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Models for Optimizing the Learning Process l

G. J. Groen and R. C. Atkinson

Stanford University

Abstract

This paper is concerned with showing how certain instructional

problems can be reformulated as problems in the mathematical theory of

optimization. A common instructional paradigm is outlined and a nota­

tional system is proposed which allows the paradigm to be restated as a

multi-stage decision process with an explicit mathematical learning model.

embedded within it. The notion of an optimal stimulus presentation

strategy is introduced and some problems involved in determining such

a strategy are discussed. A brief description of dynamic programming is

used to illustrate how optimal strategies might be discovered in practical

situations.



Although the experimental work in the field of programmed instruction

has been quite extensive, it has not yie.lded much in the way of unequivocal

results. For example, Silberman (1962), in a summary of 80 studies dealing

with experimental manipulations of instructional programs, found that 48

failed to obtain a significaNt difference among treatment comparisons.

When significant differences were obtained, they seldom agreed with find­

ings of other studies on the same problem. The equivocal nature of these

results is symptomatic of a deeper problem that exists not only in the field

of programmed instruction but in other areas of educational research.

An instructional program is usually devised in the hope that it op­

timizes learning according to some suitable criterion. However, in the

absence of a well-defined theory, grave difficulties exist in interpreting

the results of experiments designed to evaluate the program. Usually the

only hypothesis tested is that the program is better than programs with

different characteristics. In the absence of a theoretical notion of why

the program tested should be optimal, it is almost impossible to formulate

alternative hypotheses in the face of inconclusive or contradictory results.

Another consequence of an atheoretical approach is that it is difficult to

predict the magnitude of the difference between two experimental treatments.

If the difference is small then it may not turn out to be significant when

a statistical test is applied. However, as Lumsdaine (1963) has pointed

out, lack of significance is often interpreted as negative evidence.

What appears to be missing, then, is a theory that will predict the

conditions under which an instructional procedure optimizes learning. A

theory of this type has recently come to be called a theory of instruction.
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It has been pointed out by several authors (e.g., articles by Gage, 1963

and Hilgard, 1964), that one of the chief problems in educational research

has been a lack of theories of instruction. For example, Bruner (1964)

has characterized a theory of instruction as a theory that sets forth rules

concerning the most efficient way of achieving knowledge or skill; these

rules should be derivable from a more general view of learning. However,

Bruner makes a sharp distinction between a theory of learning and a theory

of instruction. A theory of learning is concerned with describing learning.

A theory of instruction is concerned with prescribing how learning can be

improved. Among other things, it prescribes the most effective sequence

in which to present the materials to be learned and the nature and pacing

of reinforcement.

While the notion of a theory of instruction is relatively new, optim­

ization problems exist in many other areas and have been extensively studied

in a mathematical fashion. Within psychology, the most prominent example

is the work of Cronbach and Gleser (1964) on the problem of optimal test

selection for personnel decisions. Outside psychology, optimization prob­

lems occupy an important place in areas as diverse as physics, electrical

engineering, economics and operations ,research. Despite the fact that the

specific problems vary widely from one field to another, several mathemati­

cal techniques have been developed that can be applied to a broad variety

of optimization problems.

The purpose of this paper is to indicate how one of these techniques,

dynamic programming, can be utilized in the development of theories of

instruction. Dynamic programming was developed by Bellman and his asso"

ciates (Bellman, 1957, 1961; Bellman and Dreyfus, 1962) for the solution
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of a class of problems called multi-stage decision processes. Broadly

speaking, these are processes in which decisions are made sequentially,

and decisions made early in the process affect decisions made subsequently.

We will begin by formalizing the notion of a theory of instruction

and indicating how it can be viewed as a multi-stage decision process.

This formalization will allow us to give a precise definition of the opti­

mization problem that arises. We will then consider in a general fashion

how dynamic programming techniques can be used to solve this problem.

Although we will use some specific optimization models as illustrations,

our main aim will be to outline some of the obstacles that stand in the

way of the development of a quantitative theory of instruction and indicate

how they might be overcome.

Multi-Stage Instructional Models

The type of multi-stage process of greatest relevance to the purposes

of this paper is the so-called discrete N-stage process. This process is

concerned with the behavior of a system that can be characterized at any

given time as being in state w. This state may be univariate but is more

generally multivariate and hence is often called a state vector (the two

terms will be used interchangeably). The state of this system is determined

by a set of decisions. In particUlar, every time a decision d (which may

also be mUltivariate) is made, the state of the system is transformed. The

new state is determined by both d and wand will be denoted by T(w,d).

