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ABSTRACT OF THE THESIS

Estimation of Regional Left Ventricular Function Based on Texture Analysis of 

Computed Tomography Images
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Professor Juan Carlos del Alamo, Chair

Assessing regional cardiac function has many diagnostic implications in the 

treatment of various cardiac diseases such as myocardial ischemia, cardiac 

dyssynchrony, etc. Unfortunately, there is no accepted gold standard for the quantitative 

measurement of regional cardiac function. Current methods to assess regional cardiac 

function primarily rely on the subjective visual analysis of cardiac images. 
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The method described in this thesis processes high resolution cardiothoracic CT 

scans to segment out and characterize the left ventricular endocardium. We hypothesize 

that the fractal dimension is an effective parameter to characterize and quantify the 

regional roughness/structure of the endocardium, which changes across the cardiac 

cycle.

The method was tested on 10 normal cases and on one case with heart failure. 

All 10 normal cases showed a consistent and uniform decrease in the fractal dimension 

values from end diastole to end systole whereas the heart failure case showed no 

considerable change, differing by 3 standard deviations from the normal cohort. The 

method was consistent in distinguishing normal from abnormal for all possible sizes of 

the local neighborhood, but showing variation in the absolute values of the fractal 

characterization.

Within a definite range, the method was not significantly sensitive (< 1% 

variation) to the initial threshold values input by the user. A study with three 

independent volunteers showed that the user was most likely to select a threshold value 

within this insensitive range.

The method developed is non-invasive, simple to use with minimum operator 

involvement, and computationally inexpensive.
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SUMMARY

According to the World Health Organization’s fact sheet, cardiovascular 

diseases (CVDs) are the leading cause of death globally. It has been reported that an 

estimated 17.7 million people died from CVDs in 2015 across the world. This estimate 

accounts for almost 31% of the total deaths that occurred in the world that year [1]. 

Management of cardiac health and timely diagnosis of cardiac diseases can reduce the 

number of fatalities per year.

As per the same fact sheet published by the WHO, 7.4 million of the 17.5 million 

deaths due to CVDs were a result of coronary heart disease, making it the primary cause 

of death from CVDs. Coronary heart disease is a disorder which is caused due to a 

disruption in the supply of blood through the coronary arteries to the heart muscle. Even 

a minor disruption in the supply of blood to a region of the heart muscle could 

potentially affect the contractility of that region, giving rise to other disorders such as 

shortness of breath, chest pain, etc. [2]. This has given rise to lot of interest in developing 

methods and tools to assess regional cardiac function. Although quantitative parameters 

such as ejection fraction (EF), ventricular mass, and ventricular volume shed light on 

cardiac performance as a whole, they do not give information on the local contractility 

of different regions of the heart muscle. These parameters have also been shown to be 

very sensitive to end diastolic volume (EDV) and end systolic pressure (ESP) [3,4]. 

Imaging modalities such as echocardiography, magnetic resonance imaging 

(MRI), and computed tomorgraphy (CT) are frequently used to diagnose and assess 

regional cardiac function. These methods often depend on the skill set of the operator
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and the interpretation of the data maybe subjective [5]. Due to rapid advances in the 

temporal resolution of CT technology and due to its inherent superior spatial resolution 

and small acquisition times, CT is becoming an important imaging modality. It has been 

shown by Wu et. al. [6] that CT agrees well with MRI, which is considered the current 

reference cardiac imaging modality. With the advancement in cardiac imaging 

modalities, techniques can be developed that directly quantify regional cardiac 

contractility through surface characterization of the cardiac wall.

The superior spatial resolution of CT clearly delineates the structure and 

boundary of the endocardium (the innermost layer of the cardiac wall) as well as

highlights the trabeculae and papillary muscles, which can be used as fiducial markers 

[7]. The trabeculae and papillary muscles of the endocardial wall behave in a similar 

fashion to the bellows of an accordion. They open out as the heart expands towards end 

diastole (like the bellows when the accordion is stretched), revealing a highly irregular 

structure and get compressed and smooth out (like the bellows when the accordion is

compressed) as the heart squeezes towards end systole. We hypothesize that the 

quantification of the change in structural complexity of the trabeculae as a function of 

the cardiac cycle can provide information on the regional contractility.

The fractal dimension is an effective metric to measure to the complexity or 

structure of an object. The fractal dimension is a parameter derived from fractal theory, 

which describes the degree of irregularity of a surface. Fractals do not have a true 

definition; they can be thought of as extremely complex structures which cannot be 

described by our conventional knowledge of geometry and dimension. One of the most 
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famous fractals is the Koch Curve. It is neither a line, nor a surface and hence cannot be 

categorized as either 1-dimensional (1D) nor 2-dimensional (2D). 

The method developed processes cardiothoracic CT scans of patients to segment 

out the left ventricular endocardium and characterizes it with a map of its local fractal 

dimension values. The local fractal dimension is calculated for regions of the 

endocardium defined by a neighborhood cube of size 64 voxels. The map describes the 

regional complexity in the structure of the endocardium and tracking changes in this 

parameter across the cardiac cycle can provide information on the regional contractility

or health of the endocardium.

There is a window of threshold values for each CT scan within which the 

algorithm is not significantly sensitive. The fractal dimension varies less than 1% 

between threshold values in tis range. The algorithm also distinguished between the 

normal cohort and the heart failure case consistently for all possible neighborhood sizes 

by three standard deviations. However, there was a difference in the absolute values of 

the regional characterization of the endocardium due to the different length scales at 

which the fractal dimension was computed.

The method developed was simple, quick, easy to use, requires minimal operator 

involvement, and requires minimal exposure of the patient to ionizing radiations. We 

hypothesize that the method can aid physicians in the diagnosis of cardiac disorders 

such as heart failure, myocardial ischemia, and myocardial dyssynchrony.
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Chapter 1

INTRODUCTION

This chapter gives a brief introduction to the anatomy of the human heart and 

the circulatory system. It also provides a summary of the current methods in use to 

measure and assess regional cardiac function and their advantages and disadvantages.

Lastly, the chapter deals with the rationale behind the method described in this thesis as 

well as a brief theoretical overview of fractal geometry.

1.1 Anatomy of the Human Heart

The heart is an organ located close to the center of the thoracic cavity. It is 

located between the right and left lungs towards the left of the breastbone as shown in 

Figure 1.1. It is enclosed by a thin, inelastic fibrous bag called the pericardium which 

connects the heart to the sternum. It is the primary organ of the circulatory system and 

responsible for pumping blood throughout the body.
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Figure 1.1. Schematic diagram of the human thoracic cavity showing the position of the heart 
relative to other organs in the body. [1]

The circulation of blood in the body is divided into two main systems;

pulmonary and systemic circulation. Pulmonary circulation is the movement of blood 

between the heart and the lungs and is responsible for the exchange of gases and 

oxygenation of the blood in the lungs. A graphical description of pulmonary circulation 

is shown in Figure 1. 2.

Figure 1.2. Schematic diagram of pulmonary circulation. [2]
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Systemic circulation is the transportation of blood between the heart and all other parts 

of the body. Figure 1.3 is a schematic representation of systemic circulation.

