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ABSTRACT 
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This device is analyzed as an incompressible viscous fluid. 

Over-all properties such as resistance, capacitance, and charging time are 

calculated, and an equivalent circuit is given; One unexpected result is 

that for a large applied magnetic field, viscous dissipation and joule dissi­

pation contribute equally to the total rate of dissipation. 
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C. C. Chang*and T. S. Lundgren t 
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INTRODUCTION 
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Recently Baker and his associates published a paper on a 
. . 1 

hydromagnetic capacitor, usually called a homopolar dev1ce. This aroused 

our attention and interest sufficiently to develop a theory for the operation of 

this machine. A pa_rt of the theory is presented here; the remainder will be 

published elsewhere later. 

The hydromagnetic capacitor as shown in Fig. 1 is an annular 

tube of rectangular eros s section filled with an electrically conducting fluid 

(assumed i.ncompressible in this analysis). The inner and outer circumfer­

ential walls of this device are perfectly conducting electrodes, while the 

top and bottom horizontal walls are nonconducting. If an electromotive force 

(emf) is maintained across the electrodes and a uniform magnetic field 

applied in the axial directioh, a Lorentz force develops. This causes the 

fluid to rotate about the polar axis at a rate such that the visc.roru;s fo~ce 
balances the Lorentz force. Kinetic energy is stored in this device, just as 

electrical energy is stored in a capacitor. In fact, it has been shown experi-
1 

mentally that, in its charging and discharging characteristics, this device 

behaves very much like a capacitor. 

* Professor of Fluid Mechanics, University of Minnesota; consultant to 
Lawrence Radiation Laboratory. 

tResearch fellow, University of Minnesota 
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Fig. 1. Cross section of homopolar device. 
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DERIVATION OF EQUATIONS 

When an electrically conducting incompressible fluid flows in 

the presence of electric and magnetic fields, the following set of equations 

(in mks units) express the interaction between the electromagnetic and fluid 
. 2 

dynamic effects: 

- ~ ( 1) curl B = 1-loJ 

- (2) div B = 0 

- -aB/at ( 3) curl E = 

- --- (4) j = u(E+VXB) 

av /at= -- 2- ( 5) p - V'p + jXB + pv V' V 

- ( 6) div V -. 0, 

where B is the magnetic flux density, 1-l is the permeability, j is the current 

density, E is the electric field, p is the mass density, vis the coefficient of 

viscosity, pis pressure, and u is electrical conductivity. In these equations, 

free-charge and displacement current have been neglected. In the problem 

under consideration, the geometry will be assumed axially symmetric (i.e., 

all p~;ysical quantities independent of e) with the s~reamlines in circles about 

the polar axis. That is, in cylindrical (r, e, z) coordinates, the velocity will 

have only one component, ve. in the e direction, and this will be independent 

of 8. In addition, it is assumed that no net current flows in the e direction, 

and the applied axial magnetic field B
0 

is uniform at infinity. Under t}:lese 

condit~ons it can be. shown. that Bz = B 0 and Br = je = Ee = 0. 
3 

There is 

however, an induced n:agnetic field Be .. Equations involving Be and V e alone 

are obtained from the e component of Eq. ( 5) and the e component of the curl 

of Eq. (4). These ar:e 

= 
a2 v av e + _1_ e 
-.-. 2-· 
a r r a r 

(7) 
v at 



and 

aB 
1-lo u __!i 

at 
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(8) 

The nonzero components of current and electric field can be calculated in 

terms of B
9 

and V 
8

. From Eqs. (1) and (4), we obtain 

(9) 

and 

Er = E 
z 

1 1 (10) 
r 

The pressure, P, can be calculated from the r and Z components of 

Eq. (5), that is, 

p = 

2 ne df 
2 1-lo + f(r), dr -

2 
B 8 I 1-lo 

( 11). 
r 

A cross section of the system is shown in Fig. 1. In order to 

preserve axial symmetry, the external circuit is taken here to be a· perfectly 

conducting sheet. If a simple wire were used, peripheral currents would be 

set up in the circumferential walls and the axial symmetry would be spoiled. 