The process consists of N successive stages. At each of the first N-l

stages, a decision d is made. The last stage is a terminal stage in

which no decision is made •. The process can be viewed as proceeding in the
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following fashion: Assume that, at the beginning of the first stage the

system is in state w
l

" An initial decision d
l

is made. The result is

a new state given by the relation:

We are now in the second stage of the process, so a second decision d
2

is made resulting in a new state w
3

determined by the relation

The process continues in this way until finally:

wN = T(wN_l,dN_l ) •

If each choice of d determines a unique new state, T(w,d), then

the process is deterministic. It is: possible, however, that the new state

is probabilistically related to the previous state. In this nondetermin-

istic case, it is also necessary to specify for each stage i a probability

distribution Pr(w.lw. l,d. 1)'
l l- l-

In a deterministic process, each sequence of decisions dl , d2 , ...

,L and states
""N-l

has associated with it a function that

has been termed the criterion or return function. This function can be

viewed as defining the utility of the sequence of decisions. The optimiza-

tion llroblem one must solve is to find a sequence of decisions that maximizes

their criterion function. The optimization problem for a nondeterministic

process is similar except that the return function is some suitable type

of expectation.

In order to indicate how an instructional process can be considered

as an N-stage decision process, a fairly general instructional paradigm
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will be introduced. This paradigm is based on the type of process that

is encountered in computer-based instruction. In instruction of this

type, a computer is programmed to decide what will be presented to the

student next. The decision procedure, which is given in diagrammatic

form in Fig. 1, is based on the past stimulus-response history of the

student. It should be noted that this paradigm contains, as special

cases, all other programmed instructional techniques currently in vogue.

It may also correspond to the behavior of a teacher making use of a well­

defined decision procedure.

It will be assumed that the objective of the instructional procedure

is to teach a set of concepts, and that the instructional system has

available to it a set of stimulus materials regarding these concepts. For

brevity of expression, a concept will be said to be presented whenever

material relevant to the concept is presented. We can thus view the

presentation of materials available to the system as a set of concepts S.

We will define a stage of the process as being initiated when a

decision is made regarding which concept is to be presented and terminated

when the history file is updated with the outcome of the decision. In

order to completely define the instructional system we need to define:

L The set S of all possible stimulus presentations.

2. The set A of all possible responses that can be made by the

student.

3. The set H of histories 0 An element of H need not be a complete

history of the student's behavior 0 It may only be a summary.

In the extreme case of a linear program it only contains a record
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Start Instructional Session

1
Initialize the student's
history for this session

Determine, on the basis of the current history,
which stimulus is to be presented next

[ Present stimulus to student

t
Record student" s response

Update history by entering the
last stimulus and response

~ f )Has stage N of the process been reached?
\,- -. --1

Yes

Terminate Instructional Session

Figure 1. Flow diagram for an instructional system.
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the stage the process is in.

4~, A function ° of H onto S. This defines the decision procedure

used by the system to determine the stimulus presentation on the

basis of the history.

5. A function ~ of S X A X H onto H. Thus function updates the

history.

Thus, at the beginning of stage i the history can be viewed as being in

stage h ..
l

A decision is then made to preseht

is made to si ~nd the state of the system is updated to hi +l ~ ~(si,ai,hi)'

In a system such as this, the stimulus set S is generally predeter-

mined by the objectives of one's instructional procedure. For example, if

the objective is to teach a foreign language vocabulary, then S might

consist of a set of words from the language. The response set A is, to

a great extent, similarly predetermined. Although there may be some choice

regarding the actual response mode utilized (e.g., multiple choice versus

constructed response), this problem will not be considered here. The

objectives of the instructional procedure also determine some criterion

of optimality. For example, in our vocabulary example this might be the

student's performance on a test given at the end of a learning session.

The optimization problem that will be the main concern of this paper is to

find a suitable decision procedure for deciding which stimulus s. to
l

present at each stage of the process, given that S, A and the optimality

criterion are specified in advance. Such a decision procedure is called

a strategy. It is determined by the set of possible histories, H, the

decision function 0, and the updating function ~.
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For a particular student, the stimulus presented at a given stage and

the response the student makes to that stimulus can be viewed as the ob-

servable outcome af that stage of the process. For an N-stage process,

the sequence (sl' aI' s2' a2 , "', sN_l' ~"l) of outcomes at each stage

can be viewed as the outcome of the process. The set of all possible out-

comes of an instructional procedure can be represented as a tree with

branch points occurring at each stage for each possible stimulus presenta-

tion and each possible response to a stimulus. An example of such a tree

is given in Fig ... ·2 for the first two stages of a process with stimulus

presentations, s, s' and two responses a, a'.

