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Possible quantum phase-manipulation of a two-leg ladder in mixed-dimensional

fermionic cold atoms

Wen-Min Huang, Kyle Irwin and Shan-Wen Tsai
Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA.

(Dated: January 24, 2013)

The recent realization of mixed-dimensional systems of cold atoms has attracted much attention
from both experimentalists and theorists. Different effective interactions and novel correlated quan-
tum many-body phases may be engineered in these systems, with the different phases being tunable
via external parameters. In this article we investigate a two-species Fermi atom mixture: one species
of atom exists in two hyperfine states and is confined to move in a two-leg ladder, interacting with
an on-site interaction, and the other moves freely in a two dimensional square lattice that contains
the two-leg ladder. The two species of atoms interact via an on-site interaction on the ladder. In the
limit of weak inter-species interactions, the two-dimensional gas can be integrated out, leading to
an effective long-range mediated interaction in the ladder, generated by to the on-site inter-species
interaction. We show that the form of the mediated interaction can be controlled by the density of
the two-dimensional gas and that it enhances the charge density wave instability in the two-leg lad-
der after the renormalization group transformation. Parameterizing the phase diagram with various
experimentally controllable quantities, we discuss the possible tuning of the macroscopic quantum
many-body phases of the two-leg ladder in this mixed-dimensional fermionic cold atom system.

PACS numbers: 67.85.Lm, 64.60.ae, 71.10.Fd, 71.10.Hf

Over the past years, Fermi mixtures in ultracold atoms
have been achieved experimentally[1–4], and have trig-
gered intense studies by experimentalists and theorists
alike. A multitude of exotic phenomena, which nor-
mally do not occur in condensed matter systems, can now
be fabricated with exceptional tunable parameters[5–
11]. For instance, fermion mixtures can be manipu-
lated to carry different internal properties such as pop-
ulation densities, group symmetries, lattice geometries,
and dimensionalities. By cooling two fermionic iso-
topes of ytterbium with different nuclear spins, a de-
generate Fermi mixture with an SU(2)×SU(6) symmetry
has recently been experimentally achieved[12]. Mixed
two-species Fermi gases with unequal populations have
also been extensively studied[13, 14], as well as systems
of dipolar atoms and molecules[15–17]. Many-body ef-
fects in these systems can be further enhanced when
the system is loaded onto an optical lattice[18] or via
Feshbach resonance[19–21]. Fermions with imbalanced
populations[22] and dipolar fermions[23, 24] on a square
lattice have been investigated and present a much richer
phase diagram than their gas counterparts, with lattice
effects enhancing the transition temperature for various
phases.

Experimentally, it is also possible to confine com-
ponents of a ultracold atom mixture in different
dimensions[25, 26], and this has trigged some recent the-
oretical studies[27–29]. As pointed out by Nishida[30],
the mediated intra-species interaction generated by the
interaction between species moving in different dimen-
sions may reshape the phase diagram in a bilayer Fermi
gas. Furthermore, Efimov physics with fermions is
also proposed to emerge in one/three-dimensional mixed
systems[31]. The properties of the lower-dimensional
Fermi gas can be manipulated by tuning parameters in
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FIG. 1: (Color online)A two-leg ladder embedded in a 2D
square lattice and the coordinate system are illustrated.

the higher dimensional species. For example, the phase
diagram of a single chain is strongly modified by being
embedded in a two-dimensional lattice[32].

Inspired by these experiments, we study a mixed-
dimensional two-species fermionic system: one species
confined in a two-leg ladder with on-site repulsion, the
other moving freely in a two-dimensional (2D) square
lattice. An inter-species interaction is also introduced
as on-site due to the energy cost of double occupation.
Integrating out the 2D fermionic gas, a mediated long-
range interaction is generated in the ladder. We show
that the mediated interaction moves the bare on-site in-
teraction in the two-leg ladder off the symmetric point,
and enhances the charge density wave (CDW) instability
in the renormalization group (RG) transformation. Here
we use the term charge-density-wave to refer to density
modulations in analogy with nomenclature used in the
study of electronic systems, even though the atoms are
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charge neutral. We find that, by controlling the filling
in the 2D gas, the phase of the ladder can be tuned.
By mapping out the phase diagram for various parame-
ters, we show the possible quantum phase-manipulation
of a two-leg ladder in mixed dimensional fermionic cold
atoms.
A schematic of the system we consider here is illus-

trated in Fig. 1. The action can be written as S =
Sl + S0

c + Scl, where Sl stands for the action for the
two-leg ladder with on-site interaction Ul. The action of
the non-interacting 2D system is denoted as