At the perfectly conducting circumferential walls; E must be zero (continuity 
z .... 

of tangential components of E). From Eq. (10), this implies 8rB
8
/ar = 0 

at r = r 1 and r = r
2

. At the horizontal walls, Be must be continuous (no 

surface currents). It remains to determine Be in the region exterior to the 

fluid. Since the current in this region must be zero, Eq. (9) requires that 

rB 8 be a constant. In the r'egion external to both the fluid and the external 

circuit, this constant can be taken to be zero, since Be must vanish at infinity. 
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In the loop of the external circuit the constant should be -flo I/2rr,. where 

I (t) is the total current in the sense indicated in Fig. 1. The boundary 

conditions are now seen to be Be = 0 at the upper wall, and Be = -flo I/2rrr 

at the lower wall. 

' I 

New variables will be defined by r = h £, Z = hn, t = T 'T, 
I I I I 

Ve=.VV, Be=BB, I=Ii, andEr=EE, where£, 7l,'T, V, B, i, andE 

are dimensionless, his half the thickness of the capacitor, and the primed 

symbols are 
1 • I I 1/2 I 

constants which are related by B =fJ.0 ahE , V =h(u /p v) E 
I 2 I 

I = 2rruh E 
I 2 1/2 I 

and T = h (flo<J /v) . The constant E which has the dimensions 

of electric field is left arbitrary for the momenL With this change of 

variables, Eqs. (7), (8), and (10) take the form 

1 av a2
v 1 av 

2 
= --+- -~+ !_Y + M aB 

A B'T a£
2 

s as g2 
an

2 
at; 

(12) 

A a B a
2

B + 1 aB B '82B 
+ Mav = 

a £2 
- -7 + 

8'T s as a1'1.2 8Tj 

(18) 

and 

E = - 8B/aTJ- MV. ( 14) 

In these equations, new parameters 

have been used. The latter is the Hartmann number. The boundary conditions 

are as follows: V = 0 on all boundaries, B = 0 at TJ = 1, B =- i/s at TJ =- 1 

and 8sB/as = 0 at s = rl/h and at s = r2/h. In order to complete the specifi­

cation of the system, t?e current i could be specified as a function of time. 

"M:dre -generally, the external circuit would be given; and this would afford a 

relation between the total current and the emf between the electrodes. In 

other words, the additional relation wo.uld be obtained by treating the hydro­

magnetic capacitor as a circuit element. 

The general problem as formulated above is difficult to solve 

exactly. It will be assumed, therefore, that the device is very thin (thickness 
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much smaller than radial dimensions) and the effects of the circumferential 

walls. ~ill be neglected. To be more precise, the velocity will not be required 

to be zero at the circumferential walls . It is observed from the boundary 
. t -1 

conditions that B varies like '=' at the lower wall. This is a reflection of 

the fact that since the total current is conserved, the radial current density 

must vary in this manner. As a c6nsequence of this, the Lorentz force, which 

is the product of the applied field and the radial current density, must vary 

like s-
1

. This motivates the assumptions v = v ('Jl,T)/£, B = b (11,T)/£, and 

. E = - e (11,T)/s. Obviously a velocity of this form cannot be zero at the 

radial walls. On the other hand, we have E = 0, so the boundary condition 
z 

on B at the radial walls is identically.satisfied. The equations which v, b, 

'and e must satisfy are 

1 &v 8
2

v + M 8b 
A a-,. = ~ 

811 811 
(15) 

A 
ab = a

2
b + M av 

87- -2 811 
811 

{16) 

and 

ab e =- + 
811 

Mv. ( 17) 