The most complete history would contain, at the beginning of each

stage, a complete account of the outcome of the procedure up to that stage.

Thus, h. would consist of some sequence
l

Ideally, one could then construct a decision function 5 which specified,

for each possible outcome, the appropriate stimulus presentation si'

However, two problems emerge. The first is that the number of outcomes

increases rapidly as a function of the number of stages. For example, at

the loth stage a process such as that outlined in Fig. 2, we would have

410 outcomes. The specification of a unique decision for each outcome

would clearly be a prohibiti¥~ly lengthy procedure. As a result, any

practical procedure must classify the possible outcomes in such a way

as to reduce the size of the history space. Apart from the problem of the

large number of possible outcomes, one is also faced with the problem

that many procedures do not store as much information as others. For

example, in a linear program in which all studens are run in lockstep, it
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is not possible to make use of information regarding the student's responses.

In general, instructional systems may be classified into two types: those

that make use of the student's response history in their stage-by-stage

decisions and those that do not. The resulting strategies may be termed

response insensitive and response sensitive. A response insensitive

strategy can be specified by a sequence of stimulus presentations

(Sl' s2' ... , sN_l)' A response sensitive strategy can be represented by

a subtree of the tree of possible outcomes. An example is given in Fig.

2. There are two chief reasons for making this distinction. The first

is that response insensitive strategies are less complicated to derive.
~

The second is that response insensitive strategies can be comple~ely

specified in advance and so do not require a system capable of branching

during an actual instructional session.

While this broad classification will be useful in the ensuing discus-

sion, it is important to note that several types of history space are

possible within each class. Even if the physical constraints of the system

are such that only response insensitive strategies can be considered, it

is possible to define many ways of "counting" stimulus presentations. The

most obvious way is to define the history at stage i as the number of

times each stimulus has been presented. A more complicated procedure

(which might be important in cases where stimuli were easily forgotten)

would be to also count for each stimulus the number of other items that

had been presented since its most recent presentation.

The discussion up to this point has been concerned mainly with the

canonical representation of an instructional system and a deliberate

effort has been made to avoid theoretical assumptions. While this leads
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to some insight into the nature of the optimization problem involved, the

mutti-.stage process cannot be sUfficiently well defined to yield a solution

to the optimization probkm without imposing theoretical assumptions. It

will be recalled that, in order to define a multi"stage process, it is

necessary to specify a transformation wi + l ~ T(wi,di ) given the state

and decision at stage i. In order to optimize the process it is also

necessary to be able to state at each stage the effect of a decision upon

the criterion function. The purpose of most instructional systems is to

maximize each student's performance on some aptitude that can be operation-

ally defined in terms of a test that is administered at the end of the pro-

•
cedure. As a result, the simplest criterion function to use is one which

depends only on the final state of the system. This function will be

called the terminal return function and denoted 9(wN). While this can be

stated as a function of the final state, this final state is dependent

upon the sequence of decisions that have gone before. However, any two

outcomes that result in the same final state yield identical values of

The main purpose of the transformation T is to provide a means of

predicting the final state. If T is detenninistic then the sequence of

optimum decisions could be determined by enumerating in a tree diagram all

possible outcomes and computing 9(wN) for each path. A path that maxi­

mized 9(wN) would yield a sequence of decisions corresponding to appro-

priate nodes of the tree. If T were nondeterministic then a strategy a

would yield a subtree similar to that for a response-sensitive strategy.

Each subtree would define a probability distribution .over the wand thus
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an expected terminal return:

E(cp(wN)!cr) ~ I cp(wN)P(wN[a) ,

WN EW

(1)

could be computed for each strategy cr. In either case, this process of

simple enumeration of the possible branches of a tree is impossible in any

practical situation since too many alternative paths exist, even for N

reasonably small. The problem of developing a feasible computational

procedure will be discussed in the next section. The problem of immediate

concern is the most satisfactory way of defining the state space wand

the transformations T(d.,w.).
l l

At first sight, it would seem that W.
l

could be defined as the

history at stage i and T(wi,di ) as the history updating rule. However,

while this might be feasible in cases where the history space is either

specified in advance or subject to .major constraints, it has the severe

disadvantage that it necessitates an ad hoc choice of histories and,

without the addition of theoretical assumptions, it is impossible to com-

pare the effectiveness of different histories. Even if the history space

is predetermined, such as might be the case in a simple linear program.

where all a history can do is "count" the occurrences of each stimulus

item, it is necessary to make some theoretical assumption regarding the

precise form of cp(wN).

