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A central challenge in structure-based ligand design is the accurate
prediction of binding free energies. Here we apply alchemical free energy
calculations in explicit solvent to predict ligand binding in a model cavity in
T4 lysozyme. Even in this simple site, there are challenges. We made sys-
tematic improvements, beginning with single poses from docking, then
including multiple poses, additional protein conformational changes, and
using an improved charge model. Computed absolute binding free energies
had an RMS error of 1.9 kcal/mol relative to previously determined
experimental values. In blind prospective tests, the methods correctly dis-
criminated between several true ligands and decoys in a set of putative
binders identified by docking. In these prospective tests, the RMS error in
predicted binding free energies relative to those subsequently determined
experimentally was only 0.6 kcal/mol. X-ray crystal structures of the new
ligands bound in the cavity corresponded closely to predictions from the
free energy calculations, but sometimes differed from those predicted by
docking. Finally, we examined the impact of holding the protein rigid, as in
docking, with a view to learning how approximations made in docking
affect accuracy and how they may be improved.
© 2007 Elsevier Ltd. All rights reserved.
Keywords: free energy calculation; docking; alchemical free energy;
conformational change; isothermal titration calorimetry
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Introduction

A central problem in ligand discovery and design
is the prediction of ligand–receptor binding free
energies. Current methods cover a spectrum of
physical rigor and computational cost. Among
physics-based methods, physics-based docking and
scoring are computationally the least expensive. In
this approach, ligand orientations (poses) are
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assigned scores, related to the intermolecular inter-
action energy, and ranked relative to other poses and
other ligands.1 A few scoring functions include an
explicit or implicit estimate of the desolvation free
energy of the receptor and ligand.2 Receptor
flexibility, strain energies,3,1 and various entropies
are usually neglected, as is any reference to the
unbound protein and ligand states. These approx-
imations put the estimation of binding affinities well
out of the reach of docking methods, although these
methods can often correctly rank-order candidate
molecules for testing.
At a higher level of theory are Molecular Mecha-

nics –Generalized Born/SurfaceArea andMolecular
Mechanics – Poisson-Boltzmann/Surface Area
(MM-GBSA/PBSA) methods.4–6 These methods
estimate the absolute free energies of bound and
unbound reference states. Enthalpies are estimated
using average energies from a molecular mechanics
force field, and combined with an entropy estimate
and a solvation free energy from an implicit solvent
model. The difficulty is that the binding free energy
d.
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Figure 1. The model hydrophobic binding site in the
L99A mutant of T4 lysozyme. The enclosed molecular
surface of the cavity is shown (brown) as is the crystal-
lographic geometry of a bound benzene ligand (green),
within the context of the overall structure of T4 lysozyme
(green ribbons). The side-chain ofMet102 is also shown for
reference.
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is a small difference between very large absolute
free energies, requiring either very high accuracy in
computing these large numbers or cancellation of
errors. Thus while these approaches have had
successes,5,6 they also have several drawbacks,
such as sensitivity to details of the implicit solvent
model used7,8 and to the method used for estimating
the entropy term. Such methods perform poorly on
some test sets.9,10

At the highest level of rigor are various free energy
methods, including the alchemical free energy cal-
culations described below and potential of mean
force-based methods11,12 (for recent reviews of free
energymethods, see works by Rodinger and Pomès,
Kofke, and Shirts et al.).13–15 Here we focus on
alchemical free energy methods, which evaluate
ratios of partition functions to estimate binding free
energies and thus include entropic and other
contributions neglected at lower levels of theory.
These methods, combined with some theoretical
developments first laid out in the mid-1990s16–18

and refined later,19 now allow absolute binding free
energies to be computed rigorously and exactly,
provided that the molecular mechanics force field
used accurately describes the underlying physics,
and that enough sampling can be performed that the
estimates of the relevant thermodynamic averages
are converged.20

If, in principle, alchemical free energy calculations
allow for the exact prediction of binding free ener-
gies, the requirements of accurate force fields and
adequate sampling introduce an error into the
computed free energies. This error is often difficult
to isolate in the complicated environment of protein
active sites. In such sites, failures of sampling or
force fields are exacerbated by binding-induced con-
formational changes, titratable groups, metal ions,
and ordered water molecules, among other compli-
cations. Furthermore, when sampling is inadequate,
alchemical free energy methods can easily give
biased results; for example, computed free energies
are often sensitive to the choice of the initial receptor
or ligand structure.20–25,58

Here, to isolate sources of error, we study a highly
simplified binding site using alchemical free energy
methods and molecular dynamics. We focus on the
binding of small aromatic ligands to the small,
buried hydrophobic binding site in an engineered
mutant of T4 lysozyme (the L99A site; Figure 1) that
has been studied extensively experimentally,26–32

with docking methods,30,32 and in some previous
computational free energy studies.18,19,23,33 Here we
systematically evaluate the effect of various approx-
imations on computed binding free energies. This
model binding site provides a good starting point
because it is simple and has been thoroughly
characterized experimentally.
A second advantage of this model binding site is

that it also provides an excellent opportunity for
prospective predictions, since it is relatively easy to
find new compounds that bind.30 This is valuable
because it can be far easier to suggest explanations
for previous observations than to actually make new
predictions, and predictive ability provides a funda-
mental test for methods.

Results

Overview

Here we performed two sets of studies: retrospec-
tive, in which we studied binding of ligands with
previously measured affinities, and prospective, in
which we predicted, in a blind test, the binding
modes and affinities of several previously unchar-
acterized small molecules. After making predictions,
we tested them experimentally, using isothermal
titration calorimetry (ITC) to measure affinities and
X-ray crystallography to determine structures of the
complexes.

Retrospective studies: comparison with
previous experimental results

We first computed binding free energies for a test
set of 13 small neutral compounds using alchemical
free energy calculations, as described in Methods
(Table 1). Of these, binding affinities for 11 had pre-
viously been measured by ITC,29 and two had pre-
viously been determined not to bind more strongly
than an affinity of 10 mM using a thermal dena-
turation assay.28,32
Binding affinities are underestimated from single
docking poses

We started with a simple approach. We used the
best-scoring docking pose for each compound as a
starting structure from which to simply compute
binding free energies using our standard free ener-
gy calculation protocol discussed in Methods. We



Table 1. Calculated and experimental binding free energies for ligands of the apolar binding site considered here

Molecule
ΔGexp

o

(kcal/mol)
ΔGsingle

o

(kcal/mol)
ΔGmultiple

o

(kcal/mol)
ΔGcalc

o

(kcal/mol)
ΔGcalc

o −ΔGexp
o

(kcal/mol)

2,3-Benzofuran −5.46±0.03 −2.77±0.08 −3.45±0.06 −3.53±0.06 1.93±0.07
Benzene −5.19±0.16 −3.05±0.20 −4.53±0.20 −4.56±0.20 0.63±0.26
Ethylbenzene −5.76±0.07 −4.95±0.10 −5.36±0.10 −6.36±0.18 −0.60±0.19
Indene −5.13±0.01 −0.63±0.11 −1.56±0.06 −1.75±0.07 3.38±0.07
Indole −4.89±0.06 0.06±0.10 −0.24±0.07 −0.42±0.08 4.47±0.10
Isobutylbenzene −6.51±0.06 −0.16±0.15 −4.14±0.12 −5.01±0.20 1.50±0.21
n-Butylbenzene −6.70±0.02 −4.03±0.11 −4.44±0.11 −4.87±0.14 1.83±0.14
n-Propylbenzene −6.55±0.02 −5.29±0.10 −5.70±0.10 −5.88±0.11 0.67±0.12
o-Xylene −4.60±0.06 −0.15±0.10 −0.56±0.10 −1.27±0.18 3.33±0.19
p-Xylene −4.67±0.06 −2.13±0.09 −2.96±0.09 −3.54±0.17 1.13±0.18
Toluene −5.52±0.06 −3.76±0.09 −4.17±0.09 −4.58±0.12 0.94±0.14
Phenol N−2.74 −0.86±0.09 −1.27±0.09 −1.26±0.09 N/A
2-Fluorobenzaldehyde N−2.74 0.99±0.25 −2.43±0.10 −2.92±0.14 N/A

