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Correlation-powered Information Engines and
the Thermodynamics of Self-Correction

Alexander B. Boyd,1, ∗ Dibyendu Mandal,2, † and James P. Crutchfield1, ‡

1Complexity Sciences Center and Physics Department,
University of California at Davis, One Shields Avenue, Davis, CA 95616

2Department of Physics, University of California, Berkeley, CA 94720, U.S.A.
(Dated: December 19, 2016)

Information engines can use structured environments as a resource to generate work by randomiz-
ing ordered inputs and leveraging the increased Shannon entropy to transfer energy from a thermal
reservoir to a work reservoir. We give a broadly applicable expression for the work production of an
information engine, generally modeled as a memoryful channel that communicates inputs to outputs
as it interacts with an evolving environment. The expression establishes that an information engine
must have more than one memory state in order to leverage input environment correlations. To em-
phasize this functioning, we designed an information engine powered solely by temporal correlations
and not by statistical biases, as employed by previous engines. Key to this is the engine’s ability to
synchronize—the engine automatically returns to a desired dynamical phase when thrown into an
unwanted, dissipative phase by corruptions in the input—that is, by unanticipated environmental
fluctuations. This self-correcting mechanism is robust up to a critical level of corruption, beyond
which the system fails to act as an engine. We give explicit analytical expressions for both work and
critical corruption level and summarize engine performance via a thermodynamic-function phase
diagram over engine control parameters. The results reveal a new thermodynamic mechanism based
on nonergodicity that underlies error correction as it operates to support resilient engineered and
biological systems.

PACS numbers: 05.70.Ln 89.70.-a 05.20.-y 05.45.-a
Keywords: Maxwell’s Demon, Maxwell’s refrigerator, detailed balance, entropy rate, Second Law of Ther-
modynamics

I. INTRODUCTION

Intriguing connections between statistical mechanics

and information theory have emerged repeatedly since

the latter’s introduction in the 1940s. Thermodynamic

entropy in the canonical ensemble is the Shannon infor-

mation of the Boltzmann probability distribution [1]. Av-

erage entropy production during a nonequilibrium pro-

cess is given by the relative entropy [2, 3], an information-

theoretic quantity, of the forward trajectories with re-

spect to the time-reversed trajectories [4]. Perhaps the

most dramatic connection, though, appears in the phe-

nomenon of Maxwell’s demon, a thought experiment in-

troduced by James C. Maxwell [5]. This is a hypothetical,

intelligent creature that can reverse the spontaneous re-

laxation of a thermodynamic system, as mandated by

the Second Law of thermodynamics, by gathering in-

formation about the system’s microscopic fluctuations

and accordingly modifying its constraints, without ex-

pending any net work. A consistent physical explanation

can be obtained only if we postulate, following Szilard

[6], a thermodynamic equivalent of information process-

ing: Writing information has thermodynamic benefits
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whereas erasing information has a minimum thermody-

namic cost, kBT ln 2 for the erasure of one bit of infor-

mation. This latter is Landauer’s celebrated principle

[7, 8].

The thermodynamic equivalent of information process-

ing has the surprising implication that we can treat the

carrying capacity of an information storage device as

a thermodynamic fuel. This observation has led to a

rapidly growing literature exploring the potential design

principles of nanoscale, autonomous machines that are

fueled by information. References [9, 10], for example,

introduced a pair of stochastic models that can act as an

engine without heat dissipation and a refrigerator with-

out work expenditure, respectively. These strange ther-

mal devices are achieved by writing information on a tape

of “bits”—that is, on a tape of two-state, classical sys-

tems. A more realistic model was suggested in Ref. [11].

These designs have been extended to enzymatic dynam-

ics [12], stochastic feedback control [13], and quantum

information processing [14, 15].

The information tape in the above designs can be vi-

sualized as a sequence of symbols where each symbol is

chosen from a fixed alphabet, as shown in Fig. 1 for

binary tape symbols. There is less raw information in

the tape if the symbols in the sequence are statistically

correlated with each other. For example, the sequence

. . . 101010 . . ., consisting of alternating 0s and 1s, encodes
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only a single bit of information on the whole since there

are only two such sequences (differing by a phase shift).

Whereas, a sequence of N random binary symbols en-

codes N bits of information. The thermodynamic equiv-

alent of information processing, therefore, says that we

can treat the former (ordered) sequence as a thermody-

namic fuel. This holds even though it contains equal

numbers of 0s and 1s on average as in the fully random

sequence, which provides no such fuel.

The design principles of information engines [16] ex-

plored so far, however, are not generally geared towards

temporally correlated information tapes [9–11, 17–21]

since, by and large, only a tape’s single-letter frequen-

cies have been considered. However, the existence of

statistical correlations among the symbols—that is, be-

tween environmental stimuli—is the rule, not an excep-

tion in Nature. Even technologically, producing a com-

pletely correlation-free (random) sequence of letters is a

significant challenge [22–24]. The thermodynamic value

of statistical correlations [25, 26] and quantum entan-

glement [27–35] have been discussed widely in the litera-

ture. Our goal here is to extend the design of tape-driven

information engines to accommodate this more realis-

tic scenario—information engines that leverage tempo-

rally correlated environments to convert thermal energy

to useful work.

Other studies have taken a somewhat different ap-

proach to the description and utilization of the ther-

modynamic equivalent of information processing. Ref-

erences [20, 26, 36–49] explored active feedback control

of a stochastic system by external means, involving mea-

surement and feedback or measurement, control, and era-

sure. While Refs. [50–53] explored a multipartite frame-

work involving a set of interacting, stochastic subsys-

tems and Refs. [17, 54] studied steady-state models of

Maxwell’s demon involving multiple reservoirs. And, fi-

nally, Refs. [55–57] indicated how several of these ap-

proaches can be combined into single framework.

Here, we use computational mechanics [58] for thermal

information ratchets [59] to derive a general expression

for work production that takes into account temporal

correlations in the environment as well as correlations

created in the output by the information engine’s oper-

ation. The functional form of the work expression es-

tablishes that memoryless information ratchets cannot

leverage anything more than single-symbol frequencies

in their input and are, therefore, insensitive to tempo-

ral correlations. Thus, to the extent that it is possible

to leverage temporally correlated environments, memo-

ryful information engines are the only candidates. This

indicates, without proof, that the memory of an informa-

tion engine must reflect the memory of its environment

to most efficiently leverage structure in its input.

Adding credence to this hypothesis, we introduce an

ergodic information engine that is driven solely by tem-

poral correlations in the input symbols to produce work.

The states of the engine wind up reflecting the memory

states of the generator of the input process. This makes

good on the conjecture [59] as to why one observes ther-

modynamically functional ratchets in the real world that

support memory [59]: Only Demons with memory can

leverage temporally correlated fluctuations in their envi-

ronment.

Similar behavior was demonstrated by Maxwell’s re-

frigerator [9], when Ref. [15] showed it to be a noner-

godic refrigerator when driven by a nonergodic process

that is statistically unbiased over all realizations. How-

ever, we focus on our ergodic engine, since ergodicity

leads to robust and reliable work production. This con-

trast is notable. Without ergodicity, an engine does not

function during many realizations, from trial to trial. In

this sense, a “nonergodic engine” is unreliable in perform-

ing its intended task, such as being an engine (converting

thermal energy to work), generating locomotion, and the

like. During one trial it functions; on another it does not.

If one is willing to broaden what one means by “en-

gine”, then one can imagine constructing an “ensemble

engine” composed of a large collection of nonergodic en-

gines and then only reporting ensemble-averaged perfor-

mance. Observed over many trials, the large trial-by-

trial variations in work production are masked and so

the ensemble-average work production seems a fair mea-

sure of its functionality. However, as noted, this is far

from the conventional notion of an engine but, perhaps,

in a biological setting with many molecular “motors” it

may be usefully considered functional.

Our design of an ergodic engine that can operate solely

on temporal correlations should also be contrasted with

a recent proposal [60] that utilizes mutual information

between two tapes, i.e., spatial correlations, as a thermo-

dynamic fuel.

The overarching thermodynamic constraints on func-

tioning at all are analyzed in a companion work [49]. The

following, in contrast, focuses on the particular function-

ality of self-correcting Demons in the presence of tempo-

rally correlated environments and on analyzing the ther-

modynamic regimes that support them. First, we review

the information engine used and give a synopsis of our

main results so that they are not lost in the more de-

tailed development. Second, the technical development

begins as we introduce the necessary tools from computa-

tional mechanics and stochastic thermodynamics. Third,

using them, we analyze the engine’s behavior and func-

tioning in the presence of a correlated input, calling out

the how the Demon recognizes (or not) correlations in

the input and either (i) responds constructively by using
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FIG. 1. Thermal ratchet information engine: A ratchet
and three reservoirs—work, heat, and information. The work
reservoir is depicted as gravitational mass suspended by a
pulley. The information reservoir consists of a string of cells,
each a two-state classical system that encodes one bit of infor-
mation. The ratchet moves unidirectionally along the string
and exchanges energy between the heat and the work reser-
voirs. The ratchet reads the value of a single cell (highlighted
in yellow) at a time from the input string (green, right), in-
teracts with it, and writes a symbol to the cell in the output
string (blue, left) of the information reservoir. Information
exchange between the ratchet and the information reservoir
is signified by the change in the information content of the
output symbols with respect to the input symbols. Driven by
the information exchange, the ratchet transduces the input
string Y0:∞ = Y0Y1... into an output string Y ′0:∞ = Y ′0Y

′
1 . . ..

(Reprinted from Ref. [59] with permission.)

them to convert thermal energy to work or (ii) dissipates

energy as it attempts to re-synchronize and regain en-

gine functioning. Fourth, we note how these two dynam-

ical modes represent a type of dynamical nonergodicity

over the ratchet’s state space when the ratchet cannot re-

synchronize, which leads to temporary nonergodicity in

the work production. However, with re-synchronization,

these two dynamical modes become accessible from each

other, which leads to ergodicity of the engine and its work

production. And, finally, we derive the physical conse-

quences for the costs of self-correction and its operational

limits.