One way to avoid problems such as this is to introduce theoretical

assumptions regarding the learning process explicitly in the form of a

mathematical model. In the context of an N-stage process a learning

model consists of: 1) a set of learning states

13
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nondeterministic response rule which gives (for each state of learning)

the prob..bility of a correct response to a given stimulus; and 3) an up-

d~ting rule which provides a means of determining the new learning state

(or distribution of stat~s) that results from the presentation of a

stimulus, the response the student makes, and the reinforcement he receives,

At the beginning of stage i of the process, the student's state is de-

noted by Yi' After stimulus s. is presented, the student makes a
1

response ai the probability of which is determined by s. and Yi' The
).

learning state of the student then changes to Yi+l ~ T(Yi,si)' Models of

this type h..ve been found to provide satisfactory descriptions for a

variety of learning phenomena in areas Buch as paired-associate learning

and concept formation. Detailed accounts of these models and their fit to

empirical phenomena are to be found in Atkinson, Bower, and Crothers (1965),

Atkinson and Estes (1963), and Sternberg (1963).

In the example of the learning of a list of vocabUlary items, the

two simplest models that might provide an ade~uate description of the

student's learning process are the single-operator lineal' model (Bush and

Sternberg, 1959) and the one-element model (Bower, 1961; Estes, 1960).

In the single-operator linear model, the set Y is the closed unit interval

[0, 1]. The states are values of response probabilities. Although these

probabilities can be estimated from group data, they are unobservable when

individual subjects are considered. If, for a particular stimulus j,

~~j) is the probability of an error at the start of stage i and that
1

item is presented, then the new state (Le., the response probability) is

given by

(0 < a :: 1). (2)

14



If is the error probability at the beginning of the first stage,

then it is easily shown that

(j)
q. ~

l

where is the number of times the item has been presented and rein-

forced prior to stage i. The response rule is simply that if a subject

is in state qi with respect to a stimulus and that stimulus is presented

then he makes an error with probability q ..,. This model has two important

properties. The first is that, although the response rule is nondeterministic,

the state transformation that occurs as the result of an item presentation

is deterministic. The second is that the model is response insensitive

since the same transfo:r.'mation is applied to the state li/hether a correct or

incorrect response occurs. The only information that can be used to pre-

dict the state is the number of times an item has been presented.

In the one-element model, an item can be in one of two states: a

learned state L and un unlearned state L. If an item is in state L

it is always responded to correctly., If it is in state L it is responded

to correctly with probability g. The rule giving the state ~ransformation

is nondeterministic. If an item is in state L at the beginning of a

stage and is presented, then it changes its state to L with probability

c (where c remains constant throughout the procedure). Unlike the

line ar model, the one-element model is response sensitive. If an error

is made in response to an item then that item was in state L at the time

that the response was made. To see how this fact influences the response

probability it is convenient to introduce a random variable Xn in the

15



following way:

~{ 1,

0,

Then

if an error occurs on the

if a success occurs on the

th
n presentation of item j

thn presentation of item j.

but

1) _ (1- g) (1 _ c)n-1 , (4)

In contrast, for the single-operator linear model

(6)

Although these two models cannot be expected to provide the same optimiza-

tion scheme in general, they are equivalent when only response insensitive

strategies are considered. This is due to the fact that, if a' is set

equal to 1 - c and
(")q J
1

to 1 - g then identical expressions for

pr(X (j) - 1) It f b th d 1- resu or 0 mo e s.
n

Wi th the introduction of models such as these, the state space W

and the transformation T can be defined in terms of some "learning state"

of the student. For example, in the case of the linear model and a list

of ill . stimulus items, we can define the state of the student at stage i

as the m-tuple

denotes the current probability of making an error to itemwhere q(j)

( .)
s'J and define T(q,s.)

