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Models for Optimizing the Learning Processl

G. J. Groen and R, C. Atkingon

Stanf'ord Univergity

Abstraét

This paper is concerned with showing how certain instructional
problems can be reformulated as problems in the mathematical theory of
optimization. A common instructiconal paradigm is outlined and = noﬁa—
tional system is proposed which allows the paradigm to be restated as a
multi-stage decigion process with an explicit mathematical learning model.
embedded within it. The notion of an optimal stimulus presentation
strategy ie introduced and some problems involved in determining such
‘a strategy are discussed. A brief description of dynamic programming is
used to illustrate how optimal strategies might be discovered in praciical

situations.




Although the experimental work in the field of programmed instruction
has been quite exténsive, it has not yielded mnch in the way of uneguivocal
results. For example, Silberman (1962), in a summary of 80 studies dealing
with experimental manipulations of instructional programs, found that 48
failed to obtain a significeit difference among treatment compariscns.

When significant differences were obtained, they seldom agreed with find-
ings of other studies.on the same problem. The equivocal nature of these
results is symptomatic of a deeper problem that exists not only in the field
of programmed instructicn but in other areas of educational research.

An instructional program is usually devised in the hope that it op-
timizes learning according to some suitable criterion. However, in the
absence of a well-defined thecory, grave difficulties exist in interpreting
the regults of experiments designed to evaluate the program. Usually the
only hypothesls fested is that the program is better than programs with
different characteristics. In the absence of a theoretical notlon of why
the pregram tested should be optimel, it is almost impessible to formulate
alternative hypotheses in the face of incounclusive or contradictory results.
Another consequence of an atheoretical approach ig that it is difficult to
predict the magnitude of the difference between twc experimental treatments.
If the difference is small then 1t may not turn out to be significant when
a statistical test is applied. However, as Lumsdaine (1963} has pointed
out, lack of significance ls coften interpreted as negative evidence.

What appears to be missging, then, is a theory that will predict the

conditiong under which an instructional procedure optimizes learning. A

theory of this type has recently come to be called a theory of instruction.
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It has been pointed out by several authors (e,g,, articles by Gage, 1963
and Hilgard, 1964), that one of the chief problems in educational research
has been a lack of theories of instruction. For example, Bruner {1964)
has characterized a theory of instruction as a theory that sets forth rules
concerning the most efficient way of achieving knowledge or gkill; these
-rules should be derivable from a more general view of learning. However,
Bruner mekes a sharp distinction between a theory of learning and a theory
of.instructione A theory of learning is concerned with describing learning.
A theory of instruction is concerned with prescribing how learning can be
improved. Among other things, it prescribes ihe most effective sequence
in which to present the méterials to be learned and the nature and pacing
of reinforcement.

While the notion of a theory of instructlion is relatively new, optim-
ization problems exist In many other areas and have been extensively studied
. in'a mathematical fashion. Within psychology, the most promihent example
is the work of Cronbach and Gleser (1964} on the problem of optimal test
selection for personnel decisions. Outside psychology, optimization prob-
lems occupy an important place in areas as diverse as physics, electrical
engineering, economics aﬁd operations research. Degplte the fact that the
gpecific problems vary widely from one field to another, several mathemati-
cal techniqgues have been developed that can be applied to a broad variety
of optimization problems.

The purpose of this paper is o indicate how one of these technigues,
dynamic programming, can be utilized in the development of theories of
instruction. Dymamic programming was developed by Bellman and his aéso—

ciates (Bellman, 1957,'1961; Bellman and Dreyfus, 1962) for the solution
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of a class of problems called multi-stage decision processes. Broadly
speaking, these are processes in which decisions are made sequentially,-
and decislons made early in the process affect decislons made subseguently.

We will begin by formalizing'the notion of a theory of instruction
and indicating how it can be viewed as a multi-stage decision process.
This formalization will allow us to give a precise definition of the opti-
mization problem that arises. We will then consider in a general fashion
how dynamic programming technigues can be used to solve this problem,
Although we will use some specific optimization models ag illustrations,
our megin aim will be to cutline some of the obstacles that stend in the
“way of the development of a guantitative theory of instruction and indicate
how they might be overcome,
‘Multi-Stage Instructional Models

The type of multi-stage process of greatest relevance to the purpcses
of this paper is the so~called discrete N-gstage process. This process is
concerned with the behavior of a system that can be characterized at any
“given time as being in state w. This state may be univariate but ig more
generally multivariate and hence 1s often called a state vector {the two
terms will be used interchangeably). The state of this system is determined
by a set of decisions. In particular, every time a decision d (which may
also be multivariate) is made, the state of the system is transformed. The
new state is determined by both d and w and will be denoted by T(w,d).
The procesg consists of T successive stages. At each of the first N -1
stages, & decision d i1s made. The last stage is a terminal stage in

which no decision 1s made. The process can be viewed as proceeding in the



following fashion: Agsume that, at the beginning of the first stage the
system ig In state W, . An initial decisicn dl is made. The result is

a new state W, given by the relation:

Wy = T(wgsdl) .

