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Abstract

The present research infers aspects of spatial attention from
movement to targets (and preferably not to foils) of a mouse-
controlled cursor on a computer monitor. The long-term goal
is a data-rich and rapid assessment technique that can be used
to diagnose individual and clinical deficits of attention. The
aim of this present research is validating the approach using
a college population of subjects. In the experiment, partici-
pants attempt to move a cursor toward three spatial positions at
which targets appear rapidly but at irregular times, and attempt
to inhibit movements toward foils appearing at those positions.
We assume that cursor movements toward a position indicates
attention has been directed toward that position. A modified
Hidden Markov Model (HMM) uses five sources of evidence,
all based on parameters to be estimated, to predict the time
varying movement of attention: four aspects of cursor move-
ment and a probability that attention will move from one time
interval to the next. Five minutes of data are used to estimate
parameters for each subject that produce a predicted attention
trajectory which best matches what the subject is instructed to
do. These parameters are used to predict the attention trajec-
tory for the remainder of the hour of testing. The predictions
of attention movements are then matched to the appearance of
targets and foils to infer such components of attention as abil-
ity to respond to targets vs foils, times to do so, and changes
in these components over time. The results illustrate a promis-
ing approach to assessment of attention that could likely be
employed for both adults and children in clinical settings re-
quiring short testing periods.

Keywords: Attention; Hidden Markov Model(HMM); Indi-
vidual differences

Introduction

Psychologists have been studying various aspects of atten-
tion which include ability to focus, maintain, spread attention,
and their effects upon behavior. These efforts have acceler-
ated in the last fifty years, in part from articles by Schneider
and Shiffrin (1977) and Shiffrin and Schneider (1977), and
new methods allowing neural measurements. It would be
desirable to have a method that could be used for diagnosis
and clinical assessment that could be employed quickly and
easily, for example for the testing of children suspected to
have various forms of Attention Deficit Hyperactivity Disor-
der (ADHD). There are many functional aspects of attentional
allocation which are measured when studying clinical popu-
lations - selective attention, sustained attention, response pre-
cision, cognitive flexibility, working memory, temporal infor-
mation processing, and response inhibition (Mueller, Hong,
Shepard, & Moore, 2017). Unfortunately, existing studies of
attention require long and extensive periods of testing, and/or
equipment that is expensive and cumbersome to utilize. They
also require expertise and well trained staff to apply. In this
article we demonstrate a methodology that provides a wealth
of data about several aspects of attention in a short period
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of time, with readily and generally available technology, and
therefore points towards a promising way to assess and diag-
nose aspects of attention in individuals. The present research
was motivated by an earlier study by Kumar, Chandramouli,
and Shiffrin (2015), but that method requires extensive test-
ing for long periods of time and would not have been suitable
for assessment and diagnosis. Although our long-range goal
is use in clinical and assessment settings, the present study
uses college age adults screened to confirm they had not had
a diagnosis of attention deficit disorder. The participants are
assumed to have a range of attention processes typical of this
population. The present research is aimed to provide a proof
of concept for the method.

The method is simple in concept: There are three posi-
tions displayed on a computer monitor where targets and foils
appear at rapid but irregular times. The participant uses a
mouse to move a cursor toward targets and attempts to in-
hibit cursor movements toward foils. The method relies on
the fundamental assumption that cursor movements toward a
position indicate that attention has been directed toward that
position. Cursor movement trajectories provide a wealth of
rapidly acquired data, but vary in many and complex ways.
As described shortly we therefore use a variant of a Hidden
Markov Model (HMM), based on selected aspects of the cur-
sor movements and prior knowledge, to produce a predicted
trajectory of spatial attention over time. The predicted atten-
tion trajectory can be compared to the sequence and timing of
targets and foils to infer the use of attention by each subject
tested.

Experiment 1

The three relevant screen positions are indicated by three
green circles surrounding fixation at distances of 510 pixels.
These positions are fixed throughout testing for all partici-
pants. Targets and foils are of three types: A red circle, a
larger green circle, and a green square. For each block’ of
testing one of these is designated as a target and the other
two as foils. See Figure 1 for examples of target displays.
The target choice varies from block to block, for 18 blocks
in about one hour of testing. When a target or foil appears,
it remains on the screen until the next target or foil appears,
with the next one always being in one of the other two screen
positions randomly chosen. At that time the previous target
or foil reverts to a green circle. When a new stimulus appears
it is chosen with probability % to be a target and probability %
to be a foil. If a foil stimulus occurs on a given trial, it is with
probability % either of two foil choices.