Statistics
RMS error 3.51±0.04 2.55±0.03 2.24±0.04
Correlation, R 0.51±0.05 0.72±0.05 0.72±0.05

Experimental values (denoted by ΔGexp
o ) are according to Morton et al.,29 except for 2-fluorobenzaldehyde and phenol, where no binding

was observed (by a circular dichroism ΔTm upshift assay28,32), giving only a lower bound on the binding free energy. Calculated values
shown are ΔGsingle

o , the free energy computed using only the single best-scoring docking orientation; ΔGmultiple
o , the full computed

binding free energy using all orientations considered; and ΔGcalc
o , the computed binding free energy including multiple orientations and

using the confine-and-release approach to account for protein conformational change at Val111. The final column is the difference from
the experiment. At the bottom is the RMS error relative to the experiment across binders for each set of free energies, and the correlation
coefficient, R, between calculated and experimental values. Experimental binding affinities were measured at 302 K; binding free energies
were computed at 300 K. Calculated values used AM1-CM2 charges.
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previously found that this single-pose approach
often results in ligands remaining trapped in the
vicinity of their starting orientation on simulation
timescales.20 Thus, with this approach, the free
energy calculations effectively become an expensive
rescoring of docking poses, including conforma-
tional averaging and entropic effects, but only for a
single orientation. We present results using this
approach as ΔGsingle

o (Table 1). In keeping with the
approximations typically made in docking, we
consider only single orientations for these results,
meaning that we also neglect symmetry-equivalent
orientations for molecules like toluene, phenol, and
benzene, which in reality also contribute to bind-
ing.17,19,20,23 The RMS error for ΔGsingle

o relative to
the experiment is 3.51±0.04 kcal/mol, and the
correlation coefficient (R) between computed free
energies and experiment is 0.51±0.05. (These RMS
and correlation calculations do not include the non-
binders, since free energies of association for these are
not known.) (Figure 2(a)). This approach underesti-
mates all the binding affinities. This is likely due to
undersampling, a failure to adequately sample the
most optimal binding conformations. Previous work
had suggested that this approach would fail in the
case where the best docking pose is not the orienta-
tion that actually contributes most to binding,20 so
this outcome was expected.
Accounting for multiple potential bound orientations
reduces the error in computed binding affinities

Next, we account for the presence of multiple
potential ligand binding modes separated by kinetic
barriers. We compute binding free energies of dif-
ferent possible binding modes separately and com-
bine their contributions to get an overall binding
free energy20 (see also Simulationmethods).We refer
to these free energies, which also include the con-
tributions of orientations related by symmetry, as
ΔGmultiple

o (Table 1). With this approach, the com-
puted binding free energies are substantially closer to
the experiment in several cases (and are neverworse)
than those computed using the single orientation
approach, since occasionally the best-scoring pose
is not the pose that contributes most to the binding
free energy. This inclusion of these contributions
reduces the RMS error in the computed free energies
relative to the experiment, from 3.51±0.04 kcal/mol
to 2.55±0.03 kcal/mol, and raises the correlation
coefficient, R, from 0.51±0.05 to 0.72±0.05.
The improvements with this approach come for

several reasons. For three of the ligands (indene,
indole, and 2,3-benzofuran), multiple orientations
are within kT of one another and all contribute sub-
stantially. For isobutylbenzene, the best pose from
docking is not in the orientation that contributesmost
to binding, so including multiple candidate orienta-
tions results in inclusion of the dominant orientation.
For the remainder of the compounds, improvements
come from inclusion of symmetry number correc-
tions. These issues have been addressed in more
detail in a work on a related binding site.20 In
general, it is extremely difficult to predict in advance
whether multiple orientations may be relevant.
Accounting for more protein conformational change
further improves computed binding free energies

The section above describes our treatment of
relevant ligand orientations. However, the protein
may also have relevant slow degrees of freedom



Figure 3. Val111 reorients on ligand binding. Val111 is
observed to adopt a different side-chain rotamer from the
apo crystallographic structure in cocrystal structures with
several different ligands. Shown here is the benzene-
bound structure, green, which is virtually identical with
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which can be difficult to sample.28,34 Here a key
change is the reorientation of the Val111 side-chain
observed in X-ray structures in response to ligands
such as n-butylbenzene, isobutylbenzene, o-xylene,
and p-xylene (Figure 3).28 The energy barriers as-
sociated with this reorientation are large enough to
prevent the side-chain from rotating on simulation
timescales.34 This leads to an apparent dependence
of computed free energies on the initial protein
structure used in simulations. For example, binding
free energies that are computed from the holo protein
structure are too negative (favorable) if the side-
chain does not have time to reorient as the ligand
is removed, because the protein strain energy (the
energetic cost of deforming the protein on binding) is
not properly accounted for. On the other hand, if the
apo protein structure is used, as we did here, binding
free energies are too positive (unfavorable), as the
ligand sterically clashes to some degree with the
protein.34 This dependence on the starting structure
the apo structure of the protein. Also shown is the p-
xylene-bound structure in magenta. The sticks at the left
show the reorientation of the Val111 side-chain on binding
to p-xylene by roughly 120° relative to the benzene-bound
and apo structures.

Figure 2. Calculated binding free energies compared
with the experiment. Calculated and experimental binding
free energies are shownwith error bars; the calculated error
bars represent one standard deviation. The two points
shown as larger diamonds are the nonligands phenol
and 2-fluorobenzaldehyde; for these, only a lower limit
on the experimental binding free energy is known, as
denoted by a large experimental error bar to the right.
The diagonal x=y line denotes perfect agreement with the
experiment. (a) Calculated ΔGsingle

o , single-orientation
binding free energies, including only the contribution
from the single best docking orientation. (b) ΔGcalc

o , bind-
ing free energies, including all relevant ligand orienta-
tions and contributions from releasing Val111 from its
kinetic confinement.
is simply due to kinetic trapping of the protein in
conformations near its starting conformation.
To overcome the kinetic trapping of Val111, we use

a recently developed “confine-and-release” frame-
work to obtain correct binding free energies that
are independent of the starting structure.34 Specifi-
cally, when the Val111 remains trapped, computed
binding free energies are really “confined” binding
free energies, with Val111 confined to a particular
orientation, sowe use umbrella sampling to compute
the free energy of releasing the valine from its con-
finement in the bound and unbound states. Here this
is accomplished by forcing the sampling of alter-
native orientations using a harmonic biasing poten-
tial, and recovering the free energy landscape for this
degree of freedom.34 We do this for all of the com-
pounds considered here, although for many com-
pounds, only the apo orientation of the valine is
found to be relevant, as observed experimentally.28

