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ABSTRACT OF THE DISSERTATION

Low-Power Integrated Circuits For Biomedical Applications

By

Alireza Karimi Bidhendi

Doctor of Philosophy in Electrical Engineering

University of California, Irvine, 2019

Professor Payam Heydari, Chair

With thousands new cases of spinal cord injury reported everyday, many people suffer from

paralysis and loss of sensation in both legs. Beside the healthcare costs, such a state severely

deteriorates the patients’ quality of life and may even lead to additional medical conditions.

Therefore, there is a growing need for cyber-physical systems to restore the walking ability

through bypassing the damaged spinal cord. This goal can be achieved by monitoring and

processing patient’s brain signals to enable brain-directed control of prosthetic legs. Among

several existing methods to record brain signals, electrocorticography (ECoG) has gained

popularity due to being robust to motion artifacts, having high spatial resolution and sig-

nal to noise ratio, being moderately invasive and the possibility of chronic implantation of

recording grids with no or minor scar tissue formation. The latest property is of particular

importance for the whole system to be a viable fully implantable solution. Furthermore,

the implanted system has to operate independently with no or minimal need of external

hardware (e.g. a bulky personal computer) to be individually and socially accepted.

To implement a fully implantable system, low-power and miniaturized electronics are needed

to reduced heat generation, increase battery life-time and be minimally intrusive. These re-

quirements indicate that many of the system’s components should be custom-designed to

integrated as much functionality as possible in a given real estate. This thesis presents

xiv



silicon tested prototypes of several building blocks for the envisioned system, namely, ul-

tra low-power brain signal acquisition front-ends, a low-power and inductorless MedRadio

transceiver, and a fast start-up crystal oscillator. Brain signal acquisition front-ends provide

low noise amplification of weak ECoG biosignals. MedRadio transceiver enables communi-

cation between the implant and end effectors or base station (e.g. prosthetic legs or desktop

computer). Crystal oscillator generates the reference signal for other system’s components

such as analog to digital converter. Novel techniques to improve important performance

parameters (power consumption, low noise operation and interference resilience) have been

introduced. Electrical, in-vitro and in-vivo experimental measurements have verified the

functionality and performance of each design.
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Chapter 1

Introduction

Brain-Computer Interface (BCI) systems have emerged as a multidisciplinary field with vast

potentials and applications. BCI systems enable communication between brain and external

devices, mainly computers to analyze and process the received time series data for multiple

purposes including control of a prosthetic limb [1]. Among these applications, restoring

the gait functions in patients suffering from spinal cord injury (SCI) has gained attention

recently. This is due to the fact that there is no biological treatments available and the

independence, quality of life and financial conditions of those affected are severely degraded

due to SCI.

Despite the advances in BCI algorithms and signal processing, implementation of a minia-

ture, portable, aesthetically acceptable system with long battery life remains a challenge.

Recent works have proposed implementations using off-the-shelf components to evaluate the

feasibility and operation of such systems [2–4]. However, any proposed solution to be clin-

ically viable and widely accepted by the public need to have several important features: It

has to be miniature in size, portable, low-power (to elongate battery life time and has low

heat generation) and very high degree of accuracy to minimize safety risks.
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Integrated circuits revolutionized the electronics and communication precisely because of

their miniature scale that has made signal processing and significant computation power

possible for consumer usage. This miniaturization also made circuits operate at increasingly

higher speeds [8–10], enabling development of complex transceiver architectures [11–21] and

wireless networks [5–7].

This work presents design, implementation and experimental results of three building blocks

of the BCI system in complementary metal-oxide-semiconductor (CMOS) processes. Each

design encompasses novel techniques to reduce power consumption, improve speed and data

throughput, and provide low-noise operation. The summary of this thesis is as follows:

In the first chapter, two brain signal acquisition (BSA) front-ends incorporating two CMOS

ultra-low power low noise amplifier arrays and serializers operating in MOSFET weak in-

version region are presented [22]. To boost the amplifier’s gain for a given current budget,

cross-coupled-pair active load topology is used in the first stages of these two amplifiers.

These two BSA front-ends are fabricated in 130 nm and 180 nm CMOS processes, occupy-

ing 5.45 mm2 and 0.352 mm2 of die areas, respectively (excluding pad rings). The CMOS

130 nm amplifier array is comprised of 64 elements, where each amplifier element consumes

0.216 µW from 0.4 V supply, has input-referred noise voltage (IRNoise) of 2.19 µVRMS cor-

responding to a power efficiency factor (PEF) of 11.7 and occupies 0.044 mm2 of die area.

The CMOS 180 nm amplifier array employs 4 elements, where each element consumes 0.69

µW from 0.6 V supply with IRNoise of 2.3 µVRMS (corresponding to a PEF of 31.3) and

0.051 mm2 of die area. Non-invasive electroencephalographic (EEG) and invasive electrocor-

ticographic (ECoG) signals were recorded real-time directly on able-bodied human subjects,

showing feasibility of using these analog front-ends for future fully implantable brain signal

acquisition and brain computer interface systems.

A MedRadio 413–419 MHz inductorless transceiver (TRX) for an implantable brain-machine

interface (BMI) in a 180 nm CMOS process is discussed in the second chapter [23]. Occu-
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pying 5.29 mm2 of die area (including pad ring), this on-off-keying (OOK) TRX employs a

non-coherent direct-detection receiver (RX), which exhibits a measured in-band noise figure

(NF) of 4.9 dB and S11 of –13.5 dB. An event-driven supply modulation (EDSM) technique

is introduced to dramatically lower the RX power consumption. Incorporating an adaptive

feedback loop, this RX consumes 42/92 µW power from 1.8 V supply at 1/10 kbps data-

rates, achieving –79/–74 dBm sensitivities for 0.1% bit-error-rate (BER). The TX employs

a current-starved ring oscillator with an automatic frequency calibration loop, covering 9%

supply-voltage variation and 15–78◦C temperature range which guarantees operation within

the emission mask. The direct-modulation TX achieves 14% efficiency for a random OOK

data sequence at –4 dBm output power. Wireless testing over a 350 cm distance account-

ing for bio-signal data transfer, multi-user coexistence, and in-vitro phantom measurement

results are demonstrated.

The last chapter presents a theoretical study and design of two techniques used to reduce

start-up time (TS) and energy (ES) of Pierce crystal oscillator (XO) [24]. An analytical

study of precise injection on a crystal resonator is introduced, and based on this study,

a relaxation oscillator with a dithered frequency is designed. Next, a study of negative

resistance of XO’s active circuitry and a method to boost its value beyond the limit set

by crystal static capacitor are presented. A gyrator-C active inductor with high linearity is

developed to accelerate the start-up process by boosting the negative resistance. A prototype

integrating these techniques is fabricated in a 180 nm CMOS process, and shows a significant

improvement compared to prior art. Specifically, TS and ES are reduced by 102.7× and 2.9×,

compared to the XO start-up with no assisting circuitry, to 18 µs and 114.5 nJ for a 48 MHz

XO across -40–90◦C temperature range. The measured steady-state power and phase noise

of the XO are 180 µW and -135 dBc/Hz at 1 kHz offset frequency.
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Chapter 2

Ultra Low-Power Brain Signal

Acquisition Front-Ends

2.1 Introduction

It is estimated that every year there are ∼500,000 new cases of spinal cord injury (SCI)

worldwide [25]. This condition substantially decreases independence and quality of life of

those affected, and the resulting disability and comorbidities pose a significant economic bur-

den on the individual as well as on society. Since there are no satisfactory means to restore

motor function after SCI, novel approaches to address this problem are needed. Bypassing

the damaged spinal cord by means of a brain-computer interface (BCI), which enables direct

brain control of prostheses, constitutes one such approach. Non-invasive electroencephalo-

gram (EEG)-based BCIs have the capacity to restore basic ambulation after SCI [26], [27],

although their applicability is limited by the low information content (i.e., limited bandwidth

and low spatial resolution) of EEG signals. Invasive BCIs, on the other hand, have enabled

control of multi-degree-of-freedom robotic prostheses [28]. However, they utilize bulky and
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power-hungry general-purpose recording hardware, and rely on skull-protruding electronic

components. Furthermore, these systems typically employ intracortically implanted micro-

electrode arrays, which can trigger foreign body responses such as inflammation and scarring,

ultimately leading to failure of the system within months to few years [29]. These factors

represent a serious obstacle to a widespread adoption of invasive BCI technology.

These problems may be addressed by developing a fully implantable BCI system that uses

highly stable electrocorticogram (ECoG) signals [30]. Such a BCI system is envisioned to

consist of ECoG electrodes, amplifiers, a processor, and a wireless module to control and

communicate with output devices (e.g., prostheses), all implemented in a miniaturized form

factor and operating in a low-power regime in order to facilitate permanent implantation.

Since ECoG electrodes are placed above the arachnoid layer without breaching the neuronal

tissue, ECoG signals have long-term stability [30, 31], while providing the spatiotemporal

resolution necessary for high-performance BCI applications [32], [33]. In particular, studies

have shown that the ECoG high-γ frequency band (70–120 Hz) exhibits spatially localized

amplitude modulation that is correlated with individual’s physical movements [34], and

this feature has been used to decode arm [35] and finger movements [36]. Chronic in vivo

recording of ECoG signals has been used for neurological treatment. The Medtronic Activa

PC+S system [37, 38], was used in patients having Parkinson disease with ECoG electrode

strips implanted over the motor cortex and depth electrodes in the subthalamic nucleus [39].

Chronic recordings from these areas were used to study the association between gamma band

oscillations and dyskinesia. The Activa PC+S system was also used for recording signals

from ECoG electrode strips over the motor cortex of a patient with amyotrophic lateral

sclerosis (ALS) to facilitate BCI-control of a virtual keyboard [40]. Finally, as shown in prior

art, a fully implantable system eliminates the need for bulky skull-protruding components,

often employed in the state-of-the-art invasive BCIs, as well as bulky recording hardware

and external computers.
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There has been extensive research on low-power amplifier and amplifier array designs for

neural signal sensing applications, which vary substantially in frequency and dynamic range.

For example, in [41], the authors present a folded-cascode operational transconductance

amplifier (OTA) using current-splitting and current-scaling techniques with a cascaded 6th-

order band-pass filter for detecting epileptic fast ripples between 250 and 500 Hz. The stack

of 4 transistors and large degeneration resistors in this design increase the required supply

voltage to accommodate sufficient output voltage headroom. In [42], a closed-loop neural

recording amplifier has been developed that utilizes a T-network in its feedback path in

order to achieve high input impedance and common-mode rejection ratio (CMRR) within a

small chip area. The authors argued that the T-network in the feedback path is useful when

the routing area overhead, crosstalk and input-referred noise (IRNoise) do not dominate the

performance [42].

Most of the previously developed neural sensing amplifiers focus on EEG or single-unit

recordings. Consequently, their designs are not optimal for use in other recording modalities,

such as ECoG. Moreover, a few studies that exist with analog front-end (AFE) designs for

ECoG recording lack in vivo experimental validation in humans. For example, [43] presents

a 32-channel integrated circuit (IC) for ECoG recording, followed by in vivo measurements

in a rat. The power consumption of this system is too high, making it unsuitable for human

ECoG signal acquisition, especially in a fully implantable form. In [44], an ECoG/EEG IC

has been introduced which records signals in 4 different sub-bands as opposed to simulta-

neously capturing the complete ECoG spectrum. This IC has been validated by comparing

the measurements of a pre-recorded human ECoG signal with those generated by a model of

the signal acquisition chain. This approach, however, does not accurately capture the IC’s

interface with the body (e.g. 60 Hz noise), which may significantly affect the performance.

When tested in an awake monkey, the signals simultaneously measured by this IC and those

acquired using a commercial system showed only modest correlations in α (8–12 Hz) and

high-γ (70–120 Hz) bands. This can be explained by the dominating effects of flicker and
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thermal noise at these frequencies. On the other hand, the signals in the β (13–35 Hz) and

low-γ (35–70 Hz) bands were only qualitatively compared with no correlation coefficients

reported. Recent work [45] reports on an AFE consuming 1.08 µW of power per channel,

which is achieved by narrowing the AFE bandwidth and filtering out the noise. A potential

problem with this approach may lie in the high sensitivity of the designed GmC filters to

process variation. The proposed AFE has been tested in its ability to reproduce pre-recorded

ECoG data and acquire ECoG signals in vivo from an anesthetized monkey. However, human

testing and direct comparison of recorded signals to those acquired with a commercial-grade

system have not been performed. Finally, the work in [46] presents a 64-channel wireless

micro ECoG recording system with the front-end achieving a power-efficiency factor (PEF)

that is 3× smaller than the state-of-the-art. In vivo measurements from an anesthetized

rodent show the power increase with respect to the pre-sedation state in δ (1–4 Hz) and θ

(4–7 Hz) bands, but very little change in BCI-relevant frequency bands. Furthermore, none

of the above systems were tested in a hospital environment, which is typically characterized

by extremely hostile ambient noise and interference conditions. In summary, while the de-

velopment of these architectures has been inspired by human BCI applications, their in vivo

testing in humans and comparison to conventionally acquired ECoG signals are conspicu-

ously missing.

This paper presents the design, experimental validation, and comparative study of two

CMOS ultra-low power (ULP) amplifier array and serialization circuitries that constitute

core building blocks of two brain signal acquisition (BSA) front-ends. These BSA front-ends

can act as the basis for a future, fully implantable ECoG-based BCI system (Fig. 2.1(a)).

The AFE IC will be housed within an enclosure, called the skull unit, to be surgically im-

planted into the skull [47]. Other building blocks required to develop a complete ECoG-based

BCI, e.g., transceiver, power management unit and digital signal processor are intended to

be placed in another unit away from the patient’s brain. This approach imposes less health

hazards for the patient as well as more practical system specifications for a portable, user-
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Figure 2.1: Proposed AFE: (a) A cross-sectional view of the envisioned fully implantable
BSA circuit, enclosed within a skull unit module. The BSA circuit is connected to a subdu-
rally implanted high-density (HD)-ECoG electrode grid that senses brain signals. (b) Block
diagram of the structure showing the brain interface electrodes with their corresponding
impedances and BSA comprised of an array of fully differential amplifiers, serializer and
buffer.

friendly solution. All circuits in this work are designed to operate in the weak inversion (WI)

region to maximize power efficiency and minimize heat dissipation, while maintaining high

gain and low noise operation. In vivo human measurements and objective validation against

a commercial bioamplifier are done in (1) a human subject using non-invasive EEG cap, and

(2) a human subject with subdurally implanted high-density ECoG grid.

The paper is organized as follows. Section 2.2 presents the proposed AFE for recording

ECoG signals and identifies the criteria and required specifications of the building blocks

for designing the system. Sections 2.3 and 2.4 discuss the design and implementation of the

two BSA front-ends, BSA I and BSA II, respectively. Section 3.6 illustrates the electrical

and neural measurement results of both front-ends. Finally, Section 3.7 presents concluding

remarks and potential extensions of this work.
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2.2 Proposed System Architecture

Responsible for sensing and amplification of microvolt-level brain signals, the amplifier array

IC is a critical building block of a BSA front-end. To be employed as a fully implantable

device, the signal acquisition front-end should be small in size and consume micro-watt level

of power. The system-level diagram of the proposed AFE is shown in Fig. 2.1(b) [48]. The

AFE IC includes fully differential amplifiers, a serializer, and an output buffer all biased in

the WI region. The outputs of the array are multiplexed in time to better facilitate input-

output cable management by reducing the number of wires. The non-overlapping clock

generator within the serializer generates N -phase clock signals, each with 1/N duty cycle.

Non-overlapping clock signals ensure that only one amplifier is connected to the output buffer

at a time during the channel switchover. This work presents two ULP BSA front-ends, BSA

I and BSA II. BSA I provides symmetrical and complementary signal amplification paths to

achieve energy-efficient low noise signal conditioning. BSA II is designed to achieve a high

CMRR (i.e., better than 70 dB), thereby reducing the detrimental effect of power-line 60 Hz

interference on the recorded signal.

Minimizing both noise and power dissipation imposes stringent design trade-off in an AFE

for an implantable system, mandating meticulous considerations at every level of the design

process. For example, at the device level, this notion implies that transistors should be

designed to operate in a region which yields minimum power consumption for a given IRNoise

imposed by minimum detectable ECoG signal power.

It is well-known that the MOS transistors in the WI region achieve maximum gm/IDS-ratio,

resulting in the highest power efficiency at the cost of lower operation maximum bandwidth

[49], [50]. Fig. 2.2 demonstrates gm/IDS and log10(IDS) variations with respect to VGS

for the two technologies given the same transistor sizes and bias conditions. Referring to

Fig. 2.2(a), a higher subthreshold leakage current and a higher slope are observed in the
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Figure 2.2: (a) Drain-source current (IDS) vs. gate-source voltage (VGS) for the two tech-
nologies. (b) gm/IDS vs. VGS for the two technologies. W/L = 20µm/2µm with 10 fingers,
VDS = 1V for both transistors and body temperature of 37 is considered for simulation.

weak-inversion region for the 130nm process compared to the 180nm process. A higher slope

corresponds to a larger gm for the same bias current. This feature translates to a better

power efficiency (Fig. 2.2(b)) and noise performance for transistors designed in this specific

130nm process. It is noteworthy that the gm/IDS-plot for the 130 nm CMOS process does not

show the expected flat region in the deep subthreshold region. This is because BSIM4 device

model was adopted for this process by the foundry. On the other hand, the 180 nm process

employed PSP device model, which can predict the device behavior in deep subthreshold

region more accurately.

ECoG signals typically have an amplitude of around 50–100 µV [51], with β and high-γ bands

typically providing the most informative features for BCI applications [34]. The IRNoise of

the AFE should be kept lower than the noise floor of the ECoG electrodes. Our recorded

measurements using a commercial BCI signal acquisition equipment showed that the RMS

noise floor, integrated over a frequency range of 8–200 Hz, is typically less than 10 µVRMS,

which is in compliance with the data reported in literature, e.g. [52]. Low noise operation is

of particular interest for high-γ band, because the ECoG signal power becomes weaker with

frequency [53].
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The CMRR and power-supply rejection ratios (PSRR) should be large to attenuate the effect

of environmental noise sources (e.g., 60 Hz power-line noise). Assuming an IRNoise level of

2µVRMS in the presence of common-mode interference with 10 mVRMS, a nominal 34 dB

attenuation (i.e., 74 dB CMRR) is needed so that the output noise and interference voltage

magnitudes are equal. In addition, the amplifier should show a high input impedance to

lower the effect of common-mode interference. This attribute is especially important for

multi-channel recordings since the impedance mismatch between electrodes (Ze,1, ..., Ze,N)

as well as the mismatch between the impedance seen from the common reference input

(parallel combination of Zin,1, ..., Zin,N in Fig. 2.1) and Zin,k (1 ≤ k ≤ N) reduces the

overall CMRR. Subdural electrodes’ impedance have been reported (as well as measured)

to be about 1 kΩ [30], thus the input impedance at the frequency of interest should be �

1 MΩ [54]. Moreover, large DC offset associated with neural recording electrodes should be

eliminated so as to minimize distortion or avoid saturation of the amplifier. Furthermore,

electrical shielding and DC isolation are needed between the IC and implanted electrodes.

Finally, the crosstalk in a multi-channel system should be mitigated to avoid contamination

of the overall information recorded from different channels.