(a) Red target (b) Size target

[=2]
o

>
Q
8
S 40
T
o
[
ol [ l
0 300 500 700 1000
Time in ms

(c) Square target

(d) SOA Distribution

Figure 1: (a,b,c) Displays with salient stimulus at position 1.
In a block each of the three stimuli are presented but only one
is designated as target.(d) Distribution of times for Stimulus
onset asynchrony (SOA) showing a bimodal distribution with
mode about 300 and 700ms.

Timing

Targets and foils occur rapidly at irregular times drawn from
a bi-modal mixture distribution as shown in Figure 1d. These
times are adjusted for each subject on the basis of two prac-
tice blocks (see below). For each subject a constant time is
added to this distribution to adjust for the speed at which dif-
ferent subjects are able to move the cursor, determined during
training. The minimum time added was 128ms and the max-
imum time added was 352ms, over the 45 subjects. When a
stimulus remains on the screen for a relatively long time, it
is possible for the cursor to reach and stop at the stimulus;
for a short duration the cursor may often be moving toward
a given position when the next target (or foil) is perceived at
another position. The subjects are instructed to deviate from
the previous path and move toward the new stimulus, if it is a
target and is perceived before the previous target is reached.

Participants

There were 45 participants, all students of Indiana university,
right-handed, with normal or corrected-to-normal vision, and
paid for their participation. 5 subjects were excluded from the
analysis due to poor performance with no movement in one
or more blocks of testing.

Data collection

Each display is presented on a 60-Hz CRT monitor with a
resolution of 1600x1200. Experimental stimuli are generated
using matlab image processing toolbox and presented using
the psychophysics toolbox extension.(Brainard, 1997). The
cursor position was sampled at 1000Hz, but these positions
were downsampled to 100Hz: i.e. the screen position was
collected every 10 ms.
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Figure 2: Illustration of trajectory vector (V0) and vector to
three display positions (V1,V2,V3) for computing statistics
of speed, acceleration, distance, and orientation.

Training and testing

Each participant was given brief practice with two blocks
consisting of 45 trials each, but with blue targets and no foils.
These trials were used to adjust for each subject the speed at
which stimuli appeared. The practice blocks were followed
by 18 blocks of testing, with a break of 10 seconds between
blocks (a longer break of 30 seconds was placed after 9 blocks
of testing). During the break interval, target for the next block
was shown at the center of the screen. The 18 experimental
blocks consisted of 6 blocks each of targets Red, Size, and
Square, in random order. To motivate task performance, par-
ticipants are notified when they are within 50 pixels from the
boundary of a target by changing the cursor to a “hand” sym-
bol. Neither foils nor targets are repeated at the same location
on consecutive displays. It can nonetheless be appropriate to
keep the cursor on a given position for several displays run-
ning, if the next display is a foil, and the display after that is
on the position on which the cursor currently resides. A par-
ticipant sees 270 presentations of targets and foils per block,
totaling 4860 trials in about one hour of testing.

Modeling the trajectory of attention

We have no objective measure of the locus of attention at each
moment in this task, as is the case for all tasks, but do have
good guesses based on trajectories of cursor movements dur-
ing a trial. For example, if the cursor changes direction and
moves rapidly toward a spatial position, we can guess that at-
tention has moved to that position. To assess the placement
of spatial attention at each moment we use a modified Hid-
den Markov Model (HMM): The “hidden” states are the three
spatial positions upon which attention likely is placed due to
the task requirements. There are multiple sources of evidence
that we use to inform the HMM. One is prior knowledge:
Lengthy experimentation has shown that attention does not
switch very rapidly (Reeves & Sperling, 1986; Vergauwe et
al., 2016) and may take a few hundred ms. Thus we wish to
employ a constraint implemented by the probability that at-
tention will change state from one moment to the next (one



10 ms interval to the next). If this probability is low then at-
tention will have a tendency to stay in one state. As described
later, attention to a given position must be subdivided into
two cases, one in which the cursor is moving to that position
and the other in which the cursor is stationary at that position.
Thus we need two change probability parameters, depending
on whether the change is from the moving or stationary state.
We do not enforce limits on the size of the change parameters
by limiting their size, but rather by use of an objective func-
tion when fitting the model’s parameters, as described later.