We are now in the second stage of the process, so a second decision d2

3 determined by the relation

is made regulting in a new state w

W3 = T(Wg,dg) .

The process continues in'this way until finally:

vy = Tl pdyq) -
If each choice of d determines a unigue new state, T(w,d), then
"~ the pfocess is deterministic. It i3 possible, however, that the new state
s probabllistically related to the'previous state, In this nondetermin-
istic case, it is also necesgsary to specify for each stage 1 a probability
distribution Pr(wil wi_l,di‘f l) .

oo a

‘In a deterministic process, each seguence of decisions dl, d29

dN—l and states Wys Wos o0ty Wy hag asscciated with it a function that
has been termed the criterion or return function. This function can be
viewed as defining the utility of the sequence of decisions. The optimiza-
{lon problem one must =solve i1g to find a seqguence of declsions that meximizes
their critericn function. The optimization problem for a nondeterministic
process ls similar except that the return function is some suitable typei

" of expectation.

"In order tc indicate how an instructional process can be considered

as an N-stage decision process, a fairly general ilnstructional paradigm



will be introduced. This paradigm is based on the type of process that
is encountered in computer-based instruction, In instruction of this
type, a computer 1lg programmed tco decide what will be presented to the
student next. The decision procedure, which is given in disgrammatic
form in Fig. 1, 1s based on the past stimulus-response history of the
student. It should be noted that this parsdigm contaiﬁs,. as special
cases, all other programmed instructicnal fechnigques currently in vogue.
It may also correspond to the behavior of a teacher making use of a well-
defined decision procedure.
| It will be assumed that the objective of the instructional procedure

is to teach a set of concepts, and that the instructional system has
avellable to it a sgt of stimulug materials regarding these concepts. For
brevity of expression, a concept will be sald to be presented whenever
material relevant to the cqncept lg presented. We can thus view the
presentation of materials available to the system as a set of concepts &.

We will define a stage of the process as belng initiated when a
decision is made regarding which concept is to be presented snd terminated
when the history file i1s updated with the outcome of the decision. In
order.to comnpletely define the instructional system we need to define:

1. The gset 8§ of all possible stimalus presentations.

2. The set A of all possible responses that can be made by the

| student.
3. The set H of histories. An element of H need not be a complete
pistory of the student's behavior. It may only be a summary.

In the extreme case of a linear program it only containsg & record




Start Instructicnal Session

i

Initialize the student's
higtory for this session

l

Determine, on the basis of the current history,
which stimulus is to be presented next

>

Pregent stimulus to student

Record student's response

Update history by entering the
last stimulus and respouse

N
-—-9——( Has stage N of the process been reached? )

Yes

Terminate Instructional Session

Figure 1. Flow diagram for an insfructional system.



the stage the process is in.

%.. A function ® of H ontec S. This défines the decilsion procedure
used by the system to determine the stimulus presentaticn on the
bagis of the history.

5. A function p of 8 XA XH onto H. Thus function updates the
history. | |

Thus, at the beginning of stage 1 the history can be viewed as being in
stage hi“ A decision is then made to present s, = 6(hi), & response a.
is made to 5, and the state of the system 1s updated to hi+l = p(si,ai,hi)i
In a gystem guch asg thig, the stimulus set S 1s generally predeter-
mined by the obJectives of one's instructional procedure. For example, 1f
the objective is to teach a foreign language voc_:abulary9 then S8 might
conslst of a set of words fram the language. The response set A 1s, to
a great extent, similarly predetermined. ‘Although there may be some choice
regarding the actual regponse mode utilized_(e,gu, multiple choice versus
constructed response), this problem will not be considered here. The
objectives of the instructional procedure algo determine somz criterion
of optimality. For example, in cur vocabulary example thisg might be the
student's performance on a test glven at the end of a learning session,
The optimizaticn problem that will be the meain concern of this paper is to
find a suitable decision procedure for deciding which stimulus =N to
pregent at each stage of the process, given that B8, A and the optimality
criterion are gpecified in adfance. fuch a declsion procedure is called
a gtrategy. It is determined by the set of possible histories, H, the

decislon function &, and the updating function p.




For a particular student, the stimulus presented at a given stage and
the regponse the student makes to that sfimulus can be viewed as the ob-
servable outcome aof that stage of the process. For an N-stage process,

the sequence ( e, Sy 1 aNhl) of outcomes at each stage

805 8y S5 8,
can be viewed as the oulcome of the process. The set of all possible out-
comes of an instructional procedure can be repregented as a tree with
branch points occurring at each siage for each possible stimulus presenta-
tlon snd each posggible regponse to & stimulus. An example of such a tree
is gilven in Fig. 2 for the first two stages of a process with stimulus
presentations, s, s' and two responses a, a'.