II. A SELF-CORRECTING INFORMATION

ENGINE: SYNOPSIS

Figure 1 shows our model [10, 59] of an information en-

gine implemented as a thermal ratchet consisting of four

elements: a thermal reservoir, a work reservoir (mass in

a gravitational field), an information tape (or reservoir),

and a ratchet controlled by the values in the input tape

cells. The ratchet acts as the communication medium

between the three reservoirs as it moves along the tape

and transforms the input information content. In the

process, it mediates energy exchange between the heat

and work reservoirs.

To precisely specify the kinds of temporal correlation

in the ratchet’s environment, we represent the genera-

tor of the sequences on the information tape via a hid-

den Markov model (HMM), a technique introduced in

Ref. [59]. This has several advantages. One is that

the full distribution over infinite sequences of the input

tape Pr(
←→
Y ) is represented in a compact way. The most

extreme case of this comes in recalling that finite-state

HMMs can finitely represent infinite-order Markov pro-

cesses [61]. And so, HMMs give a desirable flexibility in

the kinds of environments we can analyze, from memo-

ryless to finite- and infinite-order Markovian. Another is

that many statistical and informational properties can be

directly calculated, as we discuss shortly. In this setup,

the ratchet is a transducer in the sense of computational

mechanics [62]. And this, in turn, allows exact analy-

sis of informational bounds on work production [21, 59].

Here, though, in Sec. III C we go further, expanding the

toolset of the HMM-transducer formalism by deriving a

general work production expression for any finite-state

input HMM driving a finite-state thermal ratchet.

With this powerful new expression for work produc-

tion, Sec. IV A then considers the case of a perfectly

correlated information tape. Though nominally simple,

this case is of particular interest since previous single-

symbol entropy bounds erroneously suggest this class of

input should generate nonpositive work. Our entropy

rate bounds, in contrast, suggest it is possible to gen-

erate net positive work. And, indeed, we see that the

single-symbol bounds are violated, as our ratchet pro-

duces positive work. In examining this concrete model,

moreover, we realize that the ratchet’s synchronizing to

the correlations in its input is an essential part of work

production: Synchronization is how the ratchet comes to

leverage the thermodynamic “fuel” in a memoryful input

process.

This result emphasizes a key feature of our ratchet de-

sign: Useful thermodynamic functioning is driven purely

by the temporal correlations in the input tape. That is,

if the symbols are perfectly correlated—a sequence with

temporal memory, e.g., with 1s always following 0s and

vice versa—the ratchet acts as an engine, writing new

information on the output tape and transferring energy

from the heat to the work reservoir. However, if the cor-

relation is not perfect, depending on engine parameters,

the ratchet can act as an information-eraser or dud, con-

verting work into heat. Thus, there exists a critical level

of corrupted input correlation beyond which engine func-

tionality is no longer possible. Our tools allow us to give

explicit expressions for work in all these cases, including

the parameter limits of thermodynamic functioning.

Perhaps most importantly, the analysis reveals a novel

mechanism underlying the functioning and its disappear-

ance. This can be explained along the following lines. An

exclusive feature of the ratchet design is the presence of
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a synchronizing state, denoted C in the (state ⊗ bit)-

transition diagram of Fig. 4. Absent C and for perfectly

correlated input, the ratchet is equally likely to be in

two stable dynamical modes: “clockwise” in which heat

is converted into work and “counterclockwise” in which

work is converted into heat. (See Fig. 6.) Since the

counterclockwise mode dissipates more per cycle than

can be compensated by the clockwise mode, without

C the ratchet cannot function as an engine. With C,

though, the counterclockwise mode becomes a transient

and the clockwise mode an attractor, making possible

the net conversion of heat into work (engine mode). The

phenomenon of an observer (ratchet) coming to know

the state of its environment (phase of the memoryful in-

put tape) is referred to as synchronization [63]. (For a

rather different notion of synchronization and its ther-

modynamic interpretation see Ref. [64].)

In contrast, when the input symbols are not per-

fectly correlated due to phase slips, say, the ratchet is

randomly thrown into the dissipative counterclockwise

mode. Nonetheless, repeated re-synchronization may

compensate, allowing the engine mode, if the transition

probabilities into C are enhanced, up to a level. This

is a form of dynamical error correction. Beyond a cer-

tain level of corruption in the input correlations, however,

dynamical error correction is not adequate to resynchro-

nize to the input phase. The Demon cannot act as an

engine, no matter how large the transition probabilities

into C. This critical corruption level is shown in the

thermodynamic-function diagram of Fig. 12 by the ver-

tical dotted line, where the horizontal axis denotes level

of corruption as the frequency of phase slips.

The current situation must be contrasted with the

usual error correction schemes in communication theory

and biological copying. In the former context, redun-

dancy is built into the data to be transmitted so that

errors introduced during transmission can be corrected

by comparing to redundant copies, up to a certain ca-

pacity. In the biological context of copying, as in DNA

replication [65], error correction corresponds to the phe-

nomenon of active reduction of errors by thermodynamic

means [66–68]. In the current context, we use the term

self-correction to refer to the fact the proposed informa-

tion engine can predict and synchronize itself with the

state of the information source to produce positive work

even when the engine is initiated in or driven by fluc-

tuations to a dissipative mode. Section V discusses this

self-correcting behavior of the engine in detail.

To analyze how dynamical error correction operates

quantitatively, the following shows how the presence of

state C renders the counterclockwise phase transient.

This reveals a novel three-way tradeoff between synchro-

nization rate (transition probability from C to the clock-

wise phase), work produced during synchronization, and

average extracted work per cycle. Section V then turns

to analyze re-synchronization, considering the case of im-

perfectly correlated information tape with phase slips. It

demonstrates how the ratchet dynamically corrects it-

self and converts heat into work over certain parameter

ranges. The section closes by giving the expression for

maximum work and the parameter combinations corre-

sponding to achieving optimum conversion.

Throughout the exploration, several lessons stand out.

First, to effectively predict bounds on a input-driven

ratchet’s work production, one must consider Shannon

entropy rates of the input and output strings; and not

single-variable entropies. Second, the expression for the

work production shows that correlations coming from

memoryful environments can only be leveraged by memo-

ryful thermodynamic transformations (Demons). While

it remains an open question how to design ratchets to

best leverage memoryful inputs, the particular ratchet

presented here demonstrates how important it is for the

ratchet’s structure to “match” that of the input corre-

lations. In short, the ratchet only produces work when

its internal states are synchronized to the internal states

of the input sequence generator. Otherwise, it is highly

dissipative. And last, synchronization has energetic con-

sequences that determine the effectiveness of dynamical

error correction and the tradeoffs between average work

production, work to synchronize, and synchronization

rate.

III. THERMAL RATCHET PRINCIPLES

Our finite-state ratchet, shown above in Fig. 1, moves

along the information tape unidirectionally, interacting

with each symbol sequentially. The ratchet interacts

with each symbol for time τ and possibly switches the

symbol value contained in the cell. We refer to time

period τ as the interaction interval and the transitions

that happen in the joint state space as interaction tran-

sitions. Through this process, the ratchet transduces a

semi-infinite input string, expressed by random variable

Y0:∞ = Y0Y1 . . ., into an output string Y ′0:∞ = Y ′0Y
′
1 . . ..

Here, the symbols YN and Y ′N realize the elements yN and

y′N , respectively, over the same information alphabet Y.

For example, as in Fig. 1, the alphabet consists of just

0 and 1. Consider the case in which the ratchet was

initiated at the leftmost end at time t = 0. At time t =

Nτ the entire tape is described by the random variables

Y ′0:NYN∞ = Y ′0Y
′
2 . . . Y

′
N−2Y

′
N−1YNYN+1 . . ., because in

N time-steps N input symbols have been transduced into

N output symbols. The state of the ratchet at time t =

Nτ is denoted by the random variable XN , which realizes
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FIG. 2. Computational mechanics of information en-
gines: The input tape values are generated by a hidden
Markov model (HMM) with, say, three hidden states—A, B,
and C. Specifically, transitions among the hidden states pro-
duce 0s and 1s that form the input tape random variables
Y0:∞. The ratchet acts as an informational transducer that
converts the input HMM into an output process, that is also
represented as an HMM. That is, the output tape Y ′0:∞ can
be considered as having been generated by an effective HMM
that is the composition of the input HMM and the ratchet’s
transducer [62].

an element xN ∈ X , where X is the ratchet’s state space.

Since we chose the input alphabet to consist of just two

symbols 0 and 1, we refer to the values in the tape cells

as bits. That this differs from the information unit “bit”

should be clear from context. Tape generally refers to

the linear chain of cells and string to the stored sequence

of symbols or cell values.

Finally, the ratchet is connected with two, more famil-

iar reservoirs—a thermal reservoir and a work reservoir.

The state of the thermal reservoir at time t = Nτ is de-

noted by ZN . We assume that the thermal reservoir is at

absolute temperature T K. The work reservoir consists of

a mass being pulled down by gravity, but kept suspended

by a pulley. Certain, specified ratchet transitions lower

and raise the mass, exchanging work.

To set up the analysis, we must first review how to

measure information, structure, and energy as they arise

during the ratchet’s operation.

A. Ratchet Informatics: Computational Mechanics

To monitor information generation and storage, com-

putational mechanics views the sequence of symbols from

the left of the input tape Y0:∞ as the temporal output of

a kind of HMM, called an ε-machine [58]. The latter pro-

vides the most compact way to represent the statistical

distribution of symbol sequences. In particular, many

types of long-range correlation among the symbols are

encoded in the ε-machine’s finite-state hidden dynamics.