The data used to inform the HMM are aspects of the cursor
movements. Cursor movements are complex, noisy and very
high dimensional, which leads us to simplify them by using
four easy to measure aspects of such movements at each mo-
ment in time: Speed, acceleration, and direction toward and
distance from the three spatial positions. The way these are
calculated at each moment in time is illustrated in Figure 2.
The HMM operates at discrete time intervals 10ms in dura-
tion. At time ¢ we measure the spatial vector from from ¢ — 1
to t (denoted as V0), where speed, s, is determined by the
distance moved (vector length), acceleration, a, as the change
in speed from ¢t —2 tor — 1 and # — 1 to ¢, orientation, o, as
the angle between vector V0 and the three spatial positions,
and distance, d, as the length of vectors from the end of vec-
tor VO to the three spatial positions. Each of these measures
has a natural way it provides evidence concerning attention
placement. For example, consider direction (we use the term
orientation): The more directly the current direction of mo-
tion is toward a given position, the more likely attention is
placed on that position.The amount of evidence (probability)
associated with a given set of orientations is unknown, so is
parameterized by a plausible two parameter distribution fam-
ily. Of course orientation is meaningful only when the cursor
is moving; when the cursor stops on a position, there is no
orientation and this measure provides no evidence. We there-
fore have two evidence distributions, one when the cursor is
moving and another when it is stopped. This idea is imple-
mented by dividing the hidden state for attention at position
j into two states, one for movement toward j and another for
stopping at position j. The same idea is employed for each
of the other cursor movement measures, so that we have six
hidden states in the HMM, two for each spatial position.

Associated with these six states are eight probability distri-
butions mapping the four cursor movement measures to the
states. Each of these distributions is implemented as a two-
parameter family of distributions. Examples of these for par-
ticular parameter choices are shown in Figure 4. Speed is
modeled as a gamma with different parameters for moving
and stopping states. Acceleration is modeled as a uniform
with different parameters for starting and stopping states.
Distance is modeled as a uniform for the moving state and
gamma for stopping states. Lastly, Orientation is modeled
as a half-normal for moving and uniform for stopping states.
The choices of these distribution families were based in part
on empirical observations of the cursor movement measures
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Figure 3: Distributional families of measures - (speed, accel-
eration, distance, and orientation to stimuli) for moving[M]
(blue-solid) and stopping[S] (red-dashed) states

from our study. Later we will show how ‘best’ parameters
are chosen for each subject, including those that specify these
eight distributions. As usual, we assume independence of the
five sources of evidence, and assume the Markov property:
The attention state at time ¢ is determined by the prior proba-
bility of attention change, the four measures of cursor move-
ment, and the attention state at time # — 1, but not on any at-
tention state prior to f — 1. We use two parameters to describe
transitions between states, a high probability for staying in
the same state and lower for switching to a state associated
with the same spatial position. The remaining probability is
divided uniformly for transitioning to other spatial positions.
As with any HMM, these assumptions allows us to write the
probability of a sequence of attention states in an easy to com-
pute fashion. Conditional on the (unknown) state, W,_, at
time t-1, the state probability at time t, ¥, is a product of the
five sources of evidence. Thus given a set of values for the
eighteen parameters, Equations 1,2, and 3 give the probabil-
ity of each set of attention states for any specified experimen-
tal duration. Note that it takes time for attention to change
and cursors to move, so not all transitions between states are
possible. Thus if attention at time t is on position 1, one can-
not transit at time t+1 to the resting state at positions 2 or 3;
we implement this constraint with zero probability assigned
to impossible transitions.

p(¥:,W_1,...]s,a,d,0) (D
°<p(S,a,d,O‘lPt,lPtfl,...)p(‘Pt,‘Ptfl,...) (2)
= p(s|¥;)p(al¥;)p(d|¥;) p(o|¥;) p(P[¥;-1) (3)

There are an almost uncountable number of sequences of at-
tention states, given each sequence occurs at 10 ms intervals.
Although Equation 3 gives the probability of each one, for
a given set of parameter values, this is not useful informa-
tion. Fortunately, standard methods (based on the Viterbi al-
gorithm (S. Godsill, Doucet, & West, 2001)) allows efficient
and relatively rapid computational determination of the high-
est probability sequence of states for a given set of parameter
values. This is well known technology and we do not de-
scribe it here. Thus the HMM provides us with the maximum



probability set of states for each set of parameter values, for
a given subject, and for a specified duration of the task (in
our implementation, one or two blocks of testing). In reality,
we found the system described thus far responded too read-
ily to minor perturbations in cursor movements, so we used a
smoothing technique introduced by S. J. Godsill, Doucet, and
West (2004) whose window was estimated by impulsive mo-
tor feedback reported in Wagner and Smith (2008); this tech-
nique smooths across six intervals of 10 ms each (we omit
details).