Figure 1.3. Schematic diagram of systemic circulation. [3]

The heart has 4 chambers; the left atrium, the right atrium, the left ventricle, and 

the right ventricle. The right atrium receives deoxygenated blood from the superior and 

inferior vena cavas and empties into the right ventricle through the tricuspid valve. The 

left atrium receives oxygenated blood from the pulmonary veins and empties into the

left ventricle through the mitral valve. The ventricles are the pumping chambers, with 

the left ventricle pumping blood, through the aorta, to different parts of the body 

(systemic circulation) and the right ventricle pumping blood, through the pulmonary 

artery, to the lungs (pulmonary circulation). Figure 1.4 shows the general structure of 

the human heart.
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Figure 1.4. Anatomy of the human heart. [4]

The heart wall consists of three layers: the epicardium, the myocardium, and the 

endocardium, as shown in Figure 1.5. These layers are surrounded by the pericardium 

and the pericardial fluid. The innermost layer, called the endocardium, is made up of 

simple squamous epithelial tissue. The middle layer, called the myocardium, forms the 

bulk of the cardiac wall and is made up of special type of muscle cells called cardiac 

muscle cells or cardiomyocytes and is connected to the endocardium through a layer of 

connective tissue. The outer layer, called the epicardium, is made up of two layers of 

mesothelium in the form of a serous membrane [5].
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Figure 1.5. Schematic representation of the human left ventricular wall. [5]

In this thesis, we will focus our attention on the left ventricle as it is the chamber 

responsible for systemic circulation and its proper health and functioning has important 

implications on cardiac health. The left ventricle is also much thicker as compared to 

the right, and this is due to the larger forces it needs to withstand for systemic circulation 

[5].

The heart is supplied with blood by the left and right coronary arteries and their 

corresponding branches. The coronaries branch out from the aorta just above the mitral 

valve opening. It is the disruption of blood flow in these coronary arteries which account 

for the 7.4 million deaths globally as reported by the WHO. 

1.2 Assessment of Cardiac Function

Assessing regional cardiac function has important implications in the diagnosis 

and clinical management of cardiac disorders. With advances in cardiac imaging 



10

modalities, the non-invasive assessment of regional cardiac function has become more 

accurate over time. Superior spatial and temporal resolutions allow us to measure wall 

thickening, regional strain, LV ejection fraction (EF), and LV mass. Currently, there are 

many modalities that are routinely used to assess regional cardiac function. 

Echocardiography is a favored imaging modality to evaluate cardiac health. Its 

ease of use, low cost and real time imaging are some of the key advantages [6]. 

However, the technique is 2D (recent developments in 3D technology have emerged) 

and applies geometric assumptions to the image. This can have a negative impact on the 

accuracy of assessing the EF. Also, its spatial resolution is low and hence cannot 

perfectly delineate the endocardial and epicardial borders [7].

Cardiac magnetic resonance imaging (cMRI) serves as the current reference 

standard in assessment of cardiac function. [8,9]. It produces 3D images and has good 

spatial and excellent temporal resolution. However, the imaging is slow and requires 

breath holding and multiple passes. The spatial resolution lacks in its ability to 

completely delineate endocardial structures such as the trabeculae, leading to 

overestimation and underestimation of ventricular volume at diastole and systole 

respectively [10]. Also, cMRI cannot be performed on patients implanted with 

pacemakers and other metallic devices and this is a severe limitation with the increasing 

number of patients using such devices.

With the advent of 256 slice scanners, improved temporal resolution, and 

quicker scanning times, CT technology is emerging as a strong contender for assessing 

cardiac function [6]. CT also provides the added benefit of combining a high-resolution 
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angiogram study together with a study to assess global and regional cardiac function 

[11]. Previous studies have also shown good agreement of global and regional cardiac 

function assessment between CT and MRI [12-16]. With its excellent spatial resolution, 

CT technology can clearly delineate the interface between the endocardium and the 

blood pool, which makes segmentation easy. Another advantage of CT over other 

imaging modalities is that it is less operator dependent. The drawback of CT technology, 

however, is the exposure of the patient to strong ionizing radiations.

While global cardiac function has been routinely estimated using EF as a 

parameter [9, 17], current methods for assessing regional cardiac function rely primarily 

on visual inspection [9, 18-19]. EF and other volumetric indices are very sensitive to

pre-load (EDV) and after-load (ESP), reducing their efficacy of quantifying regional 

cardiac function. [20-21].

Regional cardiac function can be determined through a qualitative description 

of regional wall motion [6,9,19,22], or by using a quantitative approach to track 

myocardial deformations across the cardiac cycle [23]. One parameter describing 

myocardial deformation is wall thickening. It has been shown by Lieberman et al. [24] 

that a quantitative measurement of myocardial thickening is more accurate than a visual 

analysis of wall motion. Analysis of wall thickening through 2D slices, depicts changes

only in the radial direction, failing to take into consideration the thickening occurring in 

the circumferential and longitudinal directions, hence not providing a complete and true 

measurement [25-26]. Another technique of quantifying regional cardiac function is 

through the measurement of regional strain. This method provides a sufficient and 
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accurate model and accounts for changes occurring in the wall across the cardiac cycle 

in all the three principal directions [27-29]. However, the method is involved requiring 

complex image processing and registration algorithms.

1.3 Rationale

The endocardium of the human left ventricle is lined with muscular ridges called 

trabeculae carneae and papillary muscles. While the papillary muscles are used to 

control the mitral and aortic valves, the trabeculae are considered to have a passive role 

[30]. However, Moore and Dasi showed in their work that the structure of the trabeculae 

change considerably across the cardiac cycle [31]. At end diastole, the trabeculae open 

out and present a rough endocardial surface while at end systole, the trabeculae squeeze 

in and smooth out, in a manner similar to the opening and closing of the bellows of an 

accordion.

The availability of wide-range detector CT technology has made the acquisition 

of high resolution images of the LV endocardium possible, which clearly delineate the

fine anatomical structures and capture the full complexity of the surface structure of the 

endocardial wall. We hypothesize that through these high resolution images, the 

regional roughness or structure of the endocardium can be characterized. We 

hypothesize that the fractal dimension is an effective parameter to quantify the regional 

roughness and by tracking changes in the fractal values across the cardiac cycle, 

information about the regional health and contractility of the left ventricle can be 

obtained.
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1.4 Fractals

Many a time in nature, we encounter structures that are compactly packed, 

exhibiting a convoluted or “rough” topology. Broccoli is a classic example that can be 

used to illustrate this point. The surface of the broccoli is so complex and convoluted 

that even though it occupies a finite volume, it’s surface area is extremely large.

Intuitively, the broccoli surface is considered to be 3-dimensional, although it does not 

entirely occupy a full 3-dimensional volume. The theoretical dimension of broccoli is 

estimated to be about 2.7 [32], which gives us information on its structure (too complex 

to be 2-D while not being fully 3-D). Other common examples which can be described 

using fractal theory are fluid turbulence, topology of clouds and coastlines, etc.

There is no one comprehensive definition of a fractal. Benoit Mandelbrot, who 

first coined the term ‘fractal’, defined a fractal as an irregular set whose Hausdorff 

dimension exceeded its topological dimension. This definition does not hold good for 

certain cases and is therefore not a comprehensive definition. To better understand 

fractal theory, let us examine a few classical fractal sets:

a) Von Koch curve: The von Koch curve is generated by dividing every line 

segment into 3 equal parts and replacing the middle part with two lines, each of 

length equal to the length of the replaced part and arranged in a manner to form 

the sides of an equilateral triangle as shown in Figure 1.6 below.
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Figure 1.6. Different iterations of the generation of the von Koch curve.

I1

I2

I3

In
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b) Sierpinski triangle: The Sierpinski triangle is an equilateral triangle, which at 

each iteration is divided into 4 equilateral triangles, 3 at the 3 respective corners 

of the parent triangle and the 4th one being an inverted equilateral triangle at the 

center. The center triangle is removed at each iteration, leaving a void in the 

middle as shown in Figure 1.7 below.

