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Abstract

- José F. 0. Granjo? - Weng Kee Wong3

Optimal exact designs are problematic to find and study because there is no unified theory for determining them and studying
their properties. Each has its own challenges and when a method exists to confirm the design optimality, it is invariably
applicable to the particular problem only. We propose a systematic approach to construct optimal exact designs by incorporating
the Cholesky decomposition of the Fisher Information Matrix in a Mixed Integer Nonlinear Programming formulation. As
examples, we apply the methodology to find D- and A-optimal exact designs for linear and nonlinear models using global or
local optimizers. Our examples include design problems with constraints on the locations or the number of replicates at the

optimal design points.

Keywords Model-based optimal designs - Exact designs - Constrained designs - Mixed Integer Nonlinear Programming -

Global Optimization

Mathematics Subject Classification 62K05 - 90C47

1 Motivation

Optimal design of experiments (DoE) is an old yet increas-
ingly important subfield of statistics. Running experiments is
costly, and users want to rein in cost without sacrificing sta-
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tistical efficiency in their inference. Finding a formula or an
analytic description of an optimal exact design for a nonlinear
model is usually impossible due to technical difficulties. A
practical approach is to develop efficient algorithms for find-
ing optimal exact designs. In DoE, given a statistical model,
a fixed total number of observations N and an optimality
criterion, we seek the optimal number of design points, k,
their locations from a pre-specified compact design space X
and the number of replicates at each design point subject to
the constraint that the number of replicates sum to N. Such
an optimal design provides maximal precision for statistical
inference at minimum cost (Fedorov and Leonov 2014).
There are two types of designs: large sample or approxi-
mate designs and small sample or exact designs. The former
are essentially probability measures on the design space and
are easier to find. In particular, when the optimality criterion
is convex over the design space, we have a convex opti-
mization problem (Kiefer 1974) and there are algorithms
for searching the optimal approximate designs, including
analytical tools for studying their properties and confirm-
ing optimality of the design. In practice, each of the weights
at an optimal design point in an approximate design has to
be multiplied by N and rounded to an integer such that they
all sum to N before such an optimal approximate design can
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be implemented; Kiefer (1974), Pukelsheim (1993), Vanden-
berghe and Boyd (1999) provide details.

In optimal exact design problems, the numbers of obser-
vations at design points are integers and they sum to N.
Consequently, we do not have a convex optimization problem
in general and, so, finding optimal exact designs are computa-
tionally more challenging than finding approximate optimal
designs (Boer and Hendrix 2000). Each optimal exact design
problem has its own unique technical features that depend
on the model, design criterion and N; analytic solutions are
available only for some simple models, and there are no gen-
eral algorithms for finding optimal exact designs (Gribik
and Kortanek 1977). However, optimal exact designs are
important in their own right because (i) simply rounding the
approximate number of observations to take at each point
from an optimal approximate design to obtain an optimal
exact design may result in an inefficient design when N is
small (Imhof et al. 2001); and (ii) even with a moderate sam-
ple size, a rounded optimal approximate design may not be
implementable when some of the optimal proportions at some
design points are very small.

There are various numerical algorithms for finding opti-
mal exact designs based on exchange methods. They were
initially proposed for the D-optimality criterion (Mitchell
and Miller 1970; Wynn 1970; Fedorov 1972) and mainly
for linear models. An appropriate starting design is required
to initialize these algorithms and afterward, at each iter-
ation, they delete points from the current design and add
new points from a specified grid until a user specified stop-
ping rule is met. The algorithms do not guarantee global
optimality, and so they are run a few times using different
starting designs to ascertain that they converge to the same
optimal design. Refinements to these algorithms were contin-
ually made and include the DETMAX algorithm (Mitchell
1974), the modified Fedorov algorithm (Cook and Nacht-
sheim 1980) and the KL-exchange algorithm (Atkinson and
Donev 1989). These are generally referred to as point-
exchange algorithms, and they have been used to construct
response surface designs involving random blocks (Goos
and Vandebroek 2001; Goos and Donev 2006), D-optimal
split-plot designs (Goos and Vandebroek 2003) or crossover
designs (Donev 1998). The coordinate-exchange algorithm
proposed by Meyer and Nachtsheim (1995) tackled some of
the problems the point-exchange algorithms have by avoid-
ing the explicit enumeration of candidate points where this
problem occurred for both continuous and discrete and con-
tinuous factors. However, like other exchange algorithms, it
still has the tendency that it gets trapped in a locally optimal
design (Mandal et al. 2015; Palhazi Cuervo et al. 2016).

Mathematical programming methods provide alternative
approaches to generate optimal exact designs and have been
successfully applied to search for both approximate and
factorial designs. Some examples for finding approximate
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designs include Linear Programming (Harman and Jurik
2008), Second-Order Cone Programming (Sagnol 2011),
Semidefinite Programming (Vandenberghe and Boyd 1999;
Duarte and Wong 2015), Semi-Infinite Programming (Duarte
et al. 2015) and Nonlinear Programming (NLP) (Molchanov
and Zuyev 2002). Recently, Mixed Integer Programming was
also used to find mixed-level and two-level orthogonally
blocked designs (Sartono et al. 2015b), orthogonal fractional
factorial split-plot designs (Sartono et al. 2015a; Vo-Thanh
et al. 2018) and trend robust run-order designs (Nufiez Ares
and Goos 2008).

Applications of mathematical programming methods to
find optimal exact designs in a general regression setting
are less numerous due to the additional complexity. In Welch
(1982), the design space is discretized and a convex optimiza-
tion algorithm based on branch and bound is used to ensure
that the optimal numbers of replicates of the D-optimal exact
designs are integers. Similarly, Harman and Filova4 (2014)
and Sagnol and Harman (2015) used, respectively, Mixed
Integer Quadratic Programming (MIQP) and Mixed Inte-
ger Second-Order Cone Programming techniques (MISOCP)
to find D-optimal exact designs. Both methods also require
discretizing the design space, ensuring that the global opti-
mal design is found on the discretized space. The resulting
optimization problem can be solved efficiently using state-
of-the-art solvers employing branch-and-bound techniques.
Potential issues with the aforementioned methods include the
exponential increase in the size of the optimization problem
when the number of factors and the size of the candidate
set of design points increase. Although coarser grids could
reduce the size of the optimization problem, the resulting
design may not be supported at the correct design points and
can become inefficient.

Esteban-Bravo et al. (2017) showed that NLP formula-
tions can be used to find unconstrained and constrained exact
designs, and that Newton-based methods using Interior Point
or Filter techniques performed well for the problem. Their
formulation for finding optimal exact designs is that for find-
ing approximate designs with the caveat that the weights are
rational numbers so that all replicates are integers that sum
to N, see also Leszkiewicz (2014). A general drawback of
the NLP formulations is that the numerical calculation of the
design criteria, such as those involving the determinant or
trace of the inverse of a matrix, may suffer from numerical
instabilities that result in multiple optima.

Our aim in this paper is to provide a general mathematical
programming framework based on Mixed Integer Nonlinear
Programming (MINLP) to find various types of optimal exact
designs for a broad class of models. Some key advantages of
our approach are: (i) unlike the MIQP and MISOCP formu-
lations, our method does not require the design space to be
discretized before optimization; (ii) the design points and the
replicates are optimized simultaneously which leads to glob-
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ally optimal designs in the original design space; and (iii)
the method is flexible in that it can readily include additional
user-defined constraints, such as restrictions on the distribu-
tion of the locations or the number of replicates at the design
points. Moreover, the Cholesky decomposition to compute
the determinant of the Fisher Information Matrix (FIM) is
directly embedded into the optimization problem. From our
knowledge, this is also new and, as it will be shown, improves
the numerical stability and accuracy of the algorithm.

Section 2 presents the statistical background and reviews
the general MINLP problem. In Sect. 3, we provide the for-
mulations for D- and A-optimal exact design problems and
extend them to find constrained optimal exact designs with
various types of constraints. Section 4 implements the algo-
rithm to generate optimal exact designs for linear models and
locally optimal exact designs for several nonlinear models.
Section 5 concludes with a summary.

