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ABSTRACT

In a previous report [1] an approximate theory was developed which
governs the relationship between the frequency and propagation constant
for axisymmetric waves in hollow rods, and comparison was made for the
lowest three branches contained in the theory with the comparable branches
from the exact theory when the propagation constant is real.

In this paper the relationship is found when the propagation constant is
pure imaginary and when it is complex. Frequency spectra are formed from
the roots of the frequency equation of the approximate theory and these roots
form a complex branch and a loop on the imaginary plane connecting the second
and third spectral lines on the real plane. The imaginary loop and the com-
plex branch are compared to the comparable branches from the exact, three-
dimensional theory.

Some general properties of all of the complex branches which appear in

the exact theory are established.



I. INTRODUCTION

In a previous report [1] an approximate theory was developed that gives
the relationship between frequency and wave-length for trains of axisymmetric
waves travelling in infinitely long, hollow cylindrical rods. The theory
takes into account the coupling between the longitudinal, lowest radial and
lowest axial shear modes and so is valid for a range of frequencies extending
from zero to just below the cutoff frequency of the fourth mode, the lowest
neglected in the theory.

Now the quality of an approximate theory must be judged by how well
the frequencies predicted by it for a given wave length (or propagation
constant) match the corresponding frequencies from the exact three-
dimensional theory. In both the exact and approximate equations, the
frequency must be real but the propagation constant can be real, imaginary,
or complex. In [1], frequency spectra were developed to show the comparison
between exact and approximate theories when the propagation constant is
real.

In this part of the study, spectral lines are developed from both
theories for imaginary and complex propagation constants. The approximate
theory which includes the three modes and their three spectral lines on
the real plane includes one "loop" on the imaginary plane connecting the
second and third branches and one complex branch which extends from the

second real branch to the plane Q = 0. The exact theory contains an

infinite number of complex branches all of which originate in either the



real or imaginary planes, extend downward in complicated ways and all
eventually intersect the plane Q = 0. As the main purpose of the study

is to evaluate the approximate theory when the propagation constant is
imaginary or complex, only the lowest imaginary loop and the lowest complex
branch of the exact theory are explored numerically. However, study shows
that all the complex branches have some interesting general properties. When
a complex branch intersects either the real or imaginary plane it does so at
a point on a branch in the real or imaginary plane where the slope is zero.
In addition the complex branch is perpendicular to the plane it intersects.
Finally it is established that when all the complex branches intersect the

plane @ = O, they are perpendicular to it.

I11. The Exact and Approximate Frequency Equations

Both the exact and approximate frequency equations were derived in
the previous report.
Both equations have the form

F (g, Q; a*r D)=0

where f = propagation constant
Q = normalized frequency
* . . . =
a = ratio of outer to inner radii
Vv = Poisson's ratio .

The normalized frequency ) and the propagation constant { are related

to the frequency ® and the wave number along the rod Y according to



where V2 is the velocity of shear waves
® is the lowest root of Eq. (24) in Ref.[1l]using le =1
a is the inner radius.
The exact equation is in the form of the determinantal equation
]cijl =0, (i, j=1-4)
where the i indicates the row and j the column. The elements of the

determinant are
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The M\'s depend on the phase velocity and are given in Table 1, Ref. [1].

The approximate equation is also in the form of a determinant
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The ni (i =1 - 4) in Egs. (6) are adjustment factors used to make the spectral
lines from the approximate equations match as well as possible the comparable
lines from the exact equation.

These adjustment factors are given for various combinations of a* and ©
in Tables II - IV in [1].

The approximate theory governs the relationship between frequency and wave
length for the lowest three modes of motion. In the spectrum this relationship
is represented by spectral lines; three on the real plane, one ''loop on the
imaginary plane and one complex branch. The imaginary branch and the complex
branch are the subjects of special attention in this paper in that we wish to
ascertain the quality of the approximate theory when the wave number is imaginary
or complex. This quality is judged by how close the imaginary and complex branches

from the approximate theory lie to the comparable branches from the exact theory.