2.3 BSA I: An Array of 64 Amplifier I Circuits and A

Serializer

BSA I incorporates 64 units of Amplifier I and a serializer, as shown in Fig. 2.1(b). Fig. 2.3

shows the general block diagram of the OTA used in the Amplifier I, composed of complemen-

tary NMOS-PMOS input stage. Intuitively, the signal is amplified by the transconductance

gain of the input transistor pairs and subsequently applied to the current gain stage in each

of the top and bottom branches (AI,N and AI,P ). Upon flowing through the load impedance

ZL, the summing current will generate the output voltage. Fig. 2.4(a) shows the top-level
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Figure 2.3: Complementary input structure of the OTA used in Amplifier I

topology of Amplifier I employing an OTA with an RC feedback network. The AC-coupled

input provides DC rejection between the recording electrodes and the OTA input, thus pro-

viding a layer of electrical safety and isolation between the patient’s brain and the amplifier.

Fig. 2.4(b) depicts the transistor-level schematic of the OTA utilized in Amplifier I, includ-

ing common-mode feedback (CMFB) circuitry (in gray) [47]. The OTA device sizes and

aspect-ratios together with operating points of the individual devices are presented in Table

2.1. NMOS and PMOS transistors’ body connections are tied to the ground and supply

rails, respectively. The minimum headroom for a single transistor biased in the WI region is

∼4UT (where UT ≈ 26 mV at room temperature) [55]. As a result, the OTA is biased at 0.4

V supply to mitigate large process variations resulting from WI operation, while achieving

low power and low noise. The first stage employs a complementary NMOS-PMOS differ-

ential configuration with a complementary active load comprising parallel combination of

diode-connected transistors and a cross-coupled pair [47, 56]. Cross-coupled pair and diode-

connected transistors are identically sized as shown in Table 2.1, thereby having the same

transconductance. The effective output resistance of the input stage is thus increased from
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Figure 2.4: (a) Amplifier I comprising a closed-loop amplifier with capacitive feedback and
its die microphotograph, and (b) the schematic of the complementary NMOS-PMOS OTA
[47]

ro3

1+gm3ro3
||ro1 (in the absence of cross-coupled pair load) to ro1||ro2||ro3, where ro1, ro2 and ro3

are the drain resistance of M1, M2 and M3, respectively. The active-load devices are sized

in a way that no instability or latch-up happens due to the process variation. The size of

output transistors M4 and M8 are chosen to exhibit large drain resistance and low current

consumption at the output stage.

The capacitance ratio C1/C2 (C1 = 20 pF and C2 = 200 fF) defines the closed-loop gain with

high accuracy so long as the open-loop gain is sufficiently high. High output impedance of

the OTA imposes a high impedance load for the feedback and next stage circuits. Pseudo-
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resistors realized by transistors MA and MB (as in [57]) provide large equivalent resistance R

of few GΩ, self-bias the input stage of the OTA without consuming any additional power for

closing the loop, and set the lower 3-dB cutoff frequency (fL = (2πRC2)−1). Compared to

pseudo-resistor used in [58], this implementation provides a wider linear range of operation.

Assuming all transistors are identically matched (to simplify the analysis), the IRNoise power

spectral density (PSD) of the open-loop OTA (V 2
in,OTA) is calculated to be:

V 2
in,OTA(f) =

4kTγ

gm1

(
1 +

2gm2

gm1

)
+

Kp,1/f

Cox(WL)1

1

f

[
1 + 2

Kn,1/f

Kp,1/f

(WL)1

(WL)2

(gm2

gm1

)2
]

(2.1)

where k is the Boltzmann constant, γ, Kp,1/f and Kn,1/f are technology-dependent parame-

ters, f is frequency, Cox is the gate oxide capacitor, and T is the temperature. γ, the excess

thermal noise factor, is slightly lower in the WI region than in the strong inversion (SI) [49].

Note that the complementary structure used in this OTA doubles the overall Gm. Flicker

noise and mismatch effects are slightly attenuated by large input transistors and symmetrical

circuit layout. In addition, dynamic compensation techniques such as chopper stabilization

and autozeroing are commonly used to reduce the effect of amplifier offset and flicker noise

[59–63]. However, these techniques require switches with low on-resistance to accommodate

highly linear operation for autozeroing techniques and low residual input-referred offset volt-

age for chopping techniques. Thus, a high-swing on-chip clock needs to be generated at the

Table 2.1: Amplifier I device sizes and operating points

Devices W/L (µm/µm) ID (nA) gm/ID (V −1)
M1a-M1b 53.5/1.35 130 34
M2a-M2b 50/10 65 25
M3a-M3b 50/10 65 25
M4a-M4b 3.7/32 1.5 25
M5a-M5b 140/1.2 138 29
M6a-M6b 15/30 69 28
M7a-M7b 15/30 69 28
M8a-M8b 0.4/40 1.5 26
M9 80/0.36 89 34
M10 80/0.36 170 35
M11 120/0.13 277 25
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expense of high power consumption. Therefore, we have not used these compensation tech-

niques in the current design. The IRNoise of Amplifier I in Fig. 2.4(a), V 2
in,tot, is calculated

to be:

V 2
in,tot(f) =

(
4kTR + V 2

in,OTA(f)
)( fL
Gcf

)2
+ V 2

in,OTA(f)
(C1 + C2 + Cin

C1

)2 (2.2)

where Gc is the midband closed-loop gain defined by C1/C2 and Cin is the equivalent input

capacitance seen from the input of the OTA.

Sizing of the input transistors is critical due to existing trade-off between V 2
in,OTA and V 2

in,tot.

More precisely, large input transistors with low flicker noise will reduce V 2
in,OTA. On the

other hand, a larger device size leads to larger input capacitance, Cin, which adversely

affects the system sensitivity. Another point to consider is that Cin shunts the gate of the

input transistor to ground, causing a capacitive voltage division between C1, C2 and Cin.

This, in turn, lowers the differential loop-gain, thereby preventing the closed-loop gain to

be accurately defined. Moreover, as fL decreases, the thermal noise contribution of the

pseudo-resistors to V 2
in,tot is reduced, while the flicker noise contribution of the OTA to V 2

in,tot

is increased.

The serializer in Fig. 2.1(b) is clocked at 64 kHz and is composed of a custom-designed 6-bit

synchronous binary counter, a 6-to-64 decoder and 2×64 complementary pass-gate switches

for selecting the amplifier channels. A reset signal puts the circuit in an initial state (channel

64) and the clock signal selects the channels sequentially [47].

Section 3.6 presents the measurement results of the BSA I, which was fabricated in a 130nm

CMOS process [47].
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Figure 2.5: BSA II: (a) overall topology, including 4 Amplifier II circuits and one InAmp
(b) InAmp implementation

2.4 BSA II: An Array of 4 Amplifier II Circuits, A

Serializer, and an Instrumentation Amplifier

The existence of two signal paths in Amplifier I leads to a degradation in CMRR (≈60 dB).

To further elaborate, suppose that the only existing mismatch is the one between each of

the input pairs in Fig. 2.3 (i.e., ∆gmN
and ∆gmP

). This mismatch directly contributes to

the common-mode to differential-mode gain for Amplifier I, which is derived as follows:

Acm−dm ≈
∆gmN

× AIPZout
(gmN1

+ gmN2
)ZSN

+
∆gmP

× AINZout
(gmP1

+ gmP2
)ZSP

(2.3)

where Zout, ZSN
and ZSP

are output impedances of Amplifier I, ISN
and ISP

, respectively. It

is inferred from (2.3) that the CMRR of Amplifier I can statistically be degraded by a factor

of 2 compared to an amplifier with a single path from the input to the output. A high CMRR

is important in brain signal amplifiers due to the presence of a strong 60 Hz power-line noise

in the amplification band. If not eliminated, major degradation in the output signal-to-noise
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Figure 2.6: (a) OTA schematic used in Amplifier II (b) Op-amp schematic used in InAmp

ratio (SNR) will be seen. To further improve this feature, Fig. 2.5 introduces the block

diagram of BSA II, which is composed of an array of 4 Amplifier II circuits, a serializer,

and an instrumentation amplifier (InAmp). Similar to Amplifier I, Amplifier II is realized

as a fully differential RC feedback circuit incorporating 200 fF feedback and 18 pF input

AC-coupled capacitors. Matching accuracy of the feedback capacitor limits the achievable

CMRR. For instance, it is readily shown that for closed-loop gain of 100 and 10% mismatch

of the feedback capacitor, CMRR is lower than 60 dB. The open-loop OTA within Amplifier

II employs PMOS input differential-pair with NMOS cross-coupled active loads, as shown

in Fig. 2.6(a). Having one signal path from the input to the output relaxes the mismatch

considerations present in complementary signal paths used in the first design.

The IRNoise of the open-loop OTA is calculated to be:

V 2
in,OTA(f) =

8kTγ

gm1

(
1 +

2gm2

gm1

)
+

2Kp,1/f

Cox(WL)1

1

f

[
1 + 2

Kn,1/f

Kp,1/f

(WL)1

(WL)2

(gm2

gm1

)2
]

(2.4)

Assuming a single-pole frequency response, it is readily proven that the noise efficiency factor

(NEF [64]) reaches a lower-limit of 2
√
nγ (where n denotes the subthreshold slope factor

[55]) for both OTAs used in Amplifiers I and II if no dynamic compensation techniques are

employed. The use of the same closed-loop architecture as in Amplifier I indicates that the

IRNoise of Amplifier II is also expressed by (2.2).
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The InAmp, after the serializer, provides further amplification and buffering to the output. It

is commonly known that isolated resistive feedback circuitry (R1 and R2) provides flexibility

in the design of an InAmp and its constituent open-loop op-amps with no concern of loading

on preceding circuits [65]. In addition, any variation in R1 is widely known to only contribute

to the differential gain variation and will not increase common-mode to differential-mode gain

(Acm−dm) [66], [67]. Therefore, the CMRR is not degraded. As for the contribution of the

mismatch between the R2 resistors (R2∆=R2+∆R) on CMRR, the InAmp’s Acm−dm induced

by this mismatch is derived first:

Acm−dm =
ECM − 1

1 + R2∆

R1Adm2
− R2∆

Adm1R1
ECM + 1

Adm2

(2.5)

where:

ECM =
1 + 1

Adm2

(
1 + R2+R2∆

R1

)
1 + 1

Adm1

(
1 + R2+R2∆

R1

) (2.6)

In deriving Eq. (2.5), the open-loop gains of the op-amps, Adm1 and Adm2, are assumed to be

finite, while each op-amp exhibits negligible differential to common-mode gain. The common-

mode gain Acm of the InAmp is almost unity. If followed by a high-CMRR amplification

stage, the contribution of Acm on CMRR will be negligible. On the other hand, to reduce

the impact of Acm−dm on CMRR, the op-amps need to exhibit large open-loop gain. Large

open-loop gain significantly reduces the contribution of R2 mismatch on the CMRR. Ideally,

if the op-amps are perfectly matched (Adm1 = Adm2), Acm−dm would become zero regardless

of ∆R value.

Amplifier II and the InAmp are DC-coupled, eliminating the need for large coupling capac-

itors. Considering a 39-dB gain for the OTA, the expected differential input amplitude of

the InAmp is less than 9 mV, which falls within the input common-mode range of InAmp

(0 to VDD − 2VDS,sat where VDS,sat is the drain-source saturation voltage).

Figs. 2.6(a) and (b) show the transistor-level schematics of the OTA used in Amplifier II
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and the op-amp used in InAmp, respectively. Both amplifiers use similar topology while the

devices are sized according to the performance specs needed from each circuit, namely, low

noise and high transconductance for the OTA (high driving power and high voltage gain for

the op-amp). Tables 2.2 and 2.3 show device sizes and operating points for the OTA and

the op-amp, respectively. All transistors are biased in WI to maximize power efficiency. To

achieve a maximum ECoG bandwidth of 200 Hz in the OTA and avoid out-of-band noise

accumulation, a large 48 pF capacitor CL is placed differentially at the output. The input

transistors operate in deep WI to maximize their gm/ID-ratio so as to reduce the IRNoise

contributions of active-load devices (M2a – M2b and M3a – M3b). PMOS transistors are

used in the input differential pair to have a lower flicker noise. Furthermore, the use of a

PMOS input pair for the op-amp makes common-mode levels of the OTA output and the

op-amp input compatible, thereby making it possible to DC-couple the two. DC-coupling

eliminates the need for large decoupling capacitors as well as biasing circuitry of the op-amp

inputs. The OTA bandwidth and stability are determined by its output stage where the

dominant pole is located. On the other hand, the op-amp’s dominant pole is located at its

first stage’s output node, as its output stage should provide high current drive capability.

The op-amp is thus Miller-compensated and its bandwidth is chosen to be ≈ 800 Hz in order

to accommodate 4 recording channels.

Fig. 2.7 shows the proposed CMFB circuit to set the output common-mode voltage of the

OTA. The drain currents of transistors M4a and M4b are steered to ground or to transistor

M6 depending on common-mode level of Vin. M3a and M3b mirror M6, sinking current from

Table 2.2: Amplifier II device sizes and operating points

Devices W/L (µm/µm) ID (nA) gm/ID (V −1)
M1a-M1b 152/0.18 510 27
M2a-M2b 12.8/20 255 20.7
M3a-M3b 12.8/20 255 20.7
M4a-M4b 0.8/25 27 16.6
M5a-M5b 16/12 67 22.9
M6 192/1 1020 27
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Figure 2.7: CMFB circuit used in Amplifier II

the OTA’s output stage, thereby adjusting the OTA common-mode level. Note that the

input and the output of the CMFB are physically connected together. The CMFB output

currents are expressed as:

I3a = I3b =
W3

W6

× gm1,2 ×
(Vin+ + Vin−

2
− Vref

)
(2.7)

where gm1,2 denotes the transconductance of M1a−M1b and M2a−M2b, W3 is channel width

of M3a −M3b, and W6 is M6 width. Input transistors (M1a −M1b and M2a −M2b) should

remain in saturation region for proper operation of the CMFB. Having few millivolts swing

at the OTA’s output ensures that no transistor leaves saturation. Transistors M3a and M3b

are designed to have long channel length, with negligible loading effect on the OTA. Their

parasitic capacitances are absorbed in the OTA’s load capacitor. The simulation of the

CMFB shows a current consumption of 24 nA and a common-mode phase margin of at least

35◦.

Table 2.3: Op-amp device sizes and operating points

Devices W/L (µm/µm) ID (nA) gm/ID (V −1)
M1a-M1b 100/0.18 80 29
M2a-M2b 1/5 40 21
M3a-M3b 1/5 40 21
M4a-M4b 8/5 320 21
M5a-M5b 32/4 320 21
M6 200/1 160 28
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Figure 2.8: Non-overlapping clock signals applied to serializer switches

The circuitry for the serializer logic used in BSA II is presented in Fig. 2.8. This logic

contrives i) non-overlapping clock signals for time-multiplexing, and ii) a gray-coding scheme

for a 2-bit binary counter to eliminate race conditions. The serializer clock signal’s duty-

cycle produces temporal spacing between clocks applied to the serializer switches (Fig. 2.8).

A Gray-code converter is used to convert binary code to Gray code such that the counter

exhibits no race condition, which could otherwise result in sparks in the 2-to-4 decoder in

Fig. 2.8. A T-network switch is used for channel selection in this serializer to provide large

input-output isolation and minimize the effects of charge-injection and clock-feedthrough.

2.5 Measurements

The functionality of BSAs I and II was verified by electrical and in vivo measurements. The

EEG test verified the functionality of Amplifiers I and II to detect weak signals in the presence

of environmental noise. BSA II was further tested in a hospital environment on a patient

who underwent ECoG grid implantation over the motor cortex area. It was experimentally

shown that BSA II was capable of recording signals with high output SNR and comparable

performance with respect to a commercial EEG acquisition unit, while consuming orders of

magnitude less power.
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Figure 2.9: Die microphotograph of BSA I with 64-channel amplifier array and serializer [47]

Figure 2.10: Die microphotograph of the BSA II with 4-channel amplifier array and serializer

2.5.1 Electrical Measurements

Amplifiers I and II were fabricated in 130nm and 180nm CMOS processes, occupying 0.044

mm2 / 0.052 mm2 die areas, and consuming 0.216 µW / 0.69 µW from 0.4 V / 0.6 V externally

provided supply voltages, respectively. Figs. 2.9 and 2.10 show die microphotographs of BSA

I and BSA II front-end circuits. The first chip (BSA I) occupies 5.45 mm2, and the second

chip (BSA II) occupies 0.352 mm2 (excluding pad rings). The pad ring incorporates a 2 kV

HBM ESD protection circuitry with negligible leakage current. BSA I prototype uses an

off-chip buffer to drive commercial signal acquisition unit (MP150 with 12-bit ADC, Biopac
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Figure 2.11: Measured and simulated Amplifier I gain and noise responses. Note that the
sharp peaks were due to 60 Hz harmonics on the unshielded cables [47].

Systems Inc., Goleta, CA) [47]. The overall amplification gain for the two AFEs have been

measured using Agilent 33250A waveform generator and SMA attenuators, each providing

39 / 58 dB voltage gain and IRNoise of ∼2.19 / 2.3 µVRMS across 12–190 Hz / 2–175 Hz of

operation bandwidth, respectively (Fig. 2.11 and 2.12). Without explicit calibration scheme,

the lower-cutoff frequency is not well controlled across process corners. In this work, this

frequency was chosen to be smaller than the 8-Hz corner frequency of α-band with negligible

effect on noise performance. Simulations show that this lower-cutoff frequency varies from

2 to 10 Hz across process corners. The 60 Hz interference and its harmonics were removed

from the noise plot and calculations in Fig. 2.12. Linearity and noise measurements were

done using Agilent E4448a spectrum analyzer. A low noise off-the-shelf instrumentation

amplifier (AD620) was used to boost the noise level and drive the spectrum analyzer. The

calculated dynamic range of the Amplifier I at 37 Hz for ∼1% Total Harmonic Distortion

(THD) was 58 dB. The Amplifier II harmonics for 0.2 mV input voltage at 47 Hz (which is 2

times higher than the expected neural signal amplitude) was lower than the measured noise

floor, indicating linear operation. For 150 mVpp signal at 60 Hz, Amplifier I / II exhibits a

CMRR greater than 60 dB / 74 dB and a PSRR greater than 58 dB / 70 dB, respectively.

Table 2.4 provides the performance summary of the designed amplifiers and comparison with
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Figure 2.12: Measured and simulated gain and noise responses for a single channel of BSA
II

prior art from academia and industry.

2.5.2 Human Neurological Measurements

This study was approved by the Institutional Review Boards of the University of California,

Irvine and the Rancho Los Amigos National Rehabilitation Center, and is considered non-

significant risk. Three human subjects provided informed consent to participate. The chip

was powered by a current-limited (2 mA) supply source. The hospital instruments were

disconnected to avoid creation of any unwanted electrical loop. The AC-coupled connection

between the electrodes and the amplifiers provides DC isolation.

EEG

For two healthy subjects (male, 26 and 27 years old), the impedances of electrodes AFz, Cz,

Pz, and Oz in the 10/10 EEG system [68] were reduced to < 3 kΩ using conductive gel.

Measurements were performed on one of the subjects using Amplifier I, as follows. EEG

from Cz, Pz, and Oz (all referenced to AFz) was recorded at 2353.2 Hz per channel using
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Figure 2.13: Amplifier I EEG time series (top) and spectrogram (bottom) from channel Oz
with 10 dB increase in the posterior dominant alpha rhythm (8–12 Hz) amplitude when the
subject closed his eyes (arrow). The subject closed his eyes at 10 and 32 s and opened again
at 20 and 42 s [47].

a data acquisition system (Biopac MP150). This sampling rate corresponds to a sampling

period of ∼100 µs per channel. The subject was provided verbal cues to alternate between

eye opening/closing every 10 s. As a representative example, Fig. 2.13 shows prominent

changes (∼10 dB) in the power of the occipital posterior dominant α rhythm at channel

Oz in both the time series and the time-frequency spectrogram during this task. This is

consistent with classic neurophysiological findings [69].