This is a rigorousway to account for kinetic trapping.
The confine-and-release framework is a general-
ization (to protein degrees of freedom) of the biasing
potential approaches applied previously to ligands
in a number of studies.11,16,18–20,23,58
The confine-and-release approach, which yields

the total estimated binding free energy ΔGbind,
further improves the agreement of computed bind-
ing free energies with the experiment (Table 1 and
Figure 2(b)). With this approach, the RMS error re-
lative to the experiment further decreases from
2.55±0.03 kcal/mol to 2.24±0.04 kcal/mol, while
the correlation with the experiment remains un-
changed (R=0.72±0.05). There is significant im-
provement in the agreement with the experiment
for a number of the ligands, especially isobutylben-
zene, p-xylene, n-butylbenzene, o-xylene, and ethyl-
benzene. As mentioned above, for the first four of

http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n


1122 Predicting Ligand Binding Free Energies
these, Val111 reorientation on binding is observed
in the cocrystal structure.28 For ethylbenzene, the
deposited structure does not show the Val111 rotated
relative to the benzene-bound structure, but the
electron density seems to allow the possibility of
either orientation.28 A prediction of this work is that,
if the crystal structure with ethylbenzene can be
solved at a higher resolution, then the Val111 side-
chain should be observed to adopt a conformation
similar to that in the p-xylene-bound structure.
The confine-and-release approach can be applied to

a variety of protein conformational changes. Here we
chose to apply it specifically to a single Val111 dihe-
dral. This choicewasmotivated by the fact that Val111
was previously observed (experimentally) to reorient
on ligand binding.28 Also, previous computational
work led us to believe that sampling of this degree of
freedom could be very slow.23We therefore examined
our initial simulations to look for Val111 reorientation
and found the kinetic trapping described above.34

This led us to apply the confine-and-release approach
to this particular degree of freedom.
It is worth noting that this is not simply an issue of

predicting a correct bound structure. Rather, using
either the apo or holo structure leads to biased binding
free energies (Tables 1 and 2) when the confine-and-
release approach is not used. Only when we account
for Val111 reorientation using confine-and-release do
computed free energies become consistent between
simulations beginning from apo and holo starting
structures (see below).34
Binding free energies from holo structures agree
with those from apo after accounting for Val111
reorientation

After the confine-and-release calculations, there
was still particularly poor agreement with the
experiment for several ligands, especially o-xylene,
indene, indole, isobutylbenzene, and 2,3-benzofuran
(the first three of these are the only binders in Figure
2(b) with computed binding free energiesworse than
−2 kcal/mol). One possible explanation is inade-
quate sampling, perhaps due to additional protein
conformational rearrangements that are not being
sampled. For example, for indene, isobutylbenzene,
and o-xylene, helix F, which forms one side of the
Table 2. Binding free energies calculated for selected
ligands using their holo structures as a starting point

Molecule
ΔGmultiple

o,holo

(kcal/mol)
ΔGcalc

o,holo

(kcal/mol)
ΔGcalc

o,holo−ΔGcalc
o

(kcal/mol)

Indene −1.44±0.07 −1.64±0.09 0.10±0.11
n-Butylbenzene −9.17±0.13 −5.32±0.22 −0.45±0.26
Isobutylbenzene −8.98±0.13 −4.80±0.21 0.20±0.29
p-Xylene −7.27±0.09 −3.31±0.20 0.23±0.26
o-Xylene −5.93±0.12 −1.91±0.21 −0.64±0.28

Shown are the calculated binding free energies, beginning from
the holo structures, with and without including any Val111
reorientation, and the difference from the calculated binding
free energies using the apo structure as a starting point (including
the Val111 reorientation) in Table 1.
cavity, shifts around 2 Å on ligand binding, making
the binding site larger.28 Additionally, previous free
energy calculations on the same system tended to
overestimate binding free energies for some of these
same compounds when beginning from the holo
structures.23
However, inspection of simulation trajectories

suggests that this helix motion is being sampled.
As a more quantitative test, we repeated the calcu-
lations for selected compounds beginning from
the holo structures. If computed binding free ener-
gies are different starting from apo and holo struc-
tures, even after applying the confine-and-release
approach for Val111, it would indicate inadequate
sampling. While computed binding free energies are
significantly different for calculations starting from
the apo and holo structure before accounting for
Val111 reorientation, the differences are essentially
negligible (within uncertainty) when the confine-
and-release approach is used to account for this
change (Table 2) (the largest difference, using
the confine-and-release approach, is for o-xylene,
−0.64±0.28 kcal/mol; since the uncertainty repre-
sents one standard deviation, this is still only a 2σ
variation). This implies that the sampling of these
conformational changes is probably sufficient and
that the error lies elsewhere.
Free energies computed using the holo starting

structures also show that the holo protein struc-
ture of several of these ligands is unfavorable by
roughly 4 kcal/mol in the absence of bound ligand
(Table 2).34 This is presumably because of steric
clashes within the protein and is the reason why
only some of the ligands induce this conformational
change on binding.

The AM1-BCC charge model further increases the
accuracy of binding free energies

Next, we considered another possible source of
error: the simulation parameters. There are different
methods for assigning partial charges for small
molecules.35 In the work reported above, we used
Austin Model 1 - Charge Model 2 (AM1-CM2)36

partial atomic charges for the small molecules, as in
docking studies. However, we found previously
that Austin Model 1 - Bond Charge Correction
(AM1-BCC) charges performed better than AM1-
CM2 charges for hydration free energies, perhaps
because they are more similar to the Hartree-Fock 6/
31G* charges the force field was parameterized
with.35 Therefore, we tested the AM1-BCC charges
here as well. Table 3 shows that AM1-BCC charges
further reduce the RMS error between computed
and experimental binding free energies from 2.24±
0.04 to 1.89±0.04 kcal/mol, and the correlation
coefficient, R, increases from 0.72±0.05 to 0.79±0.07.

Alchemical methods are more accurate than
docking

One major challenge for docking methods is to
discriminate between binders and nonbinders. We

http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n
http://dx.doi.org/10.1021/ct700032n


Table 3. Calculated and experimental binding free energies for ligands of the apolar binding site considered here, as in
Table 1 except using AM1-BCC charges

Molecule
ΔGexp

o

(kcal/mol)
ΔGBCC

o

(kcal/mol)
ΔGBCC

o −ΔGexp
o

(kcal/mol)
ΔGAM1-CM2

o −ΔGBCC
o

(kcal/mol)

2,3-Benzofuran −5.46±0.03 −3.66±0.06 1.80±0.06 0.13±0.08
Benzene −5.19±0.16 −3.95±0.20 1.24±0.26 −0.61±0.28
Ethylbenzene −5.76±0.07 −5.82±0.14 −0.06±0.16 −0.54±0.23
Indene −5.13±0.01 −1.63±0.07 3.50±0.07 −0.12±0.09
Indole −4.89±0.06 −1.37±0.10 3.52±0.12 0.96±0.13
Isobutylbenzene −6.51±0.06 −8.09±0.18 −1.58±0.19 3.09±0.27
n-Butylbenzene −6.70±0.02 −5.70±0.20 1.00±0.20 0.83±0.25
n-Propylbenzene −6.55±0.02 −5.44±0.10 1.11±0.11 −0.44±0.16
o-Xylene −4.60±0.06 −3.23±0.25 1.37±0.25 1.96±0.31
p-Xylene −4.67±0.06 −3.59±0.12 1.08±0.14 0.05±0.21
Toluene −5.52±0.06 −4.07±0.10 1.45±0.12 −0.51±0.16
Phenol N−2.74 −1.07±0.20 N/A −0.19±0.22
2-Fluorobenzaldehyde N−2.74 −3.14±0.13 N/A 0.22±0.19