The boundary conditions are v = 0 at 11 = ± 1, b = 0 at 11- 1, and b- - i 

at 11 = - L 

STEADY-STATE FLOW 

The simplest problem which can be solved for the hydromagnetic 

capacitor, is its steady- state operation with a constant potential difference, U, 

maintained between the circumferential walls. In order to make the boundary 

conditions on b antisymmetric, b will be replaced by b + i/2. This has no 

effect on the equations (in this study case) but changes the boundary conditions 

to b = ± i/2· at 11 = ± I. With this change, it is apparent that. b must be an 

odd function of 11 while v must be even. Eqs. ( 15) and ( 16) can each be 

integrated once, yielding 
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av:ja, + Mb = o (18) 

aNd 

8bf8'11 + Mv = e. ( 19) 

The constant of integr~tion in Eq. ( 18) has been made zero since b is odd 

and Vis even, and the constant in Eq. ( 19) has been identified withe by 

virtue of Eq. ( 17). Therefore, e, which is propalr.tional to Er is independent 

of 11· The reference electric field will be chosen so that e = 1. This is 

accomplished by integrating E between the circumferential walls and setting 
, r t: 

this result equal to the applied emf, U. The result is E = U /h ln r 
2
/r 

1 
Now, when b is eleiminated between Eqs. (18) and (19), the resulting 

equation for v 1s 

and .the desired solution, vanishing a<t:both walls, is 

v = 1/M ( 1 - cosh M11/cosh M). 

From Eqs, ( 18) and (21), we obtain 

b = ( 1/M) sinh M11/cosh M. 

'-, 

(20) 

( 2 1) 

(22) 

~y the use of this result and the condition b = i/2 at 11 = 1, the dimensionless 

current, i, can be determined, that is, 

i = 2 tanh M/M. 

From this the total current is found to be 

I = 4'1'l'o-h tanh M U:: U/R 
lnr 2 /r 1 M ,_ 0 

This expression gives the total resistance, R
0

, of the capacitor as 

R 0 
M 

tanh M 

(2 3) 

(24) 

(2 5) 



-IQ-

" I i 

UCRL-887/ 

Equation (25) is plotted versus M in Fig. 2, where it is seen that for large 

M the resistance is approximately M times the resistance with no magnetic 

field. T.he final expressions for velocity and induced field are 

and 

·V e 

B = 0 

1 
r 

( 1 _ cosh (MZ/h)) 
\ cosh M 

1 
r 

sinh (MZ/h) 
cosh M 

When M is very large, these last two relations are approximately 

1 
.7' 

except in a boundary layer with thickness of the order h/M. 

(26) 

( 2 7) 

Several over-all properties of the hydromagnetic capacitor are 

of ·considerable interest. If the device is considered as a circuit element 

with resistance R
0

, the rate of dissipation should be I
2

R0 and, indeed,· 

direct calculation of the total viscous and joule dissipation rates show this to 

be .the case. The local rate of viscous dissipation is p v (a v
8
ja Z)

2 
while the 

rate of joule dissipation is jr
2

/CJ or (aB
8
/az) 2 /fJ.0

2
CJ. The total rates of 

viscous and joule dissipation are the integrals of these quantities over the 

whole volume of the device. Using Eqs. (26) and (27) and carrying out the 

integration, we obtain for the total dissipation rates respectively, 

and 

2 ( !fl. 2rrCJhU = ln r2/r 1 J 

tanh M 
M 

ta!lh M 
.''M 

... 
+ 

( 2 8) 

1 
2 

·COSh M 
----,--) . (29) 

The sum of these two expressions, the total rate of dissipation, 1s u2 
/R

0 
which of course is the sum of I

2
R

0
. A quantity of greater interest is the 

ratio~ 
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Fig. 2. Steady-state resistance versus the Hartmann number, M. 



-12- UCRL-8877 

~v 
T 

J 
= sinh M cosh M - M 

sinh M cosh M + M ' 
(30) 

which shows how much the different dissipation mechanisms contribute to 

the total rate of dissipation. This ratio is plotted versus M in Fig. 8. It 

is clearly seen that the viscous and joule dissipations contribute equally to 

the total dissipation rate when M is greater than about three. 