Measurements were performed on the second subject using Amplifier II, as follows. EEG

from channel Oz (referenced to AFz) was split to Amplifier II as well as to a commercial

bioamplifier (Biopac EEG100C) and sampled at 50 kHz. The output from both systems was

downsampled to 2 kHz and filtered into the 8–35 Hz frequencies in software (see Fig. 2.14).

The two signals exhibited a Pearson correlation coefficient of 0.89, and their envelope powers
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Figure 2.14: Top: PSD of the BSA II (red) and commercial (black) bioamplifier from 30 s
of EEG data. Bottom: EEG α/β-band (8–35 Hz) time-series data from channel Oz (refer-
enced to AFz) using the BSA II (red) and commercial (black) bioamplifiers. The subject
was instructed to alternate between eyes-open (white background) and eyes-closed (blue
background).

exhibited a correlation of 0.93. In addition, we recorded multiplexed EEG from electrodes

AFz, Cz, Pz, and Oz (all referenced to AFz) using Amplifier II and the results after de-

multiplexing in software are shown in Fig. 2.15. As physiologically expected, electrodes Oz

and Pz exhibit larger amplitudes of the occipital posterior dominant α rhythm during the

eyes-closed state.

ECoG

One subject (43-year-old male) undergoing ECoG implantation for epilepsy surgery evalu-

ation participated in the study. This subject had an 8×8 grid (Ad-Tech, Racine, WI) of
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Figure 2.15: BSA II EEG α/β-band (8–35 Hz) time-series data (top) and spectrogram (bot-
tom) from channel AFz, Cz, Pz, and Oz (all referenced to AFz) as the subject was instructed
to alternate between eyes-open (white background) and eyes-closed (blue background). The
channel-multiplexed data from the custom designed IC were demultiplexed in software.

2 mm-diameter electrodes (4-mm center-center spacing) implanted over the primary motor

cortex. Fig. 2.16 shows the locations of the implanted electrodes (derived by co-registering

a CT scan and MRI of the head, as in [70]). The subject completed his epilepsy monitoring

procedure and was awaiting ECoG grid removal the next day. Hence, the hospital EEG sys-

tem was disconnected at the time of measurement. ECoG signals were simultaneously routed

to Amplifier II and a commercial EEG100C bioamplifier using unshielded cables, as shown in

Fig. 2.17. Negligible loading effect and source impedance mismatch from EEG100C (2 MΩ

input impedance) on Amplifier II is expected due to a relatively small electrodes’ impedance

(<1 kΩ). ECoG electrodes’ impedance is reported to be stable over time [30], eliminating

the need for constant monitoring of its value. The output from both amplifiers was recorded

at 25 kHz by the MP150 system for 30 s. Note that the subject was asleep during this time
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Figure 2.16: MRI of the patient with implanted ECoG grid over the left motor cortex.
Electrodes 28 and 24 were used as the reference and ground, respectively.

and did not participate in any associated behavioral task for further verification of the am-

plifier array. The resulting signals were then downsampled to 2 kHz in software for further

processing. The correlation coefficient between the signals from BSA II and the EEG100C

was 0.99 from 8–35 Hz (covering the α and β bands), 0.94 from 35–70 Hz (low-γ band),

and 0.72 from 70–120 Hz (high-γ band). Moreover, the correlation between each system’s

envelope power in α/β, low-γ, and high-γ bands was 0.99, 0.99, and 0.89, respectively. This

slight decrement in the high-γ band correlation between the bioamplifiers is expected since

the signal power decreases with frequency and approaches the Amplifier II’s noise floor. A

software notch filter was applied on the signal from 57 to 63 Hz before calculating the cor-

relations. A representative PSD of the recorded signals across the α, β and γ bands (8–120

Hz) and 10-s output time-series of BSA II and its commercial counterpart are shown in

Fig. 2.18, demonstrating qualitative similarities between the two. The peaks at 60 Hz for

custom and commercial PSDs are caused by limited CMRR of the signal chain as well as the

coupled power line interference to the unshielded interface between the analog output and

the external ADC.
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Figure 2.17: In vivo ECoG measurement setup.

2.6 Conclusion and Future Work

Two brain signal acquisition front-ends designed in the WI region were presented. Fabricated

in 130nm and 180nm CMOS processes, each amplifier within the arrays consumes 0.216 /

0.69 µW, respectively (not including buffer and InAmp). Measured IRNoise across the

bandwidth was 2.19 / 2.3 µVRMS corresponding to NEF of 4.65 / 7.22 and PEF of 11.7 /

31.3[73]. Objective comparison of human in vivo EEG and ECoG measurements acquired

by our custom IC and a commercial bioamplifier demonstrated that our BSAs were able to

record these neural signals reliably. This suggests that the circuit architecture presented in

this work can serve as the basis for a highly miniaturized and ultra-low power brain signal

acquisition unit for a future fully implantable BCI system. Future work will focus on further

reducing the susceptibility of the front-end to environmental noise, e.g., including an on-chip

analog-to-digital converter, and incorporating the capability of large interference rejection

at low supply voltages in the presence of a sensory feedback stimulation circuitry.
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Figure 2.18: Top: PSD of the BSA II (red) and commercial (black) bioamplifier from 30 s
of ECoG data. Middle: Filtered (8–120 Hz) time-series data from the implanted ECoG grid
with the BSa II (red) and commercial (black) bioamplifier. Bottom: Zoomed-in view of the
recorded ECoG.
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Chapter 3

A CMOS MedRadio Transceiver with

Supply-Modulated Power Saving

Technique for an Implantable

Brain-Machine Interface System

3.1 Introduction

Implantable medical devices, such as deep brain stimulators [74] or responsive neurostimu-

lators [75], are routinely used for the treatment of neurological conditions. As technology

advances, these systems are also becoming more sophisticated, and this trend will continue

in the future. In addition, current brain implants will likely be re-purposed or redesigned in

the future to address unmet clinical needs [76]. To fulfill their role, these future implantable

systems will need to be endowed with additional features and functions. One such novel

clinical application is the restoration of motor function after stroke or spinal cord injury
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Figure 3.1: Proposed fully-implantable BMI system for restoration of walking, with a signal
acquisition front-end (skull unit) and signal processing and wireless communication modules
(chest wall unit). This system bypasses the injured spinal cord and enables direct brain
control of an exoskeleton.

(SCI) using brain-machine interfaces (BMIs). Generally, BMIs record, process, and decode

cortical signals in real time, and use this information to control external devices [77]. This

enables those with paralysis to operate prostheses [78] or muscle stimulators [79] directly

from the brain while bypassing the neurological injury. Current state-of-the-art invasive

BMIs are mostly used in a laboratory setting, and their clinical adoption will critically de-

pend on the ability to make them fully implantable. Despite encouraging results [80], these

systems rely on external electronics and skull-protruding components, which makes them

impractical, less safe, and generally unsuitable for everyday at-home use. These obstacles

can be circumvented by designing a fully implantable BMI with internal electronics and no

skull-protruding components.

Fig. 3.1 shows an example of a hypothetical implantable BMI system for restoration of

walking in individuals with SCI. This system comprises a skull unit for brain signal sensing

and a chest-wall unit (CWU) for signal processing. µV-level brain signals sensed by the
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skull unit are routed out of the head by a subcutaneous tunneling cable (similar to modern

deep-brain stimulators [81]), and delivered to the CWU. The CWU processes brain signals to

detect walking intentions and converts them into 1–10 kbps wireless commands for external

prostheses, such as robotic exoskeletons or functional electrical stimulators. A major design

challenge for this system is then to perform signal processing and wireless data transmission

tasks, while meeting the size, power, and magnetic resonance imaging (MRI) compatibility

constraints necessary for safe human implantation. This includes trading off the power

consumption of the DSP and TRX modules.

For example, wireless communication between the implantable devices and external com-

puters is typically a power-hungry process. Therefore, minimizing the power consumption

of the wireless TRX would enable allocation of a higher fraction of the overall power budget

to the brain signal processing units within the CWU. Based on our preliminary estimate,

the proposed CWU should consume less than 50 mW for which DSP, data converter and

other modules account for 80-90% of total budget and with the remainder allocated to the

TRX block. Additionally, limited enclosure area requires small form factor for all wire-

less unit’s constituent components including the antenna. Also, to meet the most stringent

field conditions (i.e. static magnetic field stength, specific absorption rate, etc.) due to

interactions with magnetic field of MRI system, the proposed CWU in Fig. 3.1 relies on

an inductorless TRX with no off-chip component except an antenna. Commercially avail-

able MRI-conditional devices use customized structures to enclose antenna to further reduce

magnetic interaction and hence satisfy the MRI requirements for implantable systems (e.g.,

Medtronic W1DR01/W1SR01 [82]).

Multiple telemetry methods – such as near-field magnetic coupling, conduction through the

body, and short-range RF communication – exist that establish the link between the im-

planted device and external units or actuators. Human body communication (HBC defined

in IEEE 802.15.6 standard) uses human body as a channel, and has emerged as a promising
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method for low power and relatively high data rate (>1 Mb/s), while being free from shad-

owing effect. However, challenges such as interference, difficulty in estimating the channel,

impedance variation of skin-electrode interface, and mutipath problem have to be addressed

for this method to become widespread [83, 84]. IEEE 802.15.4 bluetooth low energy (BLE),

and IEEE 802.15.6 narrowband (NB) and ultra wideband (UWB) PHYs standards have

been developed for short-range radios and cover low-power applications (e.g., wireless per-

sonal area network and wireless body area network). These standards employ duty cycling

for power saving and interference mitigation. While low-power, the radios based on these

standards still do not satisfy the severe power budget, heat dissipation, low emission power,

and small area constraints required for an implantable BMI system such as the one in Fig.

3.1. A near-field radio for syringe-implanted sensor nodes was presented in [85] which imple-

mented a communication protocol that eliminated the need for symbol boundary synchro-

nization in the sensor RX. The asymmetric nature of the architecture shifts the performance

burden (i.e., high sensitivity RX and high power TX) toward the base station [85]. The N-

path uncertain-IF and dual-IF architectures proposed in [86, 87] conduct high-Q selectivity

frequency translation without the power-hungry phase-locked loop (PLL). A TX-referenced

RX published in [88] improves the interference robustness, and breaks the tradeoff between

power, sensitivity, and linearity. A two-tone TRX using a simple envelope-detection RX and

a direct-modulation TX was presented in [89].

MedRadio band (401–406 MHz) was dedicated by the Federal Communications Commis-

sion for implantable and wearable devices, which has been expanded recently by allocating

four 6-MHz bands at 413–419 MHz, 426–432 MHz, 438–444 MHz and 451–457 MHz. Re-

cently published MedRadio TRXs in [90–93] employed a bulky on- or off-chip inductor for

impedance matching and/or performance improvement. Expanding on our prior work [94],

this paper presents analysis and design of a CMOS low-power inductorless OOK TRX for

the MedRadio 413–419 MHz band intended for transferring the BMI control commands and

monitoring bio-signals wirelessly. A novel event-driven supply modulation (EDSM) tech-
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Figure 3.2: The architecture of the proposed low-power OOK TRX

nique on the RX side (see Sections 3.3 and 3.4) and a fast start-up power-cycling capability

on the TX side (see Section 3.5) are utilized.

3.2 TRX Architecture

Fig. 3.2 demonstrates the proposed MedRadio TRX comprising a supply-modulated non-

coherent direct-detection RX and a direct-modulation OOK TX. On the RX side, the in-

coming signal is strobed by a periodically-activated noise canceling low-noise amplifier (LNA)

above the Nyquist rate of the baseband (BB) signal representing the BMI control commands.

The BB signal is then recovered after passing through an envelope detector (ED) and a dy-

namic latched comparator, as a decision circuitry. A feedback control circuit turns off the RX

36



amplifiers as soon as the current bit is resolved, effectively duty-cycling the RX. As will be

illustrated in Section 3.3, this approach will minimize the average power consumption with

minor degradation (∼ 5dB per 1 decade increase in data rate) in RX sensitivity. On the TX

side, the BB data modulates the free-running digitally controlled oscillator (DCO) incorpo-

rating a fast frequency calibration loop, which allows the entire TX to be power-cycled. The

OOK modulated signal is amplified by a self-biased, inverter-based power amplifier (PA),

and is subsequently delivered to an off-chip antenna (for testing purpose only).

3.3 Asynchronous Event-Driven Supply Modulation

A conventional direct-detection RX continuously senses, amplifies, and detects the envelope

(or power) of the received signal [95, 96]. Following the envelope detection, the clocked

comparator generates the BB data. However, the power-hungry blocks, namely, LNA and

gain stages – operating at high current levels for noise and power matching purposes –

are always activated during the entire detection/comparison phase irrespective of BB signal

activities. A number of duty-cycling-based power reduction techniques have been presented

[97, 98] to periodically switch off power-hungry blocks with an enable signal. The average

power consumption of the duty-cycled RX is approximated as:

Pavg = PT ×
(2Ton
Tb

)×OSR + Pbias (3.1)

where PT is the total power consumption of the RX core without duty-cycling technique,

Ton represents the RX on time, Tb denotes the bit period, and OSR is the oversampling ratio.

Pbias is power consumption of the bias generation circuit. Clearly, the duty-cycling technique

leads to significant amount of power saving if Ton � Tb. However, the supply switching in

prior work is done at a fixed pulse-width Ton,fix (indicated in Fig. 3.3(a)) which must account

for worst case conditions, i.e., lowest LNA gain, largest comparator metastability time-
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Figure 3.3: (a) Envelope detector based receiver with a fixed pulse-width. (b) The proposed
EDSM receiver with adaptive feedback control loop.

constant, and signal propagation delay uncertainty across process, voltage, and temperature

(PVT) variation. As a result, the amount of power saving is severely limited by this non-

optimal Ton,fix.

To overcome the power-saving limitation due to Ton,fix and further reduce Ton, we first

study the parameters affecting it. Ton is approximately lower-bounded by: Ton ≥ Ton,min(=

TAMP + Tp,ED + TCMP ). TAMP denotes the time taken for the duty-cycled amplifier to reach

its stable dc-bias point at the rising edge of the EN signal shown in Fig. 3.3(b). Tp,ED

is the input-output propagation delay of the ED. TCMP represents the time taken by the

comparator to make a decision. For the dynamic comparator adopted in this design (see

Fig. 3.5(a)), TCMP is readily derived to be:

TCMP
∼=

2|VTHP |CL
ISS,1

− CL
Gm

ln(∆VIN) (3.2)

where VTHP indicates the PMOS threshold voltage, ISS,1 is the tail current, M1. CL is the

load capacitor seen at the output of the comparator. Gm represents the equivalent large-

signal transconductance of each cross-coupled CMOS inverter (M4-M8 and M5-M9) realizing

regenerative load of the comparator. ∆VIN is the comparator’s input amplitude and Tf is
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Figure 3.4: Simulated RX power consumption vs. the input power.

a fixed time which is determined by the bias current, the load capacitor, and input device

parameters. TCMP is signal dependent, whereas TAMP and Tp,ED are both functions of PVT

and may vary from chip to chip. Fig. 3.4 displays the simulated RX power consumption

vs. the RF input power. From Fig. 3.4, TCMP will become a major contributor to the

power-saving feature as the input power decreases below a certain level (e.g., -55 dBm).

Besides, TAMP can constitute an increasingly larger portion of Ton, eventually limiting the

functionality of the EDSM-based RX to data rates below 0.5 Mbps. In this case, techniques

such as bias pre-charge should be used in the amplifiers to minimize TAMP and Tp,ED.

The functional block diagram of the EDSM-based RX is depicted in Fig. 3.3(b) where an

adaptive feedback control loop (details in Section 3.4) is employed to guarantee duty-cycling

at Ton = Ton,min. Similar to the conventional architecture, upon envelope-detection and the

BB data recovery, the feedback control unit will capture the comparison result and generates

the control pulses to turn off the power-hungry blocks, thereby lowering the average power

consumption. Unlike the duty-cycled RX architectures with constant on time (Fig. 3.3(a)),

the EDSM technique generates control pulses whose pulse-widths vary with EDout − Vref

at the comparator inputs. More precisely, the falling edge of these pulses are automat-

ically adjusted depending on the RF signal power, the amplifier gain, and the envelope

detection responsivity across PVT variation as soon as the comparator decision has been
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made (Fig. 3.3(b)). In summary, this technique optimizes the turn-off edge of EN signal to

minimize Ton, thereby achieving the lowest power consumption.

3.4 Receiver Implementation

The EDSM RX architecture is shown in Fig. 3.5(a). An event detection circuitry and a

delay control unit generate and adjust variable duty-cycle power-switching pulses SMφ1

for amplifiers and settling-time accelerating pulses SMφ2 for the ED. The system clock

(CLKSY S) is provided by an external source (a crystal oscillator (XTAL) in this design).

The external source will be provided by a micro-controller, once this TRX is integrated

with the CWU. Running at Nyquist rate of the BB signal, CLKSY S periodically turns on

the LNA to strobe the received signal. A delayed version of CLKSY S, CLKCMP , triggers

the clocked comparator and marks an ”event,” TCMP seconds after its positive edge (cf.

Fig. 3.5(b)). During the event interval, the outputs are captured in an SR latch and are

also fed to the event detection circuitry. Enabled by CLKSY S, the event detection circuit

generates the falling edges of SMφ1 once it senses an event, and subsequently turns off the

power-hungry LNA and amplifiers until the next strobing edge (set by the positive edge of

CLKSY S). While the linearity requirement of a direct-detection OOK RX is relaxed, its noise

performance deserves attention. The noise analysis of a direct detection RX is more involved

as the inherent nonlinearity of the ED causes whole host of issues, such as the noise self-

mixing phenomenon. Although the commonly used noise-equivalent power (NEP) provides

a more accurate evaluation of an ED’s noise performance especially at high frequencies,

relating it to the overall NF of the RX is not straightforward. We thus utilize the conversion

gain (See Section 3.4.2) to characterize noise and signal frequency-translations in an ED.

The RF noise at the ED input will be translated to low frequency at the output through its

conversion gain. On the other hand, the low frequency noise within the ED bandwidth is
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Figure 3.5: (a) Event-Driven supply modulated RX schematic. (b) The timing diagram of
EDSM RX.
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Figure 3.6: The schematic of noise canceling low-noise amplifier, capacitively-degenerated
cascaded gain stage unit and differential to single-ended buffer.

amplified by a large and linear DC gain. The RX chain’s NF is derived as follows:

NFRX = NFamp +
V 2
n,ED + V 2

n,LFA
2
ED,DC

4kTRsA2
VA

2
ED

(3.3)

V 2
n,LF and V 2

n,ED are the low-frequency noise power at the ED input and the noise contribution

of the ED, respectively. NFamp is the NF of amplification chain, AV is the voltage gain of

the entire amplification chain, AED,DC = Vo,DC/Vin,DC and AED = Vo,DC/Vin,RF are the DC

and conversion gains of the ED, respectively.
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Figure 3.7: (a) The simulated gain of each stage in the receiver chain. (b) The simulated
gain curves of receiver in different gain-modes.