2 Background

All our regression models addressed have a univariate
response with n, independent variables x € X C R, and
the mean response at x is

Elylx, p] = f(x, p). (D

Here, f(x, p) is a known differentiable function, apart from
a vector of unknown model parameters p € P C R" where
ng is number of parameters in the model, and E[e] is the
expectation operator with respect to the error distribution.
The design space X is a known compact domain from which
the design points are selected to observe the N outcomes.
Let& be ak-pointexactdesign supportedatxy, ..., x;, ...
in X with n; replicates at x; subject to Zle n; = N.Hence-
forth, we assume the number k of support points in the design
sought is user specified, and an initial estimate for k is the
number of parameters in the model, ¢ . In what follows, let n
be the vector of all possible replicates at the design points, let
,Q]?’:{ni; 0<n; <N, Zlen,-:N, 1 <i<k}and
let E,fv = XK x Q,fv be the set of all k-point feasible designs
on X. We assume k > ngy; otherwise, there are not enough
support points to estimate all the parameters in the model. The
assumption that the number of support points is pre-specified
by the user is a limitation, but it is sometimes not the case in
practice. For instance, it can be expensive to take observa-
tions at a new design point and so it is desirable to limit the
number of design points in the study; at other times, this fixed
number of design points is naturally restricted. In biomedical
studies, examples include the number of times blood samples
can be drawn from an infant or an experimental drug is only
available in a fixed number of dosages. Alternatively, since
running the algorithm with various values of k presents no

new technical difficulties, one may run the algorithm using
different values of k and compare properties of the different
optimal designs before implementation.

The quality of the design & is measured by a convex func-
tion of its FIM, which is the matrix with elements equal to
the negative of the expectation of the second-order deriva-
tives of the log-likelihood of all observed data with respect to
the parameters. When responses are independent, the global
FIM of design & is

B 0 (026 P\ _ = ni
%(g’p)__E[%<T>i|_ZNM(B”’F)

i=1

k
= > i p) hTxi p) @

i=1

where Z (&, p) is the log-likelihood function of the observed
responses using design &, 8y is the degenerate design that puts
all its mass at x, M (8y,, p) is the elemental FIM at x; and
h(x;, p) is the vector of first-order derivatives of the log-
likelihood with respect to the parameters p at x;.

2.1 Optimality criteria

Here, we describe the design criteria and, when applicable,
the theoretical tools to confirm the optimality of a design.
When errors are identically and normally distributed with
independent errors, the volume of the confidence region for p
is inversely proportional to det[.#'/?(¢, p)]. Consequently,
minimizing the determinant of the inverse of the FIM by
choice of a design leads to the most accurate estimates for
the parameters. If the interest is in finding the best k-point
D-optimal exact design, the optimization problem is

ép = arg min log {detl. /(5. )71} 3

el

which is equivalent to maximizing the determinant of the
FIM,

§p = arg Smflj}v log {det[.Z (§, p)]} . “

E.:k

Another common design criterion is A-optimality that
minimizes the sum of the variances of all the estimated
parameters in the mean function. Such a design §4 satisfies

e1 = arg min ful.2& p)7'1}. ©)
gegl

For a linear model, the FIM does not depend on the
unknown parameters and so the optimal design does not
depend on p. If it does, as when the model is nonlinear, nom-
inal values based on experts’ opinion, previous or similar
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studies are used to replace p before the criterion is opti-
mized. The resulting design is called a locally optimal design
because it depends on the nominal values (Chernoff 1953).

Approximate designs are similar to exact designs except
that each n; is replaced by w;, the proportion of observations
to be taken at x;. They are implemented by taking N x w;
observations at x; subject to each N x wj is an integer, and
they sum to N. When an optimal design is sought among
all approximate designs on the design space and the design
criterion is convex, the optimality of an approximate design
& can be verified using an equivalence theorem based on
directional derivative considerations (Fedorov 1972; Kiefer
1974; Pukelsheim 1993). If we let §,. be the degenerate design
at the point x € X, the equivalence theorem says &p is a D-
optimal approximate design among all designs on X if and
only if

W (x|ép, p) =t {4 (Ep, p)I ' M(Sx. p)} <ng, Vx €X,
(6)

with equality at every design point of &p. The function
¥ (x|&, p) is the dispersion function of the design &. In
Sect. 4.2, we display selected dispersion functions of the opti-
mal exact designs we found and show that they are equivalent
to optimal approximate designs when N is a multiple of ng.

To compare two designs & and &, we use their relative
efficiencies. For the D-optimality criterion, the D-efficiency
of & relative to & is defined by

1
exp [log(det[.Z (), P)])]) " 7

Effp(§1,62) = (exp [log(det[.Z (&, p)])]

and, similarly, for A-optimality criterion, the efficiency of &;
relative to & is defined by

tr[.# =" (&, p)]

EffaGr &) = =6 1

®)
If & is the optimal design sought, the above ratios become
the D-efficiency and A-efficiency of &;, respectively. The
interpretation of an efficiency is that if a design has an effi-
ciency of 50%, it needs to be replicated twice to do as well
as the optimal design (Fedorov 1972; Pukelsheim 1993). In
practice, designs with high efficiencies are desired.

2.2 Mixed Integer Nonlinear Programming

MINLP is a class of tools to optimize a nonlinear objec-
tive function ¥ (x, y) with possibly nonlinear constraints
where some decision variables are integer. MINLPs arise in a
wide range of applications, including chemical engineering,
finance and management. If there are n,, continuous variables
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and ny discrete variables to optimize, the general form of a
MINLP is

min ¥ (x, y) (9a)
x.y

st.v(x,y)=0, Vie& (9b)
gi(x,y) <0, Vies (%)
xeX, yeY. (9d)

Here, the functions v; (x, y) and g; (x, y) map R"" to R,
& is the set of equality constraints, .# the set of inequalities,
X is a compact set containing continuous variables x, and Y
is the set containing discrete variables y.

Some common algorithms to solve Mixed Integer Non-
linear Programs are the outer-approximation method (Duran
and Grossmann 1986), the branch-and-bound method (Fletcher
and Leyffer 1998) and the extended cutting plane method
(Westerlund and Pettersson 1995). Floudas (2002) reviews
the fundamentals of using MINLP to solve optimization
problems and note that traditional MINLP algorithms guar-
antee the global optima under certain convexity assumptions.

Our design problems may have multiple local optima
and to guarantee that a global optimum is found, a global
solver must be employed. An example of a global solver
is BARON. It implements deterministic global optimization
algorithms that combine spatial branch-and-bound proce-
dures and bound tightening methods via constraint propaga-
tion and interval analysis in a branch-and-reduce technique
(Tawarlamani and Sahinidis 2002). Sahinidis (2014) showed
that these techniques work quite well under fairly general
assumptions. In our formulations, those assumptions are sat-
isfied by construction as all decision variables are bounded.
However, global optimization solvers still require a long
computational time compared to local solvers (Lastusilta
et al. 2007) and this may limit their utilization to small and
average-sized problems.

A potential way to shorten the CPU time is to use a local
MINLP solver, such as, SBB (GAMS Development Corpora-
tion 2013b), for handling several design problems addressed
in the paper, see Sect. 4.2. In Sect. 4.1, we compare opti-
mal designs obtained with local and global MINLP solvers,
where BARON represents the latter class and SBB the former.
Both MINLP tools use CONOPT as a NLP solver to handle
the relaxed nonlinear programs (Drud 1985) and CPLEX to
solve the Mixed Integer Linear Programs (GAMS Develop-
ment Corporation 2013b).

3 Optimal design MINLP formulations
We introduce MINLP formulations for finding a k-point D-

and A-optimal exactdesignin Sects. 3.1 and 3.2, respectively.
We first focus on solving unconstrained optimal designs
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before we demonstrate how MINLP formulations can solve
constrained optimization problems with user-selected restric-
tions. In Sect. 3.3, we review a common approach to initialize
consistently the MINLP problems, tools for solving the
optimization problems and discuss limitations of the formu-
lations.

3.1 D-optimal designs

Given a statistical model and values for k and N, let .Z (&, p)
be the FIM in (2). The formulation for finding a k-point D-
optimal exact designs on = ,ﬁv may be equivalently formulated
as an optimization problem as follows:

max - log (det[.# (¢, p)]) (10a)
el
k
S.t. Zn; =N
=1
xeX, neel. (10b)

To maximize log (det[.# (&, p)]), we apply the Cholesky
decomposition to the FIM and write

AME p)=UTE p)UE, p) Y

where 7/ (&, p) is an upper triangular matrix and has posi-
tive diagonal elements u«; ; when FIM is positive definite. It
follows that

ng
det(.7 (&, p)) = [ [ui;. (12)

i=1

log[det(.Z (&, p))] = 22?11 log(u; ;) and maximizing
det(.# (&, p)) is equivalent to maximizing the sum of the
logarithm of the diagonal elements of % (£, p).