Figure 1.7. Different iterations of the generation of the Sierpinski Triangle 

I1

I2

I3

I4
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Examining the above examples, two main characteristics of fractal sets can be 

described:

ÿ They have an extremely fine structure. Even to infinite magnification, there is 

always new information revealed by the set.

ÿ These sets exhibit a self-repeating nature. Magnification of a certain area of the 

set, reveals patterns that resemble the original set.

These sets cannot truly be described using our conventional knowledge of Euclidean 

geometry. Concepts such as length and area, when used to describe these sets, do not 

provide us with physically relevant information. This point will be elaborated on later 

in this chapter. 

1.4.1 Natural & Deterministic Fractals

A distinction must be made between natural and deterministic fractals. Prior to 

the advent of fractal theory, nature was thought to be a form of noisy Euclidean 

geometry [33]. Although fractals generated through mathematical operations 

(deterministic fractals) are truly self-similar and have an infinitely fine structure, fractals 

occurring in nature are not truly self-similar but show statistical self-similarity. Beyond 

a certain level of magnification, we will start to observe atoms and molecules which 

aren’t representative of the overall original structure. A classical example used to 

illustrate this point is the human brain. At very high magnification levels, we will begin 

to observe the cellular structure of the brain. However, between this upper and lower 

limit of magnification, natural fractals exhibit some form of self-similarity; a branch of 
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a tree resembles the entire tree, the sub-branches resemble the parent branch and so on 

until the magnification scale breaks down and no further detail is seen.

1.4.2 Euclidean & Topological Dimension

To better understand the term dimension, consider a line and two systems by 

which its dimension can be characterized. The Euclidean dimension characterizes 

objects according to the number of independent parameters required to fully define 

every point on the object. On the other hand, the Topological dimension characterizes 

objects solely based on their topology and structure. Figure 1.8 shows a line in 3-

dimensional Euclidean space. For this particular line, the Euclidean dimension is 3 

because any point on the line is defined by the x,y, and z coordinates. However, the 

topological dimension of the line remains 1 as it is independent of the orientation of the 

line.

Figure 1.8. A line in 3-dimensional Euclidean space
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Therefore, the topological dimension of a point, line, plane, and volume is always 0, 1, 

2 and 3 respectively. Figure 1.9 shows a fractal that is generated through an iterative 

procedure which resembles the structure of cauliflower. For this figure, neither the 

Euclidean nor the Topological dimension will provide a good structural description due 

to the irregularity of the surface. Therefore, to better characterize the topology and space 

filling characteristics of such irregular figures, the fractal dimension is used. The name 

was used to express a form of “fractured dimensions”, introduced by Benoit Mandelbrot 

in his paper on self-similarity [35].

Figure 1.9. A cauliflower generated through an iterative process. [34]
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1.4.3 Fractal Dimension

The von Koch curve is an ideal example to understand the concept of 

“fractional” or “fractured” dimension. In Figure 1.6, it is seen that with every iteration, 

the line segment is divided into 3 parts and as a result of this division, 4 new parts are 

created. In other words, for a reduction scale of (1/3), 4 new parts are created. Thus,

ቀଵଷቁௗ = 4,

where ‘d’ is the fractal dimension. On solving for d, we get ݀ = ୪୭୥(ସ)
୪୭୥(ଷ) = 1.2619.

Regular geometric figures scale in a similar manner, the only difference being that they 

scale as a whole number and not as a fraction. For example, consider a square. On 

scaling the square down by half, i.e. dividing every line of the square into half, we obtain 

4 squares. Similarly, if we scale it down by one-third, then we get 9 squares as shown 

in Figure 1.10. Therefore, representing it mathematically,

݀ = ୪୭୥(ସ)
୪୭୥(ଶ) = ୪୭୥(ଽ)

୪୭୥(ଷ) = 2.

This value of 2 gives us the 2-dimensional characteristics of a square. The same 

procedure can be repeated with a cube and the value of d will be 3 in that case.

(A) (B) (C)
Figure 1.10. Scaling laws for a square. (A)Full square – 1 unit. (B) Dividing by half – 4 units. 
(C) Dividing by one-third – 9 units.
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The Sierpinski triangle can be used to truly understand the complexity or 

irregularity of the fractals and the need for a fractional dimension. From Figure 1.7, it 

is observed that the length of the Sierpinski triangle tends to infinity while its area tends 

to 0. To prove this, let k be the number of iterations in the generation of the Sierpinski 

set. The length is given by the relation:

ℎݐ݃݊݁ܮ = 3 + ቀଷଶቁ௞,

where the length of the side of the parent triangle is taken as unity. Therefore, as k ‡

infinity, length ‡ infinity. Similarly, the area is given by the relation:

ܽ݁ݎܣ = 3௞ . (2ି௞)ଶ.√34
As k ‡ infinity, the area ‡ 0. Thus, geometrical concepts such as length and area do 

not provide physically relevant information of the structure of these irregular figures. 

Length is used as a parameter to measure sets of dimension 1 and area is used to measure 

sets of dimension 2. But the Sierpinski triangle has an infinite length and zero area, and 

this phenomenon was first justified by Hausdorff in 1919 when he proposed that the 

dimension of a set should be allowed to be a fraction [36].
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Chapter 2

METHODS

This chapter describes the tools, functions, and processes that are employed to 

achieve the regional characterization of the left ventricular (LV) endocardium. An 

overview of the processes involved is shown below in the form of a process flowchart:
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2.1 Image Processing

All computations were performed using Matlab R2015b (MathWorks Inc.), unless 

specified otherwise. Matlab offers great versatility in reading and processing medical images.

2.1.1 CT Scans & DICOM Files

CT scans are generated by imaging parts of the body using X-rays from different 

angles and positions and reconstructing the different images acquired into a 3-

dimensional volume. They provide more detailed information as compared to plain X-

ray images. A typical CT scanner is shown in Figure. 2.1.

Figure 2.1. Modern CT Scanner (GE Healthcare). [1]
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‘Digital Imaging and Communications in Medicine’ (DICOM) is the standard 

for storing medical images from different imaging modalities, including but not limited 

to CT scans, magnetic resonance imaging (MRIs), ultrasonography, etc. Each DICOM

(.dcm) file stores the CT scan images as either 2-D slices or a stack-up of 2-D slices 

forming an entire 3-D volume.

The DICOM files are imported and read into Matlab through the dicomread

function. The files, depending on the information they contain (either 2-D slices or 3-D 

volume), are imported in a manner so as to reconstruct a 3-D volume for every time 

point imaged during the CT scan. For example, if the CT scan is imaged over 20 

different time points across the cardiac cycle, the DICOM files are reconstructed to form 

20 different 3-D volumes representing the different phases of cardiac contraction. As 

this set of data has 3-dimensions for every time point, it is sometimes referred to as 4-

D, time being the 4th “dimension”.

2.1.2 Image Cropping & Interpolation

To minimize computation time and memory usage, a rough crop around the left 

ventricle is made to isolate it from the rest of the cardiothoracic CT scan. Pre and post 

cropping images are shown in Figure 2.2. From this point, any reference to a 3-D volume 

is a reference to only the 3-D data of the left ventricle.
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(A) (B)
Figure 2.2. Cropping of the left ventricle. (A) 3-D reconstruction of a Cardiac CT scan.
(B) The left ventricle cropped out.

Depending on the model and manufacturer, each CT scanner may have different 

resolutions in the X,Y,and Z directions. The method introduced and described in this 

thesis is isotropic in nature and hence necessitates an equal pixel representation in all

the three principal directions. To compensate for this inequality in resolution, a 3-D 

linear interpolation is performed on the image data of every time frame. For example, if 

the resolutions in X,Y, and Z are 0.3mm x 0.3mm x 1mm respectively, (1/0.3) times the 

number of initial points in Z are added to Z. Although this process of interpolating does 

not increase the image resolution, it does add more number of sampling points to make 

all three principal directions isotropic. 

