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Semi-Parallel logistic regression for
GWAS on encrypted data
Miran Kim1, Yongsoo Song2*, Baiyu Li3 and Daniele Micciancio3

From 7th iDASH Privacy and Security Workshop 2018
San Diego, CA, USA. 15 October 2018

Abstract

Background: The sharing of biomedical data is crucial to enable scientific discoveries across institutions and improve
health care. For example, genome-wide association studies (GWAS) based on a large number of samples can identify
disease-causing genetic variants. The privacy concern, however, has become a major hurdle for data management
and utilization. Homomorphic encryption is one of the most powerful cryptographic primitives which can address the
privacy and security issues. It supports the computation on encrypted data, so that we can aggregate data and
perform an arbitrary computation on an untrusted cloud environment without the leakage of sensitive information.

Methods: This paper presents a secure outsourcing solution to assess logistic regression models for quantitative
traits to test their associations with genotypes. We adapt the semi-parallel training method by Sikorska et al., which
builds a logistic regression model for covariates, followed by one-step parallelizable regressions on all individual single
nucleotide polymorphisms (SNPs). In addition, we modify our underlying approximate homomorphic encryption
scheme for performance improvement.

Results: We evaluated the performance of our solution through experiments on real-world dataset. It achieves the
best performance of homomorphic encryption system for GWAS analysis in terms of both complexity and accuracy.
For example, given a dataset consisting of 245 samples, each of which has 10643 SNPs and 3 covariates, our algorithm
takes about 43 seconds to perform logistic regression based genome wide association analysis over encryption.

Conclusions: We demonstrate the feasibility and scalability of our solution.

Keywords: Homomorphic encryption, Genome-wide association studies, Logistic regression

Background
Since National Institutes of Health (NIH) released the
Gemonic Data Sharing policy allowing the use of cloud
computing services for storage and analysis of controlled-
access data [1], we are getting more challenge to ensure
security and privacy of data in cloud computing systems.
In the United States, the Health Insurance Portability
and Accountability Act regulates medical care data shar-
ing [2]. A community effort has been made to protect
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the privacy of genomic data, for example, iDASH (inte-
grating Data for Analysis, Anonymization, Sharing) has
hosted secure genome analysis competition for the past 5
years. This contest has encouraged cryptography experts
to develop practical yet rigorous solutions for privacy
preserving genomic data analysis. As a result, we could
demonstrate the feasibility of secure genome data analysis
using various cryptographic primitives such as homo-
morphic encryption (HE), differential privacy, multi-party
computation, and software guard extension. In particu-
lar, HE has emerged as one of the promising solutions
for secure outsourced computation over genomic data in
practical biomedical applications [3–6].
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
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use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons
Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in
this article, unless otherwise stated in a credit line to the data.
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Summary of results
In this work, we provide a solution for the second track
of iDASH 2018 competition, which aims to develop
a method for outsourcing computation of Genome
Wide Association Studies (GWAS) on homomorphically
encrypted data. We propose a practical protocol to assess
logistic regression model to compute p-values of different
single nucleotide polymorphisms (SNPs). We investigate
the association of genotypes and phenotypes by adjusting
the models on the basis of covariates. The results will be
used for identifying genetic variants that are statistically
correlated with phenotypes of interest.

One year ago, participants of the third task in iDASH
2017 competition were challenged to train a single logistic
regression model on encrypted data. Although signifi-
cant performance improvements over existing solutions
have been demonstrated [7, 8], it is still computationally
intensive to perform logistic regression based GWAS. A
straightforward implementation would require building
one model for each SNP, incurring a high performance
overhead of secure computation. This motivates the use
of the semi-parallel algorithm, which was previously dis-
cussed in [9, 10]. Following the approach, our algorithm
proceeds in two steps over encrypted data: (1) con-
struct a logistic regression model by applying the gradient
descent method of [7] while taking only the covariates
into account, (2) compute the regression parameters of
logistic regression corresponding to SNPs with one addi-
tional update of Newton’s method. The model in the first
step can be computed very efficiently and can be used for
all SNPs in the subsequent step. In the second step, we
apply various techniques to enable computing the logistic
regression updates for all SNPs in many parallel sub-steps.
This approach enables us to obtain logistic regression
based models for thousands of SNPs all in one.

Our solution is based on a homomorphic scheme by
Cheon et al. [11] with support for approximate fixed-point
arithmetic over the real numbers. Recently, a significant
performance improvement was made in [8] based on the
Residue Number System (RNS). The authors modified
homomorphic operations so that they do not require any
expensive RNS conversions. In this paper, we propose
another RNS variant of approximate HE scheme which
has some advantages for this task. Specifically, we adapt
a different key-switching method which is a core opera-
tion in homomorphic multiplication or permutation. The
earlier studies [8, 11] were based on the key-switching
technique of [12] which introduces a special modulus.
A special modulus had approximately the same bit-size
as a ciphertext modulus to reduce the noise of key-
switching procedure, but we observed that it is not the
best option when the depth of an HE scheme is small.
Instead, we combine the special modulus technique with

RNS-friendly decomposition method [13]. As a result, we
could minimize the parameter and thereby improve the
performance while guaranteeing the same security level.
We further leverage efficient packing techniques and par-
allelization approaches to reduce the storage requirement
and running time.

Related works
There are a number of recent research articles on HE-
based machine learning applications. Kim et al. presented
the first secure outsourcing method to train a logistic
regression model on encrypted data [14] and the follow-
up showed remarkably good performance with real data
[7, 8]. For example, the training of a logistic regression
model took about 3.6 minutes on encrypted data consist-
ing of 1579 samples and 18 features. A slightly different
approach is taken in [15], where the authors use Gentry’s
bootstrapping technique in fully homomorphic encryp-
tion, so that their solution can run for an arbitrary number
of iterations of gradient descent algorithm.