III. Numerical Analysis

The imaginary Ioop and the complex branch from the approximate theory are
constructed from the roots of Eq. (5). For a particular rod the a* and V are
established, and for a given value of ) Eq. (5) represents a bi-cubic equation
in {. This equation is solved numerically for Cz using an available program
for a cubic equation and the appropriate square roots of the pertinent values
of §2 give the imaginary and complex values of {. Pairs of (£,2) are used to
trace out the branches.

The imaginary loop from the exact theory is not difficult to establish
because when the propagation constant is pure imaginary the value of the
determinant in Eq. (3) is real. The loop is formed by first assigning imaginary

values to { and finding the two values of Q) for each { representing the bottom



and the top of the loop. We start close to the real plane and move in even
increments of { away from the real plane until the loop is closed. We begin

by choosing a small imaginary value of { and Eq. (3) is evaluated for uniformly
increasing values of (. When there is a change of sign of (3) the interval over
which this change has occurred is scanned more finely until the lower value of

) is determined to better than plotting accuracy. We repeat this procedure for
the same value of { until the second value of Q is found. We then increase {
by an increment and find the two values of ) for the new {. We continue this
process until the two values of @ for a given { are close to one another
indicating the closure of the loop.

The lowest complex branch of each spectrum is obtained from the exact
frequency Eq. (3) by assigning a value to  and finding the corresponding
complex {'s using the "'method of chords". This method is as applicable to
equations involving complex variables as it is to equations containing only
real variables. It is an iterative process which begins with two initial
values of the unknown variable.

For a given a* and v, the procedure is started near the @ = 0 plane and
continues upwards using increments of § of .05 until the branch nears the real
plane.

We start with Ql = .05 and take as the two first approximations Ql(l)

2 1
@ _p

mate theory with @ = 0. Using these two approximate values §1

(3) ¢ (2) (4),
1

to find Cl : This process is continued

+ 0.0005 where Ql(l) is value of { taken from the approxi-
3)

and Cl
is found and

subsequently we use Cl and

+1 -
(n+1) Cl(n)l <10 5, at which time the iteration is stopped and

until | Cl
C'1(n) =&

For the next frequency 92 = Ql + .05 the first two approximate roots are

(n+1) is taken to be the root of F(C,Ql) = 0.



(L and §2(2) + 0.005. Here Cz(l)

$2

the previous frequency. The procedure is continued with Q increasing in

is assigned the value Cl obtained for

increments until the complex branch is within a distance of .001 from the
real { plane. At this point the mesh on @ is made finer so that the inter-
section point with the real plane may be established with great accuracy.
The method of chords is well suited to finding the complex roots in
that it converges on a root rapidly. The complex branch is easily traced

from the set of pairs of Q and .

IV. Comparison of the Spectral Lines

The spectral lines for both imaginary and comples propagation constants

* *
are established for three rods; a = 2.0, V= .25; a =4.0, V= 0.29;

a* = 8.0, » = 0.25, and the spectral lines are compared in Figs. I - III.
For all three rods, the two imaginary loops are difficult to distinguish
from one another. Only for the first rod is there a discrepancy and it is
slight.

For all three rods the complex branches are close to one another except
near the frequency Q* at which the branch from the exact theory intersects
the real plane. For this frequency the surface representing F({,Q) is almost
plane, so that the slightest imaccuracy represented by the approximate theory
is magnified in this region. The lack of close matching in this one region
is a consequence of having to force the matching for the approximate theory

at a point on the real plane instead of being able to match the curvatures

at the lowest intercept.