2.1.3 Image Rotation

The axes of the CT images are aligned with the longitudinal and transverse axes 

of the human body as shown in Figure 2.3. However, the left ventricle is not aligned 
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with either one of these axes; the long axis of the left ventricle is oriented in an oblique 

manner in relation to each of the three principal axes.

Figure 2.3. Axes orientation of the CT images in reference to the human body.

According to Heller et al., in their work published in the American Heart 

Association (AHA) Scientific Statement in 2002 [2], the standardized LV nomenclature 

and segmentation model necessitates the long axis of the LV to be perpendicular and 

into the plane of view. Additionally, the standard recommends that the left ventricle to 

be oriented in a manner so as to have the anterior side positioned at 12 o’clock, the

lateral side positioned at 3 o’clock, the inferior side positioned at 6 o’clock, and the 

septal side positioned at 9 o’clock as shown in Figure 2.4.
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(A) (B)
Figure 2.4. AHA standardized LV model. (A) Short axis view of the left ventricle, shown in the 
AHA recommended orientation. (B) Vertical long axis view.

To orient the left ventricle in the aforementioned standard, a 3D rotation is 

performed on the entire volume for each time frame. The volume is first rotated about 

the Z axis and then about the X axis. The result of the sequence of rotations is that the 

long axis of the left ventricle will now be oriented parallel to the Y axis as shown in 

Figure 2.5.

(A) (B)
Figure 2.5. LV matrix rotation process. (A) Unrotated ventricle. (B) Rotated ventricle.
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2.1.4 Image Segmentation & Edge Detection

Once the CT images have been rotated as per the recommendations laid out by 

the AHA, the next step involves segmenting out the ventricle from the rest of the image. 

Although a rough crop is made around the left ventricle, there still remain coronary 

arteries, parts of the aorta, etc. which need to be removed. It is worth mentioning here 

that the image of the ventricle that we see in Figure 2.5 is actually of the blood pool 

within the ventricle. It is this blood which sis highlighted during the imaging process 

due to the use of contrast agents. The blood pool takes the shape of the endocardial wall, 

and hence the endocardial wall can be extracted by detecting the edge of the left 

ventricular volume.

Consider Figure 2.6. As highlighted in the image, the left ventricle has a 

Hounsfield unit (measure of radiodensity) of ~500. By applying a minimum threshold 

value of ~500, all voxels containing values less than the threshold value are set to 0, 

while all values greater than the threshold value are set to 1 ( Chapter 4 contains more 

information on the selection and sensitivity of the threshold value). Additionally, the 

algorithm is developed to retain only the single largest connected region. This ensures 

that arteries and other smaller anatomical features of similar threshold values are 

removed, while only retaining a continuously connected left ventricular blood pool. The 

volume of 1’s and 0’s, with 1’s representing points inside the blood pool and 0’s outside

is called the Left Ventricular Mask.
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(A) (B)
Figure 2.6. Typical mid-slice of a cardiac CT scan. (A) Mid- slice of a typical cardiac CT scan 
highlighting the different anatomical parts. (B) Data tip showing an approximate radiodensity 
value of the left ventricle.

After obtaining the mask, the next step involves detecting the endocardial wall. 

The endocardial wall contains the trabeculation and papillary muscles and it is the 

change in structure of these features across the cardiac cycle that are essential for the 

quantification of regional cardiac function. To detect the endocardial wall, an in-house 

edge detection algorithm was developed and applied on the mask. The algorithm used 

a convolution kernel (a 3x3x3 kernel of ones) on the 3-D volume of the left ventricular 

mask. The result of the convolution process is the detection of the edge (endocardial 

wall), with a value of 1 representing a point on the edge and a value of 0 elsewhere. 

Another round of filtering and discarding small disconnected regions was performed, 

while keeping the single biggest connected edge. The detected endocardial wall is 

shown in Figure 2.7.
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(A) (B)
Figure 2.7. Segmented endocardial wall. (A) Long axis view. (B) Short axis view

2.2 Local Neighborhood Fractal Dimension

The next step after detecting the endocardial wall, is to characterize its local 

structure through regional values of fractal dimension. This section of the algorithm was 

performed using Fortran, which was approximately two orders of magnitude faster than 

Matlab. To compute these regional values of fractal dimension, a cube of size 64 was 

chosen to serve as the localized region/neighborhood. In other words, the cube is a 

subset of the parent set and the fractal dimension is calculated for the section of the 

endocardial wall contained in that cube. The cube is then displaced in the X,Y, and Z 

directions, sequentially by 8 units, until the entire volume is covered. At the end of the

operation, each cubical region of size 64 is represented by a single value of its fractal 

dimension, providing information on the regional complexity/roughness of the surface. 

The fractal dimension is computed using an in-house developed box-counting 

algorithm. The box-counting algorithm is the most prevalent among several methods in 

use today to calculate the fractal dimension of a system [3]. The algorithm calculates 
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the number of boxes, as a function of the size of the box, that are required to completely 

cover the set, without any of the boxes overlapping. The algorithm is designed to 

function for powers of 2 because of the simplicity and symmetry in dividing the set. 

Within a cube of size 64, the box sizes vary from 1 (one voxel) to 32, in powers of 2.

This section of the Fortran script was parallelized, running multiple processes parallely 

on different processing cores. The fractal dimension is calculated as per the linear 

regression model y = mx + c, where m is the slope and c is the y-intercept, between the 

logarithmic ratio of the number of boxes required, as a function of the box size, to the 

box size. The slope m is the fractal dimension of the set. Mathematically, 

஽ܨ = ݉ = log൫ܰ(݆)൯−log(݆) ,
where N(j) is the number of boxes of size j required to completely cover the set without 

overlap and FD is the fractal dimension. Figure 2.8 shows the relationship between the 

number of boxes and box size and the linear fit between them. 

(A) (B)
Figure 2.8. Relationship between no. of boxes and the box size. (A) Linear Scale. (B) 
Logarithmic Scale, with the linear fit.
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2.2.1 Remapping Local Fractal Dimensions onto LV Edge

Each value in the grid of local fractal dimension values is calculated at the center 

for every location of the neighborhood box. The values represent the regional 

complexity of the set defined within the particular neighborhood. To characterize every 

point of the endocardial wall with a fractal dimension, a linear interpolation is performed 

between the grid of local fractal dimensions and the points defining the edge of the 

endocardial wall. The final output is shown in Figure 2.9.

Figure 2.9. Fractal dimensions characterizing the left ventricular endocardial wall.

For example, if the edge defining the endocardium is stored in a cube of size 256 

and a neighborhood of size 64 is chosen with a sequential displacement of 8 units, then 

the grid of local fractal dimension values will be stored in a matrix of size 25x25x25.

The values from this grid are linearly interpolated back onto the endocardium, giving a 

point by point characterization of the endocardial wall structure as shown in Figure 2.9.
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2.3 Bullseye Plots

The regional characterization of the endocardium is represented by a 2-D 

‘bullseye plot’, in the format specified by the AHA standardized LV segmentation 

model [4]. These are circular donut shaped plots where the radial coordinate 

corresponds to the coordinate along the long axis of the ventricle, transitioning from the

apex at the inner circumference of the plot, to the base at the outer circumference. The

generation of the plot is explained in Figure 2.10 below. The plot’s 12, 3, 6, and 9 

o’clock represent the Anterior, Lateral, Inferior, and Septal regions of the left ventricle 

respectively.

