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When 'Or' Means 'And': A Study in Mental models

Philip N. Johnson-Laird
Department of Psychology
Princeton University
Green Hall
Princeton, NJ 08544
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Abstract

We describe an algorithm that constructs mental models of
assertions containing sentential connectives, such as and,
if, and or. It performs at three levels of expertise
depending on the completeness of the models it constructs.
At a rudimentary level of performance, it constructs models
that make explicit as little as possible. One unexpected
consequence is that it produces the same explicit models for
assertions of the form:

if p then g, and if r then s

ifpthenqg,orifrthens

p and g, or r and s.
We initially suspected that there was a bug in the algorithm
(or theory), but there was not. We therefore carried out two
experiments with logically-untrained subjects.  Their
results confirmed the phenomena: for many individuals, a
conjunction of conditionals is equivalent to their
disjunction, which in turn is equivalent to a disjunction of
conjunctions.

Introduction

The theory of mental models postulates that reasoning --
deductive or inductive -- is a process in which individuals
use their perceptual ability and their knowledge to construct
mental models of the relevant situations (see Johnson-Laird,
1983; Johnson-Laird and Byrne, 1991; Legrenzi, Girotto,
and Johnson-Laird, 1993; Newell, 1990). In reasoning from
verbal premises, individuals first construct a mental
representation of the truth conditions of assertions, and then
use this representation together with general knowledge and
a knowledge of context to construct models, which have a
structure corresponding to situations. Thus, a conjunction
of the form:

aandb
calls for a single model representing both a and b:

a b
An exclusive disjunction:

aorelseb
calls for two models (one for each possibility):

a

b

An inclusive disjunction calls for three models (one for a,
one for b, and one for both a and b). In general, if a
conclusion holds in all the models of the premises, reasoners
judge it to be necessary; if it holds in most of the models,
they judge it to be probable; if it holds in at least one
model, they judge it to be possible; and if it holds in none
of the models, they judge it to be impossible.

In contrast to the model theory, most cognitive
scientists who have studied reasoning postulate that the
mind has a set of formal rules of inference akin to those of a
logical calculus, which are used to reason in a process akin
to the derivation of a proof (see e.g. Osherson, 1974-6;
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Macnamara, 1986; Braine and O'Brien, 1991; Rips, 1994).
In this case, the mental representation of an inclusive
disjunction depends on an expression in a mental language
that has the following form:

avb
where 'v' denotes inclusive disjunction. This representation
can then be used to reason by matching it to a premise in a
formal rule of inference (such as P v Q, not P, therefore,
Q.

Our aim in the present paper is, not to address the
differences between the two sorts of theory head on, but
rather to describe the latest computer implementation of the
model theory (in Section 1). This implementation led us to
an unexpected consequence: the theory predicts that certain
different compound assertions will be interpreted in the same
way by logically-untrained individuals (Section 2). We
report two experiments that corroborate these predictions
(Section 3).

An algorithm for mental models

The model theory postulates several levels of expertise in
sentential reasoning. In what follows, we describe three
such levels implemented in a computer algorithm,
concentrating on its interpretation of compound premises.

At a rudimentary level (comparable to a logically-
untutored individual's performance), the algorithm interprets
an inclusive disjunction, such as:

There is a 'P' on the board or there is a 'Q' on the board, or

both.
by constructing the following three models (shown on
separate lines):

p

q

P q
The first model is a partial model because it does not make
explicit that q does not occur, and the second model is also a
partial model because it does not make explicit that p does
not occur. Performance at this rudimentary level likewise
represents a conditional, such as:

If there is a P’ on the board then there is a 'Q' on the

board
by the following two models:

P q

Individuals grasp that both letters may be on the board, but
defer a detailed representation of the case where there is not a
P' on the board. The ellipsis accordingly signifies an
implicit model, i.e. one that has no explicit content. It here
represents an alternative possibility to the first model.
Reasoners need to note that this implicit model represents
cases where the antecedent does not hold. They can do so
by noting that the antecedent is exhaustively represented in
the explicit model, i.e. it cannot occur in the implicit model
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p] q

This notation is equivalent to storing a mental 'footnote’ on
the implicit model to indicate that the antecedent does not
hold in it:

P q
-+« {-p]
where '=' signifies negation. The explicit model
captures what happens when the antecedent occurs, and the
footnote (in parentheses) represents that the antecedent, p,
does not occur in the implicit model The advantage of such
footnotes is that they are easy to model computationally,
and so we have adopted them in our algorithm,

The computations required to interpret compound premises
are simple. Thus, given the conjunction:

if p then q, and p
the algorithm uses a procedure for ‘and’ to combine each of
the models for the conditional, if p then q, with the model
for p. According to this procedure, two explicit models
combine to yield an explicit model that avoids unnecessary
duplications:

P q and p yield p
If one explicit model is inconsistent with another, or with
the content of a footnote on an implicit model, then no new
model is formed from them, i.e. the output is the null
model:
.. .(-p) and p yield nil

where 'nil' represents the null model, which is akin to the
empty set. The procedure for conjoining two sets of
models thus forms their Cartesian product, i.e. it multiplies
each model in one set by each model in the other set
according to the principles summarized in Table 1.