The most complete history would contain, at the beginning of each
stage, a complete account cf the outcome of the procedure up to that stage.
Thus, h; would consist of some sequence (Sl’ 815 S55 855 "7y Sinl’.ai—l)‘
Ideally, one couid then construct a decision function & which specified,
for each possible cutcome, fhe appropriate stimilus presentation 8s e
However, two problems emerge. The first is that the number of ocutcomes
increases répidljlas é functicn of the number of sta;ges° For example, at
the 10th stage a process such as that ocutlined in Fig. 2, we would have
410 outcomes. The gpecification of a unigque decision for each outcome
would clearly be a prohibititvely lengthy procedure. #As a result, any
practical procedure must classify the possible outcomes iﬁ such a way
as_to reduce the size of the history space. Apart from fhe problem of the
large number of posgssible cutcomes, one is also faced with the problem

that many procedures do not store as much information as others. For

example, in a linear program in which all studens are run in lockstep, it



Stage

Figure 2.

Tree diagram for the first two stages of a

process with two stimull s and s', and
two résponses a and a'. The dotied linres

enclose the subtree genersted by a possible

regponse-sensitive strategy.
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‘ig not possible to meke use of information regarding the student's responses.
In general, instructional systems may be classified inte two types: tThose
that make use of the student's response history in thelr sftage-by-stage
declsions and those that do not. The’resulting strategies may be termed

o

response insengltive and responge sensgitive., A resgponse insensitive

strategy can be specified by a sequence of stimulus presentations

(sl, 82,‘-v°,'sN_l). A response sensitive strategy can be represented by
& gubtree of the tree of possible cutcomes. An example ie given in Fig.
2. There are two chiefl reasons for making this distinction. The first
ig that response insengitive strategles are less compllicated to derive,
The second 1s tha; response insensitive strategies can be completely
specified in advance and so do not require a system capable of branching
- duriﬁg an actual instructional session.

While this broad classification will be useful in the ensuing discus-
sion, it 1s important to note thet several types of history space are
possible within each class. Lven if the physical constraints of the system
are such that only response insgensitive strategies can be considered, it

"counting" stimulus presentations. The

is possible to define many ways of
most obvious way is to define ihe history et stage 1 as the number of
times each stimulus has been presented. A more complicated procedure
(which might be important in cases where stimuli were easily forgotten)
would be to also count fot each stimulus the number of other items that
had been pregented since its mosgt recent presertation.

The discussion up to-this point has been coﬁcerned mainly ‘with the
canonlcal representation of an instructional system and & deliberate

effort has been made to aveid theoretical assumptions. While this leads
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to some insight into the nature of the opbtimization problem involved, the
mulii-stage process cannot be sufficiently well defined to yieid a solution
tc the optimization problem without imposing theoretical assumptions. It
will be recalled that, in order to define a multi-stage process, it is

necessary tc specily a transformation w.

i1 T T(wi,di) given the state

and decigion at stage 1. In order to optimize the process it is also
necegsary to be able to state at each stage the effect of a decigion upon
the critericn function. The purpose of most Instructional systems is to

- maximize each student's performance on some aptifude that can be operation-
ally defined in terms of a test that is administered at the end of the pro-
-cedure, 4s a result, the simplest criterion function zo use is one which

depends only on the final state of the system. This function will be

called the terminal return function and denoted @(WN)G While this can be

.stated as a function of the final state, this final state is dependent
upon the sequence of decisions that have gone before. However, any two
outcomes that result in the same final state yield identical values of
o) .

The main purpose of the trangformation T is to provide a means of
predicting the final state, If T is detemiinistic then the sequence of
optimum decisions ccoculd be determined by enuvmerating in a free diagram all

~possible outcomes and computing @(WN) for each path. .A path that maxi-
mized Q(WN) would yield a sequence of decisions corresponding to appro-
priate nodegs of the tree. If T were nondeterministic then a strategy o
would yield a subtree similar to that for a response-sensiftive strategy.