Statistics
RMS error 1.89±0.04
Correlation, R 0.79±0.07

Shown are ΔGBCC
o -full binding free energies done with AM1-BCC including contributions from multiple ligand orientations and any

Val111 reorientation. These are equivalent to ΔGcalc
o from that table but done with AM1-BCC charges. Also shown are the differences

between the AM1-BCC results and the experiment (next to last column), and between the AM1-BCC and AM1-CM2 results (last column).
When the values in the last two columns have the same sign, AM1-BCC charges improved the agreement with the experiment. At the
bottom is RMS error relative to the experiment across binders for each set of free energies, and the correlation coefficient, R, between
calculated and experimental values.
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have included two known nonbinders (with affi-
nities worse than 10 mM) in the set of molecules ex-
amined here: phenol and 2-fluorobenzaldehyde. For
these two compounds, computed binding free ener-
gies indicate only weak affinity: −2.9±0.1 kcal/mol
and weaker (more positive) (Table 1). A 10-mM de-
tection threshold in binding affinity corresponds to
a binding free energy of roughly −2.7 kcal/mol.
Thus the computed binding free energies for these
two compounds are at the detection limit, essentially
consistent with the experimental observation that
they are nonbinders.
Our free energy calculations are computationally

expensive. Are the results any more accurate than
those that can be obtained from molecular docking?
As shown in Figure 4, DOCK scores for the ligands
Figure 4. DOCK scores for the best-ranked pose for
each molecule versus experimental binding free energies.
The correlation coefficient (R) is −0.69, meaning that com-
pounds that DOCK predicts should bind strongly tend to
bind weakly. Additionally, the two nonbinders have simi-
lar DOCK scores to a number of the binders.
studied here correlate poorly with experimental
binding free energies. In fact they are anticorrelated
(R=−0.69), the opposite of what one would like.
Moreover, the two nonbinders have DOCK scores
similar to those for the majority of the true ligands
(and much more favorable scores than several li-
gands), hence it is impossible to discriminate be-
tween binders and nonbinders. In fairness to
docking, it is worth noting that these nonbinders
were included in our test set because they have
proven challenging for docking to discriminate from
the binders. Also, the first goal of docking is to
separate likely from unlikely ligands, and it does
seem to be performing remarkably well in this bind-
ing site, where about 80% of the top 100 docking hits
would probably bind. Additionally, we find that
docking also performs quite well in this site at
generating sterically reasonable potential bound
orientations. That said, the free energy calculations
give substantially better affinity estimates and cor-
relations than docking does, and are better at recog-
nizing nonbinders.
The docking results discussed here used the

benzene-bound protein structure, which is virtually
identical with the apo structure. However, docking
to alternate protein conformations seems not to
result in significant improvements in the quality of
docking results, except when many different crystal-
lographic protein conformations are used.31

A large source of error in docking is the
rigid-protein approximation

Docking typically treats proteins as rigid. How big
is the error introduced by this assumption? To test
this, we held the protein rigid and repeated our free



Figure 5. Comparison of calculated and experimental
binding free energies with the protein held rigid. (a) Bind-
ing free energies with the protein completely rigid. The
RMS error relative to the experiment is 19.78±0.06 kcal/
mol and the correlation coefficient (R) is −0.05±0.09. (b)
Binding free energies with the whole protein minimized
separately for each ligand. The RMS error relative to the
experiment is 4.92±0.07 kcal/mol and the correlation
coefficient (R) is 0.82±0.09. (c) Binding free energies with
only the binding site minimized for each ligand. The RMS
error relative to the experiment is 4.06±0.06 kcal/mol and
the correlation coefficient (R) is 0.32±0.08. The x=y indi-
cates perfect agreement with the experiment.
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energy calculations, including the effects of ligand
symmetries and multiple ligand orientations (and
using AM1-CM2 charges). This led to essentially
zero correlation (R=−0.05±0.09) between computed
free energies and experimental values, and an RMS
error of 19.78±0.06 kcal/mol (Figure 5(a)).
As a simple improvement on this rigid-protein

approximation, we also allowed the protein to relax
to a different structure for each ligand. First, we
minimized the entire protein in the presence of each
ligand, using the initial docking geometry, and
subsequently held the protein rigid during the
simulations. This resulted in a correlation (R) of
0.82±0.09 and an RMS error of 4.92±0.07 kcal/mol
relative to the experiment (Figure 5(b)). Second, we
minimized only a region of the protein around
the binding site (Binding free energies to a rigid
protein) in the presence of each ligand, before
holding the protein fixed during the simulations.
This resulted in a correlation (R) of 0.32±0.08 and an
RMS error of 4.06±0.06 kcal/mol relative to the
experiment (Figure 5(c)).
Overall, it appears that keeping the protein rigid

while estimating binding free energies is detrimental
to binding free energy estimation, even if minimiza-
tion is performed separately for each ligand.

Prospective studies: predictions and
experimental tests

Distinguishing binders from nonbinders

We also performed a blind test of these free energy
methods. We selected five small molecules that were
among the top-scoring molecules from a docking
screen of a compound library (using protocols
described previously).32 We calculated binding free
energies in the same manner as above, and
compared the resulting dissociation constants with
the detection threshold of 10 mM for the experi-
mental thermal denaturation assay. We predicted
that four of the molecules would bind and one
would not‡ (the 10 mM threshold fell just between
affinities for two of the compounds). We then tested
these predictions experimentally using the upshift in
thermal denaturation, in which the melting tem-
peratures of the protein in the presence and absence
of the ligand were compared.26 All molecules were
tested in their neutral forms, using either circular
dichroism or fluorescence to monitor the transition
from the folded to the unfolded state, and resulting
Tm values were compared to that of the apo protein.
All melts occurred reversibly in a manner consis-
tent with two-state unfolding. 1,2-Dichlorobenzene,
n-methylaniline, 1-methylpyrrole, and 1,2-benzene-
dithiol increased the Tm significantly, between 1.0
and 2.9 °C (Table 4). Conversely, thieno[2,3-c]pyri-
dine was not observed to increase the Tm, even at a
2.5-mM concentration, consistent with the predic-
‡ Initial predictions were made with AM1-CM2 charges,
but AM1-BCC charges were tried later and led to the same
outcome.
tions of the free energy calculations. In contrast,
docking had predicted that all five would bind,
but the free energy methods correctly identified the
nonbinder (thieno[2,3-c]pyridine) (Table 4; Figure 6).
Predicting bound orientations was successful

We then obtained crystal structures (Table 5) to
determine how well these free energy calculations



Table 4. Novel compounds for which predictions were made and later tested experimentally

Molecule
DOCK score
(kcal/mol)

Alchemical
predictiona ΔTm (°C)

Experiment
(kcal/mol) ΔGcalc

o b
ΔGexp

o c

(kcal/mol)

1,2-Dichlorobenzene −19.99 Binder 2.90 Binder −5.66±0.15 −6.37
n-Methylaniline −17.29 Binder 1.00 Binder −5.37±0.11 −4.7
1-Methylpyrrole −15.27 Binder 2.20 Binder −4.32±0.08 −4.44
1,2-Benzenedithiol −18.51 Binder 2.50 Binder −2.79±0.13 N.D.
Thieno[2,3-c]pyridine −18.81 Nonbinder −0.40 Nonbinder −2.56±0.07 N.D.