Methods
The binary logarithm will be simply denoted by log(·).
We denote vectors in bold, e.g. a, and matrices in upper-
case bold, e.g. A. For an n × m matrix A, we use Ai to
denote the i-th row of A, and aj the j-th column of A. For a
d1 ×d matrix A1 and a d2 ×d matrix A2, (A1; A2) denotes
the (d1 + d2) × d matrix obtained by concatenating two
matrices in a vertical direction. If two matrices A1 and A2
have the same number of rows, (A1|A2) denotes a matrix
formed by horizontal concatenation. We let λ denote the
security parameter throughout the paper: all known valid
attacks against the cryptographic scheme under scope
should take �(2λ) bit operations.

Logistic regression
Logistic regression is a widely used in statistical model
when the response variable is categorical with two pos-
sible outcomes [16]. In particular, it is very popular in
biomedical informatics research and serve as the founda-
tion of many risk calculators [17–19].

Let the observed phenotype be given as a vector y ∈
{±1}n of length n, the states of p many SNPs as the
n × p matrix S, and the states of k many covariates as
the n × k matrix X. Suppose that an intercept is included
in the matrix of covariates, that is, X contains a column
of ones. For convenience, let ui = (Xi, sij) ∈ R

k+1 for
i = 1, . . . , n. For each j ∈[ p], logistic regression aims to
find an optimal vector β ∈ R

k+1 which maximizes the
likelihood estimator

∏n
i=1 Pr[ yi|ui] = ∏n

i=1 σ(−yi · uT
i β),

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function,
or equivalently minimizes the loss function, defined as the
negative log-likelihood:
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L(β) = 1
n

n∑

i=1
log

(
1 + exp

(
−yi · uT

i β
))

.

Note that β = (βX|βj) depends on the index j, and we
are particularly interested in the last component βj that
corresponds to the j-th SNP.

There is no closed form formula for the regression
coefficients that minimizes the loss function. Instead, we
employ an iterative process: we begin with some ini-
tial guess for the parameters and then repeatedly update
them to make the loss smaller until the process converges.
Specifically, the gradient descent (GD) takes a step in the
direction of the steepest decrease of L. The method of GD
can face a problem of zig-zagging along a local optima
and this behavior of the method becomes typical if it
increases the number of variables of an objective func-
tion. We can employ Nesterov’s accelerated gradient [20]
to address this phenomenon, which uses moving average
on the update vector and evaluates the gradient at this
looked-ahead position.

Newton’s method
We can alternatively use Newton algorithm to estimate
parameters [21]. It can be achieved by calculating the first
and the second derivatives of the loss function, followed
by the update: β ← β −

(
∇2

βL(β)
)−1 · ∇βL(β). Let pi =

σ
(
uT

i β
)

for i ∈[ n]; then pi represents the probability of
success for each sample. We see that ∇βL(β) = UT (y − p)

and ∇2
βL(β) = −UT WU, where U is an n × (k + 1)

regressor matrix whose i-th row contains the variables ui,
p = (pi)

n
i=1 is a column vector of the estimated prob-

abilities pi, and W is a diagonal weighting matrix with
elements wi = pi(1 − pi). Then the above update formula
can be rewritten as

β ←
(

UT WU
)−1 ·

(
UT Wz

)

where z = Uβ+W−1(y−p). Here, the vector z is known as
the working response. This method is also called Iteratively
Reweighted Least Squares. More details can be found in
[21]. On the other hand, the Fisher information UT WU
can be partitioned into a block form:

where A = XT WX, sj = (sij)
n
i=1 is a column vector of all

samples of the j-th SNP, b = XT Wsj, and c = sT
j Wsj. Then

the inverse of UT WU is

where t = c − bT A−1b. Therefore, the estimated SNP
effect βj and the variance for the estimation are computed
by

βj = −1
t

·
(

bT A−1
)

·
(

XT Wz
)

+ 1
t

·
(

sT
j Wz

)

= |A| · sT
j Wz − bT · adj(A) · (

XT Wz
)

|A| · c − bT · adj(A) · b
, (1)

varj = 1
c − bT · A−1 · b

, (2)

where adj(A) denotes the adjugate matrix and |A| the
determinant of A.

Full RNS variant of HEAAN, revisited
We apply the full RNS variant of the HEAAN scheme [11],
called RNS-HEAAN [8], for efficient arithmetic over the
real numbers. In addition, we modify some algorithms to
meet our goals.

The previous RNS-HEAAN scheme uses some approxi-
mate modulus switching algorithms for the key-switching
procedure. The evaluation key should have a much larger
modulus compared to encrypted data due to multi-
plicative noise. In this work, we developed and imple-
mented a new key-switching algorithm which provides
a trade-off between complexity and parameter. Our new
key-switching process requires more Number Theoretic
Transformation (NTT) conversions, but the HE parame-
ters such as the ring dimension N can be reduced while
keeping the same security level. In particular, our method
is more efficient than the previous one when the depth of
a circuit to be evaluated is small.

The following is a simple description of RNS-HEAAN
based on the ring learning with errors (RLWE) problem.
Let R = Z[ X] /(XN + 1) be a cyclotomic ring for a power-
of-two integer N. An ordinary ciphertext of RNS-HEAAN
can be represented as a linear polynomial c(Y ) = c0+c1 ·Y
over the ring RQ where Q denotes the ciphertext modulus
and RQ = R (mod Q) is the residue ring modulo Q.

• Setup(q, L, η; 1λ). Given a base integer module q, a
maximum level L of computation, a bit precision η, and a
security parameter λ, the Setup algorithm generates the
following parameters:

- Choose a basis D = {p0, q0, q1, . . . , qL} such that
qi/q ∈ (1 − 2−η, 1 + 2−η) for 1 ≤ i ≤ L. We write
Q� = ∏�

i=0 qi for 0 ≤ � ≤ L.
- Choose a power-of-two integer N.
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- Choose a secret key distribution χkey , an encryption
key distribution χenc , and an error distribution χerr

over R.

We always use the RNS form with respect to the basis
{p0, q0, . . . , q�} (or its sub-basis) to represent polynomials
in our scheme. For example, an element a(X) of RQ�

is
identified with the tuple (a0, a1, . . . , a�) ∈ ∏�

i=0 Rqi where
ai = a (mod qi). We point out that all algorithms in
our scheme are RNS-friendly, so that we do not have to
perform any RNS conversions.