Hereafter, we write i, j € [ng] to represent indices i, j
running from 1 to ng. Similarly, the notationi € [ng]] means
the single index i runs from 1 to ng. If u; ; is the (i, j)th
element of % (&, p),i, j € [ng], our MINLP formulation
for finding an D-optimal exact design is

ng
max » log(ui ;) (13a)
i=1
£
st.m; ;= IZI: ﬁhl,i(x’ p) hij(x,p), i, jel[n]
(13b)
k
mi j = Zul’iul’j’ i, j€ [[ng]], i<j (13c¢)
I=1
Uijj = €, i€ [[ng]] (13d)

uij =0, i, je[nel. i=j+1 (13e)
mii > u; . i, j € [ng] (13f)
k

an =N

=1

xeX, ne ). (13g)

Here, € is a small positive constant to ensure that the FIM
is positive definite. For all examples in Sect. 4, € = 1 x
1072, Equation (13b) follows from (2), (13c) represents the
Cholesky decomposition, (13d) guarantees that all diago-
nal elements of % (&, p) are positive and (13e) assures that
% (&, p) is upper triangular. Equation (13f) is a numerical
stability condition imposed on the Cholesky factorization of
positive semidefinite matrices (Golub and van Loan 2013,
Theorem 4.2.8) and constraint (13g) restricts the total num-
ber of observations to be N and ensures that the design points
belong to design space X.

3.2 A-optimal design

A-optimal exact experimental plans may be formulated as
follows:

min .2~ (&, p)] (14a)
EeEﬁ
k
s.t. an =N
=1
xeX, ne 2l (14b)
The optimization problem (14) requires inverting

#~'(&, p) whichis a potentially numerically unstable oper-
ation when the FIM is ill-conditioned. To avoid explicit
computation of the inverse matrix, we apply the Cholesky
decomposition to invert the resulting upper diagonal matrix
(&, p) that results from the decomposition of .Z (&, p);
the rationale is that inverting an upper triangular matrix
obtained by Cholesky factorization is numerically more
stable than inverting the original matrix (Du Croz and
Higham 1992). The procedure has three steps that are han-
dled simultaneously within the optimization problem: (i)
apply the Cholesky decomposition to the FIM, cf. Sect. 3.1;
(ii) invert the upper triangular matrix % (&, p) using the
relation % (¢, p) % ~' (¢, p) = I,, where I, is the ng-
dimensional identity matrix; and (iii) compute .# -1 &, p)
via. %7VE p). ie. ATNE P = UT'E.p) x
4 _1(5 , P)]T (Du Croz and Higham 1992), and, finally,
compute tr[.Z (&, p)].

Let m; ; be the (i, j)th entry of MV (E, p) and u; ;j be
the (i, j)th entry of % ~'(&, p) where i, j € [ng]. By con-
struction, % (&, p) is positive definite and invertible if all

@ Springer
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the diagonal elements are positive. The same also holds for
% ~1(&, p). Step (i) is the Cholesky decomposition of the
FIM represented by (13c), and the second step corresponds
to inverting % (&, p):

Zf:l uigu ;=1 ifi =j s
Sy uig it =0 ifi # j,
with step (iii) represented by
k
mij =y uiun, i j €l i< (16)
=1

A-optimal designs minimize tr(.# ' (£, p)) or equiva-
lently, minimizes the sum of allm; ;, i € [ng]. The complete
MINLP for computing the A-optimal designs is

ng
min Y 7 (17a)
i=1
k "
st.m; ;= IZI: ﬁhl,i(-’ﬁ p) hij(x,p), i, jel[n]
(17b)
ng
mij =Y uuj, i.j€ngl.i<j (17¢)
=1
k
wi =1, i, jelng].i=j (17d)
=1
k
it =0, i, jelngl.i#j (17e)
=1
k
mi,j = Zﬁi,zﬁz,/‘, i, j€lne], i< (17f)
=1
Ujj = €, i€ [[l’lg]] (17g)
uj; =€, ié€l[ng] (17h)
uij =0, i, jeng],i=j+1 (171)
uj,j=0, i, jeng], i =j+1 (7))
mij=mj;, i, j€ngl,i<j—1 (17k)
mii>u; ;. i j€[ng] (171)
mii =17, i, j € [no] (17m)
k
an =N
=1
xeX, ne ). (17n)

Equations (17b, 17¢c, 17g, 171, 171) and (17n) are similar to
those in the D-optimal design formulation. Equations (17d-
17e) reflect relationship (15) and generate % ~! (£, p), equa-
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tion (17k) captures constraint (16) to produce .# -1 &, p)
and equations (171) and (17j), respectively, impose the lower
triangular structure of % (¢, p) and % ~'(£, p). Equation
(17k) imposes the symmetry on .# ' (£, p) and both equa-
tions (17g) and (17h) ensure that the diagonal elements
of (&, p) and .#~' (¢, p) are positive, respectively.
Condition (17m) is the numerical stability insurance for
the Cholesky factorization of .#~!(&, p). We impose the
symmetry of .# ! (¢, p) in Equation (17k) to reduce the
feasibility region which may then help to improve the con-
vergence rate of the solver. The symmetry of the FIM and its
inverse are guaranteed by (17b) and (17k), respectively.

An advantage of our approach is that when there are
additional constraints, such as restrictions on the number
of replicates at each design point, they can be incorporated
into our design formulation problem as linear or nonlinear
inequalities or equalities. Specifically, we apply formulations
(13) and (17) to search for k-point unconstrained optimal
designs in E,fv , the set of feasible designs on X. By including
additional constraints in problems (13) and (17), our method
can also find a constrained optimal exact designs from the
set E,ﬁv N{(x,n): y(x,n) <0, ¢(x,n) = 0}. Here, y and
¢ are user-selected differentiable functions in the inequality
and equality constraints, respectively, on the design space X
or on the replicates space §2., or both.

3.3 Initialization and limitations

To reduce CPU time, we provide consistent initial guesses
to the MINLP solver. This means that the initial solution
£© has to be consistent and satisfy all constraints of the
problem (Pantelides 1988). To construct £ we first choose
a point centrally located in X and then select the other grid
points using the relation x; = x;_; + Ax where Ax =
(maxx — minx)/(k — 1) and k is the number of support
points selected by the user. The replicates are then distributed
so that the values of n; are equal while ensuring that their sum
is N. Next, we compute the elemental and the global FIMs
for €O, 7O p) and .21 (D, p) and let the solver
iterate until it converges to the optimum.

The formulations in Sect. 3 are coded in the GAMS envi-
ronment (GAMS Development Corporation 2013a). GAMS is
a general modeling system that supports mathematical pro-
gramming applications in several areas. Upon execution, the
code describing the mathematical program is automatically
compiled, symbolically transcribed into a set of numerical
structures, and all the information regarding the gradient and
matrix Hessian is generated using the automatic differenti-
ation tool and made available to the solver. We provide a
sample of such a code in the Supplementary Material.

A drawback of the proposed formulations is their limited
ability to find a global optimum in highly nonlinear prob-
lems, specifically. Typically, global optimizers can guarantee
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global optimality, but the computational burden required for
finding optimal designs for models with several covariates
can be massive or may not even converge within a realistic
time frame. Using local optimizers lowers the computational
effort but does not guarantee that the solution found is a
global optimum. Therefore, the choice of using a global or
a local optimizer involves a trade-off. One common strategy
to further reduce the CPU time is to tighten the bounds for
all the decision variables in the MINLP problem and provide
an accurate initial solution. This is a particularly useful step
when global optimizers are used.

Generally, our formulations (13) and (17) work well even
when N or k are large unless the FIM becomes nearly singu-
lar and the model parameters have sensitivities [see Eq. (2)]
of very different magnitude or the design space is multi-
dimensional and the matrix inversion procedure becomes
numerically unstable. However, even in these cases, we can
scale properly the variables and equations to handle the prob-
lems. From our experiments in Sect. 4, the main limitations
are related with the MINLP solvers currently available, and
we were not able to identify a cutoff point, either on the
size of the optimization problem or the FIM condition num-
ber, where the formulations fail. In this study, local solvers
work surprisingly well to find a optimum for all problems
addressed.