S0
c =

∫

dτ
∑

〈r,r′〉

φ̄α(r, τ) [∂τδr,r′ +Hc(r, r
′)]φα(r

′, τ).(1)

where φ̄α,φα are Grassmann fields with (pseudo)spin in-
dex α, and the Hamiltonian is represented as Hc(r, r

′) =
[tc(r, r

′)− µ2Dδr,r′ ] with chemical potential µ2D. More-
over, the uniform hopping amplitude tc(r, r

′) = −1 when
r and r

′ represent nearest neighbor sites. The energy
cost of for overlap of two atoms of different species can
be regarded as the on-site inter-species repulsion with
strength Ucl and represented as

Scl =

∫

dτ Ucl

∑

a

∑

r

nc(r, τ)nl(r, τ)δy,a, (2)

where nc =
∑

α φ̄α(r)φα(r) and nl =
∑

α ϕ̄yα(x)ϕyα(x)
are the densities for the 2D lattice and the ladder, re-
spectively. The summation over a = 1, 2, · · · , N stands
for the position of N -legs along the y-direction, as shown
as Fig. 1. Here we focus on the N = 2 case.
Considering the limit of weak inter-species interac-

tions, we expand the action in powers of Ucl and inte-
grate out the non-interacting 2D gas, neglecting terms
O(U3

cl). The first term in the expansion gives a correc-
tion to the chemical potential of the ladder system. Since
this only slightly shifts the phase boundaries, we ignore it
here. The second term generates a mediated interaction,
modifying the profile of the total effective interaction in
the two-leg ladder. The action for the ladder can now be
written as Seff = Sl + Smed, where

Smed ≃

∫

dτ1

∫

dτ2
U2
cl

2

∑

a,b

δy1,aδy2,b tr
[

nl(r1, τ1)

G0(r1, τ1; r2, τ2)nl(r2, τ2)G0(r2, τ2; r1, τ1)
]

, (3)

with G0(r, τ ; r
′, τ ′) = [∂τ δr,r′ −Hc(r, r

′)]
−1

the
imaginary-time Green’s function. This shows that a
mediated interaction between particle nl(r1, τ1) and
nl(r2, τ2) with retardation effects is generated in the lad-
der system. Retardation effects can be neglected when
the Fermi velocity of the 2D fermions is large compared
with the one for the ladder.
We now study the effects of the effective interac-

tion on the ladder system and determine its phase di-
agram using a RG technique. By ignoring retardation

effects, the Grassmann number ϕ is decomposed into chi-
ral pairs[33–36, 38, 39], ϕy(x) ≈

∑

P,i TyiψPn(x)e
iPkFi

x,

where P = R/L = +/− represent right/left-moving
particles, and kFi

is the Fermi wavelength of the band
index i. The transformation matrix between leg-index
y and band-index i in the N -ladder is introduced as

Tyi =
√

2
N+1 sin

[

π
N+1yi

]

[35]. The interactions between

these chiral fermions can be categorized as Cooper scat-
terings clij , c

s
ij and forward scatterings f l

ij , f
s
ij , where

we set fii = 0 since fii = cii[36]. Thus, the mediated
interactions in a ladder system can be written as

Smed ≃
U2
cl

Ul

∫

dτ

∫

dx

[

f s
ijψ̄RiαψRiαψ̄LjβψLjβ + f l

ijψ̄RiαψLjαψ̄LjβψRiβ

+csijψ̄RiαψRjαψ̄LiβψLjβ + clijψ̄RiαψLjαψ̄LiβψRjβ

]

