each qPCR reaction, using primers listed in Supplementary file 6C.

Murine DNMT3b expression levels were normalized to TDH1 levels and the relative expression

between the wild-type and each mutant was calculated using the ΔΔCt method (Schmittgen and

Livak, 2008).

Yeast ChIP-seq libraries preparation
Chromatin immunoprecipitation experiments were conducted according to Kitada et al. (2012), with

minor modifications. Briefly, 50 OD of yeast cells are crosslinked using 1% formaldehyde for 15 min at

room temperature and quenched with glycine 125 mM for 5 min at room temperature. After two washes

with ice-cold PBS, the cells are resuspended in yeast lysis buffer (with 140 mM NaCl for DNMT3b and

RNApolII or 500 mM NaCl for histone post-translational modifications) and the same volume of acid-

washed glass beads. We disrupted the cells by vortexing for 5 min in a Disruptor Genie at 4˚C and

incubating in iced-water for 2 min. We repeated the cycle for an additional 5 times. We collected the

lysate by centrifugation after creating a hole on the bottom of the tube with a 25-G needle. We

transferred a fraction of the lysate into a microTube (AFA filter—Covaris, Woburn, MA) and proceeded

with the sonication using the Covaris S2 system according to the following parameters: 14 cycles of 30 s

ON, 30 s OFF; Duty cycle = 5%; Intensity = 5%; Cycles/Burst = 200. The sonicated lysate is clarified via

centrifugation and 50 μl of the supernatant is incubated overnight at 4˚C with a specific antibody

(Supplementary file 6D). 10 μl of the clarified lysate is used as input control. The next day,

immunoprecipitations are incubated 2 hr at 4˚C with Protein A Dynabeads (Life Technologies). Each wash

is performed twice in the following order: low-salt buffer (50 mM HEPES pH 7.5, SDS 0.1%, 1% Triton

X-100, 0.1% Deoxycholate, 1 mM EDTA, 140 mM NaCl), high salt buffer (50 mM HEPES pH 7.5, SDS

0.1%, 1% Triton X-100, 0.1% Deoxycholate, 1 mM EDTA, 500 mM NaCl), LiCl buffer (10 mM Tris-HCl pH

8, 250 mM LiCl, 5 mM EDTA, 1% Triton-X, 0.5% NP-40), TE buffer (100 mM Tris-HCl pH 8, 10 mM EDTA).

Elution is performed at 65˚C with TE/SDS buffer (100 mM Tris-HCl pH 8, 10 mM EDTA, 1% SDS). Tubes

containing the eluted immunoprecipitations and input controls (additioned of TE/SDS buffer) are

incubated overnight at 65˚C to reverse the cross-links. RNase treatment is performed at 37˚C for 1 hr,

followed by a proteinase K treatment for 1 hr at 60˚C. Each reaction is then purified using 1.8 vol of

AMPure XP beads according to manufacturer’s instructions. Libraries were prepared with Ovation

Ultralow DR kit (Nugen Technologies, San Carlos, CA) starting from 1 ng of purified DNA according to

the protocol. Libraries were sequenced with an Illumina HiSeq 2000 system using 50 bp single-end reads.

Mice
Mice homozygous for a characterized Oct4-IRES-GFP allele (Wernig et al., 2007) were used for

murine H3K36me3 ChIP. Embryonic male germ cells express the GFP marker and can be sorted

efficiently (Vincent et al., 2011; Pastor et al., 2014).

Bisulfite sequencing and RNA-seq data (mouse)
Whole genome bisulfite sequencing data from sorted E16.5, P2.5, and P10.5 germ cells was

generated as part of a parallel project studying the transposon silencer Morc1 (Pastor et al., 2014),

with the data from the phenotypically normal Morc1+/− controls from that study serving as

methylomes in this study. Briefly, germ cells from between three to five male mice at each time

point were harvested and libraries generated, and reads from these libraries were pooled. E13.5

bisulfite sequencing data were taken from replicate two of (Seisenberger et al., 2012). Genome-wide

bisulfite sequencing average coverage was 5.36 (E13.5), 14.57 (E16.5), and 8.52 (P2.5).

RNA-seq data from two E16.5Morc1+/− controls from (Pastor et al., 2014) were also used in this study.
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Mouse germ cells purification for ChIP
Collection of embryonic testes was performed following institutional approval for appropriate care

and use of laboratory animals, according to published protocols (Pastor et al., 2014). Pregnant

females were euthanized using CO2 and the embryos removed from the womb and stored on a 10 cm

dish filled with chilled 1× PBS. Testicles were removed from the embryos, placed in an individual 15 ml

falcon tube with 3 ml of 0.25% Trypsin with 3 μl of DNAse I 1 U/1 μl (Life Technologies). Testes were

incubated for 15 min at 37˚C. After incubation the cells were agitated into suspension gently by

pipetting. The trypsin was then quenched using 5 ml DMEM/10% FBS (Life Technologies). The cells

were centrifuged at 278 g for 5 min and resuspended in 500 μl FACS buffer (1× PBS 1% BSA). 7-AAD

was added at a 1:50 dilution (BD Biosciences, San Jose, CA) and the cells strained through BD FACS

tubes (Corning, Union City, CA) before analysis. GFP positive cells were sorted for ChIP.

Mouse ChIP-seq
The ChIP-seq protocol was adapted from published sources (Ng et al., 2013; Pastor et al., 2014).