4 Numerical results

We now report D- and A-optimal exact designs for linear and
nonlinear models found from our formulations. Some models
were chosen for comparison with published results obtained
using different numerical approaches. All computations were
done using an Intel Core i7 machine running a 64 bits Win-
dows 10 operating system with 2.80 GHz processor. In all
problems, the relative and absolute tolerances used to solve
the MINLP problems were set to 1 x 107> and the absolute
tolerance is set equal to €, the minimum value allowed for the
diagonal entries in the FIM or its inverse so that they are posi-
tive definite matrices. The optima reported for each design in
all the tables are for log[det(% (¢, p))]and tr[.# ' (@, p)]
for D- and A-optimality criteria, respectively (note the first
is a maximizer and the last a minimizer). The efficiency of
D-optimal designs is determined from (7) using the relation
log[det(.7Z (¢, p))] = 2 log[det(% (§, p))].

We employ the formulations in Sect. 3 to find optimal
designs for the models in Table 1. Models 1-2 are linear,
and the design space is X = [—1,1] and X = [0.5, 2.5],
respectively. Some of the Models 3-8 have the same design
spaces as in the original problems discussed in the litera-
ture, and the set of parameters used for constructing local
designs was also preserved whenever possible. Models 3—
8 are nonlinear, and we report locally optimal designs for

the set of parameters listed below each model. The mean
responses in Models 6 and 7 are structurally the same, except
for the nominal value of the parameter m. Models 9—14 have
multiple regressors and so they allow us to test our algo-
rithm for multi-factor experiments. Model 14 is a four-factor
second-order response surface model with pairwise interac-
tions. We note that Gotwalt et al. (2009) obtained Bayesian
optimal designs for models subsumed in Model 10. Specifi-
cally, they addressed optimal exact design problems by first
setting n; = 1, Vi € [N], and allowing that, in result of
the optimization, certain rows of the model matrix are iden-
tical. Consequently, here, the replication will become visible
when multiple rows of the design are identical. Further, they
set N but do not impose constraints on the number of dis-
tinct support points of the optimal design. Our framework is
different as we set first set both N and the number of sup-
port points, k, and then optimize the design points and the
replication, n; € 2}, Vi e [k]. Rasch et al. (1997) found
replication-free D-optimal designs for models 3—4, and we
compare some of their optimal exact designs with ours.

We applied our algorithm to find optimal exact designs
for a battery of models with one or more factors. We select
these models to test our algorithms either because they are
widely used in practice or their optimal designs have been
analytically or numerically determined and available for
comparison. Tables 7 and 8 show that models with more
factors (i.e., higher dimension) may not necessarily pose
additional numerical difficulty; the crucial issue usually lies
in the nonlinearity of the MINLP problem. Smaller dimen-
sional models such as Models 3 and 4 below can be more
challenging for our methods to solve than models with more
factors involving, for example, linear polynomial terms. That,
combined with the existence of reference optimal designs, is
the rationale for using Models 3—4 for comparison in next
sections.

We first discuss minimally supported optimal designs
where k = np without constraints. Minimally supported
designs are desirable when taking observations at a new loca-
tion is expensive. Designs that have equal masses ny /N at
every design point are called uniform designs (Pukelsheim
1993, Chap. 4). They are popular because of their simplicity
and when appropriate, we compare our optimal designs with
uniform designs. In Sect. 4.1, we first compare the optimal
designs obtained with our formulations for Models 3 and 4
and use different N values to analyze the effect of differ-
ent sample sizes on the design. We compare optimal designs
obtained from a locally optimal MINLP solver (SBB) with
those generated from a global optimization solver (BARON).
In addition, we compare designs obtained from our algorithm
with analytical solutions in the literature when the latter are
available.

Section 4.2 presents unconstrained optimal designs obtained
for the models in Table 1. Here, SBB was used to solve the
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Table 1 Battery of statistical

models used for testing the Model Regression function Design space (X)
MINLP formulations Bo+ B x + P X2+ B X3+ Ba 4 [—1.1]

2 Bo+ B x+ Pox~! + B3 exp(—x) [0.5,2.5]

34 a+ B exp(yx) [0, 25]
a=18=—14,y=-02

4b o exp[B exp(yx)] [0, 150]
a=1,=—14,y=-02

5 it Fx [0.001, 2]
V=20,k=05F=10

6¢ Eo+ “ﬁ% [1 x 1075, 10]
Ex =1.70, Ey = 0.137, k:i" =1l,m=15

74 Eo + % [1x 1075, 10]
Exo =170, Eg =0.137, k] =1,m = —1.5

8¢ y expl—a (x —0) —exp(—A (x —0))] [0, 30]
y =1.946,60 = 6.06, v = 0.174, A = 0.288

of Bo + Bi x1 + B x2 + B3 xF + Ba x3 + Bs x1 x2 [—1,17?

108 I+exp(Bo+Bi XIJlrﬂz x2+p3 x1 x2) [0, 5] < [0, 1]
Bo=—2,B1=0.5,p=0.5,p3=0.1

e b (0,32
6 =2.9,0, =12.2,03 = 0.69

121 Bo+ B1 x1 + B X2+ B3 x3 + Ba x7 + Bs x5 + Po X3 + -1, 17°

B7 x1 x2 + Bg x1 X3+ fo x2 X3
131 B x1+ B2 xa+ B3 x3 + Ba x1 X2+ Bs x1 x3 + Be x2 x3 + [0.5,2.0°
B1/x1 + Bg/x2 + Bo/x3
14% Bo+B1 x1 + B2 x2+ B3 X3+ Ba x4 X2+ Bs X1 X2+ B X1 X3+ f7 X1 Xa+ -1, 11*

Bs x2 X3+ Po X2 X4 + Pro x3 X4 + P11 ¥} + 1o x5 + P13 x5 + Pra x]

4Three parameter exponential function.

bGompertz model (Laird 1964)

“Modified Michaelis—Menten model (L6pez-Fidalgo et al. 2008)

dFour-parameter Hill model (Hill 1910)

€Coale-McNeil model (Coale and McNeil 1972)

fSecond-order response surface model with two factors (Atkinson et al. 2007, p. 170)
2Logistic model with two factors and all pairwise interactions

"Kinetics of the catalytic dehydrogenation of n-hexyl alcohol model (Box and Hunter 1965)
IThree-factor quadratic polynomial mixture model

Johnson and Nachtsheim (1983) model including nonlinear terms (on covariates)

KFour-factor surface response model

MINLP optimization problems, where N = 3 x ng for all
cases. In Sect. 4.3, we find constrained optimal designs where
the design space and/or the number of replicates are subject
to restrictions. These constraints can be linear or nonlinear,
and k is at least as large as ng. For designs with k > ng, we
also set the value of k as in the minimally supported designs
and then include an additional constraint in problems (13)
and (17) imposing that all support points have at least one
observation (i.e., n; > 1). Practically, in our formulation
these are constrained designs as they include additional con-
straints and will be addressed in Sect. 4.3. The D-optimal
exact designs for most of the cases in Table 1 are new and so
are all the A-optimal exact designs.

@ Springer

4.1 Comparison of results

In this subsection, we compare optimal exact designs found
from our algorithm in a variety of ways: in Sect. 4.1.1,
we study them using different sample sizes; in Sect. 4.1.2,
we compare them with those found using a global optimal
MINLP solver, and in Sect. 4.1.3, we compare them with
analytical results when they are available.

4.1.1 Impact of the sample size

Table 2 presents optimal exact designs of different sizes for
Models 3 and 4 found by BARON. For Model 3, N = 3 x
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Table2 D- and A-optimal

exact designs for Models 3 and Model Criterion N Desten ot e
4 in Table 1 obtained using a 0.0000 4.8304 25. 0000
global MINLP solver 3 D J ( 3 ) — 07082 *?
10 0.0000 4.8396 25. 0000 — 07824 2.8
4 3
. 00000 48364 250000 os1s 24
4 3
. . (o 0000 4300525, 0000) 8 7043 35
" 00000 39398 250000 £.8053 47
3 2
. (o 0000 3.9756 25. 0000) §.8035 52
4 2
\ ” s 0.0000 7.3638 150.0000 5 5086 2.5
5 5 5
y 0.0000 7.2868 84.0576 s 210
5 5 6
0.0000 7.3418 86.7134
- ( ; . 6 ) —2.5140 21.4
. s (0 0000 7.21623 150.;)000) 37 897 103.1
6 (0 0000 7.2;)28 1172004) 377017 105.8
- (0 0000 7.1 2710 853452) 375076 160.2

ng+gq, q € {0, 1,2}, and for Model4, N =4 xnp+gq, q €
{0, 1, 2}. The generated optimal exact designs are presented
as 2 x k matrices where the first line shows the design points
and the second line shows their replicates.