There are many maximum probability sequences of states,
one for each set of parameter values. Thus the next step
requires selecting the parameters that produce the ’best’ se-
quence of attention states. We do this by finding the param-
eter values that maximize the objective function defined in
Equation 4. This objective function is chosen to reflect what
the subject is asked to do in the task: The equation specifies
credit allocation when a target occurs in a given position in
the period starting 200 ms after the target appears, and end-
ing 200 ms after it is replaced. The first term (Tiurger) gives
a unit credit for the first movement of attention to that posi-
tion. The second term (7yp.,) subtracts one credit for each
additional movement to that target position (we do not want
too many changes of attention). The third term (Zupsequent)
subtracts one credit for any attention movement to any other
spatial position. The last term f(D;arqe) is a linear function
rewarding early transitions to the target and punishing late
transitions to the target (a maximum of two positive credits
and a maximum of two negative credits). A similar objective
function is used when foils occur, except the first term sub-
tracts rather than adds one credit. We use a standard param-
eter search algorithm to find the parameter values that maxi-
mize this objective function (a simplex algorithm (Nelder &
Mead, 1965)).

Obj= arg meaX(Ttarget — Tother — Tmbsequenl - f(Dtargez) 4)

For each subject we found the “best” parameters for the first
five minutes of testing (roughly the first two experimental
blocks). We then use those parameters to predict attention
movements for all subsequent blocks of that subject, and
we analyze and show results only for those cross-validation
blocks. This procedure is used to reduce over-fitting as far as
possible. Using readily available computers, the entire pro-
cess just described produces a predicted sequence of “best”
attention states every 10ms for all 18 blocks for each of the
40 subjects in about 240 — 300 minutes.

Best parameters

There are 18 parameter values for each of the 40 subjects,
and we will not list these. We mention only that the two
change probability parameters ranged across subjects from
0.71 to 0.81 for staying in the same state, and from 0.18 to
0.23 for change from a moving state to an allowed station-
ary state. We did an analysis to see which parameters were
particularly sensitive to choice of values. For each parame-
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Figure 4: Trajectory of attention showing targets (open rect-
angles), foils (closed rectangles) and estimated states (solid
line) of one subject for 40 seconds duration while searching
for a square target.

ter we calculated the standard deviation of values across sub-
jects, then produced new predictions for the objective func-
tion for values of that parameter plus and minus one standard
deviation. The values of the transition parameters made little
difference, but the values of the distance parameters in mov-
ing states changed the predictions considerably and therefore
were more sensitive.

Predicted trajectory of attention

The output of this HMM is a prediction of the sequence
of spatial attention states that is suggested by certain cursor
movement statistics. These predicted states can be compared
to the presented sequence of targets and foils. Figure 4 shows
an example for one subject of a short (40 seconds) duration
portion in the test blocks following those used to fit parame-
ters. The three spatial positions are shown in the three rows.
Target presentations are shown as open boxes, and foil pre-
sentations as filled boxes. The width of the rectangles rep-
resent the time the stimuli is on the screen. The predictions
of the HMM are shown as the solid line superimposed on the
presentation sequence. This example shows that the HMM
applied to the data for this subject for at least this short time
period seems to be operating reasonably: Attention to targets
occurs shortly after targets appear, and there are more times
attention is given to targets than to foils. Such illustrations are
available for all blocks for all 40 subjects, but are far too many
to present, so we shall produce various summary statistics to
illustrate what the analysis shows about attention changes.

Validation

As mentioned earlier, we have no objective measure of place-
ment of attention. We therefore decided to show the analysis
works as desired in two ways:

1) The predicted sequence of attention states can be com-
pared to the raw cursor movements and should operate as ex-
pected: E.g. movements toward a position should correspond
to a predicted attention state at that position. To illustrate the
correspondence in detail we show in Figure 5 in one panel
a short snippet of cursor movement (1650 ms.) taken from
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Figure 5: Comparison of predicted attention and cursor tra-
jectory showing a good correspondence. Color of the trajec-
tory in 5b maps to the color of the predicted state in 5b.

one block for one subject. The other panel shows the HMM
predictions of the attention states for that same period. One
can see that the attention states correspond in a natural way to
the cursor movements. This is of course no surprise, because
the HMM was built to do exactly this, but examples like this
(we checked a large sample of these) serve as a check for pro-
gramming errors. When the cursor is stationary near one of
the target locations (within 200 pixels from center) the HMM
predicts attention lies on that location with a median probabil-
ity of 0.99 across all subjects. If the cursor is moving towards
a target with orientation lower than 5 degrees, the model pre-
dicts the state with a median probability of 0.93 across all
subjects.