3.4.1 Noise Canceling LNA and Gain Stages

Fig. 3.5 shows the overall RX front-end consisting of a noise-canceling LNA, cascaded gain

stage unit(s), differential to single-ended buffers and a gain-mode selector. To cover an

adequate TX-RX link range, three distinct parallel paths accommodating low, medium, and

high gain-modes are considered in this design. The use of three gain paths instead of VGA

allows for noise and power optimization of devices in each path distinctly, resulting in better

power efficiency [99]. The gain mode can be selected through a digital automatic gain control

in the back-end processor (an off-chip microcontroller). Fig. 3.6 shows the LNA schematic,

which is based on [100]. The common-gate stage M1 provides a resistive 50-Ω matching to

the antenna impedance (Rs). Furthermore, the common-gate and common-source branches

have been biased to have identical output common-mode operation. The noise contribution

of M1 is nullified if gm1R1 = gm2R2. This LNA’s NF is readily derived to be:

NFLNA = 1 +
Rs

R3

+ γ
R2

R1

+
Rs

R1

+
RsR2

R2
1

(3.4)

where γ is the MOS thermal noise coefficient. The LNA is followed by a capacitively-

degenerated differential amplifier and a differential to single-ended buffer. The simulated

gain plots of the RX front-end, the LNA, and the amplification stage for the medium-gain
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Figure 3.8: The output voltage level with input signal with common-mode noise in (a) active
differential architecture. (b) differential-to-single first approach.

mode are shown in Fig. 3.7(a). Fig. 3.7(b) depicts the simulated gain plot of the RX front-

end under different gain-modes. The RX provides 30 dB (from 40–70 dB) gain adjustment

range at 416 MHz.

3.4.2 Envelope Detector and Offset Calibration

The active differential-input envelope (power) detectors (e.g., [101][102]) achieve high re-

sponsivity at the expense of common-mode noise accumulation. Fig. 3.8(a) shows an active

differential-input push-push ED. The ED output is the sum of average signal and noise

powers (V 2
in and V 2

CM,noise), inducing an unwanted rms voltage drop, Anoise, to the output.

Fig. 3.8(b) shows a common-source-based single-ended ED. This detector is preceded by the

last-stage differential to single-ended buffer in Fig. 3.6, which mitigates the common-mode

noise accumulation. Fig. 3.9(a) shows the schematic of the ED used in this design. Assuming
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Figure 3.9: (a) Schematic of the proposed envelope detector. (b) simulated envelope detector
output amplitude with different input amplitude. (c) simulated output DC voltage vs. input
bias voltage.
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the long-channel MOS model and filtering of fundamental and high-order harmonics of the

input, the output voltage of this ED is expressed as:

Vo,DC = EDOUT − VREF =
1

4
µnCox

(W
L

)
1
R3V

2
im (3.5)

where Vim denotes the RF input amplitude. At MedRadio frequencies, the power gain

is abundant, and thus the RF blocks are directly cascaded with no inter-stage matching

network. This implies that the ED’s conversion gain, AED, provides more insight about the

ED performance rather than its responsivity R (= Vo,DC/Pin,RF ).

AED =
1

4
gm1R3

Vim
VOD

=
1

4
AED,DC

Vim
VOD

(3.6)

where VOD and gm1 are the overdrive voltage and transconductance of transistor M1 in the

circuit of Fig. 3.9(a). The simulated output vs. input amplitude of this detector is shown in

Fig. 3.9(b), which follows the anticipated square-law transfer characteristic.

Fig. 3.9(a) shows the ED’s input voltage and drain current (approximated by periodic recti-

fied cosine function) waveforms. Maximizing the second harmonic current will maximize the

conversion gain. Using the analytical study in [103], the second harmonic current in terms

of the peak drain current Imax and conduction angle φ
(

= 2 cos−1(VTH−Vbias
Vim

)
)

is obtained:

I2 = Imax
2 sin3 φ

2

3π(1− cos φ
2
)

(3.7)

I2 is maximized for φ = π, resulting in Vbias,opt = VTH . This means that the ED should

operate as a deep class-AB stage to maximize conversion gain, and thus relax the sensitivity

constraints of the following comparator. Fig. 3.9(b) presents the simulated envelope detector

output amplitude with different input amplitude. Fig. 3.9(c) shows the simulated output

DC voltage vs. input bias voltage of the ED for five different values of the input amplitude.
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Figure 3.10: Offset calibration system and Monte-Carlo simulation results.

As shown in Fig. 3.9(c), biasing transistor M1 around its threshold voltage (≈0.45 V) will

maximize the conversion gain.

The ouput thermal noise of the ED is derived as follow:

V 2
n,ED = 4kTR3(1 + γgm1R3) (3.8)

As mentioned before, the undesired low-frequency noise in the passband of the ED is ampli-

fied by AED,DC . It is worth noting that the single-ended structure in Fig. 3.9(a) is sensitive to

the offset of the following comparator. To overcome this problem, an 8-bit offset-calibration

circuit incorporating a successive approximation register (SAR) feedback loop is utilized (see

Fig. 3.10). Based on the comparator output logic level, the SAR control logic determines

the output of the 8-bit DAC to compensate for the input-referred offset of the dynamic com-

parator, capturing up to ±190 mV input-referred comparator offset within 0.3 ms. Fig. 3.10

compares the statistical input-referred offset voltages of the comparator with and without

this calibration scheme using Monte-Carlo simulation. From the Monte-Carlo simulation

with 300 different samples, the result shows a 38-fold improvement (i.e., σ is reduced from

86.6 mV to 2.3 mV).
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Figure 3.11: The settling time of (a) conventional envelope detector. (b) the proposed
envelope detector with acceleration switch.

3.4.3 Settling-Time Acceleration Switch

The amount of power saving in this RX is directly dependent on its ability to function

properly within extremely short Ton’s. However, since the EDSM scheme turns amplifier

stages on and off in every clock cycle, the voltage level at the output of the ED slews up too

slowly to reach its default value, causing the comparison error at the comparator. Depicted

in Fig. 3.11(a), the charging of the decoupling capacitor C1 during the off-to-on dc-bias

transition at the output of the buffer would induce a glitch at the gate of M1, causing a

large transient voltage drop at the output. Fig. 3.11(b) shows the ED incorporating two

settling-time acceleration switches SW1 and SW2 to shorten the settling-time. To hold the
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charge across C1 constant, the delay control unit applies a delayed version of SMφ1 to SW1

and SW2. This avoids the voltage change at the gate/drain of M1 during the control-signal

transition and thus considerably reduces the ED settling time.

3.5 Transmitter Implementation

3.5.1 Direct-Modulation Transmitter

The MedRadio band at 413–419 MHz relaxes carrier frequency stability requirement, par-

ticularly for constant-amplitude modulation schemes. Shown in Fig. 3.12(a), the proposed

TX chain is comprised of a free-running DCO with automatic frequency calibration (AFC),

OOK-modulating T-switch, and power-configurable inverter-based driver and PA circuits.

Fast startup time of the DCO allows for the whole TX to be power-cycled which not only

saves power, but also avoids unnecessary power emission when transmitting 0s. The entire

PA circuit following the DCO consists of a self-biased inverter followed by a tapered chain of

8-parallel inverter-based drivers and the PA, all biased at half-VDD. The TX output power

can be configured from −4 to 4.5 dBm using 8-bit driver and PA switches. Fig. 3.12(b)

shows the measured TX power spectrum in the continuous-wave (CW) operation. With the

design parameter values listed in Fig. 3.12(a), the T/R switch shows –1.2 dB insertion loss

at –4 dBm output power.

3.5.2 Current Starved Ring Oscillator with AFC Loop

To achieve low power operation, a 5-stage current starved ring oscillator with digital AFC

[104] is designed (Fig. 3.12(c)). The oscillation frequency, fosc, is controlled by 5-bit coarse-

and 5-bit fine-tuned current mirrors from SPI and the AFC loop, respectively, to com-
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Figure 3.12: (a) The schematic of proposed direct-modulation transmitter. (b) Measured
TX output power spectrum. (c) AFC block diagram.
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pensate for PVT variations. Within AFC block, the 13-bit counter computes the binary

representation of divide-by-two oscillation frequency by counting its cycles over the 32.768

kHz reference clock period from a Pierce crystal oscillator (shared by the RX). The result

is compared with the target cycle count NCY C , where NCY C = fosc/(2fXTAL), and fed to a

SAR logic to adjust the oscillator current. The tuning range is ∆f = 2BLSB, where LSB is

the fine tuning resolution (2.5 MHz in this work) and B is the number of control bits in SAR

algorithm (5 in this work). The calibration algorithm allocates one clock period for cycle

counting, one for comparison, and one for internal reset. Therefore, the total calibration

time Tcal is derived as: Tcal = 3 × B/fXTAL. For our application, this AFC-backed DCO

was implemented to achieve fine-tuning across 80 MHz frequency range within an estimated

0.47 ms calibration time. It is possible to further extend the frequency operation range by

increasing the total number of control bits in the calibration system at the expense of a

longer calibration time, a larger area and additional power consumption.

3.6 Experimental Results

Designed and fabricated in a 180 nm CMOS technology, this TRX occupies 2.35 × 2.25

mm2 of die area including pads (Fig. 3.13). The functionality of the TRX was verified by

both electrical and in-vitro phantom measurements. The system-level measurement include

wireless testing for TX-RX distances varying from 25–350 cm as well as wireless transferring

of pre-recorded bio-signals. Additionally, coexistence testing in a multi-user environment

was conducted.
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Figure 3.13: Chip micrograph with main circuit blocks labeled.

3.6.1 Receiver Electrical Measurements

Fig. 3.14(a) presents the measured BER at 1- and 10-kbps data-rates using PN15 data

sequence at 1.5-V supply voltage. The BER stays below 0.1% for the input power larger

than –79 and –74 dBm at 1- and 10-kbps data-rates in the high-gain mode, respectively.

Link-budget calculation reveals that to maintain the wireless operation at BER’s below

0.1% over short distances down to 25 cm, the RX should tolerate a maximum input power

larger than –28.8 dBm. Fig. 3.14(b) shows measured transfer characteristic and BER vs.

input power under the RX’s low-gain mode. The measured P1dB is –28.5 dBm. Moreover,

BER stays below 0.1% for input powers from –62 to –25 dBm, resulting in an overall dynamic

range from –79 to –25 dBm across all gain modes. Fig. 3.14(c) shows both simulated and

measured NF and S11 vs. frequency. The EDSM RX achieves –13.5 dB S11 and 4.9 dB NF

at 416 MHz, respectively, without any on/off chip inductor.
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Figure 3.14: RX electrical measurement results: (a) Measured BER with different data-rate.
(b) Linearity and BER measurement in low-gain mode. (c) Measured S11 and NF. (d) Input
data rate vs. power saving percentage.

Table 3.1 shows the measured power consumption of each RX block before and after applying

EDSM technique. The EDSM technique is capable of reducing the RX power by 99.6% to

42 µW at 1 kbps and by 99.1% to 92 µW at 10 kbps. Fig. 3.14(d) demonstrates the power-

reduction percentage as a function of the data rate, showing above 90% power reduction at

data rates below 100 kbps.

Table 3.1: Measured Transceiver Power Consumption Breakdown

Block Before EDSM After EDSM
LNA 5.8 mW 17.3 µW

AMPs 3.8 mW 9.2 µW
BUF+ED 0.6 mW 9.8 µW

CMP 4.2 µW 4.2 µW
Total 10.2 mW 42 µW

Block OOK Mode
PA 1.69 mW

Driver 0.7 mW
VCO 0.42 mW
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Figure 3.15: (a) TX efficiency vs. output power. (b) Frequency variation before and after
using AFC.

3.6.2 Transmitter Electrical Measurements

Fig. 3.15(a) shows both measured and simulated overall TX efficiency vs. output power for

OOK modulated signal. The TX output power varies from –4 to 4.5 dBm with efficiency

varying from 14% to 36%. In the CW mode, the efficiency varies from 7% to 18%, since for

half the time the data is 0 and the TX is powered off. TX power breadkdown in the OOK

transmission mode is shown in Table 3.1. The AFC periodically monitors the TX carrier

frequency. The frequency-drift tolerance is significantly improved from 19% down to 0.24%

across 1.73–1.9 V supply interval and from 4.6% down to 0.3% across 15–78◦C temperature

range (cf. Fig. 3.15(b)).
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Figure 3.16: (a) PCB including an on-board loop-antenna and TQFP packaged IC. (b)
Simulated antenna radiation pattern. (c) Measured antenna gain and S11 vs. frequency.

3.6.3 Wireless Connection Measurement Setup and Results

To test wireless connectivity, a 416-MHz PCB loop-antenna was designed and fabricated

(Fig. 3.16(a)). Figs. 3.16(b)-(c) demonstrate the simulated radiation pattern at 416 MHz and

the measured antenna gain and S11 vs. frequency, respectively. As is clear from Fig. 3.16(c),

RF band selectivity is partially provided by the antenna. With an emission power of –16

dBm from TX, an antenna gain of –12 dBi, and considering a 35-dB path loss across a 3 m

distance at 416 MHz, the RX sensitivity is smaller than –63 dBm. Fig. 3.17(a) shows the

wireless testing setup. With TX-RX distances of 25–350 cm and for 1–10 kbps data rates, the

measured BER always remains <0.1% (Fig. 3.17(b)). The other wireless testing of the TRX

is established by transferring pre-recorded electrocorticogram (ECoG) and electromyogram
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Figure 3.17: (a) The setup for wireless connection measurement. (b) The measured BER
with different TX-to-RX distance. The transmitted and received (c) ECoG signal. (d) EMG
signal.

(EMG) signals at 1-m distance. The transmitted and received time-domain plots of ECoG

and EMG signals with BER below 0.01% and 5× 10−6% are shown in Figs. 3.17(c) and (d),

respectively.

3.6.4 Multi-User Coexistence and Interference Testing

It is commonly known that the path loss and wireless signal energy absorption of the human

tissue increase with frequency. For example, the human tissue (composed of 2-cm skin and
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Figure 3.18: The measured interference power causing BER higher than 0.1%

fat) causes ∼63 dB attenuation for 2.4-GHz frequency band of standards such as WBAN,

bluetooth and IEEE802.11b/g [105]. In addition, accounting for 26 dB free-space path loss

over 20-cm distance and less than –30 dB antenna gain, the received signal falls below RX

sensitivity. Another major issue that BMI systems encounter is the interference between

multiple MedRadio-band users operating in the vicinity of one another. Fig. 3.18 presents

the measured interference power over a wide frequency range that causes a BER higher than

0.1%. Compared to other architectures with high-Q internal/external passive components,

this inductorless design exhibits a lower interference tolerance. To address this issue, we

notice that MedRadio has limited the transmission time of TXs to 0.1% during a specific

period. This notion was utilized to implement a listen-before-talk (LBT) protocol with the

TRX operating in the burst-mode data transfer (cf. Fig. 3.19(a)). This protocol advances

through 10 time-slots in search of an available slot in the presence of an interferer, TRX3,

for exclusive pairing of TRX1 and TRX2. A typical coexistence scenario is demonstrated in

Fig. 3.19(b), where the TRX3-TRX2 distance is shorter than the TRX1-TRX2 distance by

0.5 m. This protocol improves BER from 4.53% (continuous mode) down to 0.03% (LBT).

Although not implemented here, a frequency-domain LBT protocol can also be adopted

as envisioned in the MedRadio standard. This is possible due to wideband operation and

large tuning range of this TRX. For the BMI application targeted in this design, wireless
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Figure 3.19: (a) The flowchart of listen-before-talk protocol adopted in this work and (b)
coexistence test setup.

communication is primarily intended for transferring a limited number of commands, thus

the BER degradation due to the interferers can be further reduced in the backend processor

by introducing redundancy in the command data package.

3.6.5 in-vitro Phantom Measurements

Figs. 3.20(a) and (b) present the in-vitro wireless connection setup and cross-section of

the phantom material, respectively. The dimensions of titanium enclosure and plastic cap
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Figure 3.20: (a) in-vitro phantom measurement setup. (b) The cross-section of the phantom
material. (c) The dimension of titanium box and plastic cap. (d) The measured BER results
with different vertical distance. (e) The measured BER results with different horizontal
distance. (f) Phantom layers conductivity vs. frequency. (g) Phantom layers dielectric
constant vs. frequency.

is shown in Fig. 3.20(c). A phantom composed of 3 layers, emulating the conductivity,

permittivity and thickness of the human skin, fat, and muscle in chest area [106, 107] is

used to emulate the signal attenuation through human tissue. The measured conductivity of

skin, fat and muscle layers are 0.77, 0.034, 0.8 S/m, respectively. The measured permittivity

of each corresponding layer is 49.1, 5.54 and 57.4, as indicated in Figs. 3.20(f) and (g).

Wireless connectivity was evaluated by positioning TX and RX at various horizontal and

vertical distances. The BER remains <0.1% for a maximum vertical distance of 1.8 m.

Similarly, the BER remains <0.1% for a maximum horizontal distance of 0.8 m while the

position of TRX2 is fixed (as shown in Fig. 3.20(d) and (e)).

Table 3.2 and Table 3.3 compare the performance of the proposed TRX with prior art. The

non-coherent EDSM RX achieves –79/–74 dBm sensitivity and dissipates 42/92 µW at 1/10

kbps, respectively. The TX reaches 14% global efficiency at -4 dBm output power with 9.5

dB tuning range.
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Table 3.3: Transmitter Performance Comparison

Reference
ISSCC

2014 [90]

TMTT

2014 [91]

JSSC

2009 [93]
This Work

Process (nm) 40 180 180 180

Carrier

Freq. (MHz)

402∼405

420∼450
403 403 413∼419

Supply (V) 1 1.2 1.8 1.8

Architecture
Polar/Direct

Mod.

Direct

Mod.

Direct

Mod.

Direct

Mod.

Modulation
GMSK /

DBPSK

OOK /

OQPSK
FSK OOK

Inductor Type Off-Chip Off-Chip On-Chip None

Output Power

(dBm)
–10/–17 –20.9/–17 –20∼0 –4∼4.5

Data Rate

(kbps)
11/4500 100/1000 50 1/10

Efficiency NA NA
33%a

@-5 dBm

14%(OOK)

7%(CW)

Power (mW) 2.27/2.28 3.32 4.9
2.8b

5.6c

aPA only. bWith -4 dBm output power in OOK mode. cWith -4 dBm output power in CW mode.

3.7 Conclusion

A low-power MedRadio OOK TRX in 180 nm CMOS was presented. An event-driven

supply modulation (EDSM) technique was introduced to dramatically lower the RX power

consumption. Analysis has been done to qualitatively explain the EDSM operation, and to

evaluate the noise of the RX and ED properties on the overall performance. A power-cycled

TX including a free running oscillator with AFC is demonstrated. The wireless data transfer,

interference, multi-user coexistence testing and in-vitro phantom measurements also revealed

that the TRX can serve as a basis of highly integrated and robust wireless chip, providing a

solution for low-power TRX design for an implantable BMI systems.
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Chapter 4

A Fast Start-up Crystal Oscillator

Using Precise Dithered Injection and

Active Inductance

4.1 Introduction

The advent of emerging fields such as body area networks for health care applications and

massive wireless sensing for Internet of Things demands ultra-low power electronics to en-

hance the battery life-time. A common method of reducing the power consumption, increas-

ing the battery life-time, thus eventually enabling battery-less systems is to power cycle the

whole system and operate in an intermittent fashion [109],[110],[111]. The wireless sensor

nodes primarily constitute a transceiver for communication, an analog-to-digital converter

for data conversion and a back-end processing block, all required to be low power. Reference

frequency synthesis, digital clock timebase and the carrier frequency generations in these

blocks are often realized using a crystal oscillator (XO) [112]. An XO commonly employs
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Pierce structure, shown in Fig. 4.1(a), due to its many advantages such as low power con-

sumption, low component count, ease of design, and low phase noise. The start-up time

TS of an XO (few milliseconds for a MHz crystal) constitutes a bottleneck in effectiveness

and performance of power cycling schemes, either limiting the system latency or raising the

stand-by power.