The correlations appear as the memory, characterized

by its internal-state entropy or statistical complexity Cµ.

Specifically, if the input can be produced by an HMM

with a single hidden state, the input generator is mem-

oryless and there cannot be any correlation among the

symbols [69].

The ratchet functions as a memoryful communication

channel that sequentially converts the input symbols into

values in Y ′0:∞, the output tape. Naturally, the output

tape itself can be considered in terms of another HMM,

as emphasized by the schematic in Fig. 2. There, the

ratchet acts as an information transducer between two

information sources represented by respective input and

output HMMs [62].

These choices make it rather straightforward to mea-

sure ratchet memory. If the size of its state space is

unity (|X | = 1), then we say it is memoryless. Otherwise

(|X | > 1), we say it is memoryful. With memory, the

ratchet at time t = Nτ can store information about the

past input symbols y0:N with which it has interacted, as

well as past outputs y′0:N . Similarly, the output HMM

can have memory (its own positive statistical complex-

ity Cµ > 0) even when the input HMM does not. This

was the case, for example in Refs. [9–11, 59]. Critically,

the transducer formalism has the benefit that we can ex-

actly calculate the distribution Pr(Y ′0:∞) of output tapes

for any finite-memory ratchet with a finite-memory input

process. Shortly, we add to this set of tools, introducing

a method to calculate the work production by any finite-

memory ratchet operating on a finite-memory input.

B. Ratchet Energetics: The First Law of

Thermodynamics

Interactions between ratchet states and input symbols

have energetic consequences. The internal states and

symbols interact with a thermal reservoir at tempera-

ture T , whose configuration at time step N is denoted

by the random variable ZN , and with a work reservoir,

that holds no information and so need not have an associ-

ated random variable. Through its operation, the current

input symbol facilitates or inhibits energy flows between

the work and thermal reservoirs.

The joint dynamics of the ratchet and incoming sym-

bol occur over two alternating steps: a switching tran-

sition and an interaction transition. At time t = Nτ ,

the ratchet switches the tape cell with which it interacts

from the (N−1)th output symbol y′N−1 to the Nth input

symbol yN . This is followed by the interaction transition

between the ratchet, which is in the xN state, and the

symbol yN . Together, they make a stochastic transition
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in their joint state space according to the Markov chain:

MxN⊗yN→xN+1⊗y′N =

Pr(XN+1 = xN+1, Y
′
N = y′N |XN = xN , YN = yN ) .

M has detailed balance, since transitions are activated

by the thermal reservoir. Energy changes due to these

thermal interaction transitions are given by the Markov

chain:

∆ExN⊗yN→xN+1⊗y′N = kBT ln
MxN+1⊗y′N→xN⊗yN
MxN⊗yN→xN+1⊗y′N

.

These energies underlie the heat and work flows during

the ratchet’s operation. Through interaction, the input

symbol yN is converted into the output symbol y′N and

written to the output tape cell as the ratchet switches to

the next input bit yN+1 to start the next interaction at

time t = (N + 1)τ .

Notably, previous treatments [9, 10, 59] of information

engines associated the energy change during an interac-

tion transition with work production by coupling the in-

teraction transitions to work reservoirs. While it is pos-

sible to construct devices that have this work generation

scheme, it appears to be a difficult mechanism to imple-

ment in practice. We avoid this difficulty, designing the

energetics in a less autonomous way, not attaching the

work reservoir to the ratchet directly.

So, instead of the ratchet effortlessly stepping along the

tape unidirectionally on its own, it is driven. (And, an

energetic cost can be included for advancing the ratchet

without loss of generality.) In this way, heat flow happens

during the interaction transitions and work flow happens

during the switching transitions. Appendix A shows how

this strategy gives an exact asymptotic average work pro-

duction per time step:

〈W 〉 =
∑

x,x′∈X
y,y′∈Y

πx⊗yMx⊗y→x′⊗y′∆Ex⊗y→x′⊗y′ , (1)

where πx⊗y is the asymptotic distribution over the joint

state of the Demon and interaction cell at the beginning

of any interaction transition:

πx⊗y = lim
N→∞

Pr(XN = x, YN = y) . (2)

It is important to note that π is not M ’s stationary distri-

bution and, moreover, it is highly dependent on the input

HMM. Despite calculating work production for a differ-

ent mechanism, the asymptotic power calculated here is

the same as in previous examinations [10, 21, 59].

From the expression of work given in Eq. (1), we see

that memoryless ratchets have severe limitations in their

ability to extract work from the heat reservoir. In this

case, the ratchet state space X consists of a single state

and π in Eq. (2) is just the single symbol distribution of

the input string:

πx⊗y = Pr(Y0 = y) .

As a result, the calculation of work depends only on the

single-symbol statistics of the input string, producing

work from the string as if the input were independent

and identically distributed (IID). Regardless of whether

there are correlations among the input symbols, the work

production of a memoryless ratchet is therefore the same

for all inputs having the same single-symbol statistics.

For example, a memoryless ratchet cannot distinguish

between input strings 01010101 . . . and 00110011 . . . as

far as work is concerned. Thus, for the ratchet to use

correlations in the input string to generate work, it must

have nonzero memory. This is in line with previous ex-

aminations of autonomous information engines [21, 59].

In any case, the general form for the work production

here allows one to calculate it for any finite memoryful

channel operating on any input tape generated by a finite

HMM.

C. Ratchet Entropy Production: The Second Law

of Thermodynamics

Paralleling Landauer’s Principle [7, 8] on the thermo-

dynamic cost of information erasure, several extensions of

the Second Law of thermodynamics have been proposed

for information processing. We refer to them collectively

as the thermodynamic equivalents of information process-

ing. For ratchets, these bounds on the thermodynamic

costs of information transformation can be stated either

in terms of the input and the output HMMs’ single-

symbol entropy (less generally applicable) or entropy rate

(most broadly applicable). Let’s review their definitions

for the sake of comparison.

Consider the probability distribution of the symbols

{0, 1} in the output sequence of an HMM. If the single-

symbol probabilities are {p, 1 − p}, respectively, the

single-symbol entropy H1 of the HMM is given by the

binary entropy function H(p) [70]:

H1 = H(p) (3)

≡ −p log2 p− (1− p) log2 (1− p) .

By definition, single-symbol entropy ignores sequential

symbol-symbol correlations.

The entropy rate, in contrast, is the asymptotic per-

symbol uncertainty. To define it, we need to first in-
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troduce the concept of a word in the output sequence

generated by an HMM. A word w is a subsequence of

symbols of length ` over the space Y`. For example, a

binary word of length ` = 2 consists of a pair of consecu-

tive symbols; an event in the space Y2 = {00, 01, 10, 11}.
Thus, there are 2` possible length-` words or elements in

Y`. The Shannon entropy rate of the process generated

by an HMM is then given by [70]:

hµ = − lim
`→∞

1

`

∑
w∈Y`

Pr(w) log2 Pr(w) , (4)

where Pr(w) denotes the probability of w ∈ Y`. Entropy

rate hµ captures the effects of correlations in the symbols

at all lengths.

For memoryless processes, H1 = hµ. Otherwise, H1 >

hµ, with hµ being the correct measure of information

per symbol and H1 being an overestimate. One relevant

extreme case arises with exactly periodic processes with

period greater than 1: hµ = 0; whereas H1 > 0, it’s

magnitude being determined by the single-symbol fre-

quencies.

We can now state two specific forms of the thermody-

namic equivalent of information processing for informa-

tion engines:

〈W 〉 ≤ kBT ln 2 ∆ H1 (5)

〈W 〉 ≤ kBT ln 2 ∆hµ , (6)

where ∆ H1 and ∆hµ denote, respectively, the change in

single-symbol entropy and in entropy rate from the input

HMM to the output HMM [9, 10, 18, 21, 56, 59, 71, 72].

Let’s compare them. Equation (5) says that correla-

tions in the input string beyond single symbols cannot be

used to produce work, while Eq. (6) suggests that it is

possible. This follows since, if we keep the single-symbol

probabilities constant while increasing the temporal cor-

relations in the input, all while keeping the output fixed,

∆ H1 remains constant, but ∆hµ increases.

To resolve this seeming ambiguity, we appeal to the

general expression of Eq. (1) for calculating work pro-

duction. The expression says that work production de-

pends on the memory of both the ratchet and the input

HMM; see App. A. In this way, temporal correlations

in the input string can influence the ratchet’s thermody-

namic behavior. Only when the ratchet is memoryless is

there no relevance of the correlations, so far as the aver-

age work is concerned. In the memoryless case, Eq. (5)

as well as Eq. (6) are valid.

This observation suggests that, in contrast, for a

ratchet to use correlations in the input string to generate

work, it must have more than one internal state [49]. In

addition, to generate correlations in the input string, its

generating HMM must have memory. This leads to the

intuitive hypothesis that to leverage work from the tem-

poral order in the input string (correlations created by

the input HMM’s memory), the ratchet must also have

memory.

We test this hypothesis by analyzing the specific ex-

ample of a perfectly correlated environment—a periodic

input process. As we do, keep in mind that, on the one

hand, Eq. (5) says that no work production is possible,

regardless of the binary output process statistics. On

the other hand, Eq. (6) suggests the opposite. As long

as the output process has some uncertainty in sequential

symbols, then ∆hµ > 0. We also introduce a ratchet

with three memory states that produces positive work

and even appears to be nearly optimal for certain pa-

rameter ranges [49]. In short, a memoryful ratchet with

a memoryful input process violates Eq. (5), demonstrat-

ing that bound’s limited range of application.

IV. FUNCTIONAL RATCHETS IN PERFECTLY

CORRELATED ENVIRONMENTS

Let’s consider the case of a correlated environment and

then design a thermal ratchet adapted to it.