Each subtree would define & probability distribution over the w.- and thus

12



an expected terminal return:

Cs(oule) = ) eludPGyle) , ()
. iy e _

could be compufed for esach strategy o. In either case, thig process of
gimple enumerstion of the possible branches of a tree is impossgible in any
practical slituaticn since %too many alternative paths exist, even for N
reasonably small. The problem of developing a feasible compatational
procedure will be digcussed in the next section. The problem of immediate
concern 1s the most satisfactory way of definiag the stete space w and
the transformations T(di,wi)°

At first sight, it would seem that LA could be defined as the
higtory at stage 1 and T(wi;di) as the history updating rule. However,
while this might be feasible in cases where the history space is either
specified in advance or subject to major constraints, it has the severe
disadvantage thal it necessitates an ad hoc cholice of histories and,
without the addition of theoretical assumpticns, it is impossible fc com-
pare the effectiveness of different histories. Even if the history space
is predetermined, such as might be the case in a simple linear program
where all a history can do is "count” %he occurrences of each stimulus
item, it is necessary to make some theoretlcal assumption regarding the
precise form. of @(WN)u

One way to avold problems such as this is to inbroduce theoretical
asgumptions regarding the learning process ekﬁlicitly in the form of a
mathematical model. In the context of an N-stage process a learning

model consists of: 1) a set of learning states Y; 2) a usually
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nondeterministic response rule which gives (for each state of learning)
the probability of a correct response to a given stimulus; and 3) an up-
dating rule which provides a means of determining the new learning state
(or distributicn of states) that results from the presentation of a
stimulus, the response thé student makes, and the reinforcement he recelves,
At the beginning of stage 1 of the process, the student’s state is de-
noted by ¥y After stimulus S5 _is rresented, thé student makes a
response a, the probability of which is determined by S; and ¥y The
learning state of the student then changes to Vip1 ~ T(yi,si)ﬁ Models of
this type have been found to provide satisfactory descriptions for a
variety of learning phencmens in areas such as paired-asgocliate learning
and concept formation. Detalled accounts of these models and their fit to
empirical phenomena are to be found in Atkinson, Bower, and Crothers (1965),
Atkinson and Estes (1963), and Sternberg (1963).

In the example of the learning of a list of wvocabulary items, the
two simplest models that might provide an adequate description of the
student's learning process are the single-operator linear model (Bush and
Sternberg, 1959) and the one-element model (Bower, 1961; Estes, 1960).
In the single-operator linear model, the set Y 1is the closed unit interval
[0, 1]. The states are values of responge probabllities. Although these
probabilities can he estimated.from group data, they are unobservable when
individual subjects are considefedn If, for & particular stimulus Vj,
qij) is the probability of an error at the start of stage 1 and that
item is presented, then the new state (i,e,, the response probability) is
given by

i+1

ald) —agld) - (0<a<1). (2)

14



If qia) is the error probability at the beginning of the first stage,
then it is easily shown That

0

qi(‘j) = ql(_j)O‘ - | (3)
where ngj) 1s the number of times the item has been presented and rein-
forced prior to stage 1. The response rule is simply that if a subject
ig in state q with respect teo & stimulus and that stimulus is presented
then he makes an error with probabllity a; - This model hag two important
properties. The first is that, although the response rule is nondeterministic,
tﬁe state transformation that occurs as the result of an item presentation
is deterministic. The seccond is thait the model is response insensitive
since the same btransformation is applied to the state whether a correct or
incorrect responge occurs. The only information that can be used to pre-
dict the state .is the number of times an item has been presented.

In the one-element model, an item can be in one of two states: a
learned state L and un unlesrned state L. If an item is in state L
it is always responded té correctly. If it is in state L 1% is responded
to correctly with probabllity g. The rule giving the state CransTormation
is nondeterministic. If an item is in state L at the beginning of a
stage and is presented, then it changes its state to L with probabliiity
¢ (where ¢ remains constant throughout the procedure). Unlike the
lire ar model, the one-element model 1s response sensitive. If an error
is mede in response to an item then that item was in state T. at the time
that the response wasg made. To sees how this fact influenceg the response

probebility it 1s convenient to introduce a randem variable Xn in the
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foilowing way:

- th - . .
1, if an error occurs on the n presentation of item

XI’(lJ) - th
0, 1f a success occurs on the n presentation of item .
Then
A VR P NS L ()
but
Pr(X(j) = 1|X(j) = 1) = (L-g)(1-¢) . (5)
n -1 '
In contrast, for the single-operaztor linear model
(3) (3) () {3)gn-1 |
= = =3 = = 04
Pr(Xn 1) Pr(Xn 1| X0 1) N . (6)

Altheough these two models cannot be expected to provide the‘same optimiza~
tion scheme in general, they are eguivalent when only response insensitive
strategies are congidered., This is due to the fact that, if &' is set

o 1l-g then identical expressions for

equal to 1-c¢ and QF) t

‘Pr(Xéj) = 1) result for both models.
With the introduction of medels such as these, the state space W
‘and the transformation T can be defined in terms of some "learning state"
of the gtudent. For example, in the case of the linear model and & list
of m .stimulus items, we can define the state of the student at stage i

as Tthe m-ftuple

Q= (q(l)aq_(g)3”’°3q(m)) (7)

where q(J) denctes the current probability of making an error to iltem

{ .
s‘d)and define T(q,sj) as the vector obtained by replacing q(J) with

@q(a)“ This notation ig illustrated in Fig. 3. If the behavioral optimi-

zation criterion were a test of the m items administered immediately
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Stage | _ (.€0,.90)