One approach to reduce stand-by power consumption overhead is to minimize the XO’s

power dissipation. In [113], a stacked amplifier was used as the XO’s active network to

increase the inverter’s effective transconductance for a given bias current, thus lowering the

power dissipation to 19 µW. [114] implemented automatic self power gating (ASPG) and

multistage inverter for negative resistance (MINR) to intermittently power-off and reduce

the short circuit current in the oscillator’s inverter, thus lowering the power to as low as 9.2

µW. A more efficient way, which further decreases the sleep-mode power of the system, is

to duty-cycle the XO and allow it to be active only when needed. This approach, however,

would need a mechanism to quickly start and stabilize the XO before the rest of the system

is awakened. Therefore, techniques to reduce TS with minimal energy overhead is of great

interest.

A commonly used approach to lower TS is shown in Fig. 4.1(b), which aims at increasing

the active circuitry’s negative resistance, RN , by modifying the inverting amplifier’s gm or

the capacitors C1 and C2. [115] describes a method in which a minimum load capacitor CL

(defined as CL = C0 +C1C2/(C1 +C2)) is applied to the oscillator during start-up and once a

stable oscillation is detected, a second capacitor bank is switched in to adjust the frequency

and reach the desired steady-state. [116] and [117] implemented a similar concept to reduce

TS as well as startup energy ES by 13.3× and 6.9×, respectively, without the need to use a

start-up sequence. However, this approach causes the oscillation frequency to be pulled away

from the target, which results in an increase in TS, defined as the time taken for XO to settle

within a specified frequency error (e.g., ±20 ppm in [116]). [118] presents two techniques to
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Figure 4.1: (a) Pierce XO (b) boosting negative resistance by modifying capacitors and am-
plifier’s gain (c) kick starting the oscillator using an external periodic source and oscillation
amplitude behavior under injection.

reduce TS, namely, decreasing C1/C2 and increasing the current of the inverting amplifier

during start-up. Another approach pursued by [119]-[120] is to increase CL to enhance

maximum achievable RN . To be effective, this approach should be accompanied by increasing

the amplifier’s gain concurrently, which, in turn, increases ES. If being implemented as a

high-gain multi-stage circuit [114, 119, 121], the inverting amplifier can introduce a significant

phase shift which varies over process, voltage and temperature (PVT). This phase shift may

pull the XO frequency to even below the crystal’s series resonance frequency ωS so as to make

the overall phase shift around the loop 360◦, compromising the XO frequency stability and

accuracy. Furthermore, under this condition, the crystal no longer behaves inductively and is

forced to oscillate below the frequency it is calibrated for. Due to this problem [121] proposed

to use two different amplifiers, one for start-up and another for steady-state operation.

Among several existing techniques, external signal injection is widely used to minimize TS.

For this technique to be effective though, the injected signal frequency should be close to
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the XO resonance frequency (e.g., within ±0.25%). Several implementations of this method

have been proposed, each with various degrees of success. [122] proposes a calibration system

where proper frequency setting for a tunable oscillator is determined to help quickly start

the XO by precise signal injection. A similar method was presented in [123], where a ring

oscillator with a calibration circuitry injects a precise signal to reduce TS of a 32 MHz

Pierce XO to 50 µs. [124] introduced a dithering technique to compensate for the frequency

variations over process and temperature, and reduced TS of a 24 MHz XO to 64 µs. For a

PVT-robust injection, [125] proposed a chirp injection (CI) mechanism to sweep the injection

frequency around the crystal’s resonance frequency. Another CI technique was proposed

in [121] to reduce the area occupied by the chirp signal generator. To improve the signal

injection accuracy, [126] proposed a 3-step initialization sequence. In the first step, a coarsely

tuned (±0.5% frequency accuracy) ring oscillator increases the XO amplitude to 0.2 V. In the

second step, a phase-locked loop (PLL) aligns the ring oscillator frequency to within 20 ppm

of the XO resonance frequency, and finally, applies the injection again in the last step. TS

is reduced to 19 µs, a 31.5× improvement compared to normal start-up condition. In order

to continuously drive the crystal with an external oscillator, [127] proposed synchronized

signal injection technique. Since there is frequency offset between the injection signal and

crystal resonance, the phase difference between the two accumulates over time, which results

in the injection signal counteracting the crystal resonance. The underlying idea in [127] is

to realign the phase of the injection signal and the crystal resonance periodically to avoid

this phase accumulation. For a 0.75 V steady-state differential amplitude (0.37 V single

ended), TS = 23 µs and ES = 20.2 nJ. A precisely-timed injection method was presented

in [128] and analysis was provided to determine the optimum duration of injection. It also

implemented a voltage regulation loop to limit the oscillation amplitude to ≈ 0.2 V (at the

cost of higher phase noise) and achieved a TS of 2 µs. Such small amplitude can easily be

built-up through a signal injection over a short time. Furthermore, the regulation loop itself

assists the oscillation by providing a larger bias current during the start-up transient and a
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smaller one in the steady-state.

4.2 Background and the proposed ideas

It is well known that the envelope of the XO motional current iM is a direct indication of the

oscillation behavior. In this work, a rigorous study of signal injection for XO TS reduction is

presented and the conditions leading to an optimal start-up behavior are derived. It will be

proven that precise injection with exactly the same frequency as the crystal’s series resonance

frequency provides the fastest oscillation start-up. It will also be shown that in reality, due to

non-zero injection frequency inaccuracy, this mechanism alone cannot energize the crystal to

skip the regenerative process interval. Therefore, another mechanism is needed to minimize

this interval and thus lower TS close to its theoretical lower limit.

In this paper, two techniques are proposed to realize this thought process. Fig. 4.2(a)

illustrates the schematic of proposed ideas, namely a relaxation oscillator (RXO) as an

injection signal source and an active inductor (AI). The initialization start-up sequence

and a symbolic behavior of oscillation amplitude growth is shown in Fig. 4.2(b). In the

first phase, φ1, of the start-up sequence, RXO rapidly increases the oscillation amplitude,

equivalent to an increase of the start-up initial condition for the XO. In the second phase

φ2, RXO is detached while the AI, C1, C2 and an additional amplifier are switched in. In

the steady-state, only C1 and C2 will remain connected to sustain the oscillation.

To be able to achieve a significant reduction in TS and ES, a deep understanding into

fundamentals of crystal and XO operation is necessary.

The rest of this paper is organized as follows: Section 4.3 presents transient analysis in the

presence of a periodic injection signal and studies parameters affecting TS. It also covers

the design and implementation of the RXO. Section 4.4 illustrates the AI method to boost
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Figure 4.2: (a) Proposed implementation of the fast starting XO (b) oscillation amplitude
growth with the start-up aids and without them.

RN , and elaborates on the design trade-offs and considerations for a robust operation of the

AI leading to improvement of the XO start-up time. Section 4.5 discusses measurements of

the fabricated XO and its start-up assisting circuitry, and finally, Section 4.6 concludes the

paper.

4.3 Precise Dithered Signal Injection

Consider Fig. 4.1(c), demonstrating an external signal injection mechanism for a Pierce XO

and iM behavior under injection. A differential periodic square signal is generated by an

external oscillator (e.g., a ring or an RC oscillator), and then is buffered and applied to

the crystal. Since a crystal resonator exhibits ultra-high quality factor (∼ 106) and very

narrow bandwidth, it heavily attenuates any applied signal with frequencies not matching

its resonance frequency. Thus, only the fundamental component is considered in the Fourier

series expansion of the applied signal, while any phase noise around this tone is omitted. We

assume zero initial conditions for crystal and only analyze the forced response to a periodic

square signal applied at time t = 0. This is a valid assumption since, in practice, the initial

condition is determined by the oscillator thermal noise. Non-zero initial conditions just
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complicate the analysis without adding much circuit insights.

4.3.1 Problem Statement: Damped Driven Oscillator

The characteristic differential equation for a crystal resonator excited by a periodic voltage

source (i.e., damped driven oscillator), shown in Fig. 4.1(c), for t ≥ 0 is:

v(t) =
4VDD
π

sin(ωinjt) = LM
diM
dt

+RM iM +
1

CM

∫ t

0

iMdτ (4.1)

where ωinj is the injection frequency. LM , RM , and CM are motional inductor, resistor and

capacitor of the crystal, respectively. With zero initial conditions, taking the derivative of

(4.1) results in:

4VDDωinj
πLM

cos(ωinjt) =
d2iM
dt2

+ 2α
diM
dt

+ ω2
SiM (4.2)

where α = RM/2LM and ωS = 1/
√
LMCM . Taking the Laplace transform and then using

its convolution property, iM is derived as:

iM(t) =
4VDDωinj
πLMωd

∫ t

0

e−α(t−x)sin(ωd(t− x))cos(ωinjx)dx (4.3)

where ωd =
√
ω2
S − α2 is the damped natural frequency. Note that for crystal resonators,

α� ωS, hence, ωd ' ωS. Using trigonometric identities, the integration in (4.3) is expanded,

i.e.,

iM(t) =
2VDDωinj
πLMωd

e−αtsin(ωdt)×
[ ∫ t

0

eαxcos((ωd−ωinj)x)dx−
∫ t

0

eαxcos((ωd +ωinj)x)dx
]

− 2VDDωinj
πLMωd

e−αtcos(ωdt)×
[ ∫ t

0

eαxsin((ωd − ωinj)x)dx−
∫ t

0

eαxsin((ωd + ωinj)x)dx
]

(4.4)
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The integrals in (4.4) with sum frequency components, ωd +ωinj, are contributing negligibly

to iM(t) and are thus ignored. If evaluated for an ideal case of ωd = ωinj for which the crystal

amplitude undergoes its fastest growth, (4.5) is readily derived:

iM(t) ' iM,env(t)sin(ωdt) (4.5)

where iM,env(t) denotes the envelope of iM(t) and is calculated to be:

iM,env(t) =
2VDD
πLMα

(
1− e−αt

)
=

4VDD
πRM

(
1− e−αt

)
(4.6)

TS is defined as the time when iM,env(t) = 0.9|IM,SS|, where IM,SS is the steady-state mag-

nitude of iM . It has been shown that at this time instance, the oscillation frequency has

also settled within the required accuracy for most communication standards [125? ]. The

minimum achievable start-up time, TS,min, in the XO is thus obtained from (4.6), and is

equal to

TS,min =
2LM
RM

ln(1− πRM

4VDD
× 0.9|IM,SS|)−1 (4.7)

It is instructive to acquire a quantitative insight into TS,min using (4.7) for the widely used

Pierce XO. As demonstrated in [129], in steady-state:

|IM,SS| ' 0.5
(

1 +
C0

CS

)
ωoscC1|V1| (4.8)

where ωosc = ωS(1 + CM/2CL) is the oscillation frequency, V1 denotes the input voltage of

the inverting amplifier, and CS is the series combination of C1 and C2 in Fig. 4.1(a). For a

sample 48 MHz crystal with parameters: CM = 4 fF, LM = 2.749 mH, RM = 15 Ω, CL = 8

pF, C0 = 2 pF and |V1| = VDD, TS,min is calculated to be 11.9 µs.
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Now, assuming an injection frequency inaccuracy of ∆ω = ωd − ωinj, iM(t) becomes:

iM(t) =
2VDDωinj

πLMωd(α2 + ∆ω2)
sin(ωdt)×

[
αcos(∆ωt) + ∆ωsin(∆ωt)− αe−αt

]
−

2VDDωinj
πLMωd(α2 + ∆ω2)

cos(ωdt)×
[
αsin(∆ωt)−∆ωcos(∆ωt) + ∆ωe−αt

] (4.9)

In practice, even for an integrated oscillator carefully designed to produce a precise injection

frequency, it is still difficult for ωinj to be within ±0.1% of ωd across PVT variations (e.g.

for typical crystals operating in the MHz range, α ∼ 1–10 kHz while ∆ω ∼ 0.1–1 Mrad/s);

hence, α� ∆ω. Therefore, The expression in (4.9) is reduced to:

iM(t) ' 2VDD
πLM∆ω

(
1− ∆ω

ωd

)
×
[
sin(ωdt)sin(∆ωt) + cos(ωdt)

(
cos(∆ωt)− e−αt

)]
(4.10)

4.3.2 Analysis of the Motional Current’s Envelope

To calculate the envelope of iM(t) in (4.10), Hilbert transform is invoked. For an arbitrary

waveform v(t) a complex signal z(t) = v(t) + jv̂(t) is defined, where

v̂(t) ≡ H
[
v(t)

]
= v(t) ∗ 1

t
=

1

π

∫ ∞
−∞

v(λ)

t− λ
dλ (4.11)

is the Hilbert transform of v(t). It is proved that the magnitude of z(t) is the envelope of

v(t), i.e., venv(t) = |z(t)| =
√
v2(t) + v̂2(t). For clarity, (4.10) is rewritten as:

iM(t) = K
[
x(t)cos(ωdt) + y(t)sin(ωdt)

]
(4.12)
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Figure 4.3: Envelope of the iM for ∆ω = 0.1 and 0.3 Mrad/s.

where

K =
2VDD
πLM∆ω

(
1− ∆ω

ωd

)
x(t) = cos(∆ωt)− e−αt, y(t) = sin(∆ωt)

(4.13)

îM(t) is derived as:

îM(t) = K
[
x(t)sin(ωdt)− y(t)cos(ωdt)

]
(4.14)

The envelope of iM(t) is thus readily calculated from (4.12) and (4.14):

iM,env(t) = K
√
x2(t) + y2(t) =

2VDD
πLM∆ω

(
1− ∆ω

ωd

)√
1 + e−2αt − 2cos(∆ωt)e−αt (4.15)
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A consequence of the condition α� ∆ω is that it is unlikely the injection oscillator alone can

build up the oscillation amplitude of the Pierce XO all the way to its steady-state, unless the

steady-state amplitude is made small (e.g., <0.2VDD, as was done in [128, 130]). Therefore,

iM,env(t) after injection is smaller than IM,SS and other techniques need to complement the

signal injection, as was carried out by [125] and [121]. Following the excitation period, the

crystal is detached from the external source and connected to the inverting amplifier.

Fig. 4.3 compares the time-domain variation of iM,env(t) obtained from both simulation and

calculation (i.e., Eq. (4.15)) of crystal resonator under injection for two values of ∆ω =

0.1, 0.3 Mrad/s, validating the proposed analysis. For comparison, the iM,env(t) variation

with injection time obtained from analysis in [128] (for the same circuit conditions and

the same crystal model) is overlayed on the same figure. [128] approximates the frequency

response of crystal with an impulse function, only a valid approximation for small Tinj. On

the contrary, the proposed dynamic analysis of the crystals motional current is based on the

characteristic differential equation of the crystal with no assumption about its frequency-

and/or time-domain responses.

For TS to get sufficiently close to TS,min, the injection should cease when iM,env(t) in Eq.

(4.15) is at its maximum (cf. Fig. 4.3). This optimum injection time, TOPT , is calculated to

be TOPT ' π/∆ω. Moreover, the maximum of iM,env(t) is:

iM,env(t)max '
4VDD
πLM∆ω

(
1− ∆ω

ωd

)
(4.16)

It is inferred that for crystals with high Q-factors or injection sources with poor frequency

accuracy, iM,env(t) assumes smaller values for t ≤ TOPT , an intuitively expected result.

In the case that injection oscillator’s frequency is close to ωd, it can be readily proved that

so long as ∆ω<(4CM/πCL)ωosc, the injection mechanism alone is capable of bringing the

oscillation amplitude to its steady-state.
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4.3.3 Sensitivity to Timing and Injection Frequency Inaccuracies

It was shown in the previous sub-section that injection should be stopped once iM,env reaches

its peak value to minimize TS. Two phenomena affect TS, namely, inaccurate injection fre-

quency (∆ω) and time (Tinj). Recall that iM,env(t) exhibits a damped sinusoidal characteris-

tic, as shown in Fig. 4.3. Thus, at the time when iM,env(t) is at maximum, its time-derivative

is at minimum, which in turn lowers the impact of injection duration inaccuracy on TS. This

is in contrast with the injection approach in [128], where the injection is stopped before

the envelope reaches its maximum. In case the oscillation amplitude has not reached its

steady-state at the end of injection period, it will grow exponentially by the amplifier:

iM(t) = iM,env(Tinj)e
(t−Tinj)/τu(t− Tinj), τ =

−2LM
RM +RN

(4.17)

where u(t) is the unit step function. To derive a closed-form expression for TS, we assume

the amplifier remains linear and retains a constant RN as the amplitude grows. Combining

(4.8) and (4.17) yields

TA = τ ln
0.9(CS + C0)ωoscVDD

iM,env(Tinj)
, TS = Tinj + TA (4.18)

where TA is the time taken for the amplitude to grow toward its steady-state after injection.

Combining (4.16) and (4.18), the effect of ∆ω on TS is calculated:

TS '
π

|∆ω|
+ τ ln

[
0.7LM(CS + C0)ωosc|∆ω|

]
(4.19)

Fig. 4.4 demonstrates the sensitivity of TS to ∆ω for the sample 48-MHz quartz crystal,

based on quantitative evaluation of (4.16) and (4.19). Evaluating the effect of each term

of (4.19) on TS, if ∆ω or crystal’s Q-factor are small, the first term will be dominant. On

the other hand, as the oscillation amplitude becomes large, the active circuitry becomes
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Figure 4.4: Effect of injection frequency inaccuracy on maximum value of iM,env and overall
TS, given injection stops at t = TOPT and RN = 50RM .

nonlinear. Therefore, τ starts to get larger and the second term in (4.19) may dominate

TS. Similarly, larger Q-factors also increase the contribution of the second term on TS. To

reduce the effect of ∆ω on TS, one can lower τ to reduce TS and its sensitivity to inaccurate

frequency errors. To evaluate the sensitivity of TS to injection duration errors, the injection

oscillator is assumed to be sufficiently precise such that ∆ω falls within ±0.15% of ωd. The

frequency of this oscillator is measured and, if required, calibrated before applying to the XO.

Based on (4.15) and (4.18), Fig. 4.5 illustrates the variation of TS with ∆ω for four distinct

injection times. For injection frequency errors less than 600 krad/s, TS varies from 14.4-

to 20.4-µs as Tinj increases from 5- to 8-µs. In practice, the phase-noise-induced frequency

skirts around ωinj pump larger energy within the crystal bandwidth compared to an ideal

single-tone injection. As will be illustrated in Section 4.3.5, this can be achieved through

dithering, and therefore, resulting in lower TS variation. Moreover, as will be seen in Section

4.4, this sensitivity is further reduced by introducing an AI to the circuit to significantly

lower τ .
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Figure 4.5: Effect of injection timing inaccuracy on overall TS for the sample crystal param-
eters. RN is assumed to be 50RM .

4.3.4 Interpretation of the Analysis

From the equations above, a number of observations are made:

• iM,env(t)max can reach twice the final value under continuous injection (steady-state

value).

• A smaller ∆ω results in larger iM,env(t)max, TOPT , and iM,env(t) during the start-up

interval 0 < t < TOPT .

• To the first order, TOPT is only a function of injection signal accuracy and not the

crystal properties. In actual implementations, ∆ω is larger for crystals with higher op-

erating frequencies. This is because it becomes increasingly more difficult to guarantee

the accuracy of an integrated oscillator as frequency rises.