A. The Period-2 Environment

Take the specific case of a period-2 input process. The

state transition diagram for its HMM is given in Fig. 3.

There are three internal states. D is a transient state

from which the process starts. From D, the process tran-

sitions to either E or F with equal probabilities. If the

system transitions to E, a 0 is emitted, and if the system

transitions to F , a 1 is. Afterwards, the process switches

between E and F with E → F transitions emitting 1

and F → E transitions emitting 0. As a result, the input

HMM generates two possible sequences that drive the

ratchet: y0:∞ = 010101 . . . or y0:∞ = 101010 . . .. Note

that these two sequences differ by a single phase shift.

The period-2 process is an ideal base case for analyzing

how ratchets extract work out of temporal correlations.

First, its sequences have no bias in the frequencies of 0’s

and 1’s, as they come in equal proportions; thereby re-

moving any potential gain from an initial statistical bias.

And, second, the symbols in the sequence are perfectly

correlated—a 0 is followed by 1 and a 1 by 0.

More to the point, previous information engines can-

not extract work out of such periodic sequences since

those engines were designed to obtain their thermody-

namic advantage purely from statistical biases in the in-

puts [9, 10, 18, 21, 59]. By way of contrast, we now in-
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F E

Dstart

0 : 1.0

1 : 1.0

1 : 0.5 0 : 0.5

FIG. 3. Period-2 process hidden Markov model with a
transient start state D and two recurrent causal states E and
F . Starting from D, the process makes a transition either
to E or to F with equal probabilities while emitting y = 0
or y = 1, respectively. This is indicated by the transition
labels from D: y : p says generate symbol y when taking the
transition with probability p. On arriving at states E or F ,
the process alternates between two states, emitting y = 0 for
transitions E → F and y = 1 for transitions F → E. In
effect, we get either of two infinite sequences, y0:∞ = 0101 . . .
and y0:∞ = 1010 . . ., with equal probabilities.

troduce and analyze the performance of a ratchet design

that extracts work out of such perfectly correlated, un-

biased input sequences. The following section then con-

siders the more general case in which input correlations

are corrupted by environmental fluctuations.

Let’s explain the information-theoretic reasoning that

motivates this. For a period-2 process, the single-symbol

entropy H1 is maximal: H[YN ] = 1. However, its entropy

rate hµ = 0 due to its perfect predictability as soon as any

symbol is known. This, on the one hand, implies ∆ H1 ≡
H[Y ′N ]−H[YN ] ≤ 0. Equation (5), in turn, says that work

cannot be extracted regardless of the realizations of the

output string; no matter the design of the information

engine. For the period-2 input, though, ∆hµ = h′µ ≥ 0.

And, Eq. (6) indicates that work can be extracted as long

as the output string has nonzero entropy rate h′µ. This

is achievable with appropriate thermal ratchet design.

In other words, Eq. (5) suggests that it is impossible

to extract work from input correlations beyond single-

symbol bias, while Eq. (6) suggests it is possible. We

resolve this disagreement in favor of Eq. (6) by explicit

construction and exact analysis.

B. Memoryful Ratchet Design

Figure 4 gives a ratchet design that can extract work

out of a period-2 process. As explained above in Sec. III,

the ratchet interacts with one incoming symbol at a time.

As a result, the ratchet’s transducer specifies both ratchet

internal states and the states of the input tape cell being

read. In the figure, A, B, and C denote the ratchet’s in-

ternal states and x⊗y denotes the joint transducer state

A⊗ 1

A⊗ 0 B ⊗ 0

B ⊗ 1

C ⊗ 0

C ⊗ 1
(1− δ)/e

1− δ

1− δ

(1− δ)/e

1− (1− δ)/e

1− (1− δ)/e

δ

γ

δ

γ

1− γ

1− γ

FIG. 4. State transition diagram of a ratchet that ex-
tracts work out of environment correlations: A, B,
and C denote the ratchet’s internal states and 0 and 1 de-
note the values of the interacting cell. The joint dynamics of
the Demon and interacting cell take place over the space of
six internal joint states: {A⊗0, . . . , C⊗1}. Arrows indicate
the allowed transitions and their probabilities in terms of the
ratchet control parameters δ and γ. Note that e here refers
to the base of natural logarithm, not a variable or parameter.

of the ratchet state and interacting cell value, with the

ratchet being in state x ∈ {A,B,C} and the interacting

cell with value y ∈ {0, 1}. Arrows denote the allowed

transitions and their labels the transition probabilities in

terms of ratchet control parameters, that we now intro-

duce. For example, if the Demon is in state A and the

input symbol has value 0, they make a transition to the

joint state B ⊗ 0 with probability (1− δ) or to the joint

state C ⊗ 0 with probability δ. Due to conservation of

probability, the sum of transition probabilities out of any

joint state is unity. After the transition, the old symbol

value in the tape cell is replaced by a new value. If the

joint state made a transition to B ⊗ 0 and the incoming

symbol had value 1, the joint state is switched to B ⊗ 1.

Then, a transition from joint state B ⊗ 1 takes place ac-

cording to the rule described above.

The parameters δ and γ satisfy the following con-

straint: 0 ≤ δ, γ ≤ 1. The Markov chain matrix M corre-

sponding to the transition dynamics depicted in Fig. 4 is

given in App. B. Due to the repetitive nature of the

dynamics, the transducer reaches an asymptotic state

(App. A) such that its probability distribution does not

change from one interaction interval to another.

Now, consider the transducer’s response when driven

by a period-2 input process. Appendix B calculates the

work and entropy changes in the asymptotic limit, find-
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ing:

〈W 〉 =
1− δ
e

kBT ln 2 , (7)

∆ H1 = 0 , and (8)

∆hµ = H

(
1− δ
e

)
. (9)

The work expression follows from the definition in

Eq. (1). The single-symbol entropy difference ∆ H1 van-

ishes since the output tape consists of random, but still

equal, mixtures of 0’s and 1’s, as did the input tape.

The entropy rate change ∆hµ, though, is generally posi-

tive since, although the input entropy rate vanishes, the

ratchet adds some randomness to the output.

From Eq. (9), we have a clear violation of Eq. (5).

Whereas, Eq. (6) still holds:

0 = ∆ H1 <
〈W 〉

kBT ln 2
≤ ∆hµ . (10)

Since Ref. [59] established Eq. (6) for all finite ratchets,

this difference in the bounds is expected. Nonetheless,

it is worth calling out in light of recent discussions in

the literature [73]. In any case, these results confirm the

conclusion that to properly bound all finite information

ratchets, including memoryful ratchets driven by memo-

ryful inputs, we must use Eq. (6) rather than Eq. (5).

C. Dynamical Ergodicity and Synchronization

To provide intuition behind the work expression of

Eq. (7), let’s now analyze the ratchet’s operation. This

reveals a novel synchronization mechanism that’s respon-

sible for nonzero work production. First, consider the

case in which the engine parameters δ and γ are zero;

that is, the state C is disconnected from A and B. This

effectively deletes C from the joint dynamic, as shown in

Fig. 5. This restricted model has the topology considered

in our previous work [59].

It turns out that the ratchet has two equally likely

dynamical modes, let’s call them clockwise and counter-

clockwise. When in each mode, the ratchet behavior is

periodic in time. The modes are depicted in Fig. 6, with

the counterclockwise mode on the left and the clockwise

mode on the right. The dashed (red) arrows show the

paths taken through the joint state space due to an inter-

action transition followed by a switching transition when

the switching transition is driven by input 0. And, the

solid (blue) arrows show the paths taken when the switch-

ing transition is driven by input 1. The labels on the ar-

rows indicate the amount of work done in the associated

transitions. The clockwise mode extracts kBT/e amount

A⊗ 1

A⊗ 0 B ⊗ 0

B ⊗ 1
1/e

1

1

1/e

1− 1/e

1− 1/e

FIG. 5. Ratchet dynamics absent the synchronizing
state: Assuming system parameters δ and γ are set to zero,
state C becomes inaccessible and the ratchet’s joint state-
symbol dynamics become restricted to that shown here—a
truncated form of the dynamics of Fig. 4.

W = 0

W
=

k
B

T

W = 0 W = 0

W
=
�

k
B

T

W
=
�

k
B

T

W = 0

W
=

k
B

T

W
=

0W
=

0

hW iclockwise = kBT/e

A⌦ 1

A⌦ 0 B ⌦ 0

B ⌦ 1 A⌦ 1

A⌦ 0 B ⌦ 0

B ⌦ 1

: input 0 transition
: input 1 transition

hW icounterclockwise = �kBT

FIG. 6. Two dynamical modes of the ratchet while
driven by a period-2 input process: (a) Counterclock-
wise (left panel): ratchet is out of synchronization with the
input tape and makes a steady counterclockwise rotation in
the composite space of the Demon and the interacting cell.
Work is steadily dissipated at the rate −kBT per pair of in-
put symbols and no information is exchanged between the
ratchet and the information reservoir. (b) Clockwise (right
panel): ratchet is synchronized with the input correlated sym-
bols on the tape, information exchange is nonzero, and work
is continually accumulated at the rate kBT/e per pair of input
symbols.

of work per bit, while the counterclockwise mode expends

kBT amount of work per bit.

There is a simple way to understand the existence and

work performance of the two modes. Consider the coun-

terclockwise mode first. The left state-transition dia-

gram in Fig. 6 shows this mode arises when A ⊗ 0 or

B ⊗ 1 happens to be the initial joint state. First, there

is a horizontal interaction transition to a lower energy

state. The energy difference kBT is fully dissipated in

the thermal reservoir with no exchange of energy with

the work reservoir. Then, there is a vertical switching

transition to a higher-energy state. The required energy
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kBT is taken from the work reservoir with no exchange

of energy with the thermal reservoir. This energy is then

dissipated as heat in the thermal reservoir at the next

horizontal transition. The net amount of work produced

per symbol—the net amount of energy supplied to the

work reservoir—is 〈W 〉 = −kBT .