, (4)

where the bare values of the couplings are expressed as

f s
ij = Umed

iijj (0), f l
ij = Umed

ijji (kFi
+ kFj

),

csij = Umed
ijij (kFi

− kFj
), clij = Umed

ijij (kFi
+ kFj

), (5)

with the definition of dimensionless mediated interac-
tions, Umed

ijkl (k) = Ul

∫ π

−π
dq
2π Γijkl(q)χ0(k, q). Here the

particle-hole propagator is defined as

χ0(k, q)=

∫

dp

4π2

nF

[

ǫ(p)
]

−nF

[

ǫ(px + k, py + q)
]

ǫ(p)− ǫ(px + k, py + q) + i0+
, (6)

coming from the convolution of the two momentum-space
Green’s functions in Eq. (3), where ǫ(p) = −2(cospx +
cos py) − µ2D is the dispersion of the 2D gas and nF

is the Fermi-Dirac distribution. Furthermore, the ex-
tra kernel in the mediated interactions is defined as
Γijkl(q) =

∑

a,b e
iq(b−a)T ∗

aiTajT
∗
bkTbl, summing over the

leg indices a, b = 1, 2, · · · , N . It is worthwhile to notice
that the mediated interactions are the Ruderman-Kittel-
Kasuya-Yoshida (RKKY) type[37]. However, the exact
profile in real space can not be computed analytically
since we consider a lattice model.
In the absence of the mediated interaction, all bare val-

ues of the couplings in RG equations would be the same
since only on-site interactions are considered. In the pres-
ence of the mediated interactions, this symmetry is bro-
ken and the initial couplings renormalize in very different
ways, as shown as Eq. (5). However, since the mediated
interactions are determined only by the exchanged mo-
menta in spin-conserving scattering processes, couplings
sharing the same exchanged momenta remain the same
bare values. For instance, zero momenta is exchanged in
both csii and f s

ij and they therefore have the same bare

value, similarly, for clij and f l
ij with exchanged momenta

(kFi
+ kFj

).
The RG equations of a N -leg ladder can be found in

the literature[40], and are only solved numerically. After
taking the effective interactions as the initial condition
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FIG. 2: (Color online) Interactions mediated by a 2D gas with
(a) µ2D = 0 and (c) µ2D = 1 versus density n of the ladder:
The blue solid line represents cs11, c

s

22 and fs

12. cl12 and f l

12

are denoted as the green dot-dash-dotted line. The red dot-
dashed, orange dotted, and brown dashed lines denote cl11,
cs12 and cl22 respectively. The corresponding phase diagrams
for (a) and (c) are illustrated in (b) and (d), respectively.

and integrating the differential RG equations, the flows
of the couplings can be obtained. By analyzing these
flows with the scaling Ansatz, gi ∼ 1/ (ld − l)

γi , where ld
is the divergent length scale in one-loop RG, the hierarchy
of the relevant couplings can be directly read out from
the RG exponent γi[41, 42]. Combining with the Abelian
bosonization method, the phase diagram of a ladder sys-
tem is determined[35, 38, 39]. Furthermore, the rela-
tive values of the charge and spin gaps between different
Fermi points can be determined by the RG exponents[41].
This allows us to distinguish the d-wave superconductiv-
ity with an anisotopic spin-gap (referred as d-SC2 here)
in a two-leg ladder with heavy doping, n < 0.6. We note
that there is not a real phase transition between the d-
wave superconductivity with isotropic spin gaps (d-SC)
and d-SC2, because the number of spin and charge gaps
and relative sign of relevant couplings are the same. How-
ever, it is useful to emphasize this difference here because
the anisotropic spin gaps can measured, and therefore the
two phases can be distinguished experimentally.