• It can also be shown that smaller ∆ω leads to larger local minimums for iM,env(t), an

effect not predicted in [128] (see Fig. 4.3).
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Figure 4.6: RXO circuit implementation.

4.3.5 Relaxation Oscillator Implementation

Among various candidates to create injection signal, ring oscillators have been used exten-

sively, providing features such as fast turn-on time, small area and power dissipation at the

cost of large PVT susceptibility and low frequency precision. Alternatively, this work em-

ploys an RXO, which provides a more precise injection, as its frequency depends on an easily

tunable RC time constant instead of transistor parameters. A modified version of the archi-

tecture in [131] is implemented at 48 MHz while maintaining the performance across PVT

(Fig. 4.6). To account for the crystals ultra-high Q, the RXO frequency ωinj is modulated
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by toggling its capacitance C2 between 400 fF and 415 fF through an internal feedback, as

depicted in Fig. 4.6. Thus, ωinj alters by ±0.25%, slightly spreading the injection signal

power spectrum over a wider frequency range and raising the phase noise. This ensures

that the RXO contains enough energy across the crystal bandwidth to limit TS variation

over temperature, resulting in a robust start-up behavior. As opposed to [124] where a rel-

atively inaccurate ring oscillator was used, higher frequency accuracy of RXO allows for a

lower dithering range of ±0.25%. To reduce RXO frequency variation due to PVT, reference

voltage Vref is generated by a resistive voltage division ratio. Series poly and diffusion re-

sistors with complementary temperature coefficients are employed to generate Vref , thereby

compensating for the RXO frequency variation due to temperature across process corners

[131]. These resistors employ 5 bits of coarse and 4 bits of fine tuning, which translates

to 40 kHz of frequency resolution and tuning range from 27 to 84 MHz. Due to several

percentage-point variations of on-chip resistors and capacitors, a simulation-assisted initial

calibration is inevitable for any signal injection technique including the proposed precise

dithered injection (except for the chirp signal injection where the frequency is swept across a

wide range). Measurement of this RXO shows frequency variation within ±0.15% over -40–

90◦C, significantly better than temperature-compensated ring oscillators. Simulations show

±0.2% frequency variation across temperature at different process corners. Furthermore,

Monte Carlo simulations of both process and mismatch variations show a sigma of 100 kHz

(0.21%) in the nominal corner. The RXO and buffer dissipate 3.6 mW from a 1.8 V supply, a

significantly larger value compared to [131] because of higher operation frequency and more

stringent specification on its frequency stability which requires smaller comparators’ delays.

The power would be significantly lower on an advanced technology node or for smaller target

frequency.
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4.4 Active Inductor

4.4.1 Effects of C0 on XO Start-up

The presence of the static capacitance C0 in the crystal greatly influences the XO behavior

(cf. Fig. 4.1(a)). Besides limiting the pull-ability of XO, it lowers the active circuitry’s

negative resistance according to [129]:

RN =
−4gmC

2
S

(gmC0)2 + 16ω2C2
SC

2
L

(4.20)

Furthermore, it limits the maximum negative resistance, RN,max, and sets an optimum value

of amplifier’s gm beyond which RN will start to decrease (Fig. 4.7).

RN,max =
1

2ωC0(1 + C0/CS)
, gm,opt = 4CSω

(
1 + CS/C0

)
(4.21)

Additionally, C0 poses a limit on how much CL can be lowered to achieve larger RN [116],

[? ]. To address the limitation imposed by C0, [121] proposed a dual-mode gm scheme,

employing one amplifier for start-up (AXO−3) and another one for steady-state (AXO−1)

operation. AXO−3 is designed to show an inductive reactance X around the XO nominal

Figure 4.7: Negative resistance and its maximum vs. amplifier transconductance gain for
various C0 values.
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Figure 4.8: One-port linear model of the XOs in (a) [121] and (b) this work.

operation frequency to counteract C0. Starting with Fig. 4.8(a) which shows a linear model

of the XO, the impedance ZC seen from the motional branch is derived as:

ZC =
R + j

(
X(1− C0Xω)−R2C0ω

)
(1− C0Xω)2 + (RC0ω)2

(4.22)

In a conventional design, X = −1/CSω and crystal’s motional branch is loaded with CS+C0.

On the other hand, maximizing the real-part of ZC for the circuit model in Fig. 4.8(a) leads

to X = 1/C0ω, while its imaginary part becomes −1/C0ω. Therefore, during start-up, when

AXO−3 is enabled to boost the negative resistance, crystal’s motional branch is effectively

loaded with an equivalent capacitor of C0 and ωosc will shift toward ωp. This frequency drift

along with the nonlinearity effects of AXO−3 which was pointed out in [121] increase both

amplitude and frequency settling times.

4.4.2 Proposed RN Boosting Method

Fig. 4.8(b) illustrates a simplified linear model for the approach presented in this work. An

inductor is explicitly placed in parallel with crystal to maximize the real-part of ZC for the

circuit model in Fig. 4.8(b). Crystal’s motional branch is now loaded with

ZC =
ZampL0s

L0s+ Zamp(1 + L0C0s2)
, Zamp = R + jX, (4.23)
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Figure 4.9: RN at 48 MHz after addition of L0 for amplifier’s transconductance gain of (a)
1.2 mS and (b) 10.2 mS.

with real and imaginary parts expressed as:

Re{ZC} =
RL2

0ω
2

R2(1− L0C0ω2)2 +
(
L0ω +X(1− L0C0ω2)

)2 (4.24)

Im{ZC} =
R2L0ω(1− L0C0ω

2) +XL0ω
(
L0ω +X(1− L0C0ω

2)
)

R2(1− L0C0ω2)2 +
(
L0ω +X(1− L0C0ω2)

)2 (4.25)

L0 boosts the real part of ZC , and in contrast to [121], this can be accomplished without

imposing any constraints on CS value or amplifier’s characteristic. More precisely, L0 reduces

the effective static capacitance, C0,eff = C0[(ω0/ω)2 − 1] (where ω0 = 1/
√
L0C0), thereby

increasing RN,max. One may choose to leverage this property to decrease CS so as to achieve

larger RN . Figs. 4.9(a)-(b) demonstrate both simulated and calculated RN variation with

respect to L0 under three values of C0 (i.e., 2-, 3-, 4-pF) and for two gm values (i.e., 1.2- and

10.2-mS) at 48 MHz, where L0 is assumed to be an ideal inductor. As shown in the plots,

the maximum achievable RN is larger for an amplifier with a lower gm. It is also observed

that this larger RN value requires more precise and linear L0 over PVT variations, which is

challenging to realize in practice. Therefore, to reduce the RN sensitivity to L0 variation,

gm should be increased (Fig. 4.9(b)).
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Figure 4.10: Simplified phase shift around the loop of Pierce XO at different frequency
ranges.

4.4.3 Design Considerations for Active Inductor Implementation

The addition of L0 creates the possibility of an unwanted oscillation caused by the resonance

through L0, crystal and the amplifier. A qualitative view is displayed in Fig. 4.10. The

AI is decomposed in two equal parts placed on crystal’s input and output nodes. For the

oscillation to take place, the phase shift across the loop should be n×360◦ where n is an

integer number. Neglecting the AI first, one can identify a 180◦ phase lag from the amplifier,

a phase lag of about 90◦ from RO − C2 and another 90◦ phase lag from the crystal−C1 at

ωosc = ωS, where RO is the amplifier output resistance. On the other hand, in the presence

of AIs, the resulting passive network and the crystal form a dual resonance network with two

oscillation modes. Besides the oscillation mode at ωosc = ωS, the second oscillation mode

is created by the 90◦ phase leads associated with RO–L0 and crystal−L0, and a 180◦ phase

lag from the amplifier. With sufficient gain, the loop may in fact oscillate at this parasitic

mode. One solution to suppress this mode is to decrease AI’s Q-factor; an easily achievable

task as the AI’s Q-factor is inherently lower than that of monolithic or off-chip components.

For better illustration, Fig. 4.11 shows the open-loop (from amplifier’s output to its input)

gain and phase-shift simulation of the dual-resonance network for two Q-factors.

The AI’s Q-factor cannot be arbitrarily low, because it will increase the XO resistive loss. As
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Figure 4.11: (a) Tank frequency response after inclusion of L0 with a quality factor of (a)
83 and (b) 11.

a secondary measure to ensure the XO oscillation in its desired mode without compromising

on the AI’s Q-factor, the injection mechanism raises the XO initial condition around ωS to

a value substantially larger than the one provided by thermal noise to the unwanted mode.

Once the desired operation takes over, the unwanted mode is automatically eliminated.

Another issue is the possibility of operation at one of the crystal’s overtones. To prevent this

problem, notice that for the feedback to remain positive and oscillation to take place, the

reactances at the crystal’s input and output in Fig. 4.10 should be of the same sign (e.g.,

both negative) at the oscillation frequency of interest. Thus, placing half of L0 on both sides

of the XO guarantees this condition to satisfy at the fundamental frequency.
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Figure 4.12: AI implementation concept: (a) constructing positive and negative transcon-
ductances (b) approximate model of the actual design.

Figure 4.13: AI input impedance characteristics at 48 MHz across supply.

Finally, when it comes to the XO circuit design, comprehensive transient and spectral sim-

ulations have been performed to account for all the nonidealities (e.g., amplifier gain and

bandwidth, nonlinearity and frequency response of AI).

4.4.4 Circuit Implementation

Fig. 4.12(a) shows the building blocks of the gyrator-C AI. The negative transconductance

is a degenerated common-source stage and the positive one is a source-coupled structure.

These blocks provide large input and output impedances, thereby increasing the Q-factor of
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Figure 4.14: AI circuit schematic.

the AI. Source degeneration reduces the dependency of Gm1 on the input level, reduces the

voltage gain at the output (to keep the transistors in saturation), and improves linearity as

well as sensitivity to supply variation. Fig. 4.13 shows the input impedance of AI at 48 MHz

and corresponding Q-factor variations vs. VDD. The reactance varies by ±9% from 2.3–2.5

V, roughly translating to the same variation in the effective inductance. Reduced Gm1 has

to be compensated for by increasing Gm2, which leads to higher power consumption (bias

current of 1.5 mA for Gm2 cell). Cascode current sources are used for biasing to increase

Q-factor of the structure. PMOS transistors are used to provide higher input voltage range,

since AI and XO are DC-coupled. Shown in Fig. 4.14, the AI schematic is comprised of

two single-ended structures operating at 2.4-V supply to accommodate stacked transistors

and maintain constant transconductance values (and effective inductance) over a large signal

swing. A combination of PTAT and constant-gm current sources with 1.5 µA and 1 µA tuning

resolutions, respectively, are used to bias M1 with a nominal bias current of 14 µA, tune

the effective inductance value, and reduce its variation across PVT. The AI operates over a

wide frequency range (i.e., up to its self-resonance frequency), virtually accommodating all

MHz crystals. The AI is notorious for being noisy and thus is usually used in applications
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Figure 4.15: AI reactance vs. frequency and its equivalent circuit model.

with relaxed noise requirements. Nonetheless, for the intended purpose of the XO start-up

improvement in this work, the AI’s noise indeed helps in reducing TS.

Fig. 4.12(b) shows the synthesized equivalent RLC model for the proposed AI. The equivalent

RLC components are readily derived by equating the input impedances of this model and

the AI circuit in Fig. 4.14, i.e.,

L ' CP
Gm1Gm2

, RP2 = Ro2, RS =
1

Gm1Gm2Ro1

, C = Cin

RP1 =
Ro1

1 + gm1RS

, Gm1 =
gm1

1 + gm1RS

, Gm2 =
gm2

2

(4.26)

where CP (Ro1) and Cin (Ro2) are capacitances (resistances) at the drain and gate of M1,

respectively. Fig. 4.15 shows and compares the frequency response and Q-factor of the AI

and its RLC model. The AI has multiple poles which causes the two responses to deviate
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Figure 4.16: Simulated temperature variations of (a) RN after addition of the AI and (b)
RN boosting ratio

at high frequencies. However, the model is sufficiently accurate up to ∼0.1 GHz. Fig. 4.16

illustrates the simulation results for the negative resistance and its associated boosting ratio

across temperature after the addition of the AI. The RN values in Fig. 4.16 are estimated

from the rate of oscillation amplitude growth in large signal transient simulations. These

values are smaller in magnitude than the ones predicted in Fig. 4.9 because of the AI

nonlinearity, namely, variation of Gm1 and Gm2 with signal swing. For a given C0, the

AI maintains a relatively constant RN (<±9% worst-case variation for C0 = 2 pF) across

-40-90◦C temperature range, which thus keeps the TS variations small.

To lower TS for crystals with large C0 values, the duration of the second phase φ2 of the

start-up sequence in Fig. 4.2 should increase. According to simulations of motional current

amplitude in the nominal process corner and at room temperature, TS increases from 17 µs

to 22 µs for C0 varying from 1- to 6-pF (for the same unloaded crystal Q-factor). The optimal

value of φ2 can be found using two methods: (1) measuring crystal’s RM and C0 and using

simulations to find the optimum duration, or (2) using an oscillation amplitude detection

circuitry to disable φ2 when near-steady-state amplitude is reached. Signal injection duration

φ1 is independent from C0 since TOPT only depends on ∆ω.
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Figure 4.17: Die micrograph of the prototype.

4.5 Measurement Results

Fig. 4.17 shows the die micrograph of the chip fabricated in a 180 nm CMOS process.

Occupying an active area of 0.108 mm2, this chip integrated on-chip capacitors including a

capacitor bank to create the equivalent 8-pF CL. It was wirebonded into a QFN package

and mounted on an FR-4 PCB. Operating at 48 MHz, the oscillator employs a surface-

Figure 4.18: Measurement setup.
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Figure 4.19: (a) Measured RXO phase noise and (b) power spectral density.

mount crystal with a 3.2×2.5 mm2 package size, and dissipates 180 µW from 1-V supply

(generated through a low dropout regulator) at steady-state. The supply of 1 V was chosen

for ease of comparison with prior work. The steady-state power is mainly determined by

the supply voltage, operation frequency, CL, oscillation amplitude and crystal properties. It

can be minimized through circuit techniques such as stacked-amplifier architecture in [113];

however, this was not the focus of this work.

Measurement setup is depicted in Fig. 4.18. An off-chip buffer was used to monitor signal on

XIN and a micro-controller generates the start-up sequence. The RXO phase noise and power

spectral density are shown in Fig. 4.19. The RXO phase noise was purposely increased to -66

dBc/Hz at 100 kHz offset through dithering. The two spurs in the RXO’s power spectrum

are due to the fact that the RXO output is sum of two half-wave rectified signals. The

measured RXO frequency settles within 0.8 µs, as shown Fig. 4.20, which is dominated by

the RXOs integrator pole RICI in Fig. 4.6. Although this start-up time is larger than that

of a ring oscillator, it is still negligible compared to the XO’s TS. Therefore, the accurate and

stable frequency provided by the RXO justifies its usage. Fig. 4.21 shows the measured

voltage at XIN , demonstrating the oscillation start-up behavior using the AI only. The XO

supply is increased to 1.5 V with a steady-state oscillation voltage of 0.95 V and TS = 3.96
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Figure 4.20: RXO start-up time.

Figure 4.21: TS improvement using AI only for a large steady-state oscillation amplitude of
0.95 V.

ms without the AI. Even at this large voltage swing, the AI is able to reduce TS to 0.494

ms, an 8× improvement ratio. Figs. 4.22(a)-(f) show the strobed voltage XIN to evaluate

TS and ES using different techniques. Absent of any start-up assistant technique, TS and ES

of the XO was measured to be 1.85 ms and 333 nJ, respectively. The RXO frequency was

calibrated using the trimming poly and diffusion resistors (cf. Fig. 4.6) and the injection

time is fixed at 7 µs. Using the precise and dithered injection (PDI) technique, TS and

ES were improved by 11.1× and 6.2× to 166 µs and 54 nJ. Enabling the PDI and the AI

without increasing the amplifier’s gm (i.e., using the same gm as in the steady-state), TS was

reduced to 38 µs, inferring ≈5× boosting of RN . Applying PDI and rising the amplifier’s
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Figure 4.22: Start-up behavior of XO with (a) no kick-start technique, (b) PDI only, (c)
PDI and AI techniques (d) PDI and gm-boost, (e,f) all techniques combined.

gm (gm-boost) by switching in gm2 (cf. Fig. 4.2(a)), TS was reduced to 31 µs with a slight

decrease in ES compared to using PDI only. Combining all techniques, TS and ES were

further reduced by 102.7× to 18 µs and 2.9× to 114.5 nJ, respectively, compared to the

case where no techniques were utilized. The start-up time has been significantly improved

compared with prior work that boost negative resistance (e.g., [116] and [121]), albeit with

higher ES. In systems where latency is of concern or power dissipation during their active

period is large, minimizing start-up time is considered to be the main objective function.

The increased ES is due to high power consumption associated with the AI and gm-boosting

techniques. Measured power consumption (estimated ES) for AI, RXO (including buffers)

and amplifiers gm1 and gm2 (Fig. 4.2(a)) are 7.2 mW (79 nJ), 3.6 mW (27 nJ), and 0.5 mW

(8 nJ). According to transient simulations of the XO start-up behavior, hypothetically if

AI is removed and the RN -boost amplifier gm2 is scaled in size and power by an additional

factor of 12 and 3, TS ' 22 µs and ES ' 124 nJ. The measured TS varies by 2% for a 25%

variation in the injection time and by ±12% over -40–90◦C temperature range. Transient

frequency of XO during start-up settles within ±20 ppm of its steady-state in <18 µs, as

depicted in Fig. 4.23. Fig. 4.24 shows the measured phase noise profile of the XO, where
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Figure 4.23: Settling of XO oscillation frequency.

Figure 4.24: Measured phase noise.

a –135 dB/Hz phase noise at 1 kHz offset is reported. Spurious tones seen on the profile

are due to weak supply bypass capacitors on board. Table 4.1 summarizes performance of

the XO using the proposed techniques in comparison with prior work. To better assess the

effectiveness of various start-up techniques, both CL and the steady-state amplitude which

is proportional to square root of crystal energy should be taken into consideration (see Eq.

4.8) and are thus included in Table 4.1. This work achieves the largest TS improvement ratio

to date, while maintaining an ES improvement ratio comparable with prior art.
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4.6 Conclusion

This paper presented a study and design of two techniques used to reduce start-up time

(TS) and energy (ES) of Pierce crystal oscillator (XO). An analytical study of the external

signal injection was presented and an RXO was proposed as an alternative external injection

source to minimize TS. An overview of limitation imposed by crystal’s static capacitor on

XO start-up time was presented and an active inductor was designed to mitigate its effects.

Simulation and measurement results of a prototype in 180 nm CMOS process verified the

efficacy of the proposed techniques. A significant increase in TS improvement ratio was

achieved across a wide temperature range.

93



Bibliography

[1] S. Karimi-Bidhendi, F. Munshi, and A. Munshi, “Scalable classification of univariate
and multivariate time series,” in IEEE Int. Conf. Big Data, Dec 2018, pp. 1598–1605.

[2] P. T. Wang, K. Gandasetiawan, C. M. McCrimmon, A. Karimi-Bidhendi, C. Y. Liu,
P. Heydari, Z. Nenadic, and A. H. Do, “Feasibility of an ultra-low power digital signal
processor platform as a basis for a fully implantable brain-computer interface system,”
in 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug 2016, pp. 4491–
4494.