DOCK scores suggested that all five should bind. Alchemical free energy calculations were initially used to predict whether or not
these molecules would bind, then ΔTm values were determined experimentally to test these predictions. Following this, final binding
free energy predictions (ΔGcalc

o ) were tested experimentally with ITC; results are as shown (ΔGexp
o ). The RMS difference between

predicted ΔGo and experiment for the three compounds tested with ITC is 0.57 kcal/mol. N.D. indicates that the measurements were
not done.

a Initial predictions were made using AM1-CM2 charges, but the outcome was unchanged with AM1-BCC charges.
b Before doing ITC, predictions were refined using AM1-BCC charges, which testing had indicated gave higher accuracy.
c Calorimetry was done at 283 K.
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could predict the bound ligand conformations. We
soaked three of the ligands into L99A lysozyme
protein crystals. The crystals diffracted between
1.7 and 2.07 Å on a home source. In all three struc-
tures, initial Fo–Fc electron density unambiguously
identified the orientation of the ligand in the site;
for dichlorobenzene, two orientations of the ligand
were apparent.
In parallel, we predicted dominant bound orienta-

tions for each of these ligands (Simulation methods).
Then we determined the structures for these three
ligands, and compared with our predicted struc-
tures, the best predicted DOCK poses, and the
electron density (Figure 7).
For 1-methylpyrrole, the X-ray, docking, andmole-

cular dynamics poses were quite similar (Figure 7).
The particular molecular dynamics snapshot that
was selected as representative appears slightly
twisted relative to the other two structures, but this
is simply due to the arbitrary selection of a single
molecular dynamics conformation from an ensem-
ble. The X-ray pose falls well within the range of
structures sampled by the simulation from which
this snapshot was chosen (and the underlying elec-
tron density is consistent with a range of structures
seen in simulation). The RMSD between the dock-
ing pose and X-ray structure is 0.39 Å and that
Figure 6. Five compounds for which binding predic-
tions were made. (a) 1,2-Dichlorobenzene; (b) n-methyla-
niline; (c) 1-methylpyrrole; (d) 1,2-benzenedithiol; and (e)
thieno[2,3-c]pyridine.
between the free energy snapshot and X-ray is
0.94 Å.
For n-methylaniline, free energy methods pre-

dicted two orientations with essentially equal
occupancy probabilities (Figure 7). The X-ray and
docking poses match well with one of these
orientations, but there is no evidence in the electron
density for the second orientation. The two orienta-
tions differ only by rotation around the C1–N bond.
The RMSD between the docking pose and X-ray is
0.63 Å, and that between the lower RMSD free
energy snapshot and X-ray is 0.69 Å (the higher
RMSD orientation is 1.29 Å away from X-ray).
For 1,2-dichlorobenzene, two separate orientations

were observed in the crystal structure, differing by a
rotation of around 60° in the plane of the aromatic
ring. DOCK failed to properly identify either of
these orientations as the best-scoring pose, whereas
our free energy methods picked out one but indi-
cated that the second was energetically unfavorable.
In particular, the ligand would occasionally transi-
tion into this alternate orientation, but it would
typically remain only transiently. We further tested
this by conducting a separate set of calculations
where the ligand was restrained to remain in the
alternate orientation, but, with our parameter set, it
appears substantially less favorable for binding than
the orientation predicted to dominate using our free
energy methods. This could be a force field failure,
inadequate sampling, or a difference between ex-
perimental and simulation conditions. The docking
pose is 2.8–2.9 Å away from the X-ray orientations,
while the free energy snapshot is only 0.77 Å away
from the most similar X-ray orientation.

Predicting binding affinities

Next, we predicted binding free energies and then
measured them by ITC. Since the AM1-BCC charge
model worked best in retrospective studies, we used
these charges for binding free energy predictions. Li-
gand titrations gave easily modeled curves using a
low c-value protocol (Figure 8).37 Not only did bind-
ing free energy calculations give the correct rank or-
dering of binders, but computed binding free energies



Table 5. X-ray data collection and refinement

Ligands bound to L99A

1,2-Dichlorobenzene n-Methylaniline 1-Methylpyrrole

Cell dimensions
a=b (Å) 60.2 59.9 60.2
c (Å) 97.0 96.1 96.4

Resolution (Å) 1.70 (1.76)a 2.07 (2.14)a 1.94 (2.01)a

Reflections 18,469 (2263)a 12,102 (1169)a 15,355 (1484)a

Rmerge (%) 9.8 (64.5)a 13.5 (52.8)a 11.2 (56.9)a

Completeness (%) 99.8 (99.9)a 95.0 (92.8)a 99.4 (98.4)a

〈I〉/〈σ(I)〉 9.8 (2.3)a 7.4 (2.3)a 8.7 (2.1)a

R-factor (%) 19.8 21.9 19.1
Rfree (%) 23.5 23.4 25.8
Resolution range (Å) 50.0–1.70 50.0–2.07 50.0–1.94
Δbondlengths (Å) 0.008 0.007 0.009
Δbondangles (°) 1.004 0.916 1.074
PDB Code 20TY 20T2 20U0

a Values in parentheses are for the highest resolution shell.
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for these compounds were also remarkably accurate
(an RMS error of 0.57±0.09 kcal/mol, Table 4).
Discussion

Accuracy of free energy calculations in
retrospective and prospective studies

Alchemical free energy calculations using mole-
cular dynamics can be used to compute fairly
accurate binding free energies of ligands in the T4
lysozyme L99A binding site, with an RMS error of
1.89±0.04 kcal/mol in retrospective tests. This is a
much higher accuracy than docking, where scores
were inversely correlated with the experiment, at
least among the top-scoring ligands here. Admit-
tedly, the docking program, DOCK, was never
designed to predict binding affinities and performs
remarkably well at ranking likely ligands highly in
large libraries.32 Also, in these calculations, we are
comparing with previously known results. A more
rigorous test is to compare genuinely new predic-
tions on untested candidate ligands with a subse-
quent experiment.
Therefore, in a blind test, we predicted affinities

and binding orientations for five previously unchar-
acterized compounds predicted by DOCK to bind,
then tested these predictions experimentally. With
alchemical free energy calculations, we correctly
recognized the one nonbinder, accurately predicted
ligand-bound orientations, and quantitatively pre-
dicted binding free energies. In each of these areas,
free energy methods agreed better with the experi-
ment than did docking. Free energy methods, unlike
docking, also correctly ranked the ligand binding
affinities in these prospective tests. Thus it appears
that alchemical free energy methods can be truly
predictive and can rescue docking failures.
The approach described here, including the retro-

spective study of previously published data, re-
quired no knowledge of the bound structure of the
protein and ligand, and used the apo protein struc-
ture. Previous work on this same binding site has
required an accurate bound structure of the complex
of interest as a starting point.23
Essential ingredients for accuracy

This present study is limited to a simplified model
binding site, where many complications of other
binding sites are absent. The L99A cavity studied
here has no interface with bulk water, no ordered
water molecules to displace, and is small, and the
dominant interactions appear to bemainly nonpolar.
Nevertheless, the use of this systemhas allowed us to
be systematic in isolating and solving various
sampling problems. We identified several keys to
obtaining accurate binding free energies: first, multi-
ple potential ligand orientations must be included;
one cannot rely on the single top docking pose to be
the dominant ligand orientation. There can be large
energetic barriers between different ligand orienta-
tions, which make timescales for orientational
change long compared to simulation times. Second,
even seemingly small protein conformational
changes on ligand binding, such as the reorientation
of a single side-chain, Val111, can be difficult to
sample correctly in free energy calculations, yet it is
essential to include these conformational changes to
get correct binding free energies.
On this second point, it is interesting to note that

previous computational work on this same bind-
ing site gave free energies that were more than
2 kcal/mol too negative for four of 10 known binders
in calculations initiated from the holo structures.23