Another interesting over -all property is the total kinetic 
j 

energy (K. E.). stored in the device. This is easily calculated from Eq. (26): 

K.E. = 1 
--,.,--2 
2M 

[ ~ ( 1 - tan~ M ) - tanh 
2

M J . . ( 31) 

The total kinetic energy as a function of M is presented in Fig. 4. The 

notable features of this result are that the maximum kinetic energy occurs 

at a <g;nit~ small value of -M (about 1.5), and for large M the kinetic energy 

varies like M- 2 . 

CHARGING CAPACITOR 

Although the steady-state problem gives information about the 

total kinetic en,ergy, it is not as yet clear to what extent the device behaves 

like a capacitor. This is best decided from an analysis of the transient 

characteristics of the device. The simplest transient problem will be con­

sidered, namely, charging the device from rest by a constant ern£ source· 

(i.e·~, an infinite capacitor). Even this problem is of considerable difficulty 

unless further sirnplication of the equations is made. In Eqs. (15) and (16) 

observe that the coefficients of the derivatives with respect to time are 
-1 . 

X. and X.. For most materials X. is a very small number (for mercury 

x.2 
z. 10-

7
), therefore the term X. -ab/BT will be neglected in Eq. ( 16). It 

will be shown later just how small ~ must be for this approxirna tion to be 

valid. Since this term is neglected, it is again possible td',-~eplace b by 

b + i/2, and to integrate Eq. (16) once. The constant of ;inreg_ratio.rt which 

results is again identified with e(T) by virtue of Eq. ( 17). However, e(T) 

must be independent of time, because the applied ern£ is steady. For this 
I 

reason it is possible to choose the reference electric field E so that e = l. 
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Fig. 3. Ratio of viscous dissipation rate to joule dissipation rate 

versus the Hartmann number, M. 
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I 

This i-s acecomplished, as in the steady-state -probleni,, by •E = U/h r 2 /r 1 . 

When a b/8 11 is eliminated from Eq. ( 15), the problem reduces to solving 

and 

1 av 
xa:r = 

2 a v 

~ 
2 

- M v + M 

Bb/a, + Mv = 1, 

(32) 

(33) 

with v and b equal to zero when 7' = 0 and the boundary conditions v = 0 at 

11· ·= :1:: 1 and b = :1:: i/2 at 11 = ~ 1. The solution of this problem is obtained 

by assuming 

and 

00 

v = Ml ( 1 - cosh M,) + ~ v ( 7') cos ~ 11. 
cosh M n n 

n= 

00 

, 1 sinh M11 \ 
IJ = M cosh M + ~ 

(34) 

(35) 

where f3 = (n + 1/2) 'IT, Substituting Eqs. (34) and {35) into Eqs. (32) and 
n 

( 33) and equating to ;z;ero the coefficients of the cosines and sines, we obtain 

>..-l av /87' =- (f3 2 + M 2
)v and f3 b + Mv = 0. The first of these 

n n n n n (, 2 n 2) 

integrates simply to v (7') = v (0) e- ~~n + M .. · zl while the second gives 
n n 

b (7') in terms of v (7'). The initial value v (0) is easily found by expanding n n n 

M-l ( 1 - cosh M 11/cosh M) in a aeries of cosines. 

This gives 

The final expressions for v and b are 

v = .!_ ( 1 _ cosh M11) _ \ 
M cosh M .b-o 

{36) 
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and 

00 

1 
b = M 

Sinh M11 
cosh M +~ ( 3 7) 

When the condition b = i/2 at 11 - 1 is used in Eq. (37), an expression for 
I 

the total current I= I i = (M/2 tanh M) (Ui/R
0

) results, 

namely, 

~ + 2M
3 

U 
I(t) = 'R.

0 
tanh M R

0 

00 

'\ 1 
~ O f3___,2_( f3---:::2-+-M"""'2,_.)-

n n 

(38) 

Now consider the circuit shown in Fig. 5. If this system is charged from 

rest by a constant emf, U, the total current is 

00 

u ~­
I (t) = - + (_ 

Ro J= 1 

U -t/R.C. 
-- e J J R. 