The main difference of our scheme from previous work
[8] is that the key-switching procedure is based on both
the decomposition and modulus raising techniques. The
use of decomposition allows us to use a smaller parame-
ter, but its complexity may be increased when the level of
HE scheme is large. However, we realize that the GWAS
analysis does not require a huge depth, so this new key-
switching technique is beneficial to obtain a better per-
formance in this specific application. The generation of
switching key and key-switching algorithms are described
as follows.

• KSGen(s1, s2). Given two secret polynomials s1, s2 ∈
R, sample ãi(X) ← U(Rp0·QL) and errors ẽi ← χerr for
0 ≤ i ≤ L. Output the switching key swk = {swki =
(b̃i, ãi)}0≤i≤L ∈

(
R2

p0QL

)L+1
where b̃i = −ãi ·s2+ ẽi+p0Bi ·

s1 (mod p0 · QL) for the integer Bi ∈ ZQL such that Bi = 1
(mod qi) and Bi = 0 (mod qj) for all j �= i.

• KeySwitchswk(ct). For ct = (c0, c1) ∈ R2
Q�

, let
c1,i = c1 (mod qi) for 0 ≤ i ≤ �. We first compute
c̃t = ∑�

i=0 c1,i · swki (mod p0Q�), and then return the
ciphertext ct′ = (c0, 0) + �p−1

0 · c̃t	 (mod Q�).
The idea of key-switching procedure is used to relin-

earize a ciphertext in homomorphic multiplication algo-
rithm below. All other algorithms including key genera-
tion, encryption and decryption are exactly same as the
previous RNS-based scheme.

• KeyGen(1λ).

- Sample s ← χkey and set the secret key as sk = (1, s).
- Sample a ← U(RQL) and e ← χerr . Set the public

key pk as pk = (b, a) ∈ R2
QL

where b = −a · s + e
(mod QL).

- Set the evaluation key as evk ← KSGen(s2, s).

• Encpk(m). Given m ∈ R, sample v ← χenc and
e0, e1 ← χerr . Output the ciphertext ct = v · pk + (m +
e0, e1) (mod QL).

• Decsk(ct). Given ciphertext ct ∈ R2
Q�

, output 〈ct, sk〉
(mod q0).

• Add(ct, ct′). Given two ciphertexts ct, ct′ ∈ R2
Q�

,
output the ciphertext ctadd = ct + ct′ (mod Q�).

• Multevk(ct, ct′). For two ciphertexts ct = (c0, c1) and
ct′ = (c′

0, c′
1), compute d0 = c0c′

0, d1 = c0c′
1 + c′

0c1, d2 =
c1c′

1 (mod Q�). Let c2,i = d2 (mod qi) for 0 ≤ i ≤ �, and
compute c̃t = ∑�

i=0 c2,i · evki (mod p0Q�). Output the
ciphertext ct′ = (c0, c1) + �p−1

0 · c̃t	 (mod Q�).
Finally, RNS-HEAAN provides the rescaling operation

to round messages over encryption, thereby enabling to
control the magnitude of messages during computation.

• ReScale(ct). For given ct ∈ R2
Q�

, return the cipher-
text ct′ = �q−1

� · ct	 (mod Q�−1).
It is a common practice to rescale the encrypted mes-

sage after each multiplication as we round-off the sig-
nificant digits after multiplication in plain fixed/floating
point computation. In the next section, we assume that
the rescaling procedure is included in homomorphic mul-
tiplications for simpler description, but a rigorous analysis
about level consumption will be provided later in the
parameter setting section.

As in the original HEAAN scheme, the native plain-
text space can be understood as an N/2-dimensional
complex vector space (each vector component is called
a plaintext slot). Addition and multiplication in R cor-
respond to component-wise addition and multiplica-
tion on plaintext slots. Furthermore, it provides an
operation that shifts the plaintext vector over encryp-
tion. For a ciphertext ct encrypting a plaintext vector
(m1, . . . , m�) ∈ R

�, we could obtain an encryption of a
shifted vector (mr+1, . . . , m�, m1, . . . , mr). Let us denote
such operation by Rot(ct; r). For more detail, we refer
the reader to [8]. In the rest of this paper, we let N2 =
N/2 and denote by E(·) the encryption function for
convenience.

Database encoding
As noted before, the learning data are recorded into an
n × k matrix X of covariates, an n × p binary matrix
S = (sij) of all the SNP data, and an n-dimensional binary
column vector y of the dependent variable. In large-scale
GWAS, the number of parameters of SNPs, p can be in
the thousands, so we split the SNP data into several N2-
dimensional vectors, encrypt them, and send the resulting
ciphertexts to the server. For simplicity, we assume in the
following discussion that each row of S is encrypted into
a single ciphertext. More specifically, for 1 ≤ i ≤ n and
for 1 ≤ � ≤ k, we encrypt E(xi�Si) = E(xi�si1, . . . , xi�sip).
As mentioned before, we add a column of ones to X
to allow for an intercept in the regression; that is, we
assume xi1 = 1 for all 1 ≤ i ≤ n. So, when � =
1, the ciphertext E(xi1Si) encrypts exactly the i-th SNP
sample.

Next, consider the matrix yT X ∈ R
n×k defined as
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yT X = [
y1X1; · · · ; ynXn

]

=

⎡

⎢
⎢
⎢
⎣

y1x11 y1x12 · · · y1x1k
y2x21 y2x22 · · · y2x2k

...
...

. . .
...

ynxn1 ynxn2 · · · ynxnk

⎤

⎥
⎥
⎥
⎦

.

For simplicity, we assume that n and k are power-of-two
integers satisfying log n + log k ≤ log(N2). Kim et al. [7]
suggested an efficient encoding map to encode the whole
matrix yT X in a single ciphertext in a row-by-row manner.
Specifically, we will identify this matrix with a vector in
R

n·k , that is,

yT X �→ (y1X1| · · · |ynXn)

= (y1x11, . . . , y1x1k , . . . , ynxn1, . . . , ynxnk).

Similarly, we identify the matrix X with a vector in R
n·k as

follows:

X �→ (X1| · · · |Xn) = (x11, . . . , x1k , . . . , xn1, . . . , xnk).