Similarly, consider the clockwise mode. The righthand

state-transition diagram in Fig. 6 shows that this mode

arises when A⊗1 or B⊗0 is the initial joint state. First,

there is an interaction transition along either the horizon-

tal or diagonal paths of the Markov chain. (The horizon-

tal transitions are opposite to those of the counterclock-

wise mode.) From microscopic reversibility, the horizon-

tal interaction transitions lead to kBT energy taken from

the thermal reservoir in order to move into higher energy

states. No energy is exchanged with the work reservoir.

On the diagonal transitions, on the other hand, no en-

ergy is exchanged with either reservoir. Then, there is

a switching transition, which corresponds to a vertical

transition to a lower energy state if the horizontal in-

teraction transition was made just before. The energy

difference kBT is given to the work reservoir. However,

if the diagonal transition was made, then the switching

transition does not change the state and there is no work

done. As shown in the figure, there are two possible paths

the system can take between A⊗1 and B⊗0 in one oper-

ation cycle of the ratchet: {A⊗1→ B⊗1→ B⊗0} and

{A⊗1→ B⊗0→ B⊗0}. The same is true of transitions

from B ⊗ 0 to A ⊗ 1: {B ⊗ 0 → A ⊗ 0 → A ⊗ 1} and

{B ⊗ 0→ A⊗ 1→ A⊗ 1}. Averaging over the probabil-

ities of the two fundamental paths, the net average work

produced is 〈W 〉 = kBT/e. (See App. B for details.)

If the initial ratchet state is uncorrelated with the in-

put HMM state, the clockwise and the counterclockwise

modes occur with equal probability. Once in a partic-

ular mode, the ratchet cannot switch over to the other

mode. In this sense, the two modes act as two different

attractors for the Demon’s joint state-symbol dynamics.

In other words, the system is dynamically nonergodic,

leading to nonergodic work production: either time aver-

aged −kBT or kBT/e. In this case, the ratchet dissipates

on average kBT (1−1/e)/2 units of energy from the work

reservoir into the thermal reservoir as heat.

Comparing this ergodic ratchet, in which nonergodic-

ity plays a dynamic and transient role, to the nonergodic

engine discussed earlier is in order. Nonergodic engines

(those driven by nonergodic input processes) can exhibit

functional behavior when averaged over an ensemble of

input realizations. As shown in Ref. [15], Maxwell’s re-

frigerator [9] can refrigerate when driven by the noner-

godic process consisting of two infinitely long realizations,

one of all 0s and the other of all 1s. Similar to our ratchet

driven by (ergodic) period-2 sequences, the refrigerator

C

11� �

� �

1� �Pr =

kBT ln �/�

0

kBT ln �/�

kBT (1� �)/e

clockwisecounterclockwise

hQi = �kBT

FIG. 7. Crossover from the dissipative, counterclock-
wise mode to the generative, clockwise mode via syn-
chronizing state C: Even though the microscopic dynamics
satisfy time-reversal symmetry, a crossover is possible only
from the counterclockwise mode to the clockwise mode be-
cause of the topology of the joint state space. With transi-
tions between C and the other two modes, the engine becomes
ergodic among its dynamic modes. The heats and transition
probabilities are shown above each arrow.

has two principal modes: the ratchet is driven by all 0s

and refrigerates versus the ratchet is driven by all 1s and

dissipates. However, one of these two modes is chosen at

random in the beginning of a ratchet trial and remains

fixed. This yields refrigeration that differs from the en-

semble average (over the nonergodic input realizations).

However, we can achieve robust and functional work pro-

duction in our period-2 ratchet, by coupling modalities

dynamically via the C state. Then, on every trial, the

engine functions.

Let’s explain how its emergent nonergodicity makes

this function robust. For δ 6= 0 and γ 6= 0, state C be-

comes accessible to the ratchet, changing the stability of

the counterclockwise attractor. And, this allows positive

work production. (From here on we consider the original,

full ratchet in Fig. 4.) We make a heuristic argument as

to why the ratchet can generate positive net work using

state C.

C’s addition creates a “path” for the ratchet to shift

from the dissipative, counterclockwise mode to the gen-

erative, clockwise mode. And, the latter becomes the

only attractor in the system. In other words, the coun-

terclockwise dynamical mode becomes a purely transient

mode and the system becomes dynamically ergodic. The

situation is schematically shown in Fig. 7, where the ar-

rows denote allowed transitions in the dynamical sense.

Heat and probability values of the transitions are shown

there along each arrow. Recall that in the counterclock-

wise mode, the joint state is either A⊗ 0 or B⊗ 1 at the

beginning of each interaction interval. According to the

Markov model, both these states have probability δ of

transitioning to a C state during interaction transitions.

Thus, as depicted, δ is the probability of transitioning

from the counterclockwise mode to C.

Once in state C, the ratchet cannot return to the coun-

terclockwise mode, despite the fact there is probability γ

of transitioning back to either A⊗ 0 or B⊗ 1 in an inter-
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action transition. This is because the following switching

transition immediately changes A⊗ 0 to A⊗ 1 and B⊗ 1

to B ⊗ 0. That is, the system is in the clockwise mode

at the beginning of the next interaction interval. Thus,

with probability γ the system makes a transition to the

clockwise mode. After this transition, the system is nec-

essarily synchronized, and it is impossible to transition

out of the synchronized dynamic. In this way, the ratchet

asymptotically extracts a positive amount of average heat

from the environment, 〈Q〉 = kBT (1 − δ)/e per symbol.

Asymptotic heat extraction is the same as the work pro-

duction for finite ratchets, confirming Eq. (7). Since the

ratchet must move through C to arrive at the recurrent,

clockwise, work-producing dynamic, we decide to start

the ratchet in C. C serves as a synchronization state in

that it is necessary for the ratchet state to synchronize to

the input tape: once the ratchet transitions out of the C

state, its internal states are synchronized with the input

HMM states such that it produces work.

D. Trading-off Work Production Against

Synchronization Rate and Work

With Fig. 7 in mind, we can define and calculate

several quantities that are central to understanding the

ratchet’s thermodynamic functionality as functions of its

parameters δ and γ: the synchronization rate Rsync and

the synchronization heat Qsync absorbed during synchro-

nization. Rsync is the inverse of the average number of

time steps until transitioning into the clockwise mode. It

simplifies to the probability γ of transitioning into the

clockwise mode:

Rsync(δ, γ) =
1

〈t/τ〉

=
1

γ
∑∞
i=0(i+ 1)(1− γ)i

= γ .

The heat Qsync absorbed when synchronizing is the

change in energy of the joint state as the ratchet goes

from the synchronizing states (C ⊗ 0 or C ⊗ 1) into the

recurrent synchronized states (A⊗ 0 or B ⊗ 1):

Qsync(δ, γ) = kBT ln
δ

γ
.

This is minus the energy dissipation required for synchro-

nization.

Much like the speed, energy cost, and fidelity of a com-

putation [74–77], these two quantities and the average

extracted work per symbol obey a three-way tradeoff in

which each pair is inversely related, when holding the
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FIG. 8. Trade-off between average work production,
synchronization rate, and synchronization heat: Con-
tour plot of average extracted work per symbol 〈W 〉 as a
function of rate of synchronization Rsync and synchronization
heat Qsync using Eq. (11). Work values are in the unit of kBT .
Numbers labeling contours denote the average extracted work
〈W 〉. If we focus on any particular contour, increasing Rsync

leads to a decrease in Qsync and vice versa. Similarly, re-
stricting to a fixed value of Rsync, say the vertical Rsync = 0.4
line, increasing Qsync decreases values of 〈W 〉. Restricting
to a fixed vale of Qsync, say the horizontal Qsync = 0.5 line,
increasing Rsync going to the right also decreases 〈W 〉.

third constant. This is expressed most directly by com-

bining the expressions above into a single relation that is

independent of δ and γ:

Qsync + kBT lnRsync − kBT ln

(
1− e〈W 〉

kBT

)
= 0 . (11)

Figure 8 illustrates this trade-off. Analytically, the same

interdependence appears when taking the partial deriva-

tives of the quantities with respect to each other:

∂Qsync

∂〈W 〉 = − −kBTe
kBT − e〈W 〉

,

∂Qsync

∂Rsync
= −−kBT

Rsync
, and

∂〈W 〉
∂Rsync

= −kBT − e〈W 〉
eRsync

.

These all turn out to be negative over the physical range

of parameters: 〈W 〉 ∈ (−∞, 1/e], Rsync ∈ [0, 1], and

Qsync ∈ (−∞,∞).

The ratchet’s successful functioning derives from the

fact that it exhibits a dynamical mode that “resonates”

with the input process correlation in terms of work pro-
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0 : 1− c

1 : 1− c

1 : 0.5 0 : 0.5

FIG. 9. Noisy phase-slip period-2 (NPSP2) process:
As with the exact period-2 process of Fig. 3, its HMM has a
transient start state D and two recurrent causal states E and
F . Starting from D, the process makes a transition either
to E or F with equal probabilities while outputting 0 or 1,
respectively. Once in state E, the process either stays with
probability c and outputs a 0 or makes a transition to state F
with probability 1− c and outputs a 1. If in state F , the pro-
cess either stays with probability c and outputs a 1 or makes
a transition to state E with probability 1 − c and outputs a
0. For small nonzero c, the output is no longer a pure alter-
nating sequence of 0s and 1s, but instead randomly breaks
the period-2 phase. For c = 1/2, the generated sequences are
flips of a fair coin. The process reduces to that in Fig. 3, if
c = 0.

duction and that this mode can be made the only dy-

namical attractor. In other words, an essential element

in constructing our ratchet its ability to synchronize its

internal states with the effective states of the input pro-

cess. This appears to be a basic principle for leveraging

memoryful input processes and, more generally, corre-

lated environments.