(A) (B)
Figure 2.10. Creation and orientation of the bullseye plot. (A) Representation of corresponding 
slices of the ventricle on the plot. (B) Long axis view of the ventricle showing the different 
slices.
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Chapter 3

RESULTS

This chapter covers the validation and results of the method developed, as 

described in Chapter 2. The first section deals with validating the box-counting 

algorithm with standard test fractals whose dimension is known and well documented 

in literature. The next part summarizes the results of the tool, performed on 10 normal

cases and one abnormal case of a patient suffering from heart failure.

3.1 Algorithm Validation

The in-house box-counting algorithm developed was tested on three “2-

dimensional” fractals and two “3-dimensional” fractals whose dimensions are well 

documented in literature. This served as an initial validation of the accuracy of the 

algorithm and its capability to measure objects with a great degree of variability, viz. 

the left ventricle.

3.1.1 Julia Set

The Julia set was the first fractal the algorithm was tested on. The image was 

generated through an iterative process using the equation z2 + c, where c is a parameter 

that gives us different variations of the Julia set.
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a) The first variation of the Julia set was generated using a value of c = -1. Figure 

3.1 shows a section of the Julia set. The theoretical fractal dimension is reported 

in literature to be 1.27 (rounding to the nearest hundredth). The dimension 

calculated by the box-counting algorithm was 1.23, an error of 3%. The error is 

due to the limited resolution (memory constraints) and numerical noise.

Figure 3.1. A section of the Julia Set (c = -1).

Table 3.1. Theoretical and computed fractal dimension values for Julia Set (c = -1)
Theoretical Fractal Dimension Computed Fractal Dimension Error %

1.27 1.23 3

b) The second variation of Julia set was generated using a value of c = -0.123 + 

0.7i. Figure 3.2 shows a section of the Julia Set (c = -0.123 + 0.7i). The 

theoretical fractal dimension is reported in literature to be 1.39 (rounding to the 

nearest hundredth). The dimension calculated by the box-counting algorithm 
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was 1.37, an error of 1.4%. As mentioned above, the error arises due to a 

limitation in the resolution of the set as well as numerical noise in the algorithm.

Figure 3.2. Julia Set (c = -0.123 + 0.7i).

Table 3.2. Theoretical and computed fractal dimension values for Julia Set (c = -0.123+0.7i)
Theoretical Fractal Dimension Computed Fractal Dimension Error %

1.39 1.37 1.4

3.1.2 Sierpinski Triangle

The Sierpinski Triangle is another example of a fractal generated through an 

iterative process. The set is created starting from a whole equilateral triangle and 

dividing each of its line segments into equal halves recursively and joining the three 

mid-points to form 4 sub-triangles, as shown in Figure 3.3. Of the 4 sub-triangles 

created, the middle triangle is removed leaving only three sub-triangles. Therefore, with 

every iteration of dividing each line segment by one half, three triangles are created.
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Area and length parameters of the Sierpinski Triangle have already been discussed in 

section 2.3 of Chapter 2. Mathematically, 2ௗ = 3, where d is the dimension of the set.

The equation yields a value of d = 1.58. The dimension calculated by the box-counting 

algorithm was 1.58. 

Figure 3.3. Sierpinski Triangle.

Table 3.3. Theoretical and computed fractal dimension values for Sierpinski Triangle
Theoretical Fractal Dimension Computed Fractal Dimension Error %

1.58 1.58 0

3.1.3 Menger Sponge

The Menger sponge is a 3-D generalization of the Cantor set [1]. It is an example 

of a fractal which is neither 2-D nor 3-D, but has a dimension in between 2 and 3. The 

Menger sponge is shown in Figure 3.4. It is generated by dividing each side of a cube

into 3 equal parts, which generates 27 equal sub-cubes. The middle cube of each face 
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as well as the central cube of the whole structure is removed at each iteration, leaving 

only 20 sub-cubes remaining. The volume at the end of each iteration is therefore ቀଶ଴ଶ଻ቁ௡, 

which tends to zero as n becomes very large. However, the surface area, given by the 

relation 2 ቀଶ଴ଽ ቁ௡ + 4 ቀ଼ଽቁ௡, tends to infinity as n increases, making the set neither a true 

plane nor a true volume. Mathematically, due to the creation of 20 sub-cubes with a 

scaling factor of 
ଵ
ଷ, the dimension of the Menger sponge is represented by the equation  

3ௗ = 20 , where d is the dimension. The equation yields a value of d = 2.72. The

dimension calculated by the box-counting algorithm was 2.72.

Figure 3.4. Menger Sponge.

Table 3.4. Theoretical and computed fractal dimension values for Menger Sponge

Theoretical Fractal Dimension Computed Fractal Dimension Error %
2.72 2.72 0
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3.1.4 3-Dimensional Cantor Dust

The 3-D Cantor Dust was the last fractal the algorithm was tested on. The fractal 

was generated using a probability of 0.7. The probability parameter determines the 

filling characteristics for the random generation of the points in the set. The Cantor dust 

is shown in Figure 3.5. The theoretical dimension is given by the formula ݉݅ܦ = ܦ +
௟௢௚௉
௟௢௚ଶ, where P is the probability and D is the general dimension of the fractal, in this 

case being 3. With a value of P = 0.7, the equation yields a value of Dim = 2.48. The 

dimension calculated by the box-counting algorithm was 2.49.

Figure 3.5. 3-D Cantor Dust.

Table 3.5. Theoretical and computed fractal dimension values for 3-D Cantor Dust

Theoretical Fractal Dimension Computed Fractal Dimension Error %
2.48 2.49 0.4
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The validation of the algorithm with the above set of standard fractals shows a 

good degree of accuracy of the method. Unfortunately, there is no known documented 

literature to validate the calculation of the local fractal dimension. However, in 

principle, we can extend the method to calculate local values of fractal dimension as it 

is the same algorithm only applied region-wise across the set.

3.2 Application to Human Cardiac CT Scans

At the time of publication of this thesis, we had access to 10 data sets of normal

patients with no known cardiac dysfunction and one data set of a patient suffering from

heart failure. The patient suffering from heart failure had a pacemaker implanted with 

one lead attached to the apex of the right ventricle and the other lead attached to the 

right atrium.  The data sets used were jointly owned by Dr. Elliot R. McVeigh, UC San 

Diego and by Dr. Chen of the National Institutes of Health. Each data set was analyzed 

as per the method specified in Chapter 2 of this thesis. 

The following images show the regional characterization of the left ventricular

endocardium through its fractal dimension for 10 normal patients and the one patient 

suffering from heart failure. The plots for each patient are arranged from left to right 

depicting different stages of the cardiac cycle: End diastole, early systole, mid systole, 

end systole, mid-filling, and diastasis.