For an efficient implementation, we can make N2/(k · n)

copies of each component of yT X and X to encode them
into fully packed plaintext slots. For example, we can
generate the encryption of yT X as

E(yT X) = E(y1X(N2/(k·n))
1 | · · · |ynX(N2/(k·n))

n ),

where yiX(N2/(k·n))
i denotes an array containing N2/(k · n)

copies of yiXi. In the case of the target vector y, we make
N2/n copies of each entry, so that the encoding aligns yi
with each copies of yiXi and Xi in the ciphertexts. Let us
denote the generated ciphertext by E(y).

Finally, we now consider how to encrypt the covariance
matrix XT X which can be used for computing the adju-
gate matrix and determinant of A = XT WX. The adjugate
adj(A) is a k × k matrix whose entries are defined as
adj(A)j� := (−1)j+� · |Â�j| for 1 ≤ j, � ≤ k, where |Â�j|
is the determinant of Â�j. Here, Â�j is a (k − 1) × (k − 1)

sub-matrix obtained by removing the j-th column and �-
th row from A. For example, when k = 4, the determinant
|Â11| is computed by a22(a33a44 − a34a43) + a23(a34a42 −
a32a44) + a24(a32a43 − a33a42), which can be rewritten as
a component-wise product of three vectors

A1,1,1 = (a22, −a22, a23, −a23, a24, −a24),
A1,1,2 = (a33, −a34, a34, −a32, a32, −a33),
A1,1,3 = (a44, −a43, a42, −a44, a43, −a42).

In general, we can consider (k − 1)!-dimensional vec-
tors Aj,�,1, Aj,�,2, . . . , Aj,�,(k−1) that can be used to compute
|Â�j|. To do so, for each i ∈[ n], we first pre-compute
the i-th covariance matrix XT

i Xi ∈ R
k×k and generate

the corresponding vector
(
XT

i Xi
)

j,�,t for 1 ≤ j ≤ � ≤ k and
1 ≤ t ≤ k − 1. Suppose that N2 ≥ n · (k − 1)!. Let

φ = N2/(n · (k − 1)! ), and we encrypt the following
concatenated vector


j,�,t =
(
(XT

1 X1)
(φ)
j,�,t | . . . |(XT

n Xn)
(φ)
j,�,t

)
.

We denote the resulting ciphertext by E(
j,�,t).
An alternative choice is to encrypt SNPs, covariates,

and phenotype vectors in a separate way. The server can
reconstruct the aforementioned encryptions by applying
homomorphic operations, but it requires additional levels
for the computation. So, we used the former encryption
algorithm in the implementation, thereby saving on the
depth and time in the evaluation. Our encoding system
has another advantage, in that it can be applied to hor-
izontally partitioned data where each party has a subset
of the rows in dataset. In this case, each party encrypts
their locally computed quantities on their data and sends
them to the server. Then the server aggregates them to
obtain encryptions of the shared data as the ones in our
encryption method.

Homomorphic evaluation of logistic regression
The main idea of the semi-parallel logistic regression
analysis [9, 10] is to assume that the probabilities pre-
dicted by a model without SNP will not change much
once SNP is included to the model. We will follow their
approach, where the first step is to construct a logistic
regression model taking only the covariates into account,
and the second step is to compute the model coefficients
of the logistic regression corresponding to the SNP in a
semi-parallel way.

We start with a useful aggregation operation across
plaintext slots from the literature [22–24]. This algorithm
is referred as AllSum, which is parameterized by inte-
gers ψ and α. See Algorithm 1 for an implementation. Let
� = ψ · α. Given a ciphertext ct representing a plaintext
vector m = (m1, . . . , m�) ∈ R

�, the AllSum algorithm
outputs a ciphertext ct′ encrypting

′ =
⎛

⎝
α−1∑

j=0
mψ j+1,

α−1∑

j=0
mψ j+2, . . .

α−1∑

j=0
mψ(j+1),

α−1∑

j=0
mψ j+1,

α−1∑

j=0
mψ j+2, . . .

α−1∑

j=0
mψ(j+1), . . .

⎞

⎠ ,

i.e., m′
i = ∑α−1

j=0 mψ j+i for 1 ≤ i ≤ ψ , and m′
ψ j+i = m′

i
for 1 ≤ j ≤ α − 1. For example, when ψ = 1, it returns an
encryption of the sum of the elements of m.

As mentioned before, our algorithm consists of two
steps to perform the semi-parallel logistic regression
training while taking as input the following ciphertexts:
{E(xi�Si)}, E(yT X), E(X), E(y), and {E(
j,�,t)}, for 1 ≤ i ≤
n, 1 ≤ j ≤ � ≤ k, and 1 ≤ t ≤ k − 1.
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Algorithm 1 AllSum(ct, ψ , α)

Input: ct, input ciphertext, the unit initial amount by
which the ciphertext shifts ψ , the number of sum-
mands α

1: for i = 0, 1, . . . , log α − 1 do
2: Compute ct ← Add(ct, Rot(ct; ψ · 2i))
3: end for
4: return ct

Logistic regression model training for covariates
The best solution to train a logistic regression model
from homomorphically encrypted dataset is to evaluate
Nesterov’s accelerated gradient descent method [7, 8].
We adapt their evaluation strategy to train a model for
covariates.
Step 0: For simplicity, let vi = yiXi and � = N2/(k · n).
Since the input ciphertext E(yT X) represents � copies
of vi, Step 6 in [7] outputs the following ciphertext
that encrypts the same number of copies of the vectors
σ(vT

i βX) · vi:

ct6 = E

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ(vT
1 βX) · v11 · · · σ(vT

1 βX) · v1k
...

. . .
...

σ(vT
1 βX) · v11 · · · σ(vT

1 βX) · v1k
...

. . .
...

σ(vT
n βX) · vn1 · · · σ(vT

n βX) · vnk
...

. . .
...

σ(vT
n βX) · vn1 · · · σ(vT

n βX) · vnk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then Step 7 in [7] is changed from AllSum(ct6, k, n) into
ct7 = AllSum(ct6, N2/n, n), so that the output ciphertext
is as follows:

ct7 = E

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∑
i σ(vT

i βX) · vi1 · · · ∑i σ(vT
i βX) · vik

∑
i σ(vT

i βX) · vi1 · · · ∑i σ(vT
i βX) · vik

...
. . .