J
as the vector obtained by replacing

(")q J with

aq(j). This notation is illustrated in Fig. 30 If the behavioral optimi-

zation criterion were a test of the m items administered immediately
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( .60, .90)
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~
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Stage (.08,.90) (.15,.45) (.15,.45) (.30,.22) (.15,.45) (.30,.22) (.30,.22) (.60,.n)

4

Figure 3. Outcome tree of response probabilities for linear
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after stage N of the process, then the return function would be the

exp.ectation of the test score, ieeo,

f{l
(j )i

-
'IN J

jd

where 1 - 'l(j) is the probability of a correct response at the end of theN

instructional process. It is not necessary, however, that W be the actual

state space of the model. It may, instead, be more convenient to define

wi as some function of the parameters of the model. For example, if the

process of learning a list of simple items can be described by a one-element

model, then wi can be defined as the n-tuple whose jth element is either

L or L. However, if one is interested in some criterion that can be ex-

pressed in terms of probabilities of the items being in state L, then it

may be computationally more convenient to consider

whose
.th
J element is the probability

w. as an n-tuple
~

that stimulus s(j) is in state L at the

beginning of stage i.

If we view the states as some function of the parameters of a learning

model then the history hi can be viewed as a suitable estimate of wi'

It is clear from our examples that a learning model can impose a severe

constraint upon the history space in the sense that information regatding

observable outcomes is rendered redundant. For example, if
(")

'l J
1

is

known on a priori grounds (for each j), then the linear model renders the

entire response history redundant. This is because the response probability

of each item is completely determined by the number of times it has been

presented. With the one-element model, the nature of the constraint on

the history is not immediately clear. In general, the problem of deciding

18



on an appropriate history, hi' is similar to the problem of' finding an

observable statistic that provides a good estimate of a parameter. The

his.tory hi may be regarded as an estimate of the state w, •
l

A desirable

property for such a statistic would be for it to s'wmmarize all information

concerning the state so that no other history would provide additional

informatio~. A history with this property can be called a sufficient

history.

In the theory of statistical inference, a statistic with an analogous

property is called a sufficient statistic. Since is a function of

the parameters of the model it would seem reasonable to expect that, if

a sufficient statistic exists, for these parameters, then a sufficient

history would be some function of the sufficient statistic. For a general

discussion of the role of sufficient statistics in reducing the number of

paths that must be considered in trees resulting from processes similar

to those considered here, the reader is referred to Raj£fa and Schlaiffer

(1961) .

Optimization Techniques

Up to now, the only technique we have considered that enables us to

find an optimal strategy is to enumerate every path of the tree generated

by the N-stage process. Although the systematic use of learning models

can serve to reduce the number of paths that must be considered, much too

large a number of paths still remains in most problems where a large number

of different stimuli are used. The main success with a direct approach

has been in the case of response insensitive strategies (Suppes, 1964;

Crothers, 1965,1966; Dear, 1964). In these cases, either the number of

19



stimulus types i.G drasti.cally limited or the problem is of a tYlle where the

history can be simplified on ~ priori grounds, The techniques used in

these approaches are too closely connected with the specific problem

treated and the models used. for any general discussion of their merits,

The theory of dynamic programming provides a set of techniques that

reduce the portion of a tree that must be searched. These techniques have

the merit of being model free. Moreover., they provide a computational

algori thm which may be used to discoVCl' optimal strategies by numerical

methods in cases where anal;y-tic methods are too complicated. rrhe first

application of dynamic programming to the design of optimal instructional

systems was due to Smalhlood (1962). Since then several other investigators

have applied dynamic programming techniques to instructional problems of

various types (Matheson, 1964; Dear, 1964; Karush and Dear, 1966). The

results obtained by these investigators are too specific to be reviewed

:Ln detail. ~;he main aim in this section is to indicate the nature of the

techniques and how they can be applied to instructional problems.

Broadly speaking, dynamic programming is a method for finding an

optimal strategy by systematicaLLy varying the number of stages and ob-

taining an expression which gives the return for a process 'lith N stages

as a function of the return from a process 'lith N- 1 stages. In order to

see ho'l this is done it is necessary to impose a restriction on the return

function and define a property of optimal policies. Following Bellman

(1961, p. 54) a return function is Markovian if, for any K < N, the effect

of the remaining N- K stages of the N-stage process upon the return

depends only upon: 1) the state of the sy-stem at the end of the K
th

20



decision, and 2) whatever subsequent decisions are made. It is clear that

the return function ~(wN) possesses this property. Another type of return

function that possesses this property is one of the form:

A return function of this latter form may be important when cost as well

as final test performance is an important criterion in designing the system.

For example, in a computer-based system, g(w. ,d.) might be the cost of
l l

using the computer for the amount of time required to make decision di ,

and present the appropriate stimulus. Since the expressions resulting

from a function of this form are somewhat more complicated, we will limit

our attention to return functions of the form ~(wN)' However, it should

be borne in mind that essentially the same basic procedures can be used

with the more complicated return function.