As an illustration, consider the conjunction of two

conditionals: if a then 2 and if b then 3. The two
conditionals have the following models:
a 2
.. . [—a)
and:
b 3
.. .{=b)
The conjunction of the two sets of models yields:
a 2 (by rule 2)
b 3 (by rule 2)
a 2 b 3 (by rule 1)
... {—a —b) (by rule 3)
Although the combination of models is guided by the

footnotes, their content does not surface in explicit models
at this rudimentary level of performance.

In contrast, at the next level up in the algorithm's
performance, which corresponds to the ability of highly
competent individuals, the content of footnotes is made
explicit in any models resulting from the conjunction of
implicit and explicit models. One consequence is that at
this level the algorithm is able to make a modus tollens
deduction. That is, given the premises:

if p then q

not q
The conjunction of the two sets of models proceeds as
follows:

P q

and —q yields nil
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.. .(—p) ad —q yields -p
Table 1: The principles for combining models

1.If the two models are explicit, then they are joined
together eliminating any redundancies, unless one model
contradicts the other, i.e. one represents a proposition and
the other represents its negation, in which case the output is
the null modcl. (When people combine two separate
premises, they tend to drop propositions that they know
categorically, e.g. if they know that p is the case, then the
model, p q, combines with p to yield q alone.)

2.If one model is explicit and the other model is implicit,
then the result is the explicit model unless its content
contradicts the model in the footnote, in which case the
output is the null model.

3.If both models are implicit, then the result is an implicit
model, which conjoins the footnotes on the two implicit
models unless the two footnotes contradict one another, in
which case the output is the null model.

where there is no need to build in the content of the
categorical premise, because it can be taken for granted. The
resulting model yields the conclusion:

not p
Performance at this level also makes explicit the negated
elements in disjunctive models, and indeed it is probably as
accurate as possible given the use of implicit models.

Finally, at its most powerful level of performance, which
exceeds the ability of untrained individuals, the algorithm
fleshes out the contents of implicit models wholly
explicitly. For example, fleshing out the implicit model of
the conditional above:

P q

W {—1 p}
calls for —p to occur in every new model, whereas separate
models need to be made for q and —q because the footnote
does not constrain them. The result is accordingly:

P 4
-P q
—P —q

When the models of a set of premises are wholly explicit,
they correspond to the rows that are true in a truth table of
all the premises. Implicit models for conditionals and partial
models for disjunctions arc therefore devices that allow the
inferential system to represent explicitly as little as
possible, i.e. just that information which is of the first
priority. Models can be made explicit but at the cost of
fleshing them out. The notation can be used recursively -- as
it is in the computer program implementing the algorithm --
to accommodate propositions of any degree of complexity.

When 'or' means 'and’

In testing the performance of the computer program
described in the previous section, we examined its
interpretation of the inclusive disjunction of two
conditionals:

if a then 2 or if b then 3.
At the rudimentary level of performance, it produced the
following explicit models:



a 2

b 3
a 2 b 3
They are identical to the models of a conjunction of the two
conditionals (illustrated above). Our first thought was that
the program contained a bug, but we had instead stumbled

upon an unforeseen consequence of the theory. The
inclusive disjunction is of the form, X or Y, which calls for

the following models:
X
Y
XY

where X models the conditional: if a then 2, and Y models
the conditional: if b then 3. The models for X are:
a 2
and an implicit model. The models for Y are:
b 3
and an implicit model. The models for X and Y, as we saw
in the previous section, are:
a 2
b 3
a 2 b 3

But, the first two of these models and the implicit model
have already been constructed to represent X and Y
respectively, and so it is necessary to add only the model:
a 2 b 3
The interpretation of a disjunction of conditionals:
aand2orband 3
also calls for the same explicit models, but no implicit
model.

In short, at its rudimentary level, the program constructs
the same explicit models for a disjunction of conditionals, a
conjunction of conditionals, and a disjunction of
conjunctions. These interpretations arise from the
interactions between two components of the theory: the
use of implicit models in the representation of conditionals,
and the use of partial models in the representation of
disjunctions. Which assertions are erroneously interpreted
according to these predictions? The answer is shown by
the full sets of explicit models for the three sorts of
assertion, which are shown in Table 2 (as constructed by the
program at its highest level of performance). The disjunction
of the conditionals is true in many more cases than its
explicit models (shown in bold print in Table 2), the
conjunction of the conditionals is true in some more cases
than its explicit models, but the disjunction of conjunctions
is accurately represented by its explicit models, though they
do not enumerate the different ways in which each
conjunction can be false.

Empirical tests of the predictions
We have carried out two tests of the model theory's
predictions about the interpretation of compound assertions.
The first study was carried out as a class exercise in an
undergraduate course in which each student was an
experimenter and tested a separate logically-untrained
individual. (None of the acting experimenters knew the
predictions of the model theory.) The materials were the
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Table 2: The complete set of models for three assertions.
The items in bold are those that the theory predicts will be
generated as true instances by logically-untrained individuals.