...
∑

i σ(vT
i βX) · vi1 · · · ∑i σ(vT

i βX) · vik

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

In the end, the model parameters βX are encrypted as
a ciphertext with fully-packed plaintext slots. More pre-
cisely, it yields encrypted model parameters E(βX) that
represent a plaintext vector containing N2/k = � ·n copies
of βX as follows:

E(βX) =

⎡

⎢
⎢
⎢
⎢
⎣

βX 1 βX 2 · · · βX k
βX 1 βX 2 · · · βX k

...
...

. . .
...

βX 1 βX 2 · · · βX k

⎤

⎥
⎥
⎥
⎥
⎦

.

Parallel logistic regression model building for SNPs
Starting with β = (βX, 0) ∈ R

k+1, we will perform one
step of Newton’s method for regression with SNPs. This

implies that the regression coefficients multiplied by the
values of the predictor are Uβ = XβX, so for all i ∈[ n],
if we let the predicted value be ŷi = uT

i β , then we have
ŷi = xT

i βX. We note that

(Wz)i = wi · zi = pi(1 − pi) · ŷi + (yi − pi) (3)

with pi = σ(ŷi). In the following, we describe how to
securely evaluate these variables from the model parame-
ters βX. In the end, the server outputs encryptions of the
numerator and the denominator of Eq. 1, denoted by β

j
and β

†
j .

Step 1: Let ŷ = (ŷi)
n
i=1 be a column vector of the predicted

values. The goal of this step is to generate its encryption.
The server first performs homomorphic multiplication
between two ciphertexts E(βX) andE(X), and then applies
AllSum to the resulting ciphertext:

E(ŷ) ← AllSum(E(βX) · E(X), 1, k). (4)

The output ciphertext E(ŷ) encrypts the values ŷi at (t ·
k + 1) positions for (i − 1) · � ≤ t < i · � and some garbage
values in the other entries, denoted by , i.e.,

E(ŷ) = E

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŷ1  · · · 
...

...
. . .

...
ŷ1  · · · 
...

...
. . .

...
ŷn  · · · 
...

...
. . .

...
ŷn  · · · 

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The server then performs a constant multiplication by c
to annihilate the garbage values. The polynomial c ←
Encode(C) is the encoding of the following matrix, where
Encode(·) is a standard procedure in [11] to encode a real
vector as a ring element in R:

C =

⎡

⎢
⎢
⎣

1 0 · · · 0
1 0 · · · 0
...

...
. . .

...
1 0 · · · 0

⎤

⎥
⎥
⎦ .

The next step is to replicate the values ŷi to the other
columns:

E(ŷ) ← AllSum(CMult(E(ŷ); c), −1, k),

denoted by CMult(·) a scalar multiplication. So, the out-
put ciphertext E(ŷ) has N2/n = � · k copies of ŷi:

E(ŷ) = E

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ŷ1 ŷ1 · · · ŷ1
...

...
. . .

...
ŷ1 ŷ1 · · · ŷ1
...

...
. . .

...
ŷn ŷn · · · ŷn
...

...
. . .

...
ŷn ŷn · · · ŷn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Step 2: This step is simply to evaluate the approximating
polynomial of the sigmoid function by applying the pure
SIMD additions and multiplications:

E(p) ← σ(E(ŷ)).

Then the server securely computes the weights wi and car-
ries out their multiplication with the working response
vector z using Eq. 3:

E(w) ← E(p) · (1 − E(p)),
E(Wz) ← E(w) · E(ŷ) + (E(y) − E(p)). (5)

Here the two output ciphertexts containing N2/n copies
of the values wi and wizi, respectively:

E(w) = E

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1 w1 · · · w1
...

...
. . .

...
w1 w1 · · · w1
...

...
. . .

...
wn wn · · · wn
...

...
. . .

...
wn wn · · · wn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

E(Wz) = E

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1z1 w1z1 · · · w1z1
...

...
. . .

...
w1z1 w1z1 · · · w1z1

...
...

. . .
...

wnzn wnzn · · · wnzn
...

...
. . .

...
wnzn wnzn · · · wnzn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Step 3: The goal of this step is to generate trivial encryp-
tions E(wi) such that for i ∈[ n], E(wi) has wi in all posi-
tions of its plaintext vector. We employ the hybrid algo-
rithm of [22] for replication, denoted by Replicate(·).
The server outputs n ciphertexts

{E(wi)}1≤i≤n ← Replicate(E(w)).

Similarly, the server takes the ciphertext E(Wz) and per-
forms another replication operation:

{E(wizi)}1≤i≤n ← Replicate(E(Wz)).

Step 4: For all j ∈[ p], we define the vector bj = XT Wsj ∈
R

k and denote the �-th component of bj by bj�. We note
that bj� = xT

� Wsj = ∑n
i=1(xi� ·wi · sij), where x� = (xi�)

n
i=1

is the j-th column of the design matrix X. Then, for all � ∈
[ k], the server generates encryptions of the vectors B� =
xT

� WS = (b1�, b2�, . . . , bp�) by computing

E(B�) ←
n∑

i=1
E(wi) · E(xi�Si). (6)

On the other hand, since we add a column of ones to the
matrix X, we have cj = sT

j Wsj = ∑n
i=1 wi · sij = ∑n

i=1 xi1 ·
wi · sij = b1j for j ∈[ p], which implies that E(B1) can be
understood as an encryption of (c1, c2, . . . , cp).

Step 5: This step is to securely compute the values
sT

j Wz = ∑n
i=1 sij · wi · zi for j ∈[ p]. Specifically, the server

performs the following computation:

E
(

sT
1 Wz, . . . , sT

p Wz
)

←
n∑

i=1
E(wizi) · E(xi1Si). (7)

Step 6: The goal of this step is to securely compute the
vector XT Wz such that the �-th element is obtained by
xT

� Wz = ∑n
i=1(xi� · wi · zi) for � ∈[ k]. The server

first performs the pure SIMD multiplication between two
ciphertexts E(X) and E(Wz):

E(X � Wz) ← E(X) · E(Wz). (8)

Here, the output ciphertext E(X�Wz) encrypts the values
xi�wizi:

E(X � Wz) = E

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11w1z1 x12w1z1 · · · x1kw1z1
...