If a deterministic decision process has this Markovian property then

an optimal strategy will have the property expressed by Bellman in his

optimality principle : whatever the initial state and the initial decision-- ----

are, the remaining decisions constitute an optimal policy with regard to

the state resulting from the first decision (Bellman, 1961, p. 57). To

see how this principle can be utilized, let fN(W) denote the return from

an N-stage process with initial state w if an optimal strategy is used

throughout, and let us assume that T is deterministic and W is discrete.

Since the process is deterministic, the final state is completely determined

by the initial state w and the sequence of decision dl , d2 , ·.... '~-l

(it should be recalled that no decision takes place during the last stage).

If DN denotes an arbitrary sequence of N- 1 successive decisions (Dl
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being the empty set) then the final state resulting from wand DN can

be written as w'(DN,w). The problem that must be solved is to find the

sequence DN which maximizes ~[w'(DN'w)]. If such a sequence exists,

then

f (w)
N

(8 )

While the soluU,on of such a problem can be extremely complicated for

arbitrary N, it is easily shown that for N ~ 1

f
l

(w) ~ ~(w)

As a result, if a relation can be found that connects f. (w)
~

with

fi_l(w) for each i < N then fN(w) can be evaluated recursively by

evaluating f. (w)
~

for each 1. Suppose that, in an i-stage process, an

initial decision d is made. Then w is transformed into a new state,

T(w,d), and the decisions that remain can be viewed as forming an

(i-i)-stage process with initial state T(w,d). The optimality principle

implies that the maximum return from the last i - 1 stages will be

fi_l[T(W,d)].

d
i

_
l

) ,then

Moreover if D. ~ (d,d2 ,·»,d, 1)
~ ~-

~[w' (D. ,w) J ~ ~[w' (D. 1,T(w,d))l .
~ ~-

(10)

Suppose that D. 1
~-

is the optimal strategy for the i-l stage process.

Then the right-hand side of this equation is equal to fi_l[T(w,d)J. An

optimal choice of d is one which maximizes this function. As a result,

the following basic recurrence relation holds:

f (w) ~ max f l[T(w,d)]
n d n-

f
l

(w) ~ ~(w) •
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,
Equations 11 and 12 relate the optimal return from an n-stage process

with the optimal return from a process with only n-l stages. Formally,

n may be viewed as indexing a sequence of processes. All processes are

identical except in the number of stages they possess. Thus, the solution

of these equations provides us with a maximum return function f (w) for
n

each process and (also for each process) an initial decision d which

ensures that this maximum will be attained if optimal decisions are made

thereafter. It is important to note that both d and f (w)
n

are functions

of wand that w should, in general, range over all values in the state

space W. In particular, the initial state and initial decision of a

typical member of the sequence of processes we are considering should not

be confused with the initial state and initial decisions of the N-stage

process we are trying to optimize. In fact, the initial decision of the

2-stage process corresponds to the last decision dN_l of the N-stage

process; the initial decision of the 3-stage process corresponds to the

next to the last decision 0__ of the N-stage process and so on.-1'1 -2

The linear model of Eq. 2, with the state space defined in Eq. 7

provides an example of a deterministic process. The use of Eqs. 11 and 12

to find an optimal strategy for the special case of a 4-stage process with

two items is illustrated in Table 1.

The state at the beginning of stage . i is defined by the vector

(q~l) ,q~2)) .. The optimization criterion is the score on a test administered
J. J.

at the end of the instructional process. Since item j will be responded

to correctly with probability 1- q~j), the terminal return function for

an N-stage process is 2 c (q~l) + q~~)). The calculation is begun by
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Table 1

Calculation of Optimal Strategy for Example of

Figure 3 Using Dynamic Programrrling

Number of Initial Initial Next Final Optimal
Stages in State w Decision d State Return of Decision
Process N T(w,d) Optimal

N-l'Stage
Process

fN_l[T(w,d) ]