We performed similar free energy calculations for
these compounds and found that our calculations
overestimated binding affinities for the same li-
gands, despite the fact that we use a different force
field and different parameters, but only when we
failed to account for the free energy associated with
Val111 reorientation. Indeed, in the previous work,
results were sensitive to the starting orientation of
the Val111 side-chain for at least one ligand, indi-
cating that this side-chain degree of freedom was



Figure 7 (legend on next page)
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Figure 8. Representative ITC data. Data and fit for T4
lysozyme L99A (0.063 mM) titrated with 1,2-dichloroben-
zene (∼0.6 mM). An initial injection of 2.5 μl was followed
by 29 injections of 10 μl of the ligand solution made every
2.5 min into the 1.4 ml reaction cell. After subtraction of
blank runs, titrations were fit as described under Experi-
mental methods to obtain the results in Table 4.
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inadequately sampled.23 Our results indicate that if
the free energy associated with this reorientation is
not included, then it can bias computed binding free
energies by as much as 4 kcal/mol.
Given that these small conformational changes

can contribute so substantially to overall binding
free energies, it will likely prove essential to develop
improved methods for computing free energies
associated with larger-scale protein conformational
changes, such as loop motions on ligand binding.

Lessons for docking

To address the rigid protein assumption typically
used in docking, we also tried free energy calcula-
tions with the protein held rigid. Using a rigid apo
structure for all ligands resulted in very large errors
Figure 7. Predicted and experimental ligand orientations.
poses for three ligands bound to L99A. (a) The two observed co
to 1.70 Å resolution. (b) 1-Methylpyrrole, structure determin
determined to 2.07 Å resolution. The crystallographic carbon a
grey. The carbon atoms of the docking predictions are colored y
are colored magenta. The carbon atoms of the second free en
maps are contoured at 3σ (green mesh).
(RMS error of 20 kcal/mol; zero correlation). Mini-
mizing the protein separately in the presence of each
ligand worked better, but RMS errors remained high
(above 4 kcal/mol) and the approach lacked the
ability to recognize nonbinders. Apparently, for this
binding site, holding the protein rigid cannot easily
produce binding affinities that agree quantitatively
(even within a 4 kcal/mol RMS error) with the
experiment, but strategies involving the minimiza-
tion of the protein can provide some improvement
over treating it as completely rigid. But for high
accuracy, it may be necessary to include not only
protein conformational change, but also a correct
accounting for the free energy costs associated with
these protein conformational changes, which can
be substantial, even at the single side-chain level.
Lastly, our results indicated that higher quality
charges can lead to substantial improvements in
binding affinities; thus the AM1-BCC charges that
performed best here may also be a better choice for
docking.

Conclusions

Overall, our results indicate that free energy
methods are reaching the point where they can be
useful when used predictively. However, in the
relatively simple system examined here, this reason-
ably high level of accuracy depends on carefully
accounting for the presence of multiple potential
ligand-bound orientations and the possibility of
protein conformational changes on ligand binding.
In principle, extremely long molecular dynamics
simulations can handle both of these, but in prac-
tice, the computational cost of such simulations is
often prohibitive. For now, treating both problems
requires deliberate sampling of the relevant degrees
of freedom, and so some preknowledge of these
degrees of freedom. We suspect that challenges ob-
served in this model binding site will be found in
biologically relevant binding sites as well. Despite
these limitations, alchemical free energy methods
hold great promise, both in predictive power and
in guiding the improvement of more approximate
physics-based methods.
Methods

Simulation methods

Overview

We begin with the benzene-bound crystal structure of
the T4 lysozyme L99A mutant28,29 (which is virtually
Stereo images comparing the experimental and predicted
nfigurations of 1,2-dichlorobenzene, structure determined
ed to 1.94 Å resolution and (c) n-methylaniline, structure
toms of protein residue M102 and each ligand are colored
ellow, and the carbon atoms of the free energy predictions
ergy prediction in (c) are colored cyan. The Fo–Fc density
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identical with the apo structure, 1L90, from which it has
an RMSD of 0.14 Å), dock our ligands into the binding
site, and determine which poses or orientations are
kinetically stable and distinct. We then begin free energy
calculations from stable, distinct orientations, as des-
cribed previously,20 to compute binding free energies.
Finally, for each ligand, we combine contributions from
these different orientations to rigorously estimate binding
free energies.
System preparation

Except where indicated otherwise, the initial protein
structure for molecular dynamics simulations and free
energy calculations is the benzene-bound structure of
the L99A lysozyme mutant, which is essentially identical
with the apo structure. This was prepared with the
GROMACS38,39 3.3 utility PDB2GMX with default pro-
tonation states, using a GROMACS port40 of the AMBER
9641 force field. Since the cavity that makes up the bind-
ing site is completely hydrophobic without any nearby
titratable groups, these protonation states present no dif-
ficulties. Following preparation, the protein was placed
in a dodecahedral simulation box and surrounded by
roughly 6000 water molecules which were pre-equili-
brated for 1 ns with the protein held fixed prior to the
equilibration of the full system, which is discussed
below.
Docking

We used DOCK 3.5.54 to fit the molecules of interest
into the protein structure (Tables 1 and 4). We retained all
of the generated poses (numbering in the thousands) and
scores of the molecules, then sorted these by score. We
then began with the best-scoring pose and worked toward
the worst, retaining every pose that was different by more
than 2 Å RMSD from a better scoring pose, to generate a
set of the best-scoring, distinct ligand orientations. This
typically resulted in 10–40 distinct poses, of which we
retained only the group of top-scoring poses (typically
3–8).
Identifying candidate orientations

From these poses, we generated general AMBER force
field42 parameters for each ligand using ANTECHAMBER
version 1.2.4,43 and AM1-CM2 charges44 as discussed pre-
viously.20 These chargeswere employed in docking studies
on the same system,32 and we sought to separate para-
meter differences from methodology differences as
much as possible. We also present results in this work
where we use AM1-BCC45,46 charges computed with
ANTECHAMBER.
From the resulting small-molecule amber topology

and coordinate files, we generated GROMACS topology
and coordinate files using the amb2gmx conversion
utility§. These ligand topologies and coordinates were
then mergedwith those for the presolvated protein system
prior to simulation.
To further reduce the number of ligand orientations we

consider in free energy calculations, we initiated separate
1-ns molecular dynamics simulations from all candidate
orientations to identify those that are kinetically distinct.20

We only retained one orientation of each set of orienta-
§http://folding.stanford.edu/ffamber
tions that interconvert easily within simulation timescales.
This typically resulted in 1–4 kinetically distinct orienta-
tions which were used for the calculations presented in
Results.
Choosing restrained orientations

We then chose reference orientations for restraining
the ligand in the binding site relative to the protein for
subsequent free energy calculations. These are defined by
picking a specific value in each of six relative protein–
ligand degrees of freedom towhich to restrain the ligand.20

These values were chosen as the most probable value of
each degree of freedom as determined from histograms
computed during the 1-ns simulations, although in prin-
ciple this choice is arbitrary.19,20 The degrees of freedom
used are as described previously.19,20
Binding free energy calculations