...
. . .

...
x11w1z1 x12w1z1 · · · x1kw1z1

...
...

. . .
...

xn1wnzn xn2wnzn · · · xnkwnzn
...

...
. . .

...
xn1wnzn xn2wnzn · · · xnkwnzn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then the server aggregates the values in the same column
to obtain a ciphertext encrypting xT

� Wz:

E
(

XT Wz
)

← AllSum(E(X � Wz)), N2/(k · n), n).

Notice that this ciphertext contains the scalar xT
� Wz in

every entry of the �-th column, for 1 ≤ � ≤ k:

E(XT Wz) = E

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

xT
1 Wz xT

2 Wz · · · xT
k Wz

xT
1 Wz xT

2 Wz · · · xT
k Wz

...
...

. . .
...

xT
1 Wz xT

2 Wz · · · xT
k Wz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Finally, it outputs k ciphertexts, each encrypting xT
� Wz

for 1 ≤ � ≤ k, by applying the replication operation as
follows:

{
E

(
xT

� Wz
)}

1≤�≤k
← Replicate(E(XT Wz)).

Step 7: The goal of this step is to compute the encryp-
tions of the adjugate matrix and the determinant of A =
XT WX. We note that

Ar,s,t =
( n∑

i=1
wi · XT

i Xi

)

r,s,t

=
n∑

i=1
wi ·

(
XT

i Xi
)

r,s,t

for 1 ≤ r ≤ s ≤ k and 1 ≤ t ≤ k − 1. The server first mul-
tiplies the ciphertexts E(
r,s,t) with the ciphertext E(w) to
obtain

E(
′
r,s,t) ← E(w) · E(
r,s,t). (9)
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Here, the ciphertext E(
′
r,s,t) encrypts n vectors wi ·

(XT
i Xi)r,s,t for 1 ≤ i ≤ n. Then we apply AllSum to

aggregate these vectors and obtain Ar,s,t :

E(Ar,s,t) ← AllSum(E(
′
r,s,t), φ, n).

Next, the server performs multiplications between the
ciphertexts E(Ar,s,t) as follows:

E(
r,s) ←
k−1∏

t=1
E(Ar,s,t). (10)

The adjugate matrix can be obtained by aggregating (k −
1)! many values in E(
r,s):

E(adj(A)r,s) ← AllSum(E(
r,s), 1, (k − 1)! ).

In addition, the server computes

E(x1rW) ← AllSum(E(x1r) · E(w), N2/n, n)

for 1 ≤ r ≤ k, and obtains a trivial encryption of the
determinant of A as follows:

E(|A|) ←
k∑

r=1
E(x1rW) · E(adj(A)1r).

Step 8: The final step is to securely compute the encryp-
tions of β† and β∗ by pure SIMD additions and multipli-
cations. We note that multiplication of the vectors Bj from
the left side and XT Wz from the right side with the matrix
adj(A) can be written as

BT
j · adj(A) · (XT Wz)

=
k∑

r,s=1
bjr · (adj(A))r,s · (XT Wz)s.

So, the server evaluates the numerator of Eq. 1 to get the
encryption of β∗:

E(β∗) ←E(|A|) · E(sT
1 Wz, . . . , sT

p Wz)−
k∑

r,s=1
E(Br) · E(adj(A)rs) · E(xT

s Wz). (11)

Then the output ciphertext E(β∗) encrypts the values
β∗

j ’s in a way that E(β∗) = E(β∗
1 , β∗

2 , . . . , β∗
p ). Similarly,

we evaluate the denominator of Equation (1) to get an
encryption of β†:

E(β†) ← E(|A|) · E(c1, c2, . . . , cp) −
k∑

r,s=1
E(Br) · E(adj(A)rs) · E(Bs). (12)

Hence, the output ciphertext E(β†) represents the values
β

†
j in a way that E(β†) = E(β

†
1 , β†

2 , . . . , β†
p).

Output reconstruction
The server sends the resulting ciphertexts E(β∗), E(β†),
and E(|A|) to the authority who has the secret key of
the underlying HE scheme. Afterwards, the authority
decrypts the values and computes the test statistics by
using the Wald z-test, which are defined by the coefficient
estimates divided by the standard errors of the param-
eters: βj/

√
varj = β∗

j /

√
|A| · β

†
j for all j ∈[ p]. In the

end, the p-values can be obtained from the definition
2 · pnorm(|βj|/√varj).

It includes some post computations after decryption,
however, we believe that this is a reasonable assump-
tion for the following reasons. Its complexity is even less
than that of decryption, so this process does not require
any stronger condition on the computing power of the
secret key owner. Meanwhile, the output ciphertexts are
encrypting (2p + 1) scalar values, which is two times
more information compared to the ideal case. Our solu-
tion relies on the heuristic assumption that no sensitive
information beyond the desired p-values can be extracted
from decrypted results. One alternative is that the server
can use a masking (sampling random values r∗

j , r†
j , rA

such that r∗
j

2 = r†
j · rA and multiplying them to β∗

j , β†
j

and |A|, respectively) on resulting ciphertexts before
sending them to the secret key owner to weaken this
assumption.

Threat model
We consider the following threat models. Firstly, we
assume that the computing server is semi-honest
(i.e., honest but curious). If we can ensure the semantic
security of the underlying HE scheme, there is no infor-
mation leakage from encrypted data even in malicious
setting. Secondly, we assume that the secret key owner
does not collude with the server.

Results
In this section, we explain how to set the parameters and
report the performance of our regression algorithms.

Dataset description
The dataset provided by the iDASH competition organiz-
ers consists of 245 samples, partitioned into two groups by
the condition of high cholesterol, 137 under control group
and 108 under disease group. Each sample contains a
binary phenotype along with 10643 SNPs and 3 covariates
(age, weight, and height). This data was extracted from
Personal Genome Project [25]. The organizers changed
the input size in terms of SNPs, cohort size, and thresh-
old of significance to test the scalability of submitted
solutions.