1 (.08, .90) 1.02

(,15, .45) 1.40

(.30, .22) 1.48

(.60, .n) 1.29

2 ( .15, . ';10) 1 (..08, .90) 1.02 2

2 (,15, .45) 1.40

(.30,.45) 1 (,15,.45) 1.40 2

2 (.30, .22) 1.48

(.60, .22) 1 (.30, .22) 1.48 1

2 (.60,.n) 1.29

3 (,30,.90) 1 (.15,.90) 1.40 2

2 (.30,.45) 1.48

(.60,.45) 1 (.30,.45) 1.48 1 or 2

2 (.60, .22) 1.48

4 (.60, .90) 1 ( .30, .90) 1.48 1 or 2

2 (,60,.45) 1.48

Optimal Strategies

Stage 1 Stage 2 Stage 3

1. Item 1 Item 2 Item 2

2. Item 2 Item 1 Item 2

3. Item 2 Item 2 Item 1
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viewing the fourth stage as a l-stage process and obtaining the return for

each possible state by means of Eqo 120 The possible states at this fourth

stage are obtained from Figo 3. The third and fourth stages are then

viewed as a 2-stage process and Eq. 11 is used to determine the return

that results from presenting each item for every possible state that can

occur in stage 3, the previously computed result for a l-stage process

being used to complete the computations. For each state, the item with the

maximum return represents the optimal decision to make at stage 3. The

3-stage process beginning at stage 2 is analyzed in the same way, using

the previously computed results for the last two stages. The result is

an optimal decision at stage 2 for each possible state, assuming optimal

decisions thereafter. Finally, the procedure is repeated for the 4-stage

process beginning at stage 10 The optimal strategies of itEm presentation

that result from this procedure are given at the bottom of Table 1.

With a nondeterministic process, the situation is considerably more

complicated. The transformation T is some type of probability distribu­

tion and the final return is a mathematical expectation. While arguments

based on the optimality principle allow one to obtain recursive equations

similar in form to (11) and (12), both the arguments used to obtain the

equations and the methods used to solve them can contain many subtle features.

A general review of the problems encountered in this type of process is

given by Bellman (1962) and some methods of solution are discussed by Bell­

man and DreyfUS (1962). For the case where the transformation defines a

Markov process with observable states, Howard (1960) ·has derived a set of

equations together with an iterative technique of solution which has quite
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general applicability. Howeve~ in the case of instructional processes,

it has so far tended to be the case that either the learning model used

has unobservable states or that the process can be reduced to a more determin­

istic one (as is the case with the linear model discussed in the example

above).

A response-insensitive process can often be viewed as a deterministic

process. Thm~ not, i~ general, possible with a response-sensitive process.

The only process of this type that has been extensively' analyzed is that

in which a list of stimulus-response items is to be learned, the return

function is the score on the test administered at the end of the process,

and the learning of each item is assumed to occur independently and obey

the assumptions of the one-element model. An attempt to solve this problem

by means of a direct extension of Howard's techniques to Markov processes

with unobservable states has been made by Matheson (1964). However, this

approach appears to lead to somewhat cumbersome equations that are impossible

to solve in any non-trivial case. A more promising appreach has been de­

vised by Karush and Dear (1966). As in our example of the linear model, the

states of the process are defined in terms of the current probability

that an item is in the conditioned state and a similar (though somewhat

more general) return function is assumed. ,An expression relating the re­

turn from an (N-J)-stage process to the return from an N-stage process is

, then derived. The main complication in deriving this expression results

from the fact that the outcome tree is more complicated, the subject's

responses having to be explicitly considered. Karush and Dear proceed to

derive certain properties of the return fQ~ction and prove that in an
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N-trial experiment2 with items s (1) ,s (2)~, •• ,s (m) (whereN:l::' Ill) .... a~d
. \

arbitrary initial conditioning probabilities (t>.( J.) ,t,. (g).; '.' ; ,]0.1m) ,an optimal

strategy is given by presenting at any.trial an item for which 'the current

conditioning probability is least. In most applications the initial

probabilities x·(j) can be assumed to be zero. In this case, an observable

sufficient history can be defined in terms of a counting process. An

optimal strategy is initiated by presenting the m items ~ any order on

the first m trials and a continuation of this strategy is optimal if and

only if it conforms to the following rule:

L For every item set the count at 0 at the beginning of trial m+ L

2. Present an item at a given trial if and only if its count is

least among the counts for all items at the beginning of the

triaL

3. Following a trial, increase the count for the presented item

by 1 if the response was correct but set it at 0 if the response

was incorrect.