If a then 2 or If a then 2 and aand 2 or
if c then 3 if c then 3 cand3
a 2 c¢c=3 a 2 c¢-=3
a 2-c¢ 3 a 2 —c 3 a 2 -c 3
a 2-c¢c-3 a 2-c¢c-3 a 2-c -3
a 2 ¢ 3 a 2 ¢ 3 a 2 ¢ 3
a2 [ 3 a—-2 C 3
—a 2 Cc 3 —a 2 c 3 — a 2 C 3
—a =2 C 3 —a =2 C 3 —a =2 C 3
= a 2 c -3
= a 2—IC 3 = a 2 -c 3

—a 2 —-c 3 —a 2 —wc =3
a2 c =3
—a -2 ¢ 3
—a-2 —c =3

a- 2 —c¢ 3

a—=2-c-=3

—a-2-c 3
—a-2-c¢c-3

following four assertions:

1. If there is a 'A' on the board then there is a 2', and if
there is a 'C' on the board then there is a '3,

2. If there is a 'D' on the board then there is a 'S', or if
there is a 'E' then there is a '6', and both conditionals may be
true.

3. There is a 'J' on the board and there is a '9', or there is a
L' on the board and there is a '7', and both conjunctions
may be true.

4. There is a 'G' on the board and there is a '8', and there is

an 'H' on the board and there is a '4".
For each assertion, the subjects wrote down a list of the
possible circumstances in which the assertion would be true,
i.e. pairings of letters and numbers, such as 'A 2. When
they had completed this task, they went through each
assertion again, and wrote down a list of the possible
circumstances in which the assertion would be false. The
model theory predicts that the first three assertions will elicit
the same list of true circumstances (corresponding to the
explicit models presented in the previous section). The
fourth assertion is a control that should be treated as true
only in one case, namely, when all four items co-occur.

The results corroborated the predictions. Table 3
summarizes the most frequent selections for the four
assertions.  The numbers of subjects who listed the
responses in the order predicted by the algorithm were as
follows: 9 for the first assertion, 17 for the second
assertion, and 16 for the third assertion. On the assumption
that there are 16 possible selections, the likelihood of
making by chance these three selections in their given order
is at the micro-probability level, i.e. the chance probability
for the selection is 1/16 x 1/15 x 1/14 < 0.0003, and so the
binomial probability for, say, 9 out of 25 subjects making
this selection is miniscule.

Our second experiment was carried out in a conventional
way by a single experimenter. The materials again
compared a conjunction of conditionals with a disjunction



Table 3: The most frequent responses in Experiments 1
and 2: the number of subjects who listed the circumstances
shown as cases in which the assertions would be true. We
have stated the assertions as though they had the same
lexical materials,

Experiment 1 (n = 25)

IfAthen2 IfAthen2 Aand2 Aand2
and or or and
ifBthen3 ifBthen3 Band3 Band3
A2 21 23 23 0
B3 20 24 22 0
A2B3 20 24 19 24
Experiment 2 (n =21)
IfAthen2 IfAthen2 Aor2 Aor2
and or and or
ifBthen3 ifBthen3 Bor3 Bor3
A2 13 19
B3 11 20
A2B3 16 11
A B 18
A 3 17
2B 17
2 3 18
A 16
2 16
B 16
3 16

of conditionals, but used a conjunction of disjunctions and a
disjunction of disjunctions as control assertions. The task
was the same as before except that we surreptitiously timed
the interval from the presentation of an assertion until the
subjects began to list the circumstances. There were two
trials in each condition (with a different lexical content).
Table 3 also presents the data from this experiment. In
both experiments, the control sentences were accurately
interpreted, and the task of generating false instances was
much harder -- it took subjects about 2 seconds longer to
make their initial responses, and they varied considerably in
their responses. Few subjects accounted for all 16
contingencies in their combined lists of true and false
instances.

Conclusions
The model theory assumes that the bottle-neck in inferential
processing is the capacity of working memory (Simon,
1982). Reasoners accordingly try to work with as few
explicit models as possible: they do not represent the
negative cases in their models of an inclusive disjunction of
the form, p or q, and they do not represent explicit models of
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the case where the antecedent of a conditional, such as if p
then q, is false. Thesc two assumptions have an unexpected
consequence, which we discovered from the implementation
of the algorithm: assertions that seem superficially very
different are likely to be interpreted in similar ways. Our
results corroborated this prediction: a conjunction of
conditionals is taken to be true in the same circumstances as
their disjunction, which is taken to be true in the same
circumstances as a disjunction of conjunctions.  These
results bear out the heuristic value of computer
implementations of theories, and suggest that the theory of
mental models gives a good account of the interpretation of
sentential connectives.  Alternative theories of reasoning,
including those based on formal rules of inference, either do
not deal with the meaning of connectives or else treat their
meanings as equivalent to the rules of inference that govern
them. Because the rules for disjunction differ from those
for conjunction, which in turn differ from those for
conditionals, such theories do not explain the cases in which
‘or' means 'and’, and 'if means 'and'.
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