The D-optimal exact designs found for N = 9 and
N = 15 for Model 3 and 4 in Table 2, respectively, are sim-
ilar to those of Rasch et al. (1997) found from an exchange
algorithm. The exact D-optimal designs are uniform when
N is a multiple of ng, which is a general observation already
made by others (Yang et al. 2012, 2016). When N is a
multiple of ng, the values of the optimum suggest that D-
optimal designs are slightly more efficient than those found
for other sample sizes. Both examples in Table 2 show that
the optimum has slightly larger values of N that lead to exact
designs equal to those obtained by rounding optimal approxi-
mate designs and the weights are equal for all support points.
Practically, exact k-point optimal designs with unequal ratios
n; /N can be slightly poorer than those where n; /N is equal
Vi € [np]. This finding is consistent with earlier observations
for N-point D-optimal designs (Pukelsheim 1993, Chap. 4).
Table 2 shows that changes in the support points of the D-
optimal designs are marginal for small changes in the value
of N.

The A-optimal exact designs are not uniform even when
N is multiple of ny and so finding an optimal approximate
design first and rounding it to obtain an exact design may
result in a non-optimal exact design.

Figure 1 shows the plots of the dispersion functions of the
D-optimal exact designs for Model 3 when N = 9, 10, 11.
It shows that the D-optimal exact design & for N = 9 has 3
support points and the function ¥ (x|£p, p) is bounded from
above by ng with equality at the support points. The maxima
of the dispersion functions for N = 10 and N = 11 are not
ng implying that the D-optimal exact designs do not match
the D-optimal approximate designs.

We report optimal design points to four decimal places
for accuracy. In scenarios where the design variables cannot
be controlled with this level of certainty, the optimal design
will serve as a reference design for the implemented design,
which will have a slightly lower efficiency.

4.1.2 Impact of the MINLP solver
In this section, we determine optimal designs for Models

3—4 using formulations in Sect. 3 with a local optimiza-
tion MINLP solver (SBB). Table 3 displays the D- and
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Dispersion function

Fig. 1 Dispersion functions of the D-optimal designs for Model 3 in
Table 2 when k = ng = 3 for different values of N

A-optimal exact designs. When we compare them with the
optimal exact designs in Table 2 found with a global opti-
mization solver, we observe that (i) the CPU time required
by the local optimization MINLP solver is on average 382
times shorter than that required by the global optimization
MINLP solver; (ii) both solvers produce very similar A- and
D-optimal exact designs with almost identical optimality val-
ues; (iii) both solvers produce D-optimal exact designs with
replicates as equally distributed as possible and A-optimal
exact designs with very different numbers of replicates at
the design points; (iv) D- and A-optimal exact designs are
supported at the extreme ends of the design space when the
design space is small (e.g., Model 3), but this is no longer the
case when the design space is large (Model 4); and (v) the
largest support points of the A-optimal exact designs found
by local and global optimization solvers are noticeably dif-
ferent.

We calculated the D- and A-efficiencies of the optimal
exact designs obtained with the locally optimal MINLP
solver relative to those obtained with the global optimiza-
tion solver using Eqs. (7) and (8), and they are all close to
1.0000. That implies that for this set of problems, the local
optimization solver is able to find designs very close to those
obtained by a global optimization solver in a small fraction of
time. We therefore use the local optimization MINLP solver
SBB to generate all the optimal exact designs in the rest of
our work. Typically, the optimal designs obtained with global
optimizers are equally or more efficient than those obtained
with local optimizers, an exception is the A-optimal design
for Model 4 and N = 17 in Table 3 where the design found
by the global solver has an efficiency slightly below 100
%.
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4.1.3 Models with analytically derived optimal designs

This section compares D-optimal designs obtained from
our formulations with known D-optimal designs for some
models, which are presented in Table 4. The first selected
model with known D-optimal exact designs is the one with
mean function equal to the first-order trigonometric regres-
sion model on a partial circle of different size and different
values of N (Models 15—-19 in Table 4). The D-optimal exact
designs were reported in Chang et al. (2013, Theorem 4.1).
Table 5 shows D-optimal exact designs found for Models
15-19 with formulation (13). Our results agree with the ana-
lytical D-optimal designs for the first-order trigonometric
regression model. There are two optimal designs for Model
17, and our algorithm is able to find one of them. Further
numerical experiences revealed that the other optimum can
be obtained with a different starting point.

The second selected model to compare optimal designs
obtained from our algorithm and the theoretical designs is
the one with a quadratic mean response function on [—1, 1]
for N = 11, 12 and N = 13 (Models 20-22). The theoreti-
cal D-optimal exact designs were reported in Gaffke (1987).
In particular, they showed that the D-optimal designs are
all minimally supported with k = 3. The D-optimal designs
obtained by our algorithm for Models 20-22 in Table 5 agree
with their theoretical results. Chang and Yeh (1998) and
Imhof (1998) provided corresponding results for A-optimal
exact designs, and we used them to verify the accuracy of the
results from our formulations. Table 6 displays the A-optimal
designs obtained from (17) for Models 20-22. Our A-optimal
exact designs also agree with those obtained analytically by
Chang and Yeh (1998, Theorem 2.1).

4.2 Unconstrained optimal exact designs

In this section, we determine minimally supported optimal
designs for all the models in Table 1 assuming that N =
3 x ng. Other design setups are considered in Sect. 4.3.

Tables 7 and 8 list D- and A-optimal exact designs
obtained from our algorithm, respectively. The D-optimal
designs are uniform in all cases, and the CPU time required
to solve the MINLP problems is generally short in part due
to our initialization strategy, see Sect. 3.2, and because of the
locally optimal MINLP solver. This shows that our formula-
tion herein is effective for the problems we have tackled. We
recall that Models 6 and 7 are structurally the same, except for
the parameter value in the power exponent m, and the opti-
mal designs obtained for both are equal. Our optimal designs
for Model 9 are similar to those obtained using an exchange
algorithm in Atkinson et al. (2007, Chap. 12). Unlike the
D-optimal exact designs, our A-optimal designs are not uni-
form.
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Table3 D- and A-optimal

exact designs for Models 34 in Model Criterion N Design Optimum value CPU (s)
Table 1 obtained using a locally 0.0000 4.8304 25. 0000
optimal MINLP solver 3 D 9 ( 3 ) —0.7682 0.03
10 (0 0000 4.8304 25. 0000) — 07824 0.03
4 3
1 0.0000 4.8304 25. 0000 — 07815 0.14
4 4
A 9 (0 ;) 4'3? 2425 OOOO) 8.7943 0.14
10 0.0000 3.9613 25. 0000 3.8053 0.14
3 2
1 0.0000 3.9765 25. 0000 8.8035 0.14
4 2
4 D 15 (0 ;) 7'35638 8. 578) —2.5086 0.03
16 0.0000 7.3638 150.0000 25143 0.05
6 5 5
17 0.0000 7.3638 150.0000 25141 0.05
6 6 5
A 15 (0 .0000 7.1;&72 1504.{000) 378972 0.14
16 00000 7.1991 150.0000 37.7017 0.13
2 4
17 00000 7.1710  150.0000 374915 0.16
2 4
Table 4 Battery of statistical . . - )
models with known D-optimal Model Regression function Design space (X) N
exact designs used for testing 15i : - 4
the MINLP formulations 5, P1 cos(x) + P sintx) (= /d, 7/4]
16/ B1 cos(x) + B sin(x) [—27/3, 27 /3] 4
17 B1 cos(x) + B sin(x) [—7/4, /4] 5
18] B1 cos(x) + B sin(x) [—1/2 arccos(—1/10), 1/2 arccos(—1/10)] 5
19 B1 cos(x) + B2 sin(x) [—27/3,27/3] 5
20" Bo + Bix + fox? -1, 1] 11
21 Bo+ Bix + Box? [-1,1] 12
22 Bo + Bix + pox? (=1, 1] 13

IFirst-order trigonometric regression model on a partial circle.