V. Properties of the Complex Branches

When the propagation constant is complex, Eq. (1) is complex and may
be written

F (¢, 9 =F (6,1, O +1i Fz (€, n, . (8)

1
where { = § + 1 7.
Because for any point on the real plane (n = 0), F (¢, Q) is real, we
conclude that
F, (§, 0, Q) = 0. 9)
We now consider Eq. (1) for points in a region close to the real plane,
i.e., F (£ + iAy, Q). We express this function as a Taylor series expan-
sion about the real plane, and if we consider points on the complex branch
then
F (§ + iAn, Q) = 0. (10)
If we set the real and imaginary parts of the expansion each equal to
zero, use Eq. (9), and retain only the leading terms of each expansion,
we find
I. F, (§, 0, Q0 =0

1

an
11. Any > (E, 0, ) =0, (11)

As F(t,Q) is an analytic function, the real and imaginary parts of it

must satisfy the Cauchy-Riemann condition

OF, _ aFl
on SF



and as A n # 0, Eqs. (11) can be written

I. F(, Q) =0

OF (13)

II. —5¢ (E, Q) =0,
These same properties were found for the Pochhammer equation governing
solid rods by Onoe, McNiven, and Mindlin [2].
If we call one set of roots of the first of (13) §* and Q* we have from
the first of (13) and (10)
5%

F et oY =0

* * (14)
F (¢ +iny, Q) =0

We observe from Eqs. (14) that as we move a small distance from the point
(§*, Q*) perpendicular to the real plane we remain on a complex branch. We
conclude that near the real plane each complex branch is contained in a plane
perpendicular to thg real plane.

If we expand
* %
F(E + iAm, O + A0

* %
in a Taylor series about (£ , Q@ ) and use the same steps as before, we find

OF g* Q*
0 lim A o ¢ e (15)
o(in) AP0 (idn) OF ’

= £*.0%
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F * %
Now gﬁ (6, Q) is not usually zero, but the numerator is zero from

the second of Eqs. (13), so

on * *
Sam (6, Q) =o0. (16)

Thus, the projections of the complex branches on the imaginary plane are
perpendicular to the real plane, so that together with the finding above we
conclude that the complex branches are perpendicular to the real plane where
they intersect it.

The same reasoning as above may be used with

gg g% + %% =0 (17)

to show that

R0 *

Therefore, the complex branches intersect the real plane at points on
the real branches wh;re their slope is zero.

Using the same reasoning as up to this point it can be shown that when
the complex branches intersect the imaginary plane, they intersect it normally
and at points of the imaginary branches where the slope is zero.

Finally, we find that, except for a single case, the branches are all
perpendicular to the plane Q = O.

This can be shown by observing that
% =o0. (19)

.

F(, O =620
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All branches therefore have a mirror image about the plane Q = O,
Assuming that G (2 ,92) is continuously differentiable with respect to
even at Q = 0, £ # 0, we conclude that the branches must be perpendicular
to the plane Q = O.

The single exception to this is the lowest branch on the real plane,
the ''fundamental’ branch. We found in [1] that this branch intersects the
plane Q@ = O with a slope equal to 2 (1 + V). 1Insight into this case is gained

by expanding the function
G[Leg @+, £@+a0)] (20)

in a Taylor series about the point (E,ﬁ), a root of Eq. (1). Using the

steps as outlined above we find that when we equate Eq. (20) to zero we

obtain
g &, =z, é_ (21)
d¢ 9

where Z = gg g% . (22)

Now Z (E, 0) is not usually zero or infinity so when Q - 0, both the real
and imaginary parts of the slope %% (E, 0) approach infinity, and thus the
branch is perpendicular to the plane Q = 0. However for the lowest real
branch E is also zero, so that the slope %% (0,0) need not be infinite, and
indeed is not.

The points at which the complex branches intersect the plane § = 0

are not found readily from Eq. (1) in that it is satisfied identically



12

when Q is zero. The equation giving these points is obtained by expanding
Eq. (19) in a Taylor series about the O = 0 plane and taking the limit as 92

approaches zero. The resulting equation is

lim 5—2 €&, Q)=0. (23)
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Captions for Figures

Figures 1-3: Spectra of frequency vs. propagation constant showing
comparison between the exact and approximate theories
for the imaginary loop and the complex branch.
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