T
LWS]

stage  (.08,.90) (.15,.45) (.15,.45) (.30,.22) (.15,.45) (.30,.22) (.30,.22) (.60,.11)

figure 3. Outcome tree of response probabilities for linear

model with ¢ = Oas,l q:g'l) = 0.6,: q£2) = 0:9.



after - stage N of the process, then the return function would be the
expectation of the test score, i.e.,

-~
H

S (3)
J
Y w)
J=1
qéa) is the probability of a correct response at the end of the

ingtructional process. IT is not necesgsary, however, that W be the actual

where 1 -

state space of the model. It may, instead, be more convenient to define
‘ W, as some function of the parameters of the model. For example, 1f the
process of learning a list of simple items can be described by a one-element
model., then W, oocan be defined as the n-tuple whose jth element is either
L or L. However, if one is interested in some criterion that can be ex-
pressed in terms of probabilitieslof the items being in state T, then it
may belpomputationally more convenient to consider w, as an n-tuple
whosge jth element is the probability that stimulus S@) ig in state L at the
beginning of stage 1.

If we view the states as some function of the parameters of a learning
model then the history h, can be viewed as a sultable estimate of W
It is clear from cur examples that a learning model can impose a severe
constraint upon the history épace in the sensge that informstion regarding
observable outcomes is rendered redundant., For example, if qij) is
known on a priori grounds (for each j), then the linear model renders the
entire response history redundant. This is because the response probability
of each item is completely determined by the numbér of times 1t hasg been

presented. With the one-element model, the nature of the constraint on

the history is not immediately clear. In geheral, the problem of deciding

18



on an appropriate hisbtory, hi, is similar to the problem of finding an
observable statistic that provides a good estimate of a parameter. The
history hi may be regarded as an estimate of the state wi, A degirable
property for such e statistic would be for 1t to summarize all information
concerning the state so that no other history would provide additional
information. A higtory with this property can be called a sufficient
history.

In the thecory of statistical inference, & statistic with an analogous
property is called a sufficient stetistic. Since Wy ig a function of
" the parameters of the model it would seem reasonable to expect that, if
a gufficient statistic exists, for these parameters, then a sulfficlent
history would be gome function of tﬁe sufficient statistic. For a general
discussion of the role of sufficient statistice in reducing the number of
paths that must be considered in trees resulting from processes similar
to those considered here, the reader 1s referred to Raiffa and Schlaiffer
(1961).
Optimization Techniques

Up to now, the only technique we have considered that enables us to
find an optimal‘strategy is to enumerate every path of the tree generated
: by the N-stage process. Although the systematic use of learning models
can serve to reéuce the number of pathes that must be considered, much too
large a number of paths still remains in most problems where a large number
of different stimuli are used. The main success with a direct approach
hags been in the case of response ingensitive strategies (Suppes, 1964;

Crothers, 1965,1966; Dear,1964). In these cases, cither the number of
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stimulus Lypes is drastically limited or the problem is of a type where the
history can be simplified on a priori grounds, The techniques used in
these approaches are too closely connected with the specific problem
treated and the models used for any general discussion of their merits,

The thecry of dymamic programming provides a set of techniques bthat
reduce fthe pertion of a tree that must be scarched. These technigues have
the merit of being model free. Moreover, they provide a computational
algorithn which may be used to discover optimaL atrategles by numerical
méthods in cases where analytic methods are too compligated. The first
application of dynamic programming to the degign of optimal instructional
systems was due to Smallwood (L962). Since then several cther investigators
have applied dynamic progremming technigues to instructional problems of
various types (Matheson, 1964; Dear, 1964; Karush aﬁd Dear, 1966). The

_rgsults obtained by these inveatigators are too specific to be reviewed
in'detail.f The main aim in this section is to indicate the nature of the
technigues and how they can be applied to instructionsl problems.

PBroadly speaking, dymamic programming is a method for finding an
optimal strategy by systematically varying the numper of stages and ob-
taining an expression which gives the return for a process with N stages
as a function of the return from a process with N-1 stages. In order to
gsee how this 1s done 1t is necessary to impose a restriqtion.on the return
function and define a property of optimal policies. Following Bellman
(1961, p. 54) & return function is Markovian if, for any X < N, the effect
of the remaining N~ K stages of the N-stage process upon the return

th
depends only upon: 1) the state of the system at the end of the K
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decision, and 2) whatever subsequent decisions are made. It is clear that
the return function @(WN) possesses this property. Another type of return
function that possesses this property is one of the form:
gl ,0)) + aluy,0,) 4 eon + gl ,a )+ ol