V. FLUCTUATING CORRELATED

ENVIRONMENTS

The preceding development considered a perfectly cor-

related environment that generates an input to the

ratchet in which a 0 is always followed by 1 and a 1 by

0. Of course, this is an artificial and constrained input.

It’s purpose, though, was to isolate the role of struc-

tured, correlated environment signals and how a thermo-

dynamic ratchet can leverage that order to function as an

engine. Practically, though, it is hard to come by such

perfectly correlated sequences in Nature. One expects

sequences to involve errors, say where a 0 is sometimes

followed by a 0 and a 1 by 1. Such phase slips are one

kind of error with which a thermodynamically function-

ing ratchet must contend.

In particular, whenever a phase slip occurs the ratchet

is thrown out of its synchronization with the input, pos-

sibly into the dissipative, counterclockwise dynamical

mode. Due to the presence of the synchronizing mecha-

nism, shown in Fig. 7, the ratchet can recover via transit-

ing through the synchronizing state C. If the frequency

of phase slips is sufficiently low, then, the ratchet can

still produce work, only at a lower rate. If the phase slip

frequency is high enough, however, the ratchet does not

have sufficient time in the clockwise mode to recover the

work lost in the counterclockwise mode before it relaxed

to the clockwise mode. At this error level the ratchet

stops producing work; it dissipates work even on average.

This suggests there is a critical level of input errors where

a transition from a functional to nonfunctional ratchet

occurs. This section analyzes the transition, giving an

exact expression for the critical phase-slip frequency at

which the ratchet stops producing work.

To explore the ratchet’s response to such errors, we in-

troduce phase slips into the original period-2 input pro-

cess. They occur with a probability c, meaning that af-

ter every transition, there is a probability c of emitting

the same symbol again and remaining in the same hid-

den state rather than emitting the opposite symbol and

transitioning to the next hidden state. An HMM corre-

sponding this period-2 phase-slip dynamics is shown in

Fig. 9—the noisy phase-slip period-2 (NPSP2) process.

It reduces to the original, exactly periodic process gener-

ated by the HMM in Fig. 3 when c = 0.

It is now straightforward to drive the ratchet (Fig. 4)

inputs with the NPSP2 process (Fig. 9) and calculate

exactly the average work production per symbol using

Eq. (1). Appendix B does this for all values of δ, γ, and

c. Here, let’s first consider the special case of γ = 1. This

is the regime in which the ratchet is most functional as

an engine since, if the ratchet produces positive work,

then γ = 1 maximizes that work production.

With γ = 1, once the ratchet is in state C, it imme-

diately synchronizes in the next interaction interval. In

this case, δ parametrizes the relationship between the av-

erage work done when synchronized and the rate of syn-

chronization. The higher δ is, the less work the ratchet

extracts while synchronized, but the more often it transi-

tions to the synchronizing state—recall Fig. 7—allowing

it to recover from phase slips. The calculation for γ = 1

yields an average work rate (App. B):

〈W 〉(δ, c) =
(1− δ)[δ + c− c(2δ + e)]

2ec+ δe(1− c) . (12)

Thus, over the whole parameter space c, δ ∈ [0, 1], the

average work varies over the range:

〈W 〉(δ, c) ∈ kBT

e

[
−e− 1

2
, 1

]
.

Figure 10 shows how the work production varies with

δ for different values of c. No matter the value of c,

at δ = 0 the average work attains its lower limit of
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FIG. 10. Average work production per symbol versus
parameter δ and phase slip rate c at fixed γ = 1. Labels
on the curves give c values. Long-dashed lines give the upper
and lower bounds on work production: It is bounded above
by kBT/e and below by kBT (1− e)/(2e). (See text.)

−kBT (e − 1)/2e, which is the average work produced

when both clockwise and counterclockwise modes have

equal probability. As δ increases, there is an increase

in the the average work until it reaches 0 at a partic-

ular value δ∗(c). Below δ∗(c)—i.e., within the range

0 ≤ δ ≤ δ∗(c)—the system consumes work; whereas

above δ∗(c), the system acts as an engine, producing net

positive work. Figure 10 shows that δ∗(c) is an increasing

function of c, starting with 0+ as c tends to 0 and ending

up at 1 as c tends to unity.

The dependence is nonlinear, with sharp changes near

c = 0 and saturating near c = 1. Since the average

work vanishes as δ tends to 1 independent of c, there is

a value of δmax(c) where the engine’s work production is

maximum. This maximum work Wmax(c) is closer to its

upper limit kBT/e for smaller values of c. As we increase

c, there is a decrease in Wmax(c) until it vanishes at δ = 1.

Figure 11 shows the dependence of Wmax(c) as a func-

tion of error rate c, revealing a critical value c∗ = 1/1+e

beyond which Wmax vanishes. Thus, if the phase-slip

frequency is too high, the ratchet cannot produce net

positive work regardless of how quickly it synchronizes.

This special value c∗ actually partitions the expressions

for δ∗(c), δmax(c), and Wmax(c) into piecewise functions:

δ∗(c) =

{
(1−e)c
2c−1 if c ≤ 1

1+e

1 if c > 1
1+e

(13)

δmax(c) =

{
4c2+α−2c
2c2−3c+1 if c ≤ 1

1+e

1 if c > 1
1+e

(14)

Wmax(c) =

{
kBT

−2α+c(e−(5+e)c)+1
e(c−1)2 if c ≤ 1

1+e

0 if c > 1
1+e

, (15)

c

c =
1

1 + e

hW i =
kBT

e

0.2 0.4 0.6 0.8 1.0
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i m

a
x
(c

)/
k

B
T

FIG. 11. Maximum work production versus phase-slip
rate c. Maximum work production decreases with c from
kBT/e at c = 0 to 0 when c ≥ c∗ = 1/(1 + e).

where α =
√
c (2c2 + c− 1) ((3 + e)c− e− 1).

The results in Fig. 11 should not be too broadly ap-

plied. They do not imply that positive net work cannot

be extracted for the case c > c∗ for any information

ratchet. On the contrary, there exist alternatively de-

signed ratchets that can extract positive work even at

c = 1. However, the design of such ratchets differs sub-

stantially from the current one. Sequels will take up the

task of designing and analyzing this broader class of in-

formation engines.

Figure 12 combines the results in Figs. 10 and 11

into phase diagram summarizing the ratchet’s thermody-

namic functionality. It illustrates how the δ-c parameter

space splits into two regions: the leftmost (red) region

where the ratchet produces work, behaving as an engine,

and the lower right (gray) region where the ratchet con-

sumes work, behaving as either an information eraser (us-

ing work to erase information in the bit string) or a dud

(dissipating work without any erasure of information).

It also shows that c∗ = 1/(1 + e) corresponds to both

the point at which δmax(c) reaches 1 and the point at

which it is no longer possible to extract work from the

input, independent δ. This is the point where phase slips

happen so often that the ratchet finds it impossible to

synchronize for long enough to extract any work.

VI. CONCLUSION

We extended the functionality of autonomous

Maxwellian Demons by introducing a new design for

information engines that is capable of extracting work

purely out of temporal correlations in an information

source, characterized by an input HMM. This is in

marked contrast with previous designs that can only
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FIG. 12. Ratchet thermodynamic-function phase dia-
gram: In the leftmost (red) region, the ratchet behaves as
an engine, producing positive work. In the lower right (gray)
region, the ratchet behaves as either an eraser (dissipating
work to erase information) or a dud (dissipating energy with-
out erasing information). The solid (red) line indicates the
parameter values that maximize the work output in the en-
gine mode. The dashed (black) line indicates the critical value
of c above which the ratchet cannot act as an engine.

leverage a statistically biased information source or the

mutual, instantaneous correlation between a pair of in-

formation sources [9, 10, 18, 21, 59]. Our new design

is especially appropriate for actual physical construction

of information engines since physical, chemical, and bio-

logical environments (information sources) almost always

produce temporally correlated signals.

The new design was inspired by trying to resolve con-

flicting bounds on the work production for information

engines. On the one hand, Eq. (5) for monitoring in-

formation content only of isolated symbols suggests that

no work can be produced from temporal correlations in

input string; whereas, on the other, using entropy rates

Eq. (6) indicates these correlations are an excellent re-

source. We showed, in effect, that this latter kind of

correlational information is a thermodynamic fuel.

To disambiguate the two bounds, we described the ex-

act analytical procedure to calculate the average work

production for an arbitrary memoryful channel and a

HMM input process. The result is that it is now abun-

dantly clear which bounds hold for correlated input pro-

cesses.

We considered the specific example of a period-2 pro-

cess for the input tape (Fig. 3), since it has structure in

its temporal correlations, but no usable single-symbol in-

formation content. The ratchet we introduced to leverage

this input process requires three memory states (Fig. 4)

to produce positive work. This memoryful ratchet with

a memoryful input process violates Eq. (5), establishing

Eq. (6) as the proper information processing Second Law

of thermodynamics.

It is intuitively appealing to think that ratchet memory

must be in consonance with the input process’ memory to

generate positive work. In other words, the ratchet must

be memoryful and be able to synchronize itself to the

structured memory of the input HMM to be functional.

We confirmed that this is indeed the case in general with

our expression for work. If the ratchet has no memory,

the only “structure” of consequence in the input process

is simply, provably, the isolated-symbol statistical bias.

We see this nascent principle more concretely in the

operation of the ratchet as it responds to the period-

2 process. Critical to its behaving as an engine is the

presence of state C (Fig. 4) through which the ratchet

synchronizes itself to the input. As shown in Fig. 7, the

synchronizing state C allows the system to make an irre-

versible transition from the counterclockwise, dissipative

mode into the generative, clockwise mode. It demon-

strates how key it is that the ratchet’s effective memory

match that of the input process generator.