45

3.2.1 Normal Cases

The bullseye plots for the 10 normal cases are shown in Figure 3.6 below. It is 

visible from all 10 cases below that the regional values of fractal dimension decrease 

from end diastole(ED) to end systole(ES). This agrees with the variation in the structure 

of the trabeculae carneae of the endocardium; they expand out towards ED and contract 

towards ES. On the right is a graph showing the variation in left ventricular volume as 

a function of the cardiac cycle for each patient.
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Figure 3.6. Results of the analysis for 10 normal cases. Each patient has 6 bullseye plots 
depicting different stages across one cardiac cycle and one volume plot on the right. The 
bullseye plots show the regional surface characterization of the left ventricular endocardium 
through its fractal dimension, whose scale is represented in the color bar. It is visible from the 
cases above & below that the endocardial surface smooths out towards end systole and assumes 
a more complex structure towards end diastole, due to the compaction and expansion of the 
endocardial trabeculae respectively. The graph on the right shows the variation of the 
normalized left ventricular volume across one cardiac cycle.
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Figure 3.6. Results of the analysis for 10 normal cases. Each patient has 6 bullseye plots 
depicting different stages across one cardiac cycle and one volume plot on the right. The 
bullseye plots show the regional surface characterization of the left ventricular endocardium 
through its fractal dimension, whose scale is represented in the color bar. It is visible from the 
cases above & below that the endocardial surface smooths out towards end systole and assumes 
a more complex structure towards end diastole, due to the compaction and expansion of the 
endocardial trabeculae respectively. The graph on the right shows the variation of the 
normalized left ventricular volume across one cardiac cycle, Continued

Fractal Dimension
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Figure 3.6. Results of the analysis for 10 normal cases. Each patient has 6 bullseye plots 
depicting different stages across one cardiac cycle and one volume plot on the right. The 
bullseye plots show the regional surface characterization of the left ventricular endocardium 
through its fractal dimension, whose scale is represented in the color bar. It is visible from the 
cases above & below that the endocardial surface smooths out towards end systole and assumes 
a more complex structure towards end diastole, due to the compaction and expansion of the 
endocardial trabeculae respectively. The graph on the right shows the variation of the
normalized left ventricular volume across one cardiac cycle, Continued.

3.2.2 Heart Failure Case

The analysis was performed on the CT scan of a patient suffering from heart 

failure. The patient was implanted with a pacemaker and two leads, one attached to the 

right ventricle and the other to the right atrium as shown in Figure 3.7. The presence of 

the metallic pacemaker lead made the segmentation of the left ventricle more involved, 

due to the reflection from the metal during imaging. 

Fractal Dimension
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(A) (B)
Figure 3.7. CT images of the patient implanted with a pacemaker. (A) Front view, showing the 
pacemaker device at the top (near the collar bone) and the two leads. (B) Left view.

The reflection created a small bridge-like section of pixels with radiodensity 

values higher than the values possessed by the left ventricular blood pool, as shown in 

Figure 3.8. Thus, on applying a threshold value, the bridge-like section was still present 

and needed to be manually cut using a plane.

Figure 3.8. Slice of the CT scan showing the high radiodensity reflection from the pacemaker 
lead.
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The bullseye plots for different stages of the cardiac cycle and the corresponding 

graph depicting variation of left ventricular volume as a function of the cardiac cycle is 

shown below in Figure 3.9. Unlike the 10 normal cases shown in Figure 3.7, there is no 

considerable change in the “roughness” or structure of the endocardium across the 

cardiac cycle. In other words, the trabeculae carneae undergo suppressed cycles of 

compaction and expansion.

Figure 3.9. Results of the analysis of the patient suffering from heart failure. Unlike the 10 
normal cases, there is no considerable change in the surface characterization of the endocardium 
across the cardiac cycle. The graph on the right shows the variation of the normalized left 
ventricular volume across one cardiac cycle. The volume changes marginally due to suppressed 
cardiac function.

The difference between the normal cases and the one heart failure case is visible 

from Figures 3.6 and 3.9. While the normal hearts get compacted towards end systole, 

giving a smooth structure to the endocardium, the heart failure case shows a suppressed 

degree of compaction of the trabeculae, which is a result of the suppressed heart 

function. Thus, through the surface characterization of the endocardial surface by its 

fractal dimension, the method is able to distinguish between normal and abnormal 

hearts.

Fractal Dimension
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3.3 Quantification of Cardiac Function

The visual differences between the normal and abnormal cases as shown in 

Figures 3.6 and 3.9 were quantified using the relative change between the sum of the 

local fractal dimension values between end diastole(ED) and end systole(ES). 

Mathematically, for each patient

݁ݒ݅ݐ݈ܴܽ݁ ℎܽ݊݃݁ܥ = ௦௨௠(ா஽)ି ௦௨௠(ாௌ)
௦௨௠(ா஽) .

Figure 3.10 shows a boxplot of the relative change in fractal dimensions for the two 

groups. The normal cases had a median value of 0.137, while the median (only) value 

of the heart failure case was 0.002. The standard deviation for the normal cases was 

0.058. This preliminary statistical analysis shows a marked difference between the 

behavior of the normal and abnormal cases. The relative change for the abnormal case 

was two orders of magnitude different from the median value for the normal cases.

Figure 3.10. Relative change in the sum of the local fractal dimensions of all points on the 
endocardial surface between end diastole and end systole.
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3.4 Local Neighborhood Size Sensitivity Analysis

The local neighborhood cube size of 64 was initially chosen on two grounds:

a. It provides a sufficient number (6) of data points to calculate the best fit (linear 

regression) slope of the curve.

b. A cube of size 64 is large enough to capture the complexity of the trabeculae (~30 

voxels in length) while still being small enough (1/64th the volume of the parent 

matrix of size 2563) to provide a regional characterization of the endocardium.

However, it was necessary to understand the sensitivity of the method to the box size 

and to gain insight on the fractal nature of the endocardium at different scales. 

As specified in Chapter 2, the in-house developed box-counting algorithm 

functions in powers of 2 for simplicity. The 3-D matrix storing the endocardium was 

padded to have a uniform cube size of 256, or 28. The algorithm calculates the fractal 

dimension by determining the best fit slope between the logarithmic ratio of the number 

of boxes of a certain size required to cover the entire set, to the box size. Each 

neighborhood cube of size 2n provides n number of points to fit the curve, and hence the 

size of the local neighborhood cannot go below 22 (a minimum of two points required 

to fit a curve), that is a cube of size 4. On the other hand, as the 3-D volume of the 

endocardial surface is stored in a matrix of size 256, the permissible upper limit for the 

neighborhood is a cube of size 128. Using a box size of 256 will measure only one value 

of the fractal dimension for the structure of the endocardium as a whole.
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An analysis was performed on a sample normal case and the heart failure case 

for all possible neighborhood box sizes; 4, 8, 16, 32, 64, and 128. The results of the 

analysis are shown below in Figure 3.11, in the form of bullseye plots of the 

endocardium at end diastole and end systole for each category.

Figure 3.11. Bullseye plots at end diastole and end systole for different box sizes of the local 
neighborhood. (Above) Sample normal case. (Below) Heart failure case.

The size of the neighborhood behaves in a manner like the resolution of an 

image. From Figure 3.11, it is seen that as the size of the neighborhood is increased 

(lower resolution), the bullseye plots assume a more uniform and smooth variation in 

the local values of the fractal dimension. At the smaller sizes (finer resolution), the local 

fractal dimension values are more localized to few pixels. Other than the neighborhood 

of size 4, corresponding regions of higher fractal dimensions are detected consistently 

by neighborhood sizes of 8, 16, 32, 64, and 128. The neighborhood size of 4 has an 
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inherent limitation in the fact that it has only two points to fit the curve. Additionally, 

the fractal nature of the endocardium may break at such fine scales and a combination 

of the above two factors is probably the cause for the random distribution of pixels in 

the bullseye plots for a size of 4.

Unfortunately, there is no gold standard to compare the different sizes and state 

that one size is better than the other. Depending on the requirements of the user, the 

different neighborhood sizes provide a different resolution to characterize the 

endocardium. Neither size is right nor wrong. If the user is interested in understanding 

the structural complexity of the endocardium at finer length scales, using a smaller 

neighborhood size is recommended. On the other hand, if the user is interested in 

studying the contractility of different regions of the heart on a more macro level, as in 

the case of the patient suffering from a heart failure, a box size of 64 or 128 would be 

ideal. It is worth mentioning that as the neighborhood size is increased, the computation 

time increases as well. The analysis of one time frame using a neighborhood size of 4 

takes ~0.7 seconds, whereas the analysis using a neighborhood size of 128 takes ~90 

seconds.