[3] C. M. McCrimmon, J. L. Fu, M. Wang, L. S. Lopes, P. T. Wang, A. Karimi-Bidhendi,
C. Y. Liu, P. Heydari, Z. Nenadic, and A. H. Do, “Performance assessment of a custom,
portable, and low-cost brain-computer interface platform,” IEEE Trans. on Biomed.
Eng., vol. 64, no. 10, pp. 2313–2320, Oct 2017.

[4] C. M. McCrimmon, M. Wang, L. S. Lopes, P. T. Wang, A. Karimi-Bidhendi, C. Y.
Liu, P. Heydari, Z. Nenadic, and A. H. Do, “A small, portable, battery-powered brain-
computer interface system for motor rehabilitation,” in 38th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), Aug 2016, pp. 2776–2779.

[5] S. Ghasemi-Goojani, S. Karimi-Bidhendi, and H. Behroozi, “On the capacity region
of asymmetric Gaussian two-way line channel,” IEEE Trans. Commun., vol. 64, no. 9,
pp. 3669–3682, Sep. 2016.

[6] J. Guo, S. Karimi-Bidhendi, and H. Jafarkhani, “Energy efficient node deployment
in wireless ad-hoc sensor networks,” CoRR, vol. abs/1904.06380, 2019. [Online].
Available: http://arxiv.org/abs/1904.06380

[7] J. G. S. Karimi-Bidhendi and H. Jafarkhani, “Using quantization to deploy heteroge-
neous nodes in two-tier wireless sensor networks,” in IEEE Int. Symp. on Inf. Theory,
2019.

[8] P. Mehr, W. Lepkowski, and T. J. Thornton, “k-band CMOS-based MESFET cascode
amplifiers,” IEEE Microwave Wireless Compon. Lett., vol. 28, no. 7, pp. 609–611, July
2018.

[9] H. Mohammadnezhad, H. Wang, and P. Heydari, “Analysis and design of a wideband,
balun-based, differential power splitter at mm-wave,” IEEE Trans. Circuits Syst. II
Express Briefs, vol. 65, no. 11, pp. 1629–1633, Nov 2018.

94

http://arxiv.org/abs/1904.06380


[10] P. Nazari, H. Mohammadnezhad, E. Preisler, and P. Heydari, “A broadband nonlinear
lumped model for silicon impatt diodes,” in 2015 IEEE Bipolar/BiCMOS Circuits and
Technology Meeting - BCTM, Oct 2015, pp. 145–148.

[11] H. Mohammadnezhad, H. Wang, A. Cathelin, and P. Heydari, “A 115–135-GHz 8PSK
receiver using multi-phase RF-correlation-based direct-demodulation method,” IEEE
J. Solid-State Circuits, vol. 54, no. 9, pp. 2435–2448, Sep. 2019.

[12] H. Wang, H. Mohammadnezhad, and P. Heydari, “Analysis and design of high-order
QAM direct-modulation transmitter for high-speed point-to-point mm-wave wireless
links,” IEEE J. Solid-State Circuits, vol. 55, pp. 1–19, 08 2019.

[13] H. Mohammadnezhad, R. Abedi, and P. Heydari, “A millimeter-wave partially over-
lapped beamforming-MIMO receiver: Theory, design, and implementation,” IEEE
Trans. Microwave Theory Tech., vol. 67, no. 5, pp. 1924–1936, May 2019.

[14] H. Mohammadnezhad, H. Wang, A. Cathelin, and P. Heydari, “A single-channel RF-
to-bits 36Gbps 8PSK RX with direct demodulation in RF domain,” in IEEE Custom
Integr. Circuits Conf. (CICC), April 2019, pp. 1–4.

[15] H. Wang, H. Mohammadnezhad, D. Dimlioglu, and P. Heydari, “A 100-120GHz
20Gbps bits-to-RF 16QAM transmitter using 1-bit digital-to-analog interface,” in
IEEE Custom Integr. Circuits Conf. (CICC), April 2019, pp. 1–4.

[16] H. Mohammadnezhad, R. Abedi, A. Esmaili, and P. Heydari, “A 64-67GHz partially-
overlapped phase-amplitude-controlled 4-element beamforming-MIMO receiver,” in
IEEE Custom Integr. Circuits Conf. (CICC), April 2018, pp. 1–4.

[17] S. M. H. Mohammadnezhad, “A mm-wave receiver with simultaneous beamforming
and MIMO capabilities,” Master’s thesis, University of California, Irvine, Dec. 2018.

[18] H. Mohammadnezhad, A. K. Bidhendi, M. M. Green, and P. Heydari, “A low-power
bicmos 50 gbps gm-boosted dual-feedback transimpedance amplifier,” in 2015 IEEE
Bipolar/BiCMOS Circuits and Technology Meeting - BCTM, Oct 2015, pp. 161–164.

[19] A. Karimi-Bidhendi, H. Mohammadnezhad, M. M. Green, and P. Heydari, “A silicon-
based low-power broadband transimpedance amplifier,” IEEE Trans. Circuits Syst. I
Regul. Pap., vol. 65, no. 2, pp. 498–509, Feb 2018.

[20] A. Karimi Bidhendi, “A broadband transimpedance amplifier for optical receivers,”
Master’s thesis, University of California, Irvine, Dec. 2018.

[21] Payam Heydari, Seyed Mohammad Hossein Mohammadnezhad, Alireza Karimi
Bidhendi, Michael M. Green, David Howard, Edward Preisler, “Ultra-broadband
transimpedance amplifiers (tia) for optical fiber communications,” U.S. Patent
20 180 102 749A1, 2018. [Online]. Available: https://patents.google.com/patent/
US20180102749A1/en

95

https://patents.google.com/patent/US20180102749A1/en
https://patents.google.com/patent/US20180102749A1/en


[22] A. Karimi-Bidhendi, O. Malekzadeh-Arasteh, M. Lee, C. M. McCrimmon, P. T. Wang,
A. Mahajan, C. Y. Liu, Z. Nenadic, A. H. Do, and P. Heydari, “CMOS ultralow power
brain signal acquisition front-ends: Design and human testing,” IEEE Trans. Biomed.
Circuits Syst., vol. 11, no. 5, pp. 1111–1122, Oct 2017.

[23] M. Lee, A. Karimi-Bidhendi, O. Malekzadeh-Arasteh, P. T. Wang, A. H. Do, Z. Ne-
nadic, and P. Heydari, “A CMOS MedRadio transceiver with supply-modulated power
saving technique for an implantable brainmachine interface system,” IEEE J. Solid-
State Circuits, vol. 54, no. 6, pp. 1541–1552, June 2019.

[24] A. Karimi-Bidhendi, H. Pu, and P. Heydari, “Study and design of a fast start-up crystal
oscillator using precise dithered injection and active inductance,” IEEE J. Solid-State
Circuits, pp. 1–12, 2019.

[25] W. H. Organization and I. S. C. Society, International perspectives on spinal cord
injury. World Health Organization, 2013.

[26] A. H. Do, P. T. Wang, C. E. King, S. N. Chun, and Z. Nenadic, “Brain-computer
interface controlled robotic gait orthosis,” J. NeuroEng. Rehabil., vol. 10, no. 111,
p. 1, 2013.

[27] C. E. King, P. T. Wang, C. M. McCrimmon, C. C. Chou, A. H. Do, and Z. Nenadic,
“The feasibility of a brain-computer interface functional electrical stimulation system
for the restoration of overground walking after paraplegia,” J. NeuroEng. Rehabil.,
vol. 12, no. 1, p. 1, 2015.

[28] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara, D. J.
Weber, A. J. McMorland, M. Velliste, M. L. Boninger, and A. B. Schwartz, “High-
performance neuroprosthetic control by an individual with tetraplegia,” The Lancet,
vol. 381, no. 9866, pp. 557–564, 2013.

[29] J. Turner, W. Shain, D. Szarowski, M. Andersen, S. Martins, M. Isaacson, and
H. Craighead, “Cerebral astrocyte response to micromachined silicon implants,” Exp.
Neurol., vol. 156, no. 1, pp. 33–49, 1999.

[30] K. A. Sillay, P. Rutecki, K. Cicora, G. Worrell, J. Drazkowski, J. J. Shih, A. D.
Sharan, M. J. Morrell, J. Williams, and B. Wingeier, “Long-term measurement of
impedance in chronically implanted depth and subdural electrodes during responsive
neurostimulation in humans,” Brain stimulation, vol. 6, no. 5, pp. 718–726, 2013.

[31] C. Wu, J. J. Evans, C. Skidmore, M. R. Sperling, and A. D. Sharan, “Impedance
variations over time for a closed-loop neurostimulation device: Early experience with
chronically implanted electrodes,” Neuromodulation: Technology at the Neural Inter-
face, vol. 16, no. 1, pp. 46–50, 2013.

[32] Z. C. Chao, Y. Nagasaka, and N. Fujii, “Long-term asynchronous decoding of arm
motion using electrocorticographic signals in monkey,” Front. Neuroeng., vol. 3, p. 3,
2010.

96



[33] P. T. Wang, C. E. King, C. M. McCrimmon, J. J. Lin, M. Sazgar, F. P. Hsu, S. J.
Shaw, D. E. Millet, L. A. Chui, C. Y. Liu et al., “Comparison of decoding resolution
of standard and high-density electrocorticogram electrodes,” J. Neural Eng., vol. 13,
no. 2, pp. 26 016–26 038, 2016.

[34] N. E. Crone, D. L. Miglioretti, B. Gordon, and R. P. Lesser, “Functional mapping
of human sensorimotor cortex with electrocorticographic spectral analysis. ii. Event-
related synchronization in the gamma band.” Brain, vol. 121, no. 12, pp. 2301–2315,
1998.

[35] T. Yanagisawa, M. Hirata, Y. Saitoh, H. Kishima, K. Matsushita, T. Goto, R. Fukuma,
H. Yokoi, Y. Kamitani, and T. Yoshimine, “Electrocorticographic control of a pros-
thetic arm in paralyzed patients,” Ann. Neurol., vol. 71, no. 3, pp. 353–361, 2012.

[36] J. Kubanek, K. Miller, J. Ojemann, J. Wolpaw, and G. Schalk, “Decoding flexion
of individual fingers using electrocorticographic signals in humans,” J. Neural Eng.,
vol. 6, no. 6, p. 066001, 2009.

[37] A. Rouse, S. Stanslaski, P. Cong, R. Jensen, P. Afshar, D. Ullestad, R. Gupta, G. Mol-
nar, D. Moran, and T. Denison, “A chronic generalized bi-directional brain–machine
interface,” J. Neural Eng., vol. 8, no. 3, p. 036018, 2011.

[38] P. Afshar, A. Khambhati, S. Stanslaski, D. Carlson, R. Jensen, D. Linde, S. Dani,
M. Lazarewicz, P. Cong, J. Giftakis et al., “A translational platform for prototyping
closed-loop neuromodulation systems,” Closing the Loop Around Neural Systems, pp.
367–380, 2014.

[39] N. C. Swann, C. de Hemptinne, S. Miocinovic, S. Qasim, S. S. Wang, N. Ziman, J. L.
Ostrem, M. San Luciano, N. B. Galifianakis, and P. A. Starr, “Gamma oscillations
in the hyperkinetic state detected with chronic human brain recordings in parkinson’s
disease,” J. Neurosci., vol. 36, no. 24, pp. 6445–6458, 2016.

[40] M. J. Vansteensel, E. G. Pels, M. G. Bleichner, M. P. Branco, T. Denison, Z. V.
Freudenburg, P. Gosselaar, S. Leinders, T. H. Ottens, M. A. Van Den Boom et al.,
“Fully implanted brain–computer interface in a locked-in patient with als,” N. Engl.
J. Med., vol. 375, no. 21, pp. 2060–2066, 2016.

[41] C. Qian, J. Parramon, and E. Sanchez-Sinencio, “A micropower low-noise neural
recording front-end circuit for epileptic seizure detection,” IEEE J. Solid-State Cir-
cuits, vol. 46, no. 6, pp. 1392–1405, June 2011.

[42] K. A. Ng and Y. P. Xu, “A compact, low input capacitance neural recording amplifier,”
IEEE Trans. Biomed. Circuits Syst., vol. 7, no. 5, pp. 610–620, Oct 2013.

[43] S. Robinet, P. Audebert, G. Regis, B. Zongo, J.-F. Beche, C. Condemine, S. Filipe,
and G. Charvet, “A low-power 0.7 µVrms 32-channel mixed-signal circuit for ECoG
recordings,” IEEE J. Emerging Sel. Top. Circuits Syst., vol. 1, no. 4, pp. 451–460,
2011.

97



[44] F. Zhang, A. Mishra, A. G. Richardson, and B. Otis, “A low-power ECoG/EEG pro-
cessing IC with integrated multiband energy extractor,” IEEE Trans. Circuits Syst. I
Regul. Pap., vol. 58, no. 9, pp. 2069–2082, 2011.

[45] W. Smith, B. Mogen, E. Fetz, V. Sathe, and B. Otis, “Exploiting electrocorticographic
spectral characteristics for optimized signal chain design: A 1.08 µW analog front
end with reduced ADC resolution requirements.” IEEE Trans. Biomed. Circuits Syst.,
2016.

[46] R. Muller, H.-P. Le, W. Li, P. Ledochowitsch, S. Gambini, T. Bjorninen, A. Koralek,
J. M. Carmena, M. M. Maharbiz, E. Alon et al., “A minimally invasive 64-channel
wireless µECoG implant,” IEEE J. Solid-State Circuits, vol. 50, no. 1, pp. 344–359,
2015.

[47] A. Mahajan, A. K. Bidhendi, P. T. Wang, C. M. McCrimmon, C. Y. Liu, Z. Nenadic,
A. H. Do, and P. Heydari, “A 64-channel ultra-low power bioelectric signal acquisition
system for brain-computer interface,” in IEEE Biomed. Circuits Syst. Conf. (BioCAS),
2015, pp. 1–4.

[48] R. R. Harrison, “The design of integrated circuits to observe brain activity,” Proc.
IEEE, vol. 96, no. 7, pp. 1203–1216, 2008.

[49] C. C. Enz and E. A. Vittoz, Charge-based MOS transistor modeling: the EKV model
for low-power and RF IC design. John Wiley & Sons, 2006.

[50] A. Shameli and P. Heydari, “Ultra-low power rfic design using moderately inverted
mosfets: An analytical/experimental study,” in Radio Frequency Integrated Circuits
(RFIC) Symposium, 2006 IEEE. IEEE, 2006, pp. 4–pp.

[51] G. Schalk and E. C. Leuthardt, “Brain-computer interfaces using electrocorticographic
signals,” IEEE Rev. Biomed. Eng., vol. 4, pp. 140–154, 2011.

[52] K. Guillory and R. Normann, “A 100-channel system for real time detection and storage
of extracellular spike waveforms,” J. Neurosci. Methods, vol. 91, no. 1, pp. 21–29, 1999.

[53] K. J. Miller, L. B. Sorensen, J. G. Ojemann, and M. Den Nijs, “Power-law scaling in
the brain surface electric potential,” PLoS Comput. Biol., vol. 5, no. 12, p. e1000609,
2009.

[54] K. A. Ng and Y. P. Xu, “A low-power, high CMRR neural amplifier system employing
CMOS inverter-based OTAs with CMFB through supply rails,” IEEE J. Solid-State
Circuits, vol. 51, no. 3, pp. 724–737, 2016.

[55] A. Wang, B. H. Calhoun, and A. P. Chandrakasan, Sub-threshold design for ultra
low-power systems. New York: Springer, 2006, vol. 95.

[56] R. Wang and R. Harjani, “Partial positive feedback for gain enhancement of low-
power CMOS OTAs,” Analog Integrated Circuits and Signal Processing, vol. 8, no. 1,
pp. 21–35, 1995.

98



[57] R. H. Olsson, M. N. Gulari, and K. D. Wise, “Silicon neural recording arrays with
on-chip electronics for in-vivo data acquisition,” in 2nd Ann. Int. IEEE-EMBS Special
Topic Conf. Microtechnologies Med. and Biol. Proc. (Cat. No.02EX578), 2002, pp.
237–240.

[58] R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural record-
ing applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–965, June 2003.

[59] Z. Chen, C.-C. Wang, H.-C. Yao, and P. Heydari, “A bicmos w-band 2× 2 focal-
plane array with on-chip antenna,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp.
2355–2371, 2012.

[60] L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a w-band sige direct-
detection-based passive imaging receiver,” IEEE J. Solid-State Circuits, vol. 46, no. 10,
pp. 2240–2252, 2011.

[61] A.-T. Avestruz, W. Santa, D. Carlson, R. Jensen, S. Stanslaski, A. Helfenstine, and
T. Denison, “A 5 µW/channel spectral analysis IC for chronic bidirectional brain–
machine interfaces,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 3006–3024,
2008.

[62] R. F. Yazicioglu, P. Merken, R. Puers, and C. V. Hoof, “A 60 µW 60 nV/
√
Hz

readout front-end for portable biopotential acquisition systems,” in IEEE Int. Solid-
State Circuits Conf. Dig. Tech. Papers, Feb 2006, pp. 109–118.

[63] Q. Fan, F. Sebastiano, H. Huijsing, and K. Makinwa, “A 1.8 µW 1 µV-offset
capacitively-coupled chopper instrumentation amplifier in 65nm CMOS,” in Proc. Eur.
Solid-State Circuits Conf. (ESSCIRC), Sep. 2010, pp. 170–173.

[64] M. S. Steyaert and W. M. Sansen, “A micropower low-noise monolithic instrumentation
amplifier for medical purposes,” IEEE J. Solid-State Circuits, vol. 22, no. 6, pp. 1163–
1168, 1987.

[65] P. Horowitz, W. Hill, and I. Robinson, The Art of Electronics. Cambridge university
press Cambridge, 1980, vol. 1989.

[66] J. Szynowski, “CMRR analysis of instrumentation amplifiers,” Electron. Lett., vol. 14,
no. 19, pp. 547–549, 1983.

[67] C. Kitchin and L. Counts, A designer’s guide to instrumentation amplifiers. Analog
Devices, 2004.

[68] G. Chatrian, E. Lettich, and P. Nelson, “Ten percent electrode system for topographic
studies of spontaneous and evoked EEG activities,” Am. J. EEG Technol., vol. 25,
no. 2, pp. 83–92, 1985.

[69] B. Feige et al., “Cortical and subcortical correlates of electroencephalographic alpha
rhythm modulation,” J. Neurophysiology, vol. 93, no. 5, pp. 2864–2872, 2005.

99



[70] P. T. Wang, C. E. King, S. J. Shaw, D. E. Millett, C. Y. Liu, L. A. Chui, Z. Nenadic,
and A. H. Do, “A co-registration approach for electrocorticogram electrode localization
using post-implantation MRI and CT of the head,” in Neural Engineering (NER), 2013
6th Int. IEEE/EMBS Conf. on. IEEE, 2013, pp. 525–528.

[71] J. Xu, T. Wu, W. Liu, and Z. Yang, “A frequency shaping neural recorder with 3 pF
input capacitance and 11 plus 4.5 bits dynamic range,” IEEE Trans. Biomed. Circuits
Syst., vol. 8, no. 4, pp. 510–527, 2014.

[72] “Intan Technologies, RHD2000,” Sep. 2013. [Online]. Available: http://intantech.
com/files/Intan RHD2000 series datasheet.pdf

[73] R. Muller, S. Gambini, and J. M. Rabaey, “A 0.013 mm2, 5 µW, DC-coupled neural
signal acquisition IC with 0.5 V supply,” IEEE J. Solid-State Circuits, vol. 47, no. 1,
pp. 232–243, 2012.