We may assume that the imputation and normalization
are done in the clear prior to encryption. More precisely,
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we impute the missing covariate values with the sam-
ple mean of the observed covariates. We also center the
covariates matrix X by subtracting the minimum from
each column and dividing by a quantity proportional to
the range.

Parameters settings
We explain how to choose the parameter sets for building
secure semi-parallel logistic regression model. We begin
with a parameter L which determines the largest bitsize
of a fresh ciphertext modulus. Since the plaintext space is
a vector space of real numbers, we multiply a scale factor
of p to plaintexts before encryption. It is a common prac-
tice to perform the rescaling operation by a factor of p on
ciphertexts after each (constant) multiplication in order to
preserve the precision of the plaintexts. This means that a
ciphertext modulus is reduced by log p bits after each mul-
tiplication or we can say that a multiplication operation
consumes one level.

Kim et al. [14] proposed the least squares approach to
find a global polynomial approximation of the sigmoid
and presented degree 3, 5, and 7 approximation polyno-
mial over the domain [ −8, 8]. We observed that input
values of the sigmoid in our data belong to this interval.
As noted in [14], these approximations offer a trade-off
between accuracy and efficiency. A low-degree polyno-
mial requires a smaller depth for an evaluation while a
high-degree polynomial has a better precision. So, we
adapt the degree 3 approximation polynomials of the sig-
moid function as σ3(x) = 0.5 + 0.15012x − 0.001593x3,
which consumes roughly two levels.

Suppose that we start with v(0) = β
(0)
X = 0 ∈ R

k and
the input ciphertext E(yT X) is at level L. It follows from
the parameter analysis of [7] that the ciphertext level of
E(βX) after the evaluation of Nesterov’s accelerated GD
is L − (4 · (NUMITER − 1) + 1) where NUMITER denotes
the number of iterations of the GD algorithm. Similarly,
we expect each of Steps 1 and 2 to consume two levels for
computing the ciphertexts E(ŷ) and E(p). This means that
E(p) is at level L − (4 · NUMITER + 1); so, we get

lvl(E(w)) = L − (4 · NUMITER + 2),
lvl(E(Wz)) = L − (4 · NUMITER + 3).

We now consider the replication procedure in Step 3.
Although the input vector w = (wi)

n
i=1 is fully packed into

a single ciphertext (i.e., the length of the corresponding
plaintext vector is N2), it suffices to produce n number of
ciphertexts, each of which represents an entry wi across
the entire array. As presented in Section 4.2 of [22], the
replication procedure consists of two phases of computa-
tion. The first phase is to partition the entries in the input
vector into size-2s blocks and construct n/2s number of
vectors consisting of the entries in the i-th block with

replicated N2/2s times. We use a simple replication oper-
ation n/2s times, which applies multiplicative masking to
extract the entry and then perform the AllSum operation
to replicate them as in Step 1; its depth is just a single con-
stant multiplication. The second phase is to recursively
apply replication operations in a binary tree manner, such
that in each stage we double the number of vectors while
halving the number of distinct values in each vector; its
depth is s constant multiplications. In total, we expect to
consume (s + 1) levels during the replication procedure;
so, we get

lvl(E(wi)) = L − (4 · NUMITER + s + 3),
lvl(E(wizi)) = L − (4 · NUMITER + s + 4).

Later, Step 4 consumes one level from the level
lvl(E(wi)) for multiplication; so, we have

lvl(E(B�)) = L − (4 · NUMITER + s + 4). (13)

Similarly, Step 5 consumes one more level from the com-
putation of E(wizi); so we get

lvl(E(sT
1 Wz, . . . , sT

p Wz)) = L−(4·NUMITER+s+5).

On the other hand, Step 6 requires one level of multipli-
cation for the evaluation of the update formula (8); so we
know

lvl(E(X � Wz)) = lvl(E(Wz)) − 1
= L − (4 · NUMITER + 4).

As discussed above, the output ciphertexts E(xT
� Wz) con-

sume (s′+1) levels during the replication procedure where
2s′ is the unit block size of the first step of the replication
procedure; so we have

E(xT
� Wz) = lvl(E(X � Wz)) − (s′ + 1)

= L − (4 · NUMITER + s′ + 5).

In Step 7, it requires one and log(k − 1) levels of
multiplications for the evaluation of the update for-
mulas (9) and (10), respectively. If we let �′ =
max{lvl(E(w)),lvl(E(
r,s,t))}, then we have

lvl(E(adj(A)rs) = �′ − (1 + log(k − 1)),
lvl(E(|A|)) = �′ − (2 + log(k − 1)).

It follows from the update formulas (11) and (12) in
Step 8 that it suffices to set as lvl(E(adj(A)rs)) =
lvl(E(B�)) = 3 for obtaining the correct results. This

Table 1 HE parameter sets

NUMITER log N L log p log q0 log p0 log Q

Set-I 1 15 15 43 51 60 713

Set-II 2 15 19 43 51 60 885

Set-III 3 16 23 45 54 62 1106
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Table 2 Experimental results for iDASH dataset with 245 samples, each has 10643 SNPs and 3 covariates (4 cores)

Stage Set-I Set-II Set-III

Key Generation 4.460 s 2.321 GB 6.665 s 3.584 GB 9.699 s 10.721 GB

Encryption 7.059 s 5.406 GB 7.066 s 6.669 GB 23.023 s 12.137 GB

Training with covariates 2.622 s 7.176 GB 9.367 s 7.186 GB 62.922 s 12.137 GB

Training with all SNPs 40.442 s 10.339 GB 42.567 s 11.176 GB 108.24 s 12.137 GB

Total evaluation 43.064 s − 51.934 s − 171.162 s −
Decryption 0.025 s 10.339 GB 0.025 s 11.176 GB 0.055 s 12.137 GB

Reconstruction 0.794 ms 10.339 GB 0.794 ms 11.176 GB 2.821 ms 12.137 GB

implies that we need to set the number of levels L to be at
least L ≥ (4 · NUMITER + s + 4) + 3 from (13).