A return function of this latier form may be important when cost as well
as final test performance ig an important criterion in designing the system.
For example, in a computer-based system, g(wi’di) might be the cost of
using the computer for the amount of time required to make decision di’
and present the appropriate stimulus. BSince the ex@ressions resulting
from a function of this form are somewhatbt more ccomplicated, we will limit
our atbention to return functions of the form @(WN), However, it should
be borne in mind that essentially the same baglc procedures can he used
with the more complicated return function,

If a deterministic decision process has this Markovian property then
an opbimal strategy will have the property expressed by Bellman in his

optimality principle : whatever the initial state and the initizsl declsion

are, the remaining decisions constitute an optimal peolicy with regard to

the state resulting from the first decision (Bellman, 1961, p. 57). To

see how this principle can be utilized, let fN(W) dencte the return from
an N-stage process with initlal state w 1f an optimal strategy is used
throughout, and let us assume that T 1s deterministic and W 1s discrete.
Since the process 1ls determinigtic, the final state isg completely determined
by the initial state w and the sequence of decision dlg dg, ;;°’dN—1

(it should be recalled that no decision takes place during the last stage) .

If DN denotes an arbltrary sequence of N=- 1 successive decislons (Dl
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_being the empty set) then the final state resulting from w and DN can
_be_written as w‘(DN,w), The problem that must be solved is tc find the
sequence D which maximizes @{w’(DN,W)]u If such a seguence exists,

then
fN(w) = MEX ®[w'(DN,W)] . (8)
DN
While the sclution of such a problem can be extremely complicated for
arbitrary N, 1t is easiLyshown.thét for N =1

£ () = o) (9)

As a result, if a relation can be found that comnects fi(w) with

f w) for cach 1 <N then fN(w) can be evaluated recursively by

i-l(
‘evaluating fi(w) for each 1. BSuppose that, in an i-stage process, an
initial decision d 1s made. Then w 1s transformed intc a new state,
T(w,d), and the decisions that remain can be viewed as forming an
(i-1)-stage process with initial state T(w,d). The optimality principle
implieg that the maximum return from the last 1 -1 sgtages will be
fi_l[T(w,d)]. Moreover if Di = (d,de,onw,di_l)
di_l),then

and Di— = (dgpd

1 3J¢°,9

$LW:(Di;W)] = wa?(Di_l,T(W,d))]‘u : (10)

Suppose that Di- is the optimal strategy for the i-1 stage process.

1

Then the right-hand side of this equation is equal to fi_l[T(w,d)]n An

optimal choice of d 1is cne which maximizes this function. As a result,

the following basic recurrence relation holds:

£ (w) = map £ .1l T(w,a)] 2<n <N (L)
£,60) = 9(w) . | | (12)
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Equafions 11 and 12 relate the optimal return from an n-stage process
with the optimal return from a process with only n-1 stages. Formally,
n may be viewed as indéxing & sequence of processes. ALl processes are
identical except in the ﬁumber of stages they possess. Thus, the solution
of these equations provides us with a maximum return function fn(w)rfor
each process and {(alsoc for each process) an initial decision d which
ensures that this maximum will be attained if optimal decisions are made
thereaftefn It is important to note that both d and fn(w) are functions
of w and that w éhould, in general, range over all values in the state
space W. In particular, the initial state and initisl decision of a
typical member of the sequence of procesgses we are considering should not
be confused with the initial state and initial decisions of the N-stage
process we are btrylng to optimize. In faect, the initial decisicn of the
2-stage process corresponds to the last decision dN—l of the N-gstage
process; the initial decision of the 3-stage process corresponds to the
next to the last decision dN—2 of the N-stage process and so on.

The linear model of Eg. 2, with the staie space defined in Eg. T
provides an exémple of a deterministic process. The use of Egs. 11 and 12
to find an optimal strategy for the special case of a 4-stage process with
two items is illusirated in Table L.

The state at the beginning of stage 1 is defined by the vector

(qgl)

N ,qig)).’ The optimization criterion is The score on a ftest administered

at the end of the instructional process. BSince ifem J will bhe responded
to correctly with probability 1L - qéJ)} the terminal return function for
(1) , (2)

an N-stage procesg is 2 - (qN T Qs The calculation is begun by
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’ Table 1

Calculation of Optimal Strategy for Example of

Figure 3 Uging Dynamic Programming

Item 2 Item 2 ‘Ttem L

. Number of Initial Initial Next Final Cptimal
Stages in State w Decision @ State Return of Decigion
Process W - T{w,d) Optimal