J 

Equation (39) is of the same forrp as Eq. (38); in fact, Fig. 5 gives an 

equivalent circuit for the hydromagnetic capacitor with 

2 . 2 
R. = Rof3:. 1.. (f3. 12 + M ) tanh M 

j J- J-

and 

I 3 2 2 22 
C.= (T /R

0
) 2 M />.. f3. -

1 
(f3. 

1 
+ M ) tanh M. 

J J- J- .. 

The characteristic times of the separate capacitance-resistance 

combinations are 

The 1ar ge st of these, t , can be taken as the characteristic time for the 
1 

hydromagnetic capacitor: 

I 2 2 2 2 2 
t 

1 
= T />.. ( M + 1T /4) = h /v ( M + ~ /4) 

( 39) 

(40) 

( 41) 

(42) 

( 43) 
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Fig. 5. Equivalent circuit for the hydromagnetic capacitor. 
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When M is very large --e. g. greater than 25 -- Eq. (38) can be approxi­

mated by 

-2 
13n 

In this approximation, the equivalent circuit takes the much simpler form 

shown in Fig. 6, with 

I 

R
1 

= R
0
/M = (ln r 2 /r 1) / 41Tcrh, (44) 

( 45) 

(46) 

The total capacitance of the general equivalent circuit (Fig. 5) is 

00 

c =L 1 (47) 
j= 1 

2 
From this, one would ca..lculate CU /2 as the total steady- state energy 

stored. A direct calculation of the steady-state kinetic energy 

~q.(31) and Fig.~. by first expanding the steady-state velocity, Eq. (26), 

to a cosine series and then carrying out the integration, shows K. E. = CU
2 

/2·. 

One might logically ask why the electrical and magnetic energy do not appear 

in this expression, that is, why isn't the total energy equal to CU
2 

/2. T~e 
' ----

~.n.1;;:w·e:r.,· to this is that th.·e electrical energy was lost when the displacement 

current was neglected and the magnetic energy disappeared when X. a b/8-r 

was dropped from Eq. (16). 

It is apparent from Fig. 5 that when the capacitors 

being charged, current must flow through the resistances R .. 
J 

C. are 
J 

Therefore, 

besides the constant rate of dissipation in the shunt resistance R
0

, an 

additional amount of dissipation is intrinsically associated with the charging 

process. The rate at which energy is put into the system is 
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Fig. 6. Equivalent circuit for large values of the Hartmann 

number, M. 
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00 

The term u2 jR
0 

is the constant rate of dissipation in R 0 . The total 

energy put into the remainder of the circuit is 

f j= 1 j:; 1 

2 c.u ' 
J 

(48) 

(49) 

which is just twice the energy stored in the system. This shows that the 

additional energy dissipated is equal to the total ene~gy stored in the system. 

A point which remains to be settled is the validity of neglecting 

A. ab/8-r in Eq. (16). A criterion which seems adequate is that A.- 8b/8-r 
2 2 

must be much less than a b/8 11 . Upon comparing the magnitude of these 

as calculated from Eq,., ( 37), it is seen that the inequality will be approximately 

satisfied; if ~( MLq..1T2 /4:') is much less than 1r
2 /4. For large M this 

requires ~2 M2 << 2.5. If M is srnal.l, it will be satisfied by A.
2 << 1. 

' 6 -7 3 
For mercury we have u~ 10 , v.:::..lO , and p:::.l3Xl0 in rnks units, 

therefore A.2 =f-Lo uv -10- 7 . For a magnetic field of 25,000 gauss 

(2.5 Weber/M
2

) and h = l:cm,lrL.approxirnately equals 675. Therefore, 

~2M2 
is about 0.5, which is much less than 2.5. These calculations show 

that the as surnptions made are valid for mercury when the applied field is 

smaller than 2 5, 000 gauss. 
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