We also discovered an intriguing three-way tradeoff

(Fig. 8) between synchronization rate, synchronization

heat (that absorbed during synchronization), and asymp-

totic average work production. For example, if the De-

mon keeps the synchronization rate fixed and increases

the synchronization heat, there is a decrease in the av-

erage work production. In other words, if the Demon

becomes greedy and tries to extract energy from the

thermal reservoir even during synchronization, on the

one hand, it is left with less work in the end. If, on

the other hand, the Demon actually supplies heat dur-

ing the synchronization step, it gains more work in the

end! Similarly, if it keeps the synchronization heat fixed,

a slower rate of synchronization is actually better for the

average work production. If the Demon waits longer for

the ratchet to synchronize with its environment, it is re-

warded more in terms of the work production. Thus, the

Demon is better off in terms of work, by being patient

and actually supplying more energy during synchroniza-

tion. This three-way tradeoff reminds one of a recently

reported tradeoff between the rate, energy production,

and fidelity of a computation [76].

We then considered the robustness of our design in a

setting in which the input process is not perfectly pe-

riodic, but has random phase slips (Fig. 9). As a re-

sult, the dissipative regime is no longer strictly tran-
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sient. Every so often, the ratchet is thrown into the dis-

sipative regime induced by the phase slips, after which

the ratchet attempts to resynchronize to the generative

mode. Thus, the ratchet seems remarkably robust with

respect to the phase-slip errors, being able to dynamically

correct its estimation of the input’s hidden state due to

the synchronization mechanism. This is true, however,

only up to a certain probability of phase slips, beyond

which the dissipative regime is simply too frequent for

the ratchet to generate any work. For the region in which

the ratchet is capable of generating work, we found the

parametric combination for its optimal functionality for a

given probability of phase slips (Fig. 10). We also deter-

mined the maximum net work that the ratchet can pro-

duce (Fig. 11). Finally, we gave a phase diagram of the

ratchet’s thermodynamic functionality over the control

parameter space formed by δ and c for γ = 1 (Fig. 12).

In this way, we extended the design of information en-

gines to include memoryful input processes and memo-

ryful ratchets. The study suggests, via synchronization

and dynamical self-correction, there are general princi-

ples that determine how autonomous devices and organ-

isms can leverage arbitrary structure in their environ-

ments to extract thermodynamic benefits.

Physical systems that demonstrate the thermodynamic

equivalent of information processing are by now numer-

ous. Most, in contrast to the present design, restrict

themselves to single-step information processing. More-

over, many only consider information processing com-

prising the erasure of a single bit, staying within the set-

ting of Landauer’s Principle. The information-processing

equivalence principle strongly suggests a much wider set

of computational possibilities that use the capacity of

stored information as a thermodynamic resource.

Practically implementing an information engine on the

nanoscale, say, will require delicate control over system

and materials properties. To achieve this in a convincing

way will demand an unprecedented ability to measure

heat and work. This has become possible only recently

using single-electron devices [78], nanoelectronic mechan-

ical systems (NEMS) [79, 80], and Bose-Einstein Conden-

sates (BECs) [81–83]. The results and methods outlined

here go some distance to realizing these possibilities by

pointing to designs that are functionally robust and re-

silient, by identifying efficient information engines and

diagnosing their operation, and by giving exact analyt-

ical methods for the quantitative predictions necessary

for implementation.
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Appendix A: Ratchet Energetics: General

Treatment

Here, we lay out the detailed calculations of the ther-

modynamic contributions made by the ratchet’s trans-

ducer and the environmental input process.

1. Transducer Thermodynamic Contributions

We consider the case where the ratchet exchanges en-

ergy only with the work reservoir during the switching

transitions and only with the heat reservoir during the

interaction transitions. During the N -th switching tran-

sition, the ratchet “exhausts” the N -th input bit YN as

the N -th output bit Y ′N and couples with the input bit

YN+1. The joint state of the ratchet and the interact-

ing bit changes from XN+1 ⊗ Y ′N to XN+1 ⊗ YN+1. The

corresponding decrease in energy is supplied to the work

reservoir. So, the work output at the N -th switching

transition WN is given by:

WN = ExN+1⊗y′N − ExN+1⊗yN+1
, (A1)

where Ex⊗y denotes the energy of the joint state x ⊗ y.

Via a similar argument, we write the heat absorbed by

the ratchet during the N -th interaction transition QN :

QN = ExN+1⊗y′N − ExN⊗yN .

The main interest is in determining the asymptotic rate

of work production:

〈W 〉 = lim
N→∞

WN Pr(WN )

= lim
N→∞

∑
xN+1,
yN+1,y

′
N

(ExN+1⊗y′N − ExN+1⊗yN+1
) (A2)

× Pr(XN+1 = xN+1, YN+1 = yN+1, Y
′
N = y′N )

=
∑
x′,y′

Ex′⊗y′ lim
N→∞

Pr(XN+1 = x′, Y ′N = y′)

−
∑
x,y

Ex⊗y lim
N→∞

Pr(XN+1 = x, YN+1 = y) ,
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where the second line uses Eq. (A1) and the third rela-

bels the realizations in the sum x and x′, since these are

dummy variables in separate sums.

Assuming the stationary distribution over the input

variable and ratchet variable exists, the asymptotic prob-

ability limN→∞ Pr(XN+1 = x, YN+1 = y) is the same as

the asymptotic probability limN→∞ Pr(XN = x, YN =

y), which was defined as πx⊗y. In addition, note that

the Markov matrix M controlling the joint ratchet-bit

dynamic is stochastic, requiring
∑
x′,y′ Mx⊗y→x′⊗y′ = 1

from probability conservation. As a result, the second

summation in Eq. (A2) is equal to:

−
∑
x,y

Ex⊗y lim
N→∞

Pr(XN+1 = x, YN+1 = y)

= −
∑
x,y

Ex⊗yπx⊗y

= −
∑
x,y

Ex⊗yπx⊗y
∑
x′,y′

Mx⊗y→x′⊗y′

= −
∑
x,x′,
y,y′

Ex⊗yπx⊗yMx⊗y→x′⊗y′ .

To compute the first term in Eq. (A2), we do a similar

decomposition. Note that XN+1 and Y ′N are determined

from XN and YN by iterating with the joint Markov dy-

namic M , and so:

Pr(XN+1 = x′, Y ′N = y′)

=
∑
x,y

Pr(XN = x, YN = y)Mx⊗y→x′⊗y′ . (A3)

Using Eq. (A3) we rewrite the first summation in

Eq. (A2) as:∑
x′,y′

Ex′⊗y′ lim
N→∞

Pr(XN+1 = x′, Y ′N = y′)

=
∑

x,y,x′,y′

Ex′⊗y′ lim
N→∞

Pr(XN = x, YN = y)Mx⊗y→x′⊗y′

=
∑

x,y,x′,y′

Ex′⊗y′πx⊗yMx⊗y→x′⊗y′ .

Combining the above, the resulting work production rate

is:

〈W 〉 =
∑

x,x′,y,y′

(Ex′⊗y′ − Ex⊗y)πx⊗yMx⊗y→x′⊗y′ .

The same logic leads to the average heat absorption,

which turns out to the same as the work production:

〈Q〉 = 〈W 〉 .

The intuition for this is that these equalities depend on

the existence of the stationary distribution πx⊗y over the

ratchet and bit. This is guaranteed for a finite ratchet

with mixing dynamics. Only a finite amount of energy

can be stored in a finite ratchet, so the heat energy flow-

ing in must be the same as the work flowing out, on the

average, to conserve energy. This, however, may break

down with infinite-state ratchets—an important and in-

triguing case that our sequels address.

2. Input Process Contributions

The results above are expressed in terms of the ratchet,

except for the stationary joint distribution over the input

variable and ratchet state:

πx⊗y = lim
N→∞

Pr(XN = x, YN = y) .

This quantity is dependent on the input process, as we

now describe. We describe the process generating the

input string by an HMM with transition probabilities:

T (yN )
sN→sN+1

=Pr(YN =yN , SN+1 =sN+1|SN =sN ), (A4)

where si ∈ S are the input process’ hidden states [59].

Given that the input HMM is in internal state sN ,

T
(yN )
sN→sN+1 gives the probability to make a transition to

the internal; state sN+1 and produce the symbol yN . The

dependence between XN and YN is determined by hidden

state SN . So, we rewrite:

Pr(XN = x, YN = y) =
∑
s

Pr(XN = x, YN = y, SN = s)

=
∑
s

Pr(YN = y|SN = s) Pr(XN = x, SN = s)

=
∑
s,s′

Pr(YN =y, SN+1 =s′|SN =s) Pr(XN =x, SN =s)

=
∑
s,s′

T
(y)
s→s′ Pr(XN = x, SN = s) ,

The second line used the fact that YN depends on only

SN , as illustrated in Fig. 13. The last line used Eq. (A4).

Combining the above equations gives:

πx⊗y = lim
N→∞

Pr(XN = x, YN = y)

= lim
N→∞

∑
s,s′

T
(y)
s→s′ Pr(XN = x, SN = s)

=
∑
s,s′

T
(y)
s→s′π

′
x⊗s , and

π′x⊗s = lim
N→∞

Pr(XN = x, SN = s) .
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Thus, evaluating πx⊗y requires knowing the input process

T
(y)
s→s′ , which is given, and the stationary joint distribu-

tion πx⊗s over the hidden states and the ratchet states.