We carried out independent binding free energy cal-
culations for each kinetically distinct orientation. Using
the orientational decomposition procedure described
previously,20 we combined the effective binding free
energies of each orientation into an overall binding free
energy (ΔGmultiple

o ). We also computed binding free
energies that would have resulted had we only con-
sidered a single potential bound orientation and neg-
lected symmetry number corrections, as done in docking
(ΔGsingle

o ).
Binding free energy calculations were carried out in

GROMACS 3.3 (with several crucial bugfixes described
previously20) using the Bennett acceptance ratio47,48

method to estimate free energy differences. To calculate
absolute binding free energies, we used a thermody-
namic cycle developed previously.17,19,20 In this cycle, we
begin with the ligand bound to the protein, then restrain
the ligand harmonically to a reference orientation within
the binding site. We then annihilate the ligand's partial
charges, then decouple its Lennard–Jones interactions
with the rest of the system. The final ligand state is
equivalent to a noninteracting ligand with no electro-
statics, restrained, in vacuum or water. We then analy-
tically calculate the free energy of removing the restraints
and compute the free energy of restoring first the
Lennard–Jones and then the electrostatic interactions in
water. This entire process forms a thermodynamic cycle
that transfers the ligand from the binding site to bulk
water in the standard state. If all of the component
calculations are converged, this rigorously provides a
measurement of the absolute binding free energy, ΔGo,
for the force field and solvent model used∥. As part of
each of the steps in the cycle, independent free energy
calculations were conducted at a number of intermediate
alchemical states (denoted by the parameter λ) which
were the same as those described in our previous
work.20

Following these binding free energy calculations and
the predictions discussed below, we also computed
binding free energies for the set of small molecules using
AM1-BCC charges. To do this, we computed the free
energy of changing AM1-CM2 to AM1-BCC charges in
water for each compound, and then repeated the restrain-
ing and charging calculations for the compound in the
∥The sum of the components around the cycle is
actually the negative of ΔGo.

http://folding.stanford.edu/ffamber
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protein for each orientation. Since the Lennard–Jones
decoupling is done with the compound's electrostatics
already turned off, it was unnecessary to repeat these
calculations.

Simulation protocols

For all of the simulations discussed here (at each λ
value), equilibration was performed as follows. First,
velocities were assigned from a Maxwell–Boltzmann
distribution at 300 K and the system was subjected to
10 ps of isothermal molecular dynamics. This was
followed by 100 ps of isothermal-isobaric dynamics with
pressure regulated by the Berendsen weak-coupling
scheme49 as discussed previously.20 Following this, the
simulation cell size was fixed and production simulations
were run with isothermal dynamics, using the Langevin
integrator for temperature control with a friction coeffi-
cient of 1 ps−1. Production simulations were 1 ns in length
for simulations of the complex (at each alchemical
intermediate state, or λ value) and 5 ns for the ligand in
water, except where noted otherwise.
All remaining protocols are as discussed previously,20

with several exceptions: first, PME parameters were mo-
dified from those used previously to increase accuracy.
Here, we used a PME spline order of 6, a relative tolerance
of 10−6, and a Fourier spacing as close as possible to 1.0 Å.
Additionally, we applied a long-range van der Waals
correction (in addition to the analytical correction em-
ployed previously20) to correct for the effect of truncating
the long-range dispersive interactions at a finite cutoff.
These interactions are everywhere attractive and can con-
tribute significantly to binding free energies due to the fact
that proteins have a higher density of attractive sites than
water‡. While this issue will be discussed in detail else-
where,50 the approach used here was, briefly, to run as
usual the set of simulations where the ligand Lennard–
Jones interactions are decoupled (that is, the ligand–
environment Lennard–Jones interactions are turned off).
These simulations were then reprocessed with long (24 Å)
cutoffs for Lennard–Jones interactions, and the weighted
histogram analysis method51 was used to reweight the
data from the simulations conducted with the short cutoff
in order to estimate what the decoupling free energy
would have been hadwe runwith the longer cutoff. This is
a relatively small correction (0.2–0.8 kcal/mol) in the di-
rection of increased binding affinity. This correction would
be larger had not an approximate analytical dispersion
correction already been included in the original runs by
using the GROMACS correction option ENERPRES, and
tends to be larger for larger ligands.50

To aid the convergence of the calculations for benzene,
which has a very high symmetry number, we used an ap-
proach employed previously23 and restricted benzene to
stay within a single symmetric orientation during our free
energy calculations, then simply included the effect of
symmetry as a symmetry number correction to the binding
free energy.20

Confine-and-release for Val111

For some ligands, a valine side-chain (Val111) in the
binding cavity is observed experimentally to change
rotameric states on ligand binding. This conformational
change is not typically sampled (or not well sampled)
during our molecular dynamics simulations (discussed in
Results). Neglect of this change leads to an underestimate
of binding affinities for those ligands when the apo protein
structure is used, and an overestimate when the holo
protein structure is used. In the former case, the protein
typically remains trapped in a conformation where the
valine interferes with ligand binding; in the latter, when
the ligand is removed from the binding site, the protein
remains kinetically trapped with the side-chain in an
unfavorable orientation, leading to neglect of protein
strain energy in the free energy calculation. One way to
properly account for the presence of these multiple confor-
mations is to use the “confine-and-release” strategy.34 The
basic idea is to compute the binding free energy of the
ligand to the protein, with the protein conformation con-
fined (either kinetically or with artificial restraints) to a
particular region of configuration space, then to compute
the free energy of releasing the protein from confine-
ment in the bound and unbound states. This provides a
rigorous approach for computing binding free energies
which include contributions from these conformational
changes.34

We apply the confine-and-release approach to compute
the binding free energies of all the compounds considered
here. To do this, we first compute the binding free energy
with the valine side-chain kinetically trapped in the
orientation from the apo structure (which we check by
monitoring the dihedral angle throughout all of our
simulations). In some cases, the valine actually manages
to briefly escape from its kinetic trap at one or several λ
values in the alchemical part of the calculation; we discard
any simulation snapshots where it had done so from our
data analysis in order to apply the confine-and-release
approach. Once we have confined binding free energies,
computed with the side-chain trapped, we use umbrella
sampling and weighted histogram analysis method51 to
compute the potential of mean force for rotating the valine
side-chain in the bound and unbound states. From this, we
compute the free energy of releasing the protein from
confinement, and thus the binding free energies. We
present our results with and without the confine-and-
release approach, which provides a rigorous way to
account for inadequate sampling.
Simulation details for the umbrella sampling calcula-

tions are as described previously.34

Since free energy calculations were conducted with two
charge sets, two sets of umbrella sampling calculations for
Val111 were carried out for each ligand: one where the
ligand had AM1-BCC charges, and one where it had AM1-
CM2 charges. This was important, since the details of the
ligand electrostatics can influence the free energy land-
scape associated with this reorientation.
Predictions

To predict whether untested compounds would bind,
we selected five small molecules predicted by docking
(using protocols described previously)32 to be binders. We
followed the same protocols described above: docking to
the binding site, retaining a number of different kinetically
distinct starting orientations, running separate binding
free energy calculations for each of these, and then com-
bining them to get a total binding free energy. We also
applied the confine-and-release approach to account for
any reorientation of the Val111 side-chain on binding of
these molecules. From computed binding free energies, we
calculated dissociation constants, and then predict that
those compounds with dissociation constants less than
10 mM (the experimental detection threshold for the
thermal upshift assay) should bind. These predictions, and
those of bound structures below, were made with AM1-
CM2 charges, as AM1-BCC charges were only examined
later.