To illustrate how the mediated interaction depends
on the filling of the 2D fermions, we show results for
µ2D = 0, when the 2D Fermi surface is nested (Fig. 2a),
and for µ2D = 1 (Fig. 2c). The corresponding phase di-
agrams are shown in Fig. 2b and Fig. 2d. In Fig. 2b,
when the strength of the coupling Ucl/Ul is larger than
1.2, a CDW starts to emerge from d-SC near half-filling
(n ≃ 1). Increasing Ucl/Ul brings the phase boundary
to higher hole-doping. It is interesting to note that the
Luttinger liquid phase that appears near n >∼ 0.5 for the
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FIG. 3: (Color online)The mediated interactions from a 2D
gas with densities n = 0.55 and n = 0.95 on the ladder are
plotted as function of the chemical potential µ2D of the 2D
system (in units of the 2D hopping amplitude tc) in (a) and
(c), respectively. The strokes for couplings in (a) and (c) are
the same as in Fig. 2. Corresponding phase diagrams are
shown in (b) and (d).

standard Hubbard model[35] is destroyed by the medi-
ated interactions. We find a three-phase “triple-point”
(CDW, d-SC and s-SC) at Ucl/Ul = 1.85 and n = 0.55.
From there, increasing the Ucl/Ul ratio gives cl11(0) (or
cσ11(0)) negative, and an s-SC phase occurs, as expected
by BCS theory. Doping away from the “triple-point”,
fσ
12(0) becomes negative and CDW dominates. Roughly
speaking, when Ucl/Ul > 1.85, the phase will be deter-
mined by the competition between the negative values of
fσ
12(0) and c

σ
11(0).

It is important to point out that the CDW phase
emerges due to enhanced mediated interactions f l

12 near
half-filling. When n ≃ 1, the momentum exchanged dur-
ing f l

12 processes approaches π. The particle-hole propa-
gator in the mediated interaction shows a maximum con-
tribution at µ2D = 0, resulting from maximum electron-
hole pairing [from cos px and cos(px + π) = − cos px] in
the 2D dispersion along the x-direction. Moving away
from n = 1, the mediated interaction of f l

12 decreases,
at which point the CDW phase ceases to occur. When
we increase the 2D chemical potential, the same behav-
ior occurs. As shown in Fig. 2 (d), the regime of the
CDW phase shrinks at µ2D = 1 resulting from weak me-
diated interactions. In this situation the mediated inter-
actions vary smoothly, and show little effect in the lad-
der system. Therefore, the mediated interaction depends
strongly on the chemical potential in the 2D system, and
consequently, the phase diagram of a two-leg ladder can
be modified/tuned via the filling in the 2D square lattice.
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To further illustrate the influence of the 2D density, we
show the mediated interactions and corresponding phase
diagrams parameterized by the chemical potential in the
2D system in Fig. 3 (a)(b) and (c)(d) for fixed density in
the ladder, n = 0.55 and n = 0.95, respectively. When
Ucl/Ul is larger than 1.2 at n = 0.95, the phase tran-
sition between CDW and d-SC happens near µ2D = 0.
However, the phase boundary moves to higher values of
Ucl/Ul when the chemical potential µ2D increases and
the mediated interaction decreases. In general, the ten-
dency of the mediated interaction is to decrease upon the
increasing of the filling in the 2D system (or µ2D). This
is due to the non-interacting assumption used in the 2D
gas. Under this condition, the strength of the mediated
interactions is roughly proportional to the density near
the Fermi surface, which is maximum at µ2D = 0.
Although the pattern of the mediated interactions in

real space is rather complicated, it can be approximated
as an effective on-site attraction and a nearest-neighbor
repulsion, since longer range terms are rapidly decaying.
The phase diagram can then be understood from these
two effective interactions. By tuning the chemical po-
tential in 2D, CDW emerges when the effective nearest-

neighbor repulsion exceeds the original on-site repulsive
interaction. However, increasing the Ucl/Ul ratio makes
the magnitude of the effective on-site attraction larger
than the original on-site repulsion. When the average
on-site attraction is weak, CDW and s-SC phases com-
pete. Nevertheless, the s-SC phase is dominant for large
Ucl/Ul, and the inter-species interaction can be regarded
as a glue to pair the fermions, similar to the electron-
phonon interaction in a conventional superconductor.
In conclusion, we studied a two-species Fermi mixture

composed of a species that moves in a two-leg ladder with
on-site interaction, and another, non-interacting, species
moving on a 2D square lattice. By integrating the 2D
Fermi gas in the limit of weak inter-species coupling,
a long-range mediated interaction is generated, and the
CDW instability in the ladder is enhanced. We show the
phase diagram parameterized by the filling in both the
two-leg ladder and the 2D square lattice.
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