In the implementation, we set NUMITER = 2, s = 4,
s′ = 0, and L = 19. The encryption levels of data are set
as follows:

• lvl(E(yT X)) = L = 19,
• lvl(E(X)) = lvl(E(βX)) = 14, from (4)
• lvl(E(y)) = lvl(E(p)) = 10, from (5),
• lvl(E(xi�Si)) = lvl(E(wi)) = 4, from (6),
• lvl(E(
r,s,t)) = lvl(E(adj(A))) + 3 = 6.

We use log p0 ≈ 60, log q0 ≈ 51, and log qi ≈ 43 for
i = 1, . . . , L. Therefore, we derive a lower bound of the bit
size of the largest RLWE modulus Q as

log Q = log q0 + (L − 1) · log qi + log p0 ≈ 885.

Alternatively, we may do a few less or more iterations in
the GD algorithm, for example, setting NUMITER = 1 or

3. We conducted tests to compare the trade-offs in using
different sets of parameters.

We choose the secret key from the ternary distribu-
tion, which means to select uniformly at random from
{−1, 0, 1}. The error is sampled from the discrete Gaus-
sian distribution of standard deviation stdev = 3.2. We
follow the recommended parameters from the standard-
ization workshop paper [26], thus providing at least 128-
bits security level of our parameters. We summarize the
parameters of our implementation in Table 1. For compar-
ison, we also listed parameters when using NUMITER = 1
and 3.

Optimization techniques
The standard method of homomorphic multiplication
consists of two steps: raw multiplication and key-
switching. The first step computes the product of two
ciphertexts ct(Y ) = c0 + c1Y and ct′(Y ) = c′

0 + c′
1Y (as

done in [27]), and returns a quadratic polynomial, called
extended ciphertext, ctmult = c0c′

0 + (c0c′
1 + c′

0c1)Y +

Fig. 1 Comparison with the semi-parallel model (p-value cut-off: 10−5)
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Fig. 2 Comparison with the gold standard model (p-value cut-off: 10−5)

c1c′
1Y 2. This ciphertext can be viewed as an encryption of

the product of plaintexts with the extended secret (1, s, s2).
Afterwards, the key-switching procedure transforms it
into a normal (linear) ciphertext encrypting the same
message with the secret key (1, s).

We observe that the second step is much more expen-
sive than the first one since it includes an evaluation of
NTT (Fourier transformation over the modulo space), and
that a simple arithmetic (e.g. linear operation) is allowed
between extended ciphertexts. To reduce the complex-
ity, we adapt the technique called lazy key-switching,
which performs some arithmetic over extended cipher-
texts instead of running the second step right after each
raw multiplication. We get a normal ciphertext by per-
forming only one key-switching operation after evaluating
linear circuits over the extended ciphertexts. It can reduce
the number of required key-switching algorithms as well
as the total computational cost. For instance, if we add
many terms after raw multiplications in the right hand
side of the update (6) and apply key-switching to the out-
put ciphertext, this takes only one key-switching rather
than n.

Performance results
We present our implementation results using the pro-
posed techniques. All the experiments were performed on
a Macbook with an Intel Core i7 running with 4 cores
rated at 2.5 GHz. Our implementation exploits multiple
cores when available, thereby taking the advantages of
parallelization.

In Table 2, we evaluated our model’s performance based
on the average running time and the memory usages in the
key generation, encryption, evaluation, and decryption
procedures.

We achieved very high level of accuracy in the final out-
put (after decryption) for all three sets of parameters. The
type-I (false positive) and type-II (false negative) errors of
the output of our solution are very small when compar-
ing to both the semi-parallel model and the gold standard
model (full logistic regression) with respect to various
p-value cut-off thresholds. See Figs. 1 and 2 for compar-
isons against these two plain models with a cut-off of 10−5

when NUMITER = 2. To better compare the estimated p-
values (above or below certain cut-offs) on the encrypted
model against the plaintext one (semi-parallel GWAS), we
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Table 3 F1-Scores on different models

Cut-off
v.s. Plain semi-parallel model v.s. Plain gold standard model

Set-I Set-II Set-III Set-I Set-II Set-III

10−2 0.9807 0.9830 0.9964 0.9818 0.9808 0.9710

10−3 0.9749 0.9810 0.9975 0.9878 0.9887 0.9740

10−4 0.9745 0.9798 0.9969 0.9878 0.9888 0.9729

10−5 0.9828 0.9852 0.9971 0.9946 0.9970 0.9805

measured F1-scores on the p-values obtained from our
solution against the two plain models. The resulting F1-
scores are very close to 1 across all cases with different
cut-offs (10−2 to 10−5), which are shown in Table 3.

We also conducted the DeLong’s test [28, 29] to validate
our solution against the semi-parallel model. Specifically,
we drawn at uniformly random about 10% of the total SNP
test data and transformed the corresponding p-values to
0-1 labels according to the cut-off threshold; then we
constructed the ROC (Receiver Operating Characteristic)
curves for these labels and performed the DeLong’s test
to compare the AUCs (Area Under the Curve) of these
curves. Such test was repeated 10 times to obtain the
mean and the standard deviation of the p-values of the
test. The results for NUMITER = 2 are shown in Table 4.

Discussion
One constraint in our approach is that the matrix inverse
can be computed in an efficient way when the input
dimension is small. In modern GWAS, it is common to
include covariates to account for such factors as gen-
der, age, other clinical variables and population struc-
ture. A significant challenge in performing efficient secure
GWAS on this generalized model is to handle large-scale
matrix inversion.

Conclusion
In this paper, we showed the state-of-the-art performance
of secure logistic regression model training for GWAS.
We have demonstrated the feasibility and scalability of our
model in speed and memory consumption. We expect that
the performance can be improved if the underlying HE
scheme is rewritten with optimized code.

Table 4 DeLong’s Test for AUCs of our solution with Set-II
against the plain semi-parallel model

Cut-off Mean and stdev of the test results

10−2 0.4038±0.3001

10−3 0.5357±0.2704

10−4 0.6404±0.2638

10−5 0.8959±0.2195
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