N-1 'Stage
Process
f [T(w,8)]
1 (.08,.90) 1.02
(.15,.45) 1,40
(.30,.22) 1.48
{.60,.11) 1.29
2. (.15,.90) L (.08,.90) 1.02 2
2 (.15,.45) 1.40
(.30,.45) 1 (.15,.45) 1.40 2
2 (.30,.22) 1.48
(.60,.22) 1 (.30,.22) 1.48 1
2 (.60,.11) 1.29
3 (.30,.90) 1 (.15,.90) 1.ho 2
2 (.30,.45) 1.48
(.60,.43) 1 (.30,.45) 1.48 1 or 2
| 2 (.60,.22) 1.48 o
b (.60,.90) 1 (.30,.90) 1.48 1 or 2
2 (.60,.45) 1.48
Optimal Strategies
Stage 1  Stage 2 Btage 3
1. Ttem L Ttem 2 Item 2
2. Item 2 Item 1 Ttem 2
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viewing the fourth stage as a l-stage process and obtaining the return for
each pessible state by means of Eg. 12. The possible states at this fourth
stage are obtained from Fig. 3. The third and fourth stages sre then
viewed as a 2-stage process and Eg. 11 ig used to determine the return

that results from presenting each ltem for every pcssible state that can
occur in stage 3, the previously computed result for a l-sbage process
being used bto complete the computaticns. For each state, the item with the
meximum return represents the optimal decision to make at sbage 3. The
3-stage process beginning at stage 2 is snalyzed 1in the same way, using

the previously computed regults for the last two stages. The result is

an optimal decision at stage 2 for each possible state; assuming optimal
decislons thereafter. Finally, the procedure is repeated for the Y-stage
process beginning at stege 1. The optimal strategies of iten presentation
that result from this procedure are given at the bottom of Table 1.

With a nondeterministic process, the situation is considerably more
complicated. The transformaticn T i1ig some type of probability distribu-
tion and the final return is a mathematical expectation. While arguments
based on the optimality principle allow one to obtaln recursive equations
similar in form to (11) and (12), both the arguments used to obtain the
equations and the methods used to solve them can contain many subtle feaﬁures;
A géneral review of the problems encountered in this ftype of process is
given by Bellman (1962) and some methods of solution are discussed by Bell-
man and Dreyfui (1962). For the cage where the transformation defines a
Markov process with observable states, Howard (1960) has derived a set of

equationg together with an lterative technique of solubion which has quite
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general applicability. However, in the case of instructional processes,

it hag so far tended to be the case that either the learning model used

has uncbservable states or that the process can be reduced to a more determin-
istic one (as is the case with the linear model.discussed in. the example
above) .

A regponse-ingensgitive procesg can often be viewed ag a_deterministic
process. This is not, in general, possible with = response-sensitive process.
The only process of this type that has been extensively analyzed is that
in which a list of stimulus-response items is to be learned, the return
function 1s the score on the test administered at the end of the process,
and the learning of each item 1s assumed to occur independently and obey
- the azsumptions of the one-element model. An attempt to scolve this problem
by means of a direct extension of Howard's techniques to Markov processes
with unobservable states has been made by Matheson (1964). However, this
approach appears to lead to somewhat cumbergsome equations that are ilmpossible
to selve in any non-trivial case. A more promising approach has been de-
vised by Karush and Dear (1966). As in our example of the linear model, the
states of the process are defined in ferms of the current probability
that an item is in the conditioned state and a similar (though somewhat
more general) return function is assumed. An expression relating the re-
turn from an (N-J)-stage process to the return from an N-stage proceés is
.. %then derived. The main complication in deriving this expression results
from the fact that the cubtcome ftree is mbre complicated, the subject’s.
responses naving to be explicitly congidered. ZKarush and Dear proceed to

derive certain properties of the return function and prove that in an
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N-trial experlmentz2 w1th items s(%);sie)gﬁ°ﬂ ( ) (where "N b‘m) &nd
arbitrary initial condltlonlng probabllltles (h(l) C“l,=°~ (m)), an. optlmal
strategy is given by ppesenting at any trial an item for which the current
conditioning probgbility is least. In most applicaticns theiinitial
probebilities Xij) cen be assumed to be zero. In this-case; an observable
gufficient history can be defined in terms of a counting proceés, An
optimal stratégy 1ls initiaﬁed by presenting the m items iﬁ aﬁy brder on
“the first m _trials and a,continﬁation of this strateéy is Qﬁtimgl-if and
oniy if it conforms to the following rule: |
1., For every itém set tﬁe count at O at the beginning of trial m+ 1.
2., DPresent an item at a-gi%en trial if and only if its‘coﬁnt is
least among the counts for all items at the beginning.of the
trialn |
3. Following a trial? increase the count for the preéented item
by 1 if the response was correct bat set it at O.if the response
was incorrect.
General Discussion
In this paper we have attempted to achieve two main géals°  The first
has been to provide an explicit statément of the problems of optiﬁal
.instruction in the framework of multiustage decigion theory. QOur main
reason for introducing a somewhat eiaborate notétional system is.the need
fbr a clear digtinction between the thimization problem, the learning
process thaﬁ the student is assumed to follow, and the method of solving

the optimization problem. The second geal has been to indicate, using

dynamic programming as an example, how optimization problems can be solved
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in practice. Again, it should be emphasized that dynamic programming is
not the only technique that can be used to solve optimization problems.
Many response-insensitive problems are solvable by more simple, though
highly specific, techniques, However, dymamic programming is the only
technique that has so far proved useful in the derivation of response-
sénsitive strategies. In describing dynamic programming an attempt has
been made to.emphaSize two basic features: the optimality principle, and