The relative change between the sum of all local fractal dimension values at end 

diastole and end systole was calculated for the sample normal case and the heart failure 

case. The boxplot is shown in Figure 3.12. Although the neighborhood size of 4 does 

not generate a visually consistent map of local fractal dimensions, it was able to 

differentiate between the normal cases and the patient with heart failure. The relative 

change value for the abnormal case was 3.1, 2.9, 2.8, 2.8, 2.6, and 2.8 standard 
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deviations away from the corresponding mean of the normal cases for each of the 

neighborhood sizes of 4, 8, 16, 32, 64, and 128 respectively.

Figure 3.12. Relative change between the sum of all local fractal dimension values on the 
endocardial surface at end diastole and end systole for 10 normal cases and the one patient 
suffering from heart failure.

At very small length scales, such as those measured with a neighborhood of size 

4, with only two points to calculate the fractal dimension, it is uncertain if the method 

is measuring the fractal nature of the set or just providing a crude measure of its 

“roughness”. However, Figure 3.12 shows that maybe the true fractal dimension is not 

necessary to quantify regional cardiac function and a simpler measure of just the 

“roughness” of the endocardium would suffice. The hypothesis remains the same, 

abnormal change in the structural complexity of the endocardium, which is a result of 
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the insufficient or abnormal compaction and expansion of the trabeculae carneae, could 

be used to identify regions of abnormal contractility.

3.5 Threshold Sensitivity Analysis

The method proposed and developed in this thesis is reliant on the observer to 

input an initial threshold value to segment out the left ventricle from the cardiothoracic 

CT scan. The process of thresholding and segmentation is described in Chapter 2. The 

value chosen is subjective, and may vary among different observers. In practice, the CT 

scans are read by radiologists and inter-observer variability among them maybe low. In 

this section, the method is analyzed to understand its sensitivity to the initial threshold 

chosen. Additionally, a study was conducted using three independent observers to assess 

the inter-observer variability in the choice of the initial threshold value.

There is only a specific range of threshold values within which there can exist 

inter-observer variability. Beyond this range, the left ventricle will either be over-

represented or under-represented depending on whether the threshold chosen was either 

too low or too high respectively. Figure 3.13 shows three different structural 

representations of the same left ventricle with a low, moderate, and high threshold value. 

From Figure 3.13, it is observed that too low or too high a value of the threshold does 

not provide an accurate anatomical model of the left ventricle. These limits were 

determined through visual inspection and the sensitivity of the method was tested for a 

range of threshold values that lay between these extreme limits. Unfortunately, there is 

no gold standard for the selection of the threshold and the value chosen by one observer 
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is neither ‘right’ nor ‘wrong’ when compared to the value chosen by another observer. 

Therefore, the study is aimed at assessing the dependence of the result of the method 

(the fractal dimension) on the choice of the threshold value and not on determining what 

the ‘right’ threshold value is.

(A) (B) (C)
Figure 3.13. 3-D view of a human left ventricle for different threshold values. (A) Threshold 
value too low; over represents the left ventricle. (B) Acceptable threshold value; represents the 
true anatomy of the left ventricle. (C) Threshold value too high; under represents the left 
ventricle.

The variations in the quality of the CT scans do not permit a single uniform 

analysis; instead each CT scan must be analyzed independently. Some CT scans possess 

noisier signals than others, some may have better spatial resolutions while others may 

have better temporal resolutions. Each of the 10 normal sets and the one abnormal set 

was analyzed independently for a range of 11 different threshold values as shown below 

in Table 3.6. The threshold range for each set, except for set ‘P02’, was chosen based 

on a ‘center’ value and ±200 HU around the center value, in increments/decrements of 

25 HU, except for the extreme values which are off by ±100 HU from the penultimate 

values on either end respectively. For example, if the center value was chosen to be 500 
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HU, the values chosen for the sensitivity study were 300, 400, 425, 450, 475, 500, 525, 

550, 575, 600, and 700. The set P02 deviated from the above trend because the interval 

between over representation and under representation of the left ventricle was much 

shorter, providing fewer sample threshold values in-between.

Table 3.6 Range of threshold values for each patient

Patient Set Range of Threshold Values (HU)

P000 250, 350, 375, 400, 425, 450, 475, 500, 525, 550, 650

P004 200, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600

P006 200, 300, 325, 350, 375, 400, 425, 450, 475, 500, 600

P008 100, 200, 225, 250, 275, 300, 325, 350, 375, 400, 500

P009 100, 200, 225, 250, 275, 300, 325, 350, 375, 400, 500

P016 100, 200, 225, 250, 275, 300, 325, 350, 375, 400, 500

P020 50, 150, 175, 200, 225, 250, 275, 300, 325, 350, 450

P023 300, 400, 425, 450, 475, 500, 525, 550, 575, 600, 700

P026 75, 175, 200, 225, 250, 275, 300, 325, 350, 375, 475

P027 100, 200, 225, 250, 275, 300, 325, 350, 375, 400, 500

P02 75, 125, 175, 200, 225, 250, 275, 300, 325, 350, 375

To save computational time and expense, and also for the easier interpretation 

of the results, the fractal dimension of the left ventricular endocardium was calculated 

as a whole. Calculating the local values of the fractal dimension would add another 

degree of variability and was inessential to the aim of the study. Different values of the 

initial threshold would result in different structural interpretations of the endocardium, 

and assessing this variability in structure on a global scale would provide the necessary 

information on the sensitivity of the method to the initial threshold.
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The fractal dimension of the endocardium as a whole was calculated at end 

diastole for all threshold values in the specified range for each patient. The process 

adopted was the same as that specified in Chapter 2. The left ventricle is segmented out 

using each of the threshold values specified in the range and for each case a mask was 

created with 1’s describing points inside the left ventricle (left ventricular blood pool) 

and 0’s outside. The edge of each mask created was detected and the fractal dimension 

of this edge (endocardium) was calculated for only one phase of the cardiac cycle (end

diastole). 

Figure 3.14 shows the variation of the fractal dimension calculated at end 

diastole as a function of the threshold for patient 004. The plot shows a region with no 

significant change in the fractal dimension between threshold values of 350 and 500. 

This signifies that the segmented endocardial structure does not change appreciably 

within this range. For this study, a change greater than 1% was considered significant. 

In principle, the window of fractal dimension values with less than 1% change between 

one another can provide the observer with the necessary information to select and input 

an initial threshold value. It also determines, for each independent patient set, the range 

of threshold values within which the method is not significantly sensitive.
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Figure 3.14. Graph depicting the variation in the fractal dimension of the segmented 
endocardium for patient 004 at end diastole, as a function of the initial threshold value.

For each patient set, the magnitude of the percent change was calculated between 

successive fractal dimension values. For example, in Figure 3.14, the percent change 

was calculated between the fractal dimensions at thresholds 300 and 200, 325 and 300, 

350 and 325, and so on. Therefore, there would be 10 values of percent change between 

the 11 different fractal dimensions. Figure 3.15 shows the results of the threshold 

sensitivity analysis for all 11 patient data sets. It depicts the variation in the percent 

change of the fractal dimension for successive pairs of threshold values.  It is observed 

from the figure that every patient data set has a region of very small change (< 1%) 

between successive values of fractal dimension. This region generally occurs in the 

center portion of the graph due to the manner in which the range of threshold values 

was chosen and set up. If the observer chooses initial values of the threshold which lie 

within this range, the method is not significantly sensitive and the results will be 

consistent with one another. 
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Figure 3.15. Threshold Sensitivity Analysis for all 11 patients. Each graph, for each patient, 
represents the magnitude of the percent change between successive values of fractal dimension 
calculated at end diastole for each of the 11 different thresholds specified in Table 3.6. The X 
axis has 10 points; each point represents a pair of successive threshold values.