XQuadratic regression model

The designs obtained are in good agreement with the
optimal approximate designs found in Duarte et al. (2018)
using an adaptive semidefinite programming (ASP)-based
algorithm. We observe that the exact designs are equally or
slightly more efficient than those in Duarte et al. (2018) when
N = 3 x ny partly because they first discretized the design
space and the optimum is found from this finite set of can-
didate points; in contrast, we work with continuous design
spaces. In practice, the trend observed in Sect. 4.1.1 extends
to models in Table 1 when different values of N are tested.

The exact optimal designs for Model 14 were also deter-
mined by the global solver BARON, and the results obtained
are similar to those in Table 7 and 8 (last line) except that the
CPU time has increased to 3.12 s for D-optimal designs and
to 138.35 s for A-optimal designs.

To further validate the formulations in Sect. 3, we com-
pared the optimal designs found for surface response models,
such as, Models 1, 9, 12 and 14 in Table 1 with those
obtained from the commercial software JMP® 14.0.0 (64
bit) (SAS Institute Inc. 2017). This software implements
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Table 5 D-optimal exact

designs for Models 15-22 in Model N Design Optimum value CPU (s)
Table 4 obtained using a locally 07854 0.7854
optimal MINLP solver 15 4 P Y ) —0.6931 0.09
16 4 —0.8365 - 0.7343 —0.6931 0.02
2 2
17 5 <_0;854 0'7554) —0.7136 0.05
18 5 —0.8355 0.0000 0.8355 — 0.7004 0.04
2 1 2
19 5 —1.1780 0.1401 1.0518 —0.6931 0.03
2 2 1
20 1 .0000 0.0000 1.0000 —0.9681 0.05
3 4 4
21 12 —1.0000 0.0000 1.0000 —0.9548 0.03
4 4 4
9 13 —1.0000 0.0000 1.0000 0.9633 0.03
4 5 4
Table 6 A-optimal exact - -
designs for Models 19-21 in Model N Design Optimum value CPU (s)
Table 4 obtained using a locally —1.0000 0.0000 1.0000
optimal MINLP solver 20 11 ( ‘ ' 5 ' 3 ) 8.0667 0.03
21 12 (_1'0000 0'0(?00 1'0;)00) 8.0000 0.02
» 13 (—1.0000 0.0;)00 1.0§)00> 3.0476 0.13

the coordinate-exchange algorithm (CEA) using an initial
design to iterate from multiple initial points and keeping the
best solution found. Tables S1 and S2 in the Supplemen-
tary Material report the D- and A-optimal designs obtained
from CEA, respectively. They were obtained using 1 x 10°
re-initializations of the algorithm, and we limit the analy-
sis to linear (on covariates and parameters) surface response
models and minimally supported designs so that they are
equivalent to those found with MINLP formulations and can
be compared. We note that CPU time required by JMp®
14.0.0 (64 bit) for the examples addressed was of 8 min to
15 min and our formulations with a locally optimal solver
require a few seconds. If a global optimizer were used
with our formulations, we expect the CPU time would have
increased 2 to 3 orders of magnitude even though in some
cases the CPU times are still competitive.

Table 9 lists the D-optimal values found from the MINLP
formulation and those found from the CEA along with the
efficiencies of the latter relative to the former. We note that
the optimal designs obtained with the formulations proposed
herein have about the same efficiencies as those from the
CEA. For a fair comparison between our algorithm and CEA,
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we set the number of re-initializations of the latest to 1 x 103
which allows reducing the CPU time needed to about 1 s
for all the examples addressed. We note that the optimal
designs obtained with CEA for this setup are close to the opti-
mum having efficiencies higher than 0.94 (relative to optimal
designs obtained with MINLP formulation).

4.3 Constrained optimal exact designs

Here, we test the algorithm to find D- and A-optimal designs
when there are linear or nonlinear constraints compactly
represented by inequalities y(x,n) < 0 and equalities
¢(x,n) = 0 where y € R" and ¢ € R", n; standing
for the number inequality constraints and 7, for the number
of equality constraints. To fix ideas, in Sect. 4.3.1 we impose
constraints only on the support points and search for opti-
mal designs in the constrained space EkN — E,fv N{x :
y(x) <0, ¢(x) = 0}. In Sect. 4.3.2, we impose constraints
only on the number of replicates and search for k-point opti-
mal designs in the space E,ﬁv’” = E,ﬁv Ni{n : yn <
0, ¢(n) = O0}. Finally, Sect. 4.3.3 allows constraints on

both the support points and the number of replicates and
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Table 7 D-optimal exact designs for Models 1-14 in Table 1 with N = 3 x ny

Model N Design Optimum value CPU (s)
| 15 —1 .0000 —O 6547  0.0000  0.6547  1.0000 —5.0075 0.06
3 3 3
) 12 0 5000 0.7852  1.6148  2.5000 59706 0.02

3 3 3
3 9 0 0000  4.8304  25.0000 07682 21
3 3
4 9 (O .0000 ;3638 é18.578) 5086 011
5 9 (O 2142 (3)9780 5.0000) 34333 0.03
5
6 12 l 0x 10~ 0.4535  1.7253  10.0000 —5.0864 0.45
3 3 3
7 12 l 0x 1075 04535  1.7253 10.0000 — 6.08644 005
3 3 3
3 12 (2 3129 5 5988 ;0.1971 ;8.3971) — 51976 011
—1.0000 —1.0000 —0.1315  0.3945 1.0000 1.0000
9 18 1.0000 —1.0000 —0.1315  1.0000 0.3945 —1.0000 —2.5803 0.13
3 3 3 3 3 3
0.1412  2.8208 2.8208  5.0000
10 12 0.0000  0.0000  1.0000  1.0000 —7.9789 0.09
3 3 3 3
0.2804  3.0000  3.0000
11 9 0.0000  0.0000  0.7951 —9.1640 0.03
3 3 3
—1.0000 —1.0000 —1.0000 —1.0000 0.0387
—1.0000 —1.0000 0.2878 1.0000 0.1262
1.0000 —1.0000 0.2711 —1.0000 —1.0000
3 3 3 3 3
12 30 0.0387 0.1965 1.0000 1.0000  1.0000 — 43187 0.19
1.0000 —1.0000 —0.3415 1.0000 —1.0000
1.0000 0.1658 1.0000 —0.4429 —1.0000
3 3 3 3 3
0.0500  0.0500 0.0500 0.2067  2.0000
2.0000 0.0500 0.2394  2.0000 0.1955
0.0500  0.0500 2.0000  2.0000  0.0500
3 3 3 3 3
13 27 2.0000 2.0000  2.0000  2.0000 —3:3790 0.23
2.0000 2.0000 0.0500  2.0000
0.3162  2.0000 2.0000  0.0500
3 3 3 3
—1.0000 —1.0000 —1.0000 —1.0000  —1.0000
1.0000 1.0000 —1.0000  1.0000 —1.0000
—1.0000  1.0000 1.0000 0.6417 —1.0000
—0.5926  —1.0000 0.0308 1.0000 1.0000
3 3 3 3 3
—1.0000 —0.0198 —0.0198  0.1888 1.0000
—0.2514  —1.0000 —0.2389  1.0000 1.0000
14 45 —0.0644  —1.0000  1.0000 0.1379 —1.0000 —6.3017 0.52
—1.0000 —1.0000  1.0000 —0.1470  —1.0000
3 3 3 3 3
1.0000 1.0000 1.0000 1.0000 1.0000
—1.0000  1.0000 —0.3446  —1.0000  1.0000
0.1008 —1.0000 —1.0000  1.0000 1.0000
1.0000 1.0000 —0.0357  —1.0000  1.0000
3 3 3 3 3

Designs obtained using a locally optimal MINLP solver
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Table 8 A-optimal exact designs for Models 1-14 in Table 1 with N = 3 X ng