FACS sorted cells from four male, E13.5 embryos were diluted to 292 μl with room temperature 1×
PBS. 8.11 μl 37% Formaldehyde (Sigma) was added and the sample was incubated 10 min at room

temperature with rocking. 48.8 μl of 1 M glycine was then added to yield a final concentration of

0.14 M and the samples were quenched 30 min with rocking. Cells were then spun 425 g for 10 min at

RT. The cell pellet was flash frozen.

After thawing, the cells were resuspended in 300 μl Lysis buffer (50 mM Tris-Cl pH 8.0, 20 mM

EDTA pH 8.0, 0.1% SDS, 1× Complete Protease Inhibitor [Roche]) and incubated on ice 10 min.

Samples were then sonicated by Covaris S2 (Intensity 5, cycles/burst = 200, duty cycle = 5%, 10 × 30 s

on 30 s off sonication). Samples were spun 14000 g 10 min to remove insoluble material. The soluble

sample was diluted to 600 μl with dilution buffer (16.7 mM Tris pH 8, 0.01% SDS, 1.1% Triton X-100,

1.2 mM EDTA, 167 mM NaCl) and 10% of material was saved as input. Sample was precleared with

30 μl Protein A Dynabeads (Life Technologies) and preincubated 1 hr. The cleared material was

incubated with 1 μl L anti-H3K36me3 antibody (Abcam Ab9050) overnight.

The samples were incubated with 30 μl Protein A Dynabeads and the precipitated material was

recovered with a magnet. The beads were washed 2 × 4 min with Buffer A (50 mM HEPES pH 7.9, 1%

Triton X-100, 0.1% Deoxycholate, 1 mM EDTA, 140 mM NaCl), 2 × 4 min with Buffer B (50 mM HEPES

pH 7.9, 0.1% SDS, 1% Triton X-100, 0.1% Deoxycholate, 1 mM EDTA, 500 mM NaCl) and 2 × 4 min

with 10 mM Tris/1 mM EDTA. Bound material was eluted with 100 μl Elution buffer (50 mM Tris pH

8.0, 1 mM EDTA, 1% SDS) at 65˚C for 10 min and then eluted a second time with 150 μl elution buffer.

The input samples were thawed and diluted with 200 μl buffer. Crosslinking of ChIP and input samples

was reversed by incubating 16 hr at 65˚C. Samples were cooled and treated with 1.5 μl of 10 mg/ml RNaseA

(PureLink RNAse A, Invitrogen #12091-021) for 30 min at 37˚C. 100 μg of Proteinase K was then added and

the samples treated for 2 hr at 56˚C. The samples were then purified using a Qiagen MinElute kit.

Samples were amplified by a SeqPlex DNA Amplification kit (Sigma) and then converted to libraries

using an Ovation Rapid Library kit.

Data processing and analysis

Bisulfite sequencing
Reads from bisulfite-treated yeast and mouse genomic DNA (Seisenberger et al., 2012; Pastor et al.,

2014) were aligned using BS-Seeker2 v2.0.3 (Guo et al., 2013) against the sacCer3 and mm9 genome

assemblies, respectively. Up to four mismatches were allowed and bowtie (v0.12.8) was specified as

the aligner. Methylation was called using default parameters of BS-Seeker2.

MNase-sequencing
Reads from both naked and nucleosomal DNA sequencing were aligned using bowtie v0.12.8 (Langmead

et al., 2009) against the sacCer3 genome assembly, allowing up to two mismatches. Nucleosome calling

was performed using DANPOS v2.1.3 (Chen et al., 2013) subtracting the naked DNA-derived reads from

the nucleosomal reads and using the ‘-k1 -e1’ parameters (Supplementary files 1B, 4).

RNA sequencing
RNAseq reads from mouse germ cells (Pastor et al., 2014) and yeast were aligned against the mm9

and sacCer3 genome assemblies using STAR v2.3.1 (Dobin et al., 2013) with the following

parameters: –outFilterMismatchNoverLmax 0.04 –outFilterMultimapNmax 1.
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Differential expression was performed using the DEseq package (Anders and Huber, 2010) in

R-Bioconductor. Differentially expressed genes are defined as having more than twofold difference in

the level of the corresponding RNA and a false discovery rate (p-adj) smaller than 0.1.

GO term enrichment for upregulated and dowregulated genes in the DNMT3b-expressing

compared to the EV was performed using the Gene Ontology Term Finder tool on the Sccharomyces

Genome Database website (http://www.yeastgenome.org/cgi-bin/GO/goTermFinder.pl). RPKM

values were calculated using rpkmforgenes.py (available at http://sandberg.cmb.ki.se/media/data/

rnaseq/rpkmforgenes.py) specifying the following options: -fulltranscript -nocollapse -rmnameoverlap

–allmapnorm (Supplementary file 4).

ChIP sequencing
Reads from yeast and mouse (this study and [Lesch et al., 2013]) were first mapped against the yeast

(sacCer3) and mouse (mm9) genome, respectively, using bowtie v0.12.8 (Langmead et al., 2009),

then aligned reads were processed according to Ferrari et al. (2012).

Linear model of methylation
The yeast genome was divided in 200-bp bins and log-transformed average levels of each feature calculated

for each bin. The model was built using simple linear regression lm() function in R and the resulting

prediction correlated (Pearson) with the observed values for both 5meC levels and DNMT3b occupancy.

Data access
Data can be accessed at GEO (Gene Expression Omnibus) under the accession GSE6691.
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