.the backward-induction procedure by means of which sn optimal stratégy is
obtained by starting, in effect, at the last stege. It shcould be noted
that these can be used independently. For example, 1t is possible to com-
bine the optimality principle with a forward induction procedure which
starts at the first atage of the process.

In any abttempt to apply an optimization theory in practice one must
ask the question; how can it be tested experiméntally? In principle, it
is easy to formulate such an experiment. A number of étrategies are
compared--some thecoretically optimal, others theoreticallysu‘boptimal°
A tegt 1s administered at the end of the process thét is.designed to be
some observable function of the final return. . However, the only experiment
that . has been explicifly designed to ftest an optimization thecry is that
by Dear, Silbermen, Estavan, and Atkinson (1965); although in the case of
response-insensitive theories, it is often possible to find experiments in
the psycholegical literature which provide indirect support.

The experiment reported by Dear et al. was concerned with testing
the strategy proposed by Karush and Dear (1966) for the case ocutlined in

the preceding secltion. The major medification of this strategy was to

28



prohibit repeated presentations of the same item by forcing separations
of severasl trials hetween presentetions of individual items,3 ‘Each sub-
ject was presented with two sets of paired-associate items, The first set
of ltems wes presented according to the optimization algorithm. Items in
the second set were presented an equal number of times in a suitable random
order, (It will be recalled that this strategy is optimel if the linear
model is assumed,) It was found that while the acquisition data (e.g.,
rate of learning) tended to favor items in the first set, no significant
difference was found in post-test scores between itets of the two szets.

it folilows fridm the result of this experiment thaf, evenh for a simple
problem such as this, an optimization theory is needed that agsumes a
more complicated learning model. At least one reason for this is that,
in simple paired-associéte experimente that resgult in'data which is fitted
by the one-element model, any systematic effects of stimulus-presentation
sequences &are usually eliminated by presenting different subjects with
different random sequetices of siimuli. When a specific strategy is used,
it may be the case that either the assumption of & forgetting process or
of some short-term memofy state becomes important in accounting for the
data {Atkinson and Shiffrin, 1965).

Unfortunafely, the snalytic study of the optimization properties of

‘more complex models, at least by dynamic programming technigques, is

difficult. The only major extenslon of response~sensitive models has been

a result of Karush and Dear (1965) which shows that the optimal strategy

for the one-element model is alsc optimal if it 1s assumed that. the
probabllity of a correct response in the conditioned state L 18 less than

one. However, there are ways by means of which good approximations to
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optimal strategies might be achieved, even in the case of extremely com-
plex models. Moreover, in many practical spplications, one is not really
gritically concerned about geolving for an optimal procedure, but would
instead be willing to use an easily determined procedure that closely
\ approximates the return of the optimum procedure. The main means of
achleving a good approximation ls by analyzing the problem numerically,
computing the optimal strategy for a large number of speclal cases. A
useful general algorithm for deing this 1s the hackward inducticn procedure
described in the preceding section. Table 1 illustrates how this algorithm
can be used to find an optimal strategy for one particular case. Dear
(196h) digcusges the use of this algorithm in other regponse-insensitive
problems.

The chief disadvantage of the backward dnduction algorithm is that
it can only be used for optimal strategy problems involving a fairly small
number of stages. Although its use can eliminate the need to search every
branch of a tree, the computation time still increases as a function of
the number of possible final states that can result from a giﬁen initial
state. However, a backward induction solution for even a small ﬁumber of
stages would provide a locally opbtimal policy for a process with a. large
number of étages, and this locally optimal strategy might provide a good
approximation to an optimal strategy. To decide how "good" an approxima-
tion such a straﬁegy prévided, its return could be evaluated and this

could be compared with the returns of albernative strategies.
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Footnotes

1. Bupport fer this research was provided by the National Aeronsutics
and Space Administration, Grant No. NGR-05-020-036, and by the Office of
Bducation, Grant No. OE5-10-050,

2. Here the term N-trial experiment refers to an anticipatory
palred-associate procedure which involves N stimulus presentations.  To
each stimulus presentation the subject makes a response and then is told
the correct answer for that stimulus.

3. Thic moditficablon was necessary because 1t has been shown experi-
mentally that if the same item is presented on immediately successive
triale then the subject's responce ig affected by considerations of short-

term memory.
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