Model N Design Optimum value CPU (s)
| 15 —1 .0000 —O 6983  —0.0392  0.6540  1.0000 1.976 x 102 0.50
4 4 2
) 12 <0 .5000 0 7511 1,6680 ;.5000) 5300 x 103 016
3 9 <0 .0000 4 3024 gS.OOOO) 8.7943 0.05
4 9 <0 .0000 7 1472 ;50.0000) 374302 0.05
5 9 <0 1505 1 0274 5.0000) 4543 % 102 016
5
6 12 1 .0 x 107 0.4693  1.7391 10.0000 1373 x 102 0.14
3 4 3
7 12 1 0x 107> 0.4693 1.7301  10.0000 1373 x 102 0.09
3 4 3
3 12 (1 3817 5 3579 ;0.7974 §2.1334> 4651 x 103 0.08
—1.0000  —1.0000  0.0000  0.0000 1.0000 1.0000
9 18 1.0000 —0.5016  0.1879  —1.0000  —0.5016 1.0000 21.163 0.23
2 3 5 3 3 2
0.0000  2.0033  2.0033  5.0000
10 12 0.0000  0.0000  1.0000  1.0000 9.520 x 10? 0.11
6 1 3 2
0.2685  3.0000  3.0000
11 9 0.0000  0.0000  0.8074 2.994 x 10* 0.05
4 1 4
—1.0000 —1.0000 —1.0000 —1.0000  0.0585
0.0577 —1.0000  0.1457 1.0000 —1.0000
1.0000 —0.0284  —1.0000 —0.0256  1.0000
3 3 3 3 3
12 30 0.0585 0.4940 1.0000 1.0000 1.0000 36.565 385
0.2141 —1.0000  1.0000 —0.5446  1.0000
—0.0283  —1.0000  1.0000 0.2422 —1.0000
5 2 2 4 2
0.0500  0.2513  0.2513  0.3604  2.0000
2.0000  0.2513  2.0000  2.0000  0.2513
2.0000  2.0000 0.2513  2.0000 0.2513
2 5 5 2 5
13 27 2.0000  2.0000  2.0000  2.0000 16.468 0-81
2.0000  0.3604  0.0500  2.0000
0.3604  2.0000  2.0000  0.0500
2 2 2 2
——1.0000 —1.0000 —1.0000 —1.0000  —1.0000
1.0000 0.5863 —1.0000  1.0000 —0.3197
—1.0000 1.0000 1.0000 0.8114 —0.7094
—0.1290 —1.0000  0.3348 1.0000 1.0000
3 2 2 2 3
—1.0000 —0.0636  —0.0269 0.1687 1.0000
—1.0000 —1.0000  0.0464 1.0000 1.0000
14 45 —0.3694 —1.0000  0.0545 —1.0000  0.4075 55.496 65.87
—1.0000 0.3826 0.0905 —1.0000 —0.3641
2 4 8 3 3
1.0000 1.0000 1.0000 1.0000 1.0000
—1.0000 1.0000 —0.1955 —1.0000  0.1943
—0.0435 —1.0000  —1.0000  1.0000 1.0000
1.0000 1.0000 —0.4484  —1.0000  1.0000
3 2 3 2 3

Designs obtained using a locally optimal MINLP solver
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Table9 D-optimality values of the designs found with MINLP formu-
lations and CEA for selected models

Model Optimum? Optimum® Eftp
—5.0275 —5.0275 1.0000
9 —2.5803 —2.5818 0.9995
12 —4.3187 —4.4084 0.9822
14 —6.3017 —6.3267 0.9967

20ptimal design obtained from the MINLP formulations using a local
optimizer.
YOptimal design obtained from the CEA using JMP® 14.0.0 (64 bit)

we search for a k-point optimal design among the designs in
space E,iv’”‘x =&EVNN{(x,n) :y@x,n) <0, ¢(x,n) =
0}.

In this section, we apply the algorithm to find mini-
mally supported A- and D-optimal exact designs for the
Model 13 in Table 1 defined on the design space X =
[0.5,2.0] x [0.5,2.0] x [0.5,2.0]. We present results only
for this model when N = 3 x nyp = 27 for space consid-
eration and omit results for other models in Table 1. This
model has 9 parameters and so k = ng = 9. For values of
N not a multiple of ny, we obtained optimal exact designs
that exhibit a trend similar to that observed for Models 3—4
in Sect. 4.1.1.

4.3.1 Constraints on the design space

We now test our algorithm when the design problem has
equality or inequality constraints on the design space and the
constraints are of linear or nonlinear kind.

Linear constraints arise naturally in some experimental
design problems. For example, in mixture experiments, a
support point represents the proportions from the various
components in the study. Naturally, each support point has
nonnegative components that add to unity, see for example,
Atkinson et al. (2007, Chap.16). At other times, there are
physical and linear constraints on the support points. As an
illustration, suppose that we require that the sum of the com-
ponents in each support point x in the design is 1.0, i.e.,

3
¢1(x) ;=Y x;; =10, Viel[k] (18)

j=1

The set of candidate designs are found from the given design
space X = [0.05, 1.0] x [0.05, 1.0] x [0.0, 1.0] that incor-
porates the additional constraints.

Nonlinear constraints on the design problem vary and
occur frequently, depending on the problem at hand. For
example, Berman’s model (Berman 1962) is typically defined
on an arc in brain mapping studies; consequently, it is likely
more appropriate that the design space is spherical in which

case the support points are contained inside a sphere of radius
r centered at x = [c1, ¢2, c3]T € X, i.e.,

3
Y1) =Y (xji—cp)? <’ Vielk] (19)
j=1

Another example is requiring a minimum distance between
the support points because it may not be practical or mean-
ingful to take observations from locations too close together.
Such a constraint may take the form

3
yix) =8> < Y (xji—xj0% Vi le[k], I=i+1
j=I
(20)

where § is the minimum distance allowed between any two
support points. In our algorithm, we setr = 0.75,¢c; = ¢ =
c3 =1.25in (19) and 6 = 0.2 in (20).

Our last example has a discrete design space with three
discrete factors xi, xp and x3, each with three levels and
coded as 1, 2, and 3. Let y be an integer variable containing
the integer codes for x, and we want to find D- and A-optimal
exact designs subject to the following constraints in problems
(13) and (17), respectively.
y1(x) =Xjio= Vit 1, Vje [[nx]], i €{1,2,3}

(21a)

Yj.i € No.
(21b)

P1(y) =yji =2, Vje[n], i e{l,23},

Each of the optimal designs is then obtained by finding
the £ most informative points from the 27 candidate design
points. Tables 10 and 11 report the D- and A-optimal designs,
respectively, obtained under constraints (18)—(21). The D-
optimal designs are still uniform, and the CPU times required
to solve the optimization problems are short for the various
constraints. Table 11 shows that A-optimal designs require
noticeably longer time to compute than D-optimal designs.

4.3.2 Constraints on the replicates

This section considers a design problem where the number
of support points in the optimal design sought exceeds the
number parameters in the model. As an example, suppose
that we require 10 support points (k = 10) and the optimal
design must have at least two observations at each support
point:

yi(r) :=n; >2, Vi€ [k]. (22)
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Table 10 Constrained D-optimal exact designs for Model 13 in Table 1 with N =27 and k =9

Constraints Design Optimum value CPU (s)
0.0500  0.0500  0.0500  0.1311  0.1660
0.0500  0.9000 0.4818  0.1408  0.7020
0.9000  0.0500 0.4682 0.7281  0.1320
3 3 3 3 3
as 0.4239  0.6181 0.6181  0.9000 — 84728 0.06
0.0500  0.1551  0.3319  0.0500
0.5261  0.2268  0.0500  0.0500
3 3 3 3
0.5011  1.0198 1.0198 1.0198  1.0812
1.2223  1.1885 0.8669  1.8714  1.7564
1.2210  0.5389  1.8523  0.8987  1.7768
3 3 3 3 3
a9 1.2174  1.7894  1.7990  1.7990 —10.1176 0.08
0.5025 1.7638  0.9367  1.0607
1.1984  1.1627 0.8464  1.7246
3 3 3 3
0.5000  0.5000  0.5000 09415 0.9415
0.5000  0.9939  2.0000  0.5000  2.0000
0.5000  2.0000  0.5000  2.0000  2.0000
(20) 2.0000  2.0000  2.0000  2.0000 —5.6500 0.09
0.5000  0.8843  2.0000  1.1075
1.0102  0.5000  0.7835  2.0000
3 3 3 3
1 11 1 2 2 3 3 3
1 2 3 1 3 3 1 3 1
20 1 1 2 3 1 3 1 2 3 —6.0040 1.38
33 3 3 3 3 3 3 3

Designs obtained using a locally optimal MINLP solver

Another setup is a problem where both spaces X and .Q,?]
are constrained independently. Here, in addition to requiring
having 10 support points and at least two replicates from
each support point, a minimum distance between any two
support points is required. The complete set of constraints
is represented by (23), and each constraint depends on the
number of replicates or the location of the support points.
Assuming k = 10, the 10-point optimal designs sought here
satisfies

yi(n) :=n; > 2, Vie [k] (23a)

3
ya(x) =8> <> (xji—x; Vi, le k] 1=i+1
j=1
(23b)

where we set § = 0.2. This design has k distinct sup-
port points, and the number of replicates at each support
point is 2 or more subject to the constraint (23b) that
assures a minimum distance between each pair of support
points.