To calculate πx⊗s, we must consider how XN+1 and

SN+1 are generated from past variables. We notice that

the output process is specified by an HMM whose hidden

variables are composed of the hidden variable of the input

HMM and the states of the transducer. In other words,

the output HMM’s hidden states belong to the product

space X ⊗ S. As a result, the transition probability of

the output HMM is:

T
′(y′)
x⊗s→x′⊗s′ = Pr(Y ′N = y′, XN+1 = x′, SN+1 = s′|XN = x, SN = s)

=
∑
y

Pr(Y ′N = y′, XN+1 = x′, YN = y, SN+1 = s′|XN = x, SN = s)

=
∑
y

Pr(Y ′N = y′, XN+1 = x|YN = y, SN+1 = s′, XN = x, SN = s) Pr(YN = y, SN+1 = s′|XN = x, SN = s)

=
∑
y

Pr(Y ′N = y′, XN+1 = x|YN = y,XN = x) Pr(YN = y, SN+1 = s′|SN = s)

=
∑
y

Mx⊗y→x′⊗y′T
(y)
s→s′

=
∑
y

M
(y′|y)
x→x′ T

(y)
s→s′ ,

where the fourth line used the facts that Y ′N and XN+1

are independent of SN and SN+1, if YN and XN are

known, and YN and SN+1 are independent ofXN , if SN is

known [59, 62]. Thus, summing over the output variable

Y ′ yields a Markov dynamic over X ⊗ S:

T ′x⊗s→x′⊗s′ =
∑
y′

T
′(y′)
x⊗s→x′⊗s′ (A5)

=
∑
y,y′

Mx⊗y→x′⊗y′T
(y)
s→s′ .

The stationary distribution π′x⊗s is this dynamics’

asymptotic distribution:∑
x,s

π′x⊗sT
′
x⊗s→x′⊗s′ = π′x′⊗s′ . (A6)

π′ existence—that is, for a finite state Markov process

like T ′—is guaranteed by the Perron-Frobenius theorem

and it is unique when T ′ is ergodic [84]. In short, we see

that πx⊗y is computable given the ratchet Mx⊗y→x′⊗y′

and the input process generator T
(y)
s→s′ .

In this way, we derived an expression for the asymp-

totic work production of an arbitrary memoryful ratchet

with an arbitrary memoryful input process in terms of

HMM generator of the input and the Markovian dynamic

over the input bit and ratchet state. Only a single as-

sumption was made: there is an asymptotic distribution

over the the input bit and ratchet state πx⊗y. In sum-

mary, there are three steps to calculate the average work

production:

1. Calculate the stationary distribution π′x⊗s over the

hidden states of the output process T
′(y′)
x⊗s→x′⊗s′ .

The latter which is calculated from the operation

of Mx⊗y→x′⊗y′ on T
(y)
s→s′ ;

2. Use π′ and T
(y)
s→s′ to calculate the stationary distri-

bution over the ratchet and input bit at the begin-

ning of the interaction interval πx⊗y;

3. Using this and the transducer’s Markov dynamic,

calculate the work production:

〈W 〉 = kBT
∑
x,x′,
y,y′

πx⊗yMx⊗y→x′⊗y′ ln
Mx′⊗y′→x⊗y
Mx⊗y→x′⊗y′

.

(A7)

The following Appendix shows how to use this method

to calculate average work production for the specific cases

of the period-2 environment with and without phase-

slips.
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(YN) 
Input HMM 

(SN) 
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(XN) 
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(Y’N) 

FIG. 13. State variable interdependence: Input HMM
has an autonomous dynamics with transitions SN → SN+1

leading to input bits YN . That is, YN depends only on SN .
The joint dynamics of the transducer in state XN and the
input bit YN leads to the output bit Y ′N . In other words,
Y ′N depend on XN and YN or, equivalently, on XN and SN .
Knowing the joint stationary distribution of XN and SN , then
determines the stationary distribution of Y ′N . However, if YN
and XN are known, Y ′N is independent of SN .

Appendix B: Ratchet Energetics: Specific

Expressions

The symbol-labeled transition matrices for the noisy

period-2 input process are given by:

T (0) =

0 0 0

.5 c 1− c
0 0 0

D

E

F

T (1) =

0 0 0

0 0 0

.5 1− c c

 .

The transducer form of the ratchet M shown in Fig. 4 is

given by the four conditional symbol-labeled transition

matrices:

M (0|0) =

 0 1−δ
e γ

1− δ 0 0

δ 0 1− γ

A

B

C

M (1|0) =

0 1− 1−δ
e 0

0 0 0

0 0 0


M (0|1) =

 0 0 0

1− 1−δ
e 0 0

0 0 0


M (1|1) =

 0 1− δ 0
1−δ
e 0 γ

0 δ 1− γ

 ,

where we switched to the transducer representation of the

joint Markov process Mx⊗y→x′⊗y′ = M
(y′|y)
x→x′ [59, 62].

To find the stationary distribution over the causal

states of the input bit and the internal states of

the ratchet (step 1), we calculate the output process

T
′(y′)
x⊗s→x′⊗s′ =

∑
yM

(y′|y)
x→x′ T

(y)
s→s′ and sum over output

symbols to get the Markov dynamic over the hidden

states:

T ′ = T ′(0) + T ′(1) =



0 0 0 0 0 0 0 0 0

0 0 0 0.5 c c̄ 0.5γ cγ γc̄

0 0 0 0.5δ̄ c̄δ̄ cδ̄ 0 0 0

0 0 0 0 0 0 0 0 0

0.5δ̄ cδ̄ c̄δ̄ 0 0 0 0 0 0

0.5 c̄ c 0 0 0 0.5γ γc̄ cγ

0 0 0 0 0 0 0 0 0

0.5δ cδ δc̄ 0 0 0 0.5γ̄ cγ̄ c̄γ̄

0 0 0 0.5δ δc̄ cδ 0.5γ̄ c̄γ̄ cγ̄



A⊗D
A⊗ E
A⊗ F
B ⊗D
B ⊗ E
B ⊗ F
C ⊗D
C ⊗ E
C ⊗ F

,

where c̄ = 1− c, δ̄ = 1− δ, and γ̄ = 1− γ.

Then, we find the stationary state π′ over the joint hidden states (step 2), which solves T ′π′ = π′:

π′ =



π′A⊗D
π′A⊗E
π′A⊗F
π′B⊗D
π′B⊗E
π′B⊗F
π′C⊗D
π′C⊗E
π′C⊗F


=



0

γ(δ + c− δc)/ν
γ(c− δc)/ν

0

γ(c− δc)/ν
γ(δ + c− δc)/ν

0

δc/ν

δc/ν


,
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where ν = 2(cδ + γ(δ + 2c− 2δc)).

And, we find the stationary distribution over the

ratchet state input bit by plugging in to the equation

πx⊗y =
∑
s,s′ T

(y)
s→s′π

′
x⊗s. The result is:

π =



πA⊗0
πA⊗1
πB⊗0
πB⊗1
πC⊗0
πC⊗1

 =



γc/ν

γ(δ + c− 2δc)/ν

γ(δ + c− 2δc)/ν

γc/ν

δc/ν

δc/ν

 .

Substituting this stationary distribution into the work

expression (step 3) in Eq. (A7), we find an explicit ex-

pression for the ratchet’s work production rate:

〈W 〉 = kBT
(1− δ)(δ + c− 2δc− ec)
ecδ/γ + e(δ + 2c− 2δc)

. (B1)

1. Period-2 Input

To restrict to period-2 input sequences with no phase

slips we set c = 0. Then, T ′ has the stationary distribu-

tion:

π′A⊗E = π′B⊗F = 0.5 ,

and all other elements vanish. The ratchet is fully syn-

chronized to the internal states of the input process. Sub-

stituting c = 0 into Eq. (B1) gives the work production

rate when synchronized:

〈W 〉 = kBT
1− δ
e

.

2. Noisy Period-2 Input

What happens when the environment fluctuates, gen-

erating input sequence phase slips with probability c?

Consider the optimal parameter settings at which the

ratchet generates work. When the ratchet behaves as an

engine, the optimal setting is γ = 1, which follows from

the partial derivative of the work production:

∂〈W 〉
∂γ

= 〈W 〉 ecδ

γ2(ecδ/γ + e(δ + 2c(1− δ)) ,

which is always positive when the engine produces work.

This means that it is always possible to enhance our en-

gine’s power by increasing γ to its maximum value at

γ = 1. And so, to build an optimal engine that leverages

the noisy period-2 input process, we set γ = 1, yielding:

〈W 〉(δ, c, γ = 1) = kBT
(1− δ)[δ + c− c(2δ + e)]

2ec+ δe(1− c) .

(B2)

3. Period-2 Input Entropy Rates

To check that the period-2 input process obeys Eq.

(6), we calculate the entropy rate:

∆hµ = h′µ − hµ .

The entropy rate hµ of a period-2 process is:

hµ = lim
N→∞

H[Y0:N ]

N

= lim
N→∞

1

N

= 0 .

The entropy rate h′µ of the output process generated by

T ′ can be calculated using the uncertainty in the next

symbol given the hidden state since T ′ is unifilar [63]:

h′µ = lim
N→∞

H[Y ′N |S′N ]

= lim
N→∞

∑
s′

H[Y ′N |S′N = s′] Pr(S′N = s′) .

(No such general expressions hold for nonunifilar trans-

ducers.)

For the period-2 process, c = 0, and we see that the

stationary state consists of two states with nonzero prob-

ability: π′A⊗E = π′B⊗F = 0.5. These states transition

back and forth between each other periodically, so the

current hidden state and output uniquely determine the

next hidden state, meaning this representation is unifi-

lar. Thus, we can use our calculated output HMM for

the entropy rate h′µ.

A⊗E has probability 1−δ
e of generating a 1 and B⊗F

has probability 1−δ
e of generating a 0. Thus, the uncer-

tainty in emitting the next bit from either causal state

is:

H[Y ′N |S′N = A⊗ E] = H[Y ′N |S′N = B ⊗ F ]

= H

(
1− δ
e

)
.

Thus, their entropy rates are the same and we find:

∆hµ = H

(
1− δ
e

)
. (B3)
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