http://dx.doi.org/10.1021/ct700032n
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Predicting bound structures of these unknown ligands is
challenging, since our method is intended to provide
an accurate estimate of the binding free energy which
includes contributions from a variety of different ligand
and protein structures, and neglects any effects of the
crystal environment which are present in X-ray structures,
as well as other differences. Here we attempted to identify
the dominant bound structure by identifying which
kinetically distinct ligand binding orientation contributes
most favorably to the total binding free energy; to do this,
we calculated occupancy probabilities of the different
dominant orientations from their estimated binding free
energies. The predicted orientationwas the orientationwith
the highest probability of occupancy. Then we predicted a
bound structure by taking a representative snapshot from a
simulation where the ligand remains, without restraints,
stably within the region of configuration space correspon-
ding to that orientation. Our predicted bound orientations,
then, were single snapshots from molecular dynamics
simulations. For one ligand, we predicted that two orienta-
tions would have nearly comparable occupancy probabi-
lities, so we predicted that both would be observed.
After these predictions, we continued retrospective

studies and found that the AM1-BCC charge model gave
more accurate binding free energies. Therefore, we used
the AM1-BCC charge set to make predictions for binding
free energies prior to measuring these calorimetrically.
Binding free energies to a rigid protein

To compare our methodology more closely with dock-
ing, we repeated the free energy calculations using
essentially the same protocols, but with the protein held
rigid in its prepared starting structure, as is often done in
docking. To do so, we used the GROMACS option of de-
fining frozen groups that are held fixed during dynamics.
Because there are so many fewer degrees of freedomwhen
the protein is completely rigid, convergence was more
rapid, and production simulations required only 100 ps at
each λ value. Protocols were otherwise the same, and
these calculations used AM1-CM2 charges.
We considered several choices for the rigid protein

structure. First, we held the protein rigid in its starting
structure. Second, motivated by testing approaches that
could easily be applied in docking and scoring, we mini-
mized the entire protein in the presence of each ligand
individually in vacuum, and used each of these structures
for the appropriate ligand. The RMSD to the starting pre-
pared structure is typically around 0.5 Å with this ap-
proach. Finally, we modified this second protocol to allow
only residues near the binding site (residues 78, 84, 85, 87,
88, 91, 98, 99, 100, 102, 103, 106, 111, 118, 121, 133, and 153)
to move during minimization. With this protocol, changes
in structure were very minor (often less than 0.01 Å RMSD
(the RMSD reported is for the protein as a whole)).
Minimization protocols were as discussed above and

previously,20 except the order of minimization was re-
versed (steepest descents followed by limited memory
Broyden-Fletcher-Goldfarb-Shanno) and, since minimiza-
tion was done in vacuum, cutoff electrostatics was used
instead of PME, using a cutoff of 11 Å.
Error analysis

Calculated uncertainties reported here are one standard
deviation of the mean over 40 block bootstrap trials, where
the block length is taken to be equal to the autocorrelation
time, as described previously.20
Experimental methods

Binding detection by upshift of thermal denaturation
temperature

To detect binding, L99A protein was denatured re-
versibly by temperature in the presence and absence of
the putative ligand. Molecules that bind preferentially to
the folded cavity-containing protein should stabilize it
relative to the apo protein, raising its temperature of
melting.28 Thermal denaturation experiments were car-
ried out in a Jasco J-715 spectropolarimeter with a Jasco
PTC-348WI Peltier-effect in-cell temperature control
device and in-cell stirring. Each compound was screened
in its neutral form. 1,2-Benzenedithiol was assayed in a
pH 3 buffer containing 25 mM KCl, 2.9 mM phosphoric
acid, and 17 mM KH2PO4. Compounds 1,2-dichloroben-
zene and 1-methylpyrrole were screened in a pH 5.4
buffer containing 100 mM sodium chloride, 8.6 mM
sodium acetate, and 1.6 mM acetic acid. Compounds
thieno[2,3-c]pyridine and n-methylaniline were screened
in a buffer composed of 50 mM potassium chloride
(pH 6.8) and 38% (v/v) ethylene glycol. All buffers are as
previously described.28 Thermal denaturation of the
protein in the presence of compounds 1,2-dichloroben-
zene, thieno[2,3-c]pyridine, and n-methylaniline was
monitored by circular dichroism between 223 and
234 nm (although the 223 nm wavelength is the ideal
wavelength for measuring the helical signal of T4
lysozyme, the higher wavelengths, which were less
affected by absorbance from some of the compounds,
can be used to monitor the edge of the helical signal). For
1,2-benzenedithiol and 1-methylpyrrole, which have high
absorbance in the far UV region, thermal denaturation
was measured by the intensity of the integrated fluo-
rescence emission for all wavelengths above 300 nm,
exciting at 290 nm. Thermal melts were performed at a
temperature ramp rate of 2 K/min. A least-squares fit of
the two-state transition model was performed with the
program EXAM52 to calculate Tm and van't Hoff ΔH
values for the thermal denaturations. The ΔCp was set to
1.94 kcal mol−1 K−1.
Thermal denaturation of apo T4 lysozyme L99A was

carried out with 0.02–0.04 mg/ml protein in the same
buffer conditions described above. Compounds were
included at concentrations as high as 10 mM. Each
denaturation experiment was performed at least three
times.
Isothermal titration calorimetry

Quantitative estimates of association for ligand binding
to L99A T4 lysozyme were obtained by ITC using a
Microcal VP-ITC calorimeter53 operated at 10 °C with a
reference power of 10 μcal/s, a stirring speed of 300 rpm,
and a data collection interval of 4 min per injection. An
initial injection of 2 μl of ligand was followed by an
additional 29 injections of 10 μl totaling 292 μl. These
were added to 0.05 to 0.13 mM protein in the 1.4266 ml
sample cell. The concentration of small molecule ligands
in the syringe was adjusted such that the final molar
ratio of ligand to protein was at least twofold by the
end of the titrations. Protein concentrations were de-
termined by molar absorptivity at 280 nm in 0.5 M
NaCl, 0.1 M sodium phosphate buffer (pH 6.8). Ligand
concentrations were determined from the volume of
material added to a known volume of buffer. Baseline
mixing heats were estimated by injection of ligand in-
to buffer. Reaction heat profiles were fit to the single
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binding site model using the ITC worksheet of ORIGIN
version 7.0.
Protein preparation and crystallography

T4 lysozyme mutant L99A was overexpressed and
purified, and crystals were grown as described
previously.54 The crystals belong to space group P3221.
Crystals were soaked overnight to four days in crystal-
lization buffer containing as much as 50 mM compound.
In addition, drops of neat compound were added to the
cover slip surrounding the drop containing the crystal.
After soaking, the crystals were cryoprotected with a
50:50 Paraton-N (Hampton Research, Aliso Viejo, CA),
mineral oil mix. X-ray data were collected at 110 K with
an in-house Raxis IV detector. Reflections were indexed,
integrated, and scaled using the HKL package.55

The complex structures were refined using REFMAC5.56

For model building and water placement, we used
Coot.57
Protein Data Bank accession numbers

The benzene-bound crystal structure of the T4 lyso-
zyme L99A mutant has been deposited in the Protein
Data Bank (PDB) with accession number 181L. The X-ray
crystal structures of 1,2-dichlorobenzene, n-methylani-
line, and 1-methylpyrrole have been deposited in the
PDB with accession numbers 2OTY, 2OTZ, and 2OU0,
respectively. The bound structures of indene, n-butylben-
zene, isobutylbenzene, p-xylene, and o-xylene have
accession numbers 183L, 186L, 184L, 187L, and 188L,
respectively.
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