62

Three members were used to assess the inter-observer variability in the selection 

of the initial threshold value. Two observers were familiar and had prior experience with 

cardiothoracic CT scans while one observer was viewing the scans for the first time.

The observers viewed the scans through OsiriX, an image processing application 

especially suited for DICOM files. The application allows the user to apply a threshold 

value and get a preview of the segmented region slice by slice. The values chosen by 

each of the three observers were recorded for all 11 cases of patient data. The average 

of the values chosen for each patient is presented in Table 3.7. The mean of the standard 

deviations calculated for each of the 11 cases was 36.7 HU, which shows a good degree 

of agreement in the selection of the initial threshold among different observers. It is 

worth mentioning that neither of the observers were trained in the visual inspection of 

cardiothoracic scans, and in practice the variability in the selection of the initial 

threshold among radiologists maybe even lower.

Table 3.7. Summary of the Avg. & std. deviation of the chosen threshold value for each patient

Patient Set Avg. Threshold Value Std. Deviation
P000 400 71.2
P004 367 47.6
P006 384 62.5
P008 317 23.1
P009 284 24.1
P016 334 22.6
P020 284 22.6
P023 417 85.6
P026 275 20.4
P027 300 0.9
P02 233 23.8
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From Table 3.7, except for patients 000, 004, 006, and 023, it is observed that 

the standard deviations among untrained observers were consistently low. When 

examining the graphs of the aforementioned patients in Figure 3.15, it is seen that each 

of them have large regions of no significant change in the fractal dimension between 

consecutive threshold values. This possibly occurs due to the relatively good quality of 

the CT image with minimal signal noise. This also highlights the ability of the method 

to deal with scans of varying quality. 
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Chapter 4

CONCLUSIONS

The primary objective of developing the method was to introduce a non-invasive 

technique to quantitatively assess regional left ventricular function which is quick, easy 

to use and minimizes patient discomfort. The most prevalent method in use today relies

solely on the operator’s subjective visual analysis of cardiac function. Recent techniques 

have been developed to quantify regional left ventricular function using metrics such as

regional strain, wall thickening, etc. These methods rely on computationally intensive 

algorithms, are time consuming, and may rely on the expertise of the operator.

The method proposed is based on quantifying the changing structure of the left 

ventricular endocardium across the cardiac cycle. The endocardium is lined with 

muscular ridges called trabeculae carneae and these ridges open out and contract 

towards end diastole and end systole respectively. The metric used to quantify the 

change in the structural complexity of the endocardial wall is the fractal dimension. The 

fractal dimension is a measure of irregularity of a surface and can distinguish between 

objects based on their structure.

An in-house box-counting algorithm was developed to calculate the fractal 

dimension. The algorithm was first validated on a set of three 2-dimensional and two 3-

dimensional standard fractals whose dimensions are documented in the literature. The 

algorithm matched the theoretical dimensions with a great degree of accuracy. The 

errors in the computed dimensions for the Julia Set (c = -1), Julia Set (c = -0.123 + 0.7i), 
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Sierpinski Triangle, Menger Sponge, and 3-D Cantor Dust were 3, 1.4, 0, 0, and 0.4% 

respectively.

To quantify the regional structure of the endocardial wall, the fractal dimension 

is calculated for defined local neighborhoods. The standard local neighborhood used 

was a cube of size 64. The fractal dimension for the portion of the endocardial wall 

contained within this local neighborhood was calculated using the same box-counting 

algorithm. The method was used to analyze the CT scans of 10 normal cases and one 

patient implanted with a pacemaker, suffering from heart failure. The bullseye plots for 

the normal cases showed a uniform decrease in the values of the local fractal dimensions 

from end diastole to end systole. However, the bullseye plots for the patient suffering 

from heart failure showed no considerable change in the local fractal dimension values 

between end diastole and end systole. This was consistent with the initial hypothesis; as 

the heart contracts the trabeculae get compressed resulting in a smoother structure of 

the endocardium at end systole. The patient suffering from heart failure had suppressed 

cardiac function which led to the insufficient contraction of the cardiac wall, and hence 

no considerable change in the structure of the trabeculae between end diastole and end 

systole. The relative change in the sum of the local fractal dimensions of all points on 

the endocardial wall between end diastole and end systole was calculated for each case. 

The normal cohort had a median value of 0.137 with a standard deviation of 0.058, while 

the value for the patient with heart failure was 0.002, ~3 standard deviations and two 

orders of magnitude different.
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The method was tested for its sensitivity to the size of the local neighborhood.

The smaller neighborhood sizes captured features of the endocardium at a finer scale, 

while the bigger neighborhoods gave a more global characterization of the endocardium. 

It was concluded that all neighborhood sizes were able to clearly differentiate between 

the normal and abnormal cases and the choice of the neighborhood size depended on 

the objective of the user of the method. Smaller neighborhoods will capture finer 

anatomical features and provide a more localized characterization of the endocardium 

and maybe useful to detect regions of ischemic cardiac tissue. Larger neighborhood 

sizes maybe useful to assess cardiac function on a global scale, as was seen in the patient 

suffering from heart failure. Another point worth mentioning is that the computational 

time increases as the size of the neighborhood is increased. A neighborhood size of 4 is 

faster than a neighborhood size of 128 by more than two orders of magnitude. Lastly, 

though the neighborhood size of 4 was able to differentiate between the normal and 

abnormal cases, it did not provide a consistent characterization of the endocardium and 

seemed more like a random distribution of fractal dimension values. Also, at the length 

scale of 4, it is unclear if the method is still measuring the fractal dimension of the 

endocardium or is it just a crude measure of roughness. This result highlights the fact 

that maybe a simpler parameter measuring the surface roughness of the endocardium 

would be sufficient to capture the mechanics of left ventricular contraction.

The sensitivity of the method to the observer inputted initial threshold value was 

analyzed. It was determined that there is a finite window of threshold values which 

represents the ventricle in its true anatomical form. Values greater or lower than this 
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range will result in an under-represented or over-represented left ventricle respectively. 

The study was performed on 11 different threshold values within this finite window of 

values for each of the 11 patients. For a range of threshold values within this window, 

it was observed that the fractal dimension of the endocardium at end diastole changes 

less than 1%. It was concluded that the method was not significantly sensitive to 

threshold values chosen within this range. The next part of the study aimed at assessing 

the likelihood of the observer to select a threshold value within this range. Three 

observers, with no formal training in the field, recorded their choice of the initial 

threshold for all 11 patients independently. All values chosen by the observers lay in the 

range of threshold values defining less than a 1% change between successive values of 

the fractal dimension.

The method met the initial objectives laid out. It is non-invasive, quick, simple 

to use with minimal operator involvement, and can minimize patient exposure to 

ionizing radiations as it requires the heart to be imaged only at end diastole and end 

systole. However, the method may not be suited for identifying regions of unhealthy 

cardiac tissue on the septal side of the left ventricle. The septum is relatively smooth 

and does not have a great degree of trabeculation, and is therefore difficult to capture 

the change in structural complexity between end diastole and end systole.

Future work on the method would be to test it on more number of abnormal

cases. The statistics performed in this thesis are very rudimentary due to a single 

abnormal test case being available at the time. The method could also be validated with 

other existing quantitative techniques to draw a comparison on its performance.