2) The predicted trajectory of attention states should corre-
spond in reasonable ways to the presentation sequence: E.g.
There should be more predicted changes of attention to tar-
gets than foils, and the times at which these transitions oc-
cur should be reasonable based on past studies of the timing
of attention shifts. These forms of validation are part of the
predictions we produce for each subject, so are placed in the
results section.

Results

Figure 6 shows two measures, Figure 6a shows the expected
time for first transition and the expected proportion of transi-
tions to targets for each subject. Time to respond to a target
does not seem correlated with the probability of doing so,
possibly suggesting that times reflect individual differences
in reactivity rather than a trade-off. Figure 6b shows the ex-
pected time for first transition to target and the expected pro-
portion of transitions for foils: Subjects who take longer to
transition to a target have a lower proportion of transitions
to foils, suggesting a trade off of speed with reactivity to
foils. We note that it could be useful to model the use of
and changes of attention by modeling the predictions of the
HMM. In Figure 7, the proportion of transitions to targets
is compared to those for foils. There are clear individual
differences in ability to discriminate the two. All subjects
have a higher average proportion of transition to targets than
foils although some had great difficulty in discrimination. A
paired t-test for each subject shows that all except one with
t(17) = 2.33,p = 0.032 are able to easily discriminate be-
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Figure 6: Mean time for first change to target compared to
proportion of changes depicting fast errors.

tween targets and foils. The fact that many responses occur
to foils suggests that what is being measured is in good part
attention to change when a stimulus onset occurs. In further
research we plan studies designed to distinguish attention to
change from attention to identity.

We note that the large numbers of targets and foils seen by
each subject, the enormous amount of cursor movement data
collected, and the large number of dynamic predictions of at-
tention states, for each subject, allows us to perform an ex-
tremely large number of analyses. We have carried out quite
a few of these that space in this short report do not allow us to
present. To take just one example, analysis of the cursor tra-
jectories, and of the screen location from which a change of
attention state is made, clearly show differences among sub-
jects in the strategies employed to satisfy the task constraints:
Some subjects tend to move from one of the three target loca-
tions directly to the next; other subjects tend to move contin-
uously to the center of the screen before moving to the next
target location. The latter subjects tend to respond quickly to
onsets of stimuli, leading us to suspect they might have been
experienced video game players, using a strategy that in some
sense optimizes both speed and accuracy. Space does not al-
low us to show these results and a number of others that we
have explored.
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foils across subjects shows considerable variation across sub-
jects. All subjects show a higher proportion to targets than
foils.

Discussion

There are advantages of a procedure to assess attention that
operates rapidly and collects large amounts of informative
data in short periods of time: the procedures can be used,
in principle, for clinical and other forms of assessment of in-
dividual differences. There are disadvantages, including the
difficulty of reporting many types of analyses and results in a
short report. We therefore view this report as a kind of “proof
of concept”. It would be quite possible to alter the exper-
imental design, aspects of cursor movements fed to HMM,
modeling details of the HMM, and procedures for choosing
parameters, but retain the benefits of this approach. To take
an example of a possibly useful design change, we might
want to inhibit strategies by which some subjects move to
the screen center before moving to a target. We could use
a design in which stimuli appear only briefly enough to be
perceived without error, and then revert to the neutral green
circles. That would allow the next target to appear at the same
location, something that might inhibit movement away from
the current target position. We could also employ an error
signal if a cursor trajectory passed too close to the screen
center. We also note it could prove informative to produce
a process model of attention movement that uses the HMM
predictions as input data. we note finally that the model-
ing makes simplifying assumptions, including the assumption
that attention at each moment in time is at exactly one spatial
location. There are also ways to measure attention with other
forms of data such as eye movements (Chuk, Chan, Shimojo,
& Hsiao, 2016) or neural measurements. We chose cursor
movements because we suspected measurement noise would
be less, would not require expensive equipment, careful cali-
bration and expertise in applying them. Computers with mon-
itors are readily available, and subjects who might be assessed
with the present procedures are generally familiar with us-
ing cursors on computer monitors. The point to emphasize
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is that we are not wedded to the precise implementation and
assumptions made in the present research. The design and
procedures nonetheless look very promising as a methodol-
ogy that could be employed in a variety of forms, and prove
useful in practice.
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