[74] D.-B. S. for Parkinson’s Disease Study Group, “Deep-brain stimulation of the subtha-
lamic nucleus or the pars interna of the globus pallidus in Parkinson’s disease,” N Engl
J Med., vol. 345, no. 13, pp. 956–963, 2001.

[75] C. N. Heck and D. e. a. King-Stephens, “Two-year seizure reduction in adults with
medically intractable partial onset epilepsy treated with responsive neurostimulation:
Final results of the RNS system pivotal trial,” Epilepsia, vol. 55, no. 3, pp. 432–441,
2014.

[76] M. J. Vansteensel, E. G. Pels, M. G. Bleichner, M. P. Branco, T. Denison, Z. V.
Freudenburg, P. Gosselaar, S. Leinders, T. H. Ottens, M. A. Van Den Boom et al.,
“Fully implanted brain–computer interface in a locked-in patient with als,” N Engl J
Med., vol. 375, no. 21, pp. 2060–2066, 2016.

[77] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T. M. Vaughan,
“Brain–computer interfaces for communication and control,” Clinical neurophysiology,
vol. 113, no. 6, pp. 767–791, 2002.

[78] A. H. Do, P. T. Wang, C. E. King, A. Schombs, S. C. Cramer, and Z. Nenadic, “Brain-
computer interface controlled functional electrical stimulation device for foot drop due
to stroke,” in 34th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2012,
pp. 6414–6417.

[79] C. E. King, P. T. Wang, C. M. McCrimmon, C. C. Chou, A. H. Do, and Z. Nenadic,
“The feasibility of a brain-computer interface functional electrical stimulation sys-
tem for the restoration of overground walking after paraplegia,” J NeuroEng Rehabil,
vol. 12, no. 1, p. 80, 2015.

[80] J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara, D. J.
Weber, A. J. McMorland, M. Velliste, M. L. Boninger, and A. B. Schwartz, “High-
performance neuroprosthetic control by an individual with tetraplegia,” Lancet, vol.
381, no. 9866, pp. 557–564, 2013.

100

http://intantech.com/files/Intan_RHD2000_series_datasheet.pdf
http://intantech.com/files/Intan_RHD2000_series_datasheet.pdf


[81] DBSTMExtension Kit for Deep Brain Stimulation, Medtronic.

[82] “Medtronic Azure MRISureScan Specifications Sheets.” [Online].
Available: https://www.medtronic.com/us-en/healthcare-professionals/products/
cardiac-rhythm/pacemakers/azure.html

[83] W. Saadeh, M. A. B. Altaf, H. Alsuradi, and J. Yoo, “A 1.1-mW ground effect-resilient
body-coupled communication transceiver with pseudo OFDM for head and body area
network,” IEEE J. Solid-State Circuits, vol. 52, no. 10, pp. 2690–2702, Oct 2017.

[84] ——, “A pseudo OFDM with miniaturized FSK demodulation body-coupled commu-
nication transceiver for binaural hearing aids in 65 nm CMOS,” IEEE J. Solid-State
Circuits, vol. 52, no. 3, pp. 757–768, Mar. 2017.

[85] Y. Shi, M. Choi, Z. Li, Z. Luo, G. Kim, Z. Foo, H. Kim, D. D. Wentzloff, and D. Blaauw,
“A 10 mm3inductive coupling radio for syringe-implantable smart sensor nodes,” IEEE
J. Solid-State Circuits, vol. 51, no. 11, pp. 2570–2583, Nov 2016.

[86] C. Salazar, A. Cathelin, A. Kaiser, and J. Rabaey, “A 2.4 GHz interferer-resilient
wake-up receiver using a dual-IF multi-stage N-path architecture,” IEEE J. Solid-State
Circuits, vol. 51, no. 9, pp. 2091–2105, 2016.

[87] N. M. Pletcher, S. Gambini, and J. Rabaey, “A 52 µW wake-up receiver with − 72 dbm
sensitivity using an uncertain-IF architecture,” IEEE J. Solid-State Circuits, vol. 44,
no. 1, pp. 269–280, Jan 2009.

[88] D. Ye, R. van der Zee, and B. Nauta, “A 915 MHz 175 µW receiver using transmitted-
reference and shifted limiters for 50 dB in-band interference tolerance,” IEEE J. Solid-
State Circuits, vol. 51, no. 12, pp. 3114–3124, 2016.

[89] X. Huang, A. Ba, P. Harpe, G. Dolmans, H. de Groot, and J. R. Long, “A 915 MHz,
ultra-low power 2-tone transceiver with enhanced interference resilience,” IEEE J.
Solid-State Circuits, vol. 47, no. 12, pp. 3197–3207, Dec 2012.

[90] M. Vidojkovic, X. Huang, X. Wang, C. Zhou, A. Ba, M. Lont, Y. H. Liu, P. Harpe,
M. Ding, B. Busze, N. Kiyani, K. Kanda, S. Masui, K. Philips, and H. de Groot, “A
0.33nJ/b IEEE802.15.6/proprietary-MICS/ISM-band transceiver with scalable data-
rate from 11kb/s to 4.5Mb/s for medical applications,” in IEEE Int. Solid-State Cir-
cuits Conf. Dig. of Tech. Papers (ISSCC), 2014, pp. 170–171.

[91] H. C. Chen, M. Y. Yen, Q. X. Wu, K. J. Chang, and L. M. Wang, “Batteryless
transceiver prototype for medical implant in 0.18-µm CMOS technology,” IEEE Trans.
Microwave Theory Tech., vol. 62, no. 1, pp. 137–147, Jan 2014.

[92] J. Y. Hsieh, Y. C. Huang, P. H. Kuo, T. Wang, and S. S. Lu, “A 0.45-v low-power
OOK/FSK RF receiver in 0.18 µm CMOS technology for implantable medical appli-
cations,” IEEE Trans. Circuits Syst. I Reg. Papers, vol. 63, no. 8, pp. 1123–1130,
2016.

101

https://www.medtronic.com/us-en/healthcare-professionals/products/cardiac-rhythm/pacemakers/azure.html
https://www.medtronic.com/us-en/healthcare-professionals/products/cardiac-rhythm/pacemakers/azure.html


[93] N. Cho, J. Bae, and H. J. Yoo, “A 10.8 mW body channel communication/mics dual-
band transceiver for a unified body sensor network controller,” IEEE J. Solid-State
Circuits, vol. 44, no. 12, pp. 3459–3468, 2009.

[94] M. C. Lee, A. Karimi-Bidhendi, O. Malekzadeh-Arasteh, P. T. Wang, Z. Nenadic, A. H.
Do, and P. Heydari, “A CMOS inductorless MedRadio OOK transceiver with a 42 µW
event-driven supply-modulated RX and a 14% efficiency TX for medical implants,” in
IEEE Custom Integrated Circuits Conf. (CICC), April 2018, pp. 1–4.

[95] L. C. Liu, M. H. Ho, and C. Y. Wu, “A medradio-band low-energy-per-bit CMOS
OOK transceiver for implantable medical devices,” in IEEE Biomed. Circuits Syst.
Conf. (BioCAS), Nov 2011, pp. 153–156.

[96] C. W. Chou, L. C. Liu, and C. Y. Wu, “A MedRadio-band low-energy-per-bit 4-Mbps
CMOS OOK receiver for implantable medical devices,” in 35th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), July 2013, pp. 5171–5174.

[97] H. Milosiu, F. Oehler, M. Eppel, D. Frhsorger, S. Lensing, G. Popken, and T. Thnes,
“A 3-µW 868-MHz wake-up receiver with -83 dBm sensitivity and scalable data rate,”
in Proc. 39th Eur. Solid-State Circuits Conf. (ESSCIRC), Sept 2013, pp. 387–390.

[98] D. Y. Yoon, C. J. Jeong, J. Cartwright, H. Y. Kang, S. K. Han, N. S. Kim, D. S.
Ha, and S. G. Lee, “A new approach to low-power and low-latency wake-up receiver
system for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp.
2405–2419, Oct 2012.

[99] D. C. Daly and A. P. Chandrakasan, “An energy-efficient OOK transceiver for wireless
sensor networks,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1003–1011, May
2007.

[100] F. Bruccoleri, E. A. M. Klumperink, and B. Nauta, “Wide-band CMOS low-noise
amplifier exploiting thermal noise canceling,” IEEE J. Solid-State Circuits, vol. 39,
no. 2, pp. 275–282, 2004.

[101] J. Lee, Y. Chen, and Y. Huang, “A low-power low-cost fully-integrated 60-GHz
transceiver system with OOK modulation and on-board antenna assembly,” IEEE
J. Solid-State Circuits, vol. 45, no. 2, pp. 264–275, Feb 2010.

[102] Z. Wang, P. Y. Chiang, P. Nazari, C. C. Wang, Z. Chen, and P. Heydari, “A CMOS 210-
GHz fundamental transceiver with OOK modulation,” IEEE J. Solid-State Circuits,
vol. 49, no. 3, pp. 564–580, March 2014.

[103] L. Zhou, C. C. Wang, Z. Chen, and P. Heydari, “A W-band CMOS receiver chipset
for millimeter-wave radiometer systems,” IEEE J. Solid-State Circuits, vol. 46, no. 2,
pp. 378–391, Feb 2011.

[104] M. Marutani, H. Anbutsu, M. Kondo, N. Shirai, H. Yamazaki, and Y. Watanabe, “An
18mW 90 to 770MHz synthesizer with agile auto-tuning for digital TV-tuners,” in
IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb 2006, pp. 681–690.

102



[105] D. Kurup, G. Vermeeren, E. Tanghe, W. Joseph, and L. Martens, “In-to-out body
antenna-independent path loss model for multilayered tissues and heterogeneous
medium,” Sensors (Basel), vol. 15, no. 1, pp. 408–421, dec 2014.

[106] T. Karacolak, A. Z. Hood, and E. Topsakal, “Design of a dual-band implantable an-
tenna and development of skin mimicking gels for continuous glucose monitoring,”
IEEE Trans. Microwave Theory Tech., vol. 56, no. 4, pp. 1001–1008, 2008.

[107] A. T. Mobashsher and A. M. Abbosh, “Artificial human phantoms: Human proxy in
testing microwave apparatuses that have electromagnetic interaction with the human
body,” IEEE Microwave Mag., vol. 16, no. 6, pp. 42–62, 2015.

[108] J. Pandey, J. Shi, and B. Otis, “A 120µW MICS/ISM-band FSK receiver with a 44µW
low-power mode based on injection-locking and 9x frequency multiplication,” in IEEE
Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb 2011, pp. 460–462.

[109] M. R. Palattella, N. Accettura, L. A. Grieco, G. Boggia, M. Dohler, and T. Engel,
“On optimal scheduling in duty-cycled industrial IoT applications using IEEE802.15.4e
TSCH,” IEEE Sens. J., vol. 13, no. 10, pp. 3655–3666, Oct. 2013.

[110] N. Choudhury, R. Matam, M. Mukherjee, and L. Shu, “Beacon synchronization and
duty-cycling in ieee 802.15.4 cluster-tree networks: A review,” IEEE IoT J., vol. 5,
no. 3, pp. 1765–1788, Jun. 2018.

[111] R. C. Carrano, D. Passos, L. C. S. Magalhaes, and C. V. N. Albuquerque, “Survey and
taxonomy of duty cycling mechanisms in wireless sensor networks,” IEEE Commun.
Surveys Tuts., vol. 16, no. 1, pp. 181–194, 1st Quart. 2014.

[112] J. Pandey, J. Shi, and B. Otis, “A 120µw MICS/ISM-band FSK receiver with a 44µW
low-power mode based on injection-locking and 9× frequency multiplication,” in IEEE
Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2011, pp. 460–462.

[113] S. Iguchi, T. Sakurai, and M. Takamiya, “A low-power CMOS crystal oscillator using
a stacked-amplifier architecture,” IEEE J. Solid-State Circuits, vol. 52, no. 11, pp.
3006–3017, Nov. 2017.

[114] S. Iguchi, A. Saito, Y. Zheng, K. Watanabe, T. Sakurai, and M. Takamiya, “93% power
reduction by automatic self power gating (ASPG) and multistage inverter for negative
resistance (MINR) in 0.7V, 9.2µW, 39MHz crystal oscillator,” in IEEE Symp. VLSI
Circuits Dig. Tech. Papers, Jun. 2013, pp. C142–C143.

[115] Keith Edward Jackoski, John Wayne Simmons, Gerald Paul Schwieterman, “Method
and apparatus for optimizing an oscillator start up time,” U.S. patentus 5,844,448,
Dec. 1, 1998. [Online]. Available: https://patents.google.com/patent/US5844448A/
en?oq=5%2c844%2c448

[116] M. Ding, Y. Liu, Y. Zhang, C. Lu, P. Zhang, B. Busze, C. Bachmann, and K. Philips,
“A 95µW 24MHz digitally controlled crystal oscillator for iot applications with

103

https://patents.google.com/patent/US5844448A/en?oq=5%2c844%2c448
https://patents.google.com/patent/US5844448A/en?oq=5%2c844%2c448


36nJ start-up energy and >13× start-up time reduction using a fully-autonomous
dynamically-adjusted load,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), Feb.
2017, pp. 90–91.

[117] M. Ding, Y. Liu, P. Harpe, C. Bachmann, K. Philips, and A. Van Roermund, “A low-
power fast start-up crystal oscillator with an autonomous dynamically adjusted load,”
IEEE Trans. Circuits Syst. I, vol. 66, no. 4, pp. 1382–1392, April 2019.

[118] I-Chang Wu, Chung Wen Lo, Keng Leong Fong, “Method and apparatus for
a crystal oscillator to achieve fast start-up time, low power and frequency
calibration,” U.S. patentus US7 348 861B1, Mar. 25, 2008. [Online]. Available:
https://patents.google.com/patent/US7348861B1/en?oq=7%2c348%2c861

[119] T. D. Davis, “Pierce crystal oscillator having reliable startup for integrated
circuits,” U.S. patentus US5 528 201A, Jun., 1996. [Online]. Available: https:
//patentimages.storage.googleapis.com/73/91/9b/4fa947e7131ebb/US5528201.pdf

[120] K. Lei, P. Mak, and R. P. Martins, “A 0.4V 4.8µw 16MHz CMOS crystal oscillator
achieving 74-fold startup-time reduction using momentary detuning,” in Proc. IEEE
Int. Symp. Circuits and Syst. (ISCAS), May 2017, pp. 1–4.

[121] K. Lei, P. Mak, M. Law, and R. P. Martins, “A regulation-free sub-0.5-v 16-/24-MHz
crystal oscillator with 14.2-nJ startup energy and 31.8-µw steady-state power,” IEEE
J. Solid-State Circuits, vol. 53, no. 9, pp. 2624–2635, Sep. 2018.

[122] B. Lleveland, “Fast startup resonant element oscillator,” U.S. patentus US
2009/0 015 342 A1, Jan. 15, 2009. [Online]. Available: https://patents.google.com/
patent/US20090015342A1/en?oq=US+2009%2f0015342+A1

[123] Y. Kwon, S. Park, T. Park, K. Cho, and H. Lee, “An ultra low-power CMOS transceiver
using various low-power techniques for LR-WPAN applications,” IEEE Trans. Circuits
Syst. I Regul. Papers, vol. 59, no. 2, pp. 324–336, Feb. 2012.

[124] D. Griffith, J. Murdock, and P. T. Rine, “A 24MHz crystal oscillator with robust fast
start-up using dithered injection,” in IEEE Int. Solid-State Circuits Conf. (ISSCC)
Dig. Tech. Papers, Jan. 2016, pp. 104–105.

[125] S. Iguchi, H. Fuketa, T. Sakurai, and M. Takamiya, “Variation-tolerant quick-start-up
CMOS crystal oscillator with chirp injection and negative resistance booster,” IEEE
J. Solid-State Circuits, vol. 51, no. 2, pp. 496–508, Feb. 2016.

[126] K. M. Megawer, N. Pal, A. Elkholy, M. G. Ahmed, A. Khashaba, D. Griffith, and
P. K. Hanumolu, “A 54MHz crystal oscillator with 30× start-up time reduction using
2-step injection in 65nm CMOS,” in IEEE Int. Solid- State Circuits Conf. Dig. Tech.
Papers, Feb. 2019, pp. 302–304.

[127] B. Verhoef, J. Prummel, W. Kruiskamp, and R. Post, “A 32MHz crystal oscillator with
fast start-up using synchronized signal injection,” in IEEE Int. Solid- State Circuits
Conf. Dig. Tech. Papers, Feb. 2019, pp. 304–305.

104

https://patents.google.com/patent/US7348861B1/en?oq=7%2c348%2c861
https://patentimages.storage.googleapis.com/73/91/9b/4fa947e7131ebb/US5528201.pdf
https://patentimages.storage.googleapis.com/73/91/9b/4fa947e7131ebb/US5528201.pdf
https://patents.google.com/patent/US20090015342A1/en?oq=US+2009%2f0015342+A1
https://patents.google.com/patent/US20090015342A1/en?oq=US+2009%2f0015342+A1


[128] H. Esmaeelzadeh and S. Pamarti, “A quick startup technique for high-Q oscillators
using precisely timed energy injection,” IEEE J. Solid-State Circuits, vol. 53, no. 3,
pp. 692–702, Mar. 2018.

[129] E. Vittoz, Low power crystal and MEMS Oscillators, 1st ed. New York: Springer,
2010.

[130] H. Esmaeelzadeh and S. Pamarti, “A precisely-timed energy injection technique achiev-
ing 58/10/2µs start-up in 1.84/10/50MHz crystal oscillators,” in Proc. IEEE Custom
Integr. Circuits Conf., Apr. 2017, pp. 1–4.

[131] Y. Tokunaga, S. Sakiyama, A. Matsumoto, and S. Dosho, “An on-chip CMOS relax-
ation oscillator with voltage averaging feedback,” IEEE J. Solid-State Circuits, vol. 45,
no. 6, pp. 1150–1158, Jun. 2010.

105


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE Dissertation
	Introduction
	Ultra Low-Power Brain Signal Acquisition Front-Ends
	Introduction
	Proposed System Architecture
	BSA I: An Array of 64 Amplifier I Circuits and A Serializer
	BSA II: An Array of 4 Amplifier II Circuits, A Serializer, and an Instrumentation Amplifier
	Measurements
	Electrical Measurements
	Human Neurological Measurements

	Conclusion and Future Work

	A CMOS MedRadio Transceiver with Supply-Modulated Power Saving Technique for an Implantable Brain-Machine Interface System
	Introduction
	TRX Architecture
	Asynchronous Event-Driven Supply Modulation
	Receiver Implementation
	Noise Canceling LNA and Gain Stages
	Envelope Detector and Offset Calibration
	Settling-Time Acceleration Switch

	Transmitter Implementation
	Direct-Modulation Transmitter
	Current Starved Ring Oscillator with AFC Loop

	Experimental Results
	Receiver Electrical Measurements
	Transmitter Electrical Measurements
	Wireless Connection Measurement Setup and Results
	Multi-User Coexistence and Interference Testing
	in-vitro Phantom Measurements

	Conclusion

	A Fast Start-up Crystal Oscillator Using Precise Dithered Injection and Active Inductance
	Introduction
	Background and the proposed ideas
	Precise Dithered Signal Injection
	Problem Statement: Damped Driven Oscillator
	Analysis of the Motional Current's Envelope
	Sensitivity to Timing and Injection Frequency Inaccuracies
	Interpretation of the Analysis
	Relaxation Oscillator Implementation

	Active Inductor
	Effects of C0 on XO Start-up
	Proposed RN Boosting Method 
	Design Considerations for Active Inductor Implementation
	Circuit Implementation

	Measurement Results
	Conclusion

	Bibliography