General Discussion

In this paper we have attempted to achieve two main goals. The first

has been to provide an explicit statement of the problems of optimal

instruction in the framework of multi-stage decision theory. Our main

reason for introducing a somewhat elaborate notational system is the need

for a clear distinction between the optimization problem, the learning

process that the student is assumed to follow, and the method of solving

the optimization problem. The second goal has been to indic·ate, using

dynamic programming as an example, how optimization problems can be solved
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in practice. Again, it should be emphasized that dynamic programming is

not the only technique that can be used to solve optimization problems,

Many response-insensitive problems are solvable by more simple, though

highly specific, techniques, However, dynamic programming is the only

technique that has so far proved useful in the derivation of response­

sensitive strategies, In describing dynamic programming an attempt has

been made to emphasize two basic features: the optimality principle, and

the backward-induction procedure by means of which an optimal strategy is

obtained by starting, in effect, at the last stage. It should be noted

that these can be used independently. For example, it is possi~le to com­

bine the optimality principle with a forward induction procedure which

starts at the'first atage of the process.

In any attempt to apply an optimization theory in practice one must

ask the question; how can it be tested experimentally? In principle, it

is easy to formulate 'such an experiment. A number of strategies are

compared--some theoretically optimal, others theoretically suboptimal.

A test is administered at the end of the process that is designed to be

some observable function of the final return. However, the only experiment

that has been explicitly designed to test an optimization theory is that

by Dear, Silberman, Estavan, and Atkinson (1965), although in the case of

response-insensitive theories, it is often possible to find experiments in

the psychological literature which provide indirect support.

The experiment reported by Dear et aL was concerned wi th testing

the strategy proposed by Karush and Dear (1966) for the case outlined in

the preceding section. The major modification of this strategy was to
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prohibit repeated presentations of the same item by forcing separations

of several trials between presentations of individual items,3 Each sub­

ject was presented with two sets of paired-associate items. The first set

of items was presented according to the optimization algorithm, Items in

the second set were presented an equal number of times in a suitable random

order. (It will be recalled that this strategy is optimal if the linear

model is assumed,) It was found that while the acquisition data (e.g.,

rate of learning) tended to favor items in the first set, no significant

difference was found in post·test scores between items of the two sets,

It follows from the result of this experiment that, even for a simple

problem such as this, an optimization theory is needed that assumes a

more complicated learning model, At least one reason for this is that,

in simple paired-associate experiments that result in data which is fitted

by the one-element model, any systematic effects of stimUlus-presentation

sequences are usually eliminated by presenting different SUbjects with

different random sequences of stimuli. When a specific strategy is used,

it may be the case that either the assumption of a forgetting process or

of some short-term memory state becomes important in accounting for the

data (Atkinson and Shiffrin, 1965).

Unfortunately, the analytic stUdy of the optimization properties of

more complex models, at least by dynamic programming techniques, is

difficult. The only major extension of response-sensitive models has been

a result of Karush and Dear (1965) which shows that the optimal strategy

for the one-element model is also optimal if it is assumed thatcthe

probability of a correct response in the conditioned state L is less than

one. However, there are ways by means of which good approximations to
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optimal strategies might be achieved, even in the case of extremely com­

plex models" Moreover, in many practical applications, one is not really

critically concerned about solving for an optimal procedure, but would

instead be willing to use an easily determined procedure that closely

approximates the return of the optimum procedure. The main means of

achieving a good approximation is by analyzing the problem numerically,

computing the optimal strategy for a large number of special cases" A

useful general algorithm for doing this is the backward induction procedure

described in the preceding section" Table 1 illustrates how this algorithm

can be used to find an optimal strategy for one particular case, Dear

(1964) discusses the use of this algorithm in other response-insensitive

problems.

The chief disadvantage of the backward induction algorithm is that

it can only be used for optimal strategy problems involving a fairly small

number of stages. Although its use can eliminate the need to search every

branch of a tree, the computation time still increases as a function of

the number of possible final states that can result from a given initial

state. However, a backward induction solution for even a small number of

stages would provide a locally optimal policy for a process with a ..large

number of stages, and this locally optimal strategy might provide a good

approximation to an optimal strategy. To decide how "gOOd" an approxima­

tion such a strategy provided, its return could .be evaluated and this

could be compared with the returns of alternative strategies.
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Footnotes

1. Support for this research was provided by the National Aeronautic"

and Space Administration, Grant No. NGR-05-020-036, and by thc Office of

Education, Grant No. OE5-10-050.

2. Here the term N-trial experiment refers to an anticipatory

paired-associate procedure which involves N stimulus presentations. To

each stimulus presentation the subject makes a response and then is told

the correct answer for that stimulus.

3. Thic modification was necessary becau:::e it has been sho':,vn cxperi-

mentally that if the same item is presented on immediately successive

trials then the subject's response is affected by consiJeratiuns of short­

tel"" memory.
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