Tables 12 and 13 display the constrained optimal designs
found from our algorithm and note that the designs obtained
are not uniform due to the value of k.

@ Springer

4.3.3 Constraints on the design and replicates space

In practice, there may be constraints on both the design space
and the number of replicates allowed at each point. For exam-
ple, there are budget constraints to account for, the unitary
cost of each factor is different and linearly proportional to
the levels chosen in the experiment. An example is

k k k

yi(x.m) i=co+er Y nixii+er Y nixpi+es » nixzy <b,
i=1 i=1 i=1

(24)

where cg = 15 is the fixed experimental cost,c; = 4,¢; = 5,
c3 = 6 are the variable experimental costs of each factor
in the design, and b = 350 is the budget available for the
complete study. Here, we set k = ny as in the unconstrained
design problem.

Tables 12 and 13 present D- and A-optimal exact designs
found by our algorithm (third line) and subject to constraint
(24). We notice the D-optimal exact design is not uniform
in this case, and more replicates are allocated to treatment
levels that combine lower levels of factors to satisfy the cost
constraint. This trend is more evident for factors with higher
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Table 11 Constrained A-optimal exact designs for Model 13 in Table 1 with N =27 and k =9

Constraints Design Optimum value CPU (s)
0.0500 0.0789  0.0789  0.0789  0.1198
0.4686 0.7939 0.8711  0.0866  0.4159
0.4814  0.1271  0.0500 0.8345 0.4642
3 4 2 3 4 3
as) 0.4539 0.4539 0.4539 0.8501 4.0689 > 10 13.63
0.1321  0.4796  0.0500 0.0718
0.4141 0.0665 0.4961  0.0781
3 3 3 2
0.5011  0.9533  0.9533  0.9533  0.9533
1.2508  1.1358 0.8252  1.8378 1.7413
1.2102  0.5707 1.7922  0.8910  1.7328
2 3 4 4 3
a9 1.2026  1.7577 1.7995  1.8199 4927252 2.3
0.5120 1.7249  0.7940 1.1122
1.1250  1.5314  1.4793  0.7823
2 3 3 3
0.5000  0.5000 0.5000 0.8924  0.8924
0.5000 2.0000 1.1455 0.6636  2.0000
1.1455  2.0000  0.5000  2.0000  0.6636
3 2 3 4 4
20 0.9302  2.0000 2.0000  2.0000 135.05121 6.27
0.5000  1.2153  0.5000  2.0000
0.5000 0.5000 1.2153  2.0000
3 3 3 2
11 2 2 2 3 3 3 3
(21) g i ? ; g ; 3 ? § 388.7682 12.12
4 2 3 2 2 4 3 4 3
Designs obtained using a locally optimal MINLP solver
Table 12 Constrained D-optimal exact designs for Model 13 in Table 1 with N = 27
Constraints k Design Optimum value CPU (s)
0.5000  0.5000 0.6682  1.0196  0.5000
0.8530  2.0000 2.0000 0.5000  0.5000
2.0000  0.5000 2.0000  2.0000  0.5000
(22) 10 3 3 2 3 3 —5.4073 1.16
2.0000 2.0000 2.0000 2.0000  2.0000 ' ’
0.7929  0.8252  2.0000  0.5000  2.0000
2.0000 0.5000 0.6388 1.0170  2.0000
2 3 3 3 2
0.5000  0.5000  0.5000  0.5000  0.9024
0.5000  2.0000 2.0000 0.8305  0.5000
0.8853  0.5000  2.0000  2.0000  0.5000
3 3 3 3 2
@3 10 0.9024  2.0000 2.0000 2.0000  2.0000 — 34709 0-55
0.5000  0.7494  2.0000  0.5000  2.0000
2.0000 0.5000 0.7295  2.0000  2.0000
2 2 3 3 3
0.5000  0.5000  0.5000  0.5000  0.5000
0.7968  2.0000 2.0000 0.5000  0.5000
0.5000  2.0000  0.5000  2.0000 0.7789
5 1 2 2 5
@4 ? 0.8005  2.0000 2.0000  2.0000 — 70964 1.60
0.5000  0.5000  2.0000  0.5000
0.5000  2.0000 0.5000  0.5000
6 1 2 3

Designs obtained using a locally optimal MINLP solver
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Table 13 Constrained A-optimal exact designs for Model 13 in Table 1 with N = 27

Constraints k Design Optimum value CPU (s)
2.0000  0.5000 2.0000 0.9813  0.5000
2.0000  0.9993  0.8047  2.0000  2.0000
0.8047  2.0000 2.0000 0.5000  0.9993
2 4 2 3 4
@2 10 0.5000  0.5000  1.4667  2.0000 0.9813 130.9651 127
0.7908  0.5000 2.0000 0.5941  0.5000
0.5000  0.7908  2.0000  0.5941  2.0000
2 2 2 3 3
0.5000 0.5000 0.7802 0.8146  0.8146
1.2342  0.5000 2.0000 2.0000  0.5000
1.2342  0.5000  2.0000  0.5000  2.0000
3 2 2 3 3
@3 10 2.0000  2.0000 2.0000 2.0000  2.0000 128.6433 0.63
1.0398  0.9062  2.0000 0.5000  2.0000
0.5000 2.0000 0.9062  1.0398  2.0000
4 2 2 4 2
0.5000  0.5000  0.5000  0.5000 0.8561
2.0000 2.0000 0.5542  0.5893  1.0431
2.0000  0.7417  2.0000  0.5000  0.5000
24 9 ! 2 2 8 4 221.6272 4.47
@9 0.8561  2.0000  2.0000  2.0000 ’ ’
0.5000  2.0000  0.6329  0.5000
0.5701  1.2799  0.6543  2.0000
6 1 2 1

Designs obtained using a locally optimal MINLP solver

cost in the experimental design. This example shows that
D-optimal exact designs generated by our algorithm are not
necessarily uniform if additional constraints are involved.

5 Summary

Our paper is the first to apply MINLP formulations to find
D- and A-optimal exact designs for linear models and locally
optimal designs for nonlinear models. We use algebra-based
concepts to develop MINLP representations of the optimal
exact design problems. The resulting problem may have mul-
tiple local optima, and we use global and local optimization
MINLP solvers to determine the optimum. Our work suggests
that there are numerical advantages of working with global
optimization solvers for solving optimal exact design prob-
lems as they have the ability to assure that globally optimal
designs are found. However, in our examples, local optimiz-
ers in most of the tests find optimal exact designs that coincide
with those obtained using global solvers and in shorter time.
Our general recommendation is to try both global and local
solvers and compare results. Practically, one advantage of
our formulations is that the structure of the optimization
problems is transparent to the solver that, through matrix
decomposition techniques, can efficiently solve it.

We tested our problem formulations and algorithm for
finding A- and D-optimal exact designs for a range of linear

@ Springer

and nonlinear models with one or more regressors, and they
all performed well with a short CPU time. We recall that there
israrely a theoretical proof that an exact design is optimal for
a nonlinear model and so, for comparison purposes, some of
our models were chosen so that we can confirm our results
with the few theoretical results reported in the literature.

The D-optimal exact designs coincide with optimal
approximate designs when N is a multiple of the number
of design points which is expected. We note that when the
D-optimal exact designs are uniformly supported at their
design points, but the same is not true for A-optimal exact
designs. Using several examples, we also demonstrated that
mathematical programming techniques can easily incorpo-
rate additional constraints in the design problems and as
the number of constraints grow in complexity, the feasibility
region shrinks and the optimum is easier to find, assuming it
exists. However, the performance of the algorithm depends
on the size of the problem and the constraints imposed on the
design and replicates spaces.
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