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Abstract

Microbes are widely recognized to be vital to host health. This new 
consensus rests, in part, on experiments showing how hosts malfunction 
when microbes are removed. More and more microbial dependencies are 
being discovered, even in fundamental processes such as development, 
immunity, physiology, and behavior. But why do they exist? The default 
explanation is that microbes are beneficial; when hosts lose microbes, they 
also lose benefits. Here I call attention to evolutionary addiction, whereby a 
host trait evolves a need for microbes without having been improved by 
them. Evolutionary addiction should be considered when interpreting 
microbe-removal experiments, as it is a distinct and potentially common 
process. Further, it may have unique implications for the evolution and 
stability of host-microbe interactions.

What’s wrong with the beneficial microbiome narrative?

Host organisms often exhibit defects when their microbiome is disrupted or 
removed entirely. This phenomenon has been known for decades [1–3] and 
supports the now-generally accepted notion that microbes are fundamentally
important to host biology (e.g., [4–6]). The malfunctioning of microbe-free 
hosts—those deprived of specific symbionts or the entire microbiome—
encompasses a wide range of host diversity and of host traits, including key 
processes such as development, metabolism, nutrition, physiology, 
immunity, and behavior [7–10]. Detailed molecular mechanisms have 
emerged for many microbial effects in model hosts, and major efforts are 
underway to leverage this knowledge for microbiome engineering.

The malfunctioning of microbe-free hosts is of enormous fundamental and 
applied interest, but why does it occur in the first place? This question is 
rarely examined through an evolutionary lens. The most common 
interpretation is what I call “missing benefits”: performance of trait X in a 
microbe-free host is compromised because microbial services that benefit X 
are missing. The microbiome is often considered to be beneficial to hosts. 
For example, the literature is full of statements such as “...beneficial 
interactions between the host and its associated microbiota are key 
requirements for host health” [8].

The concept of benefits is frequently used to convey something more than 
just higher host fitness or trait performance with versus without microbes. It 
also implies novelty, utility, or improvement: microbes have enabled hosts to
perform X, or to perform it more effectively. The microbiome literature bears 
this out. Hosts “receive a multitude of benefits from their microbial 
communities, such as enhanced nutrition and protection from enemies” [11] 
and gain “new physiological abilities as a result of contributions from their 
microbial partners” [5]. Microbes “extend the host genome” [12] and 
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“perform metabolic processes that the animal or plant cannot carry out 
without the microbiota” [6]. Microbe-free host malfunctioning may also be 
taken to indicate that the microbes in question were adaptive, increasing 
host fitness because of improvements to X. Indeed, microbiomes are widely 
recognized as key contributors to host adaptation (e.g., [6,13–15]).

Often, missing benefits (hereafter MB) easily explains the data. In these 
cases, microbes provide unambiguously beneficial services that expand or 
improve host functionality. Rhizobia fix nitrogen, benefitting the nutrition of 
leguminous plants. Gut bacteria in herbivorous animals break down plant 
polysaccharides with unique digestive enzymes, releasing useful byproducts 
such as short-chain fatty acids. Photosynthetic or chemosynthetic symbionts 
provide organic carbon to marine invertebrates. In these examples microbes 
provide a useful service that their host cannot perform on its own. MB would 
be a justified interpretation of experiments showing, for example, reduced 
growth in nitrogen-poor soil of a microbe-free legume. Further, it is 
reasonable to infer that these symbioses were adaptive for hosts.

The difficulty comes when MB is used to explain microbial dependencies of 
endogenous functions—those that a host used to, or should, be able to 
perform on its own (Box 1). This form of dependence is common. For 
example, microbe-free hosts often show behavioral defects, such as a lack of
motivation to feed or move; physiological defects, such as abnormal 
digestive processes and barrier maintenance; an inability to activate 
signaling pathways that control key steps in development; and reduced 
expression of genes involved in immunity and other processes [1,16–19]. 
(Side effects of antibiotics or other methods for eliminating microbes may 
sometimes explain these phenomena but will not be discussed further).

MB transforms defects of microbe-free hosts into positive microbial functions,
using terms that convey active, beneficial, and potentially adaptive roles in 
host biology: microbes regulate, induce, activate, stimulate, mediate, 
modulate, promote, teach, and train. But in these examples, what novel or 
useful services are microbes offering? Were these microbes adaptive in 
providing hosts with the necessary motivation to feed? Or in helping hosts 
figure out how to regulate their genes? In contrast to cases like rhizobia or 
photosymbionts, here there is no obvious currency being provided to hosts. 
Microbially mediated regulation of endogenous processes does have the 
potential to be beneficial (Box 2). But benefits are not the only, or even most
likely, explanation for these kinds of defects.

Evolutionary addiction can explain host-microbe dependencies

A different perspective is that hosts which evolved in the presence of certain 
microbes will malfunction when those microbes are suddenly removed. 
Malfunctioning occurs because, over evolutionary time, the microbes have 
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become integrated into key aspects of host biology. This dependence can be 
thought of as an addiction [20]: something becomes needed, but has not 
expanded or improved host capabilities. For example, I need coffee to 
perform basic functions, but I don’t perform them any better now than before
the addiction began. I need coffee just to get back to normal. The same 
process can occur with host-microbe symbioses: a dependence evolves 
without an improvement in functionality. This general state has been termed 
evolved dependence and discussed with regard to mutualists [21], parasites
[22], and selfish genetic elements [23].

Herbivory provides an example of how dependence can arise without 
novelty, utility, or improvement. Some plants produce lower biomass and 
fewer flowers, fruits, and seeds when deprived of herbivores (e.g., [24]). So 
are herbivores actually plant mutualists rather than parasites? Do herbivores
benefit plants by teaching them to grow and reproduce? The paradox can be 
resolved by rethinking how we define benefits and mutualism [21]. 
Organisms adapt to features of the environment—including other organisms
—that they frequently encounter. The absence of a habitual partner can 
lower an organism’s fitness simply because it is an abnormal state, one 
lacking cues and inputs that the organism has incorporated into its biology.

In the realm of host-microbe symbiosis, evolved dependence has been 
labeled evolutionary addiction (EA) [20,25,26]. EA occurs when microbes 
become integrated into, and necessary for, a host trait (X) without 
benefitting it—i.e., without adaptively improving or expanding host 
functionality relative to an earlier state (Fig. 1). A necessary precondition for 
EA is that the microbes are persistently associated with the host. This may 
occur if the microbes benefit other host traits besides X, are themselves 
under selection to spread among hosts (e.g., parasites), or are simply 
ubiquitous in the host’s local environment.

Though EA has empirical support and is occasionally discussed in the 
literature [20,25–27], it is not widely considered in the microbiome field. 
Researchers may be unaware of it, find mutualistic and adaptive narratives 
more intuitive, or just consider it a fringe phenomenon. Rather than an 
oddity, EA should be expected to generate trait-microbe dependencies 
whenever hosts evolve in the continual presence of microbes. One would 
expect an organism to perform poorly with climatic conditions, light/dark 
cycles or food that it never experiences in nature, and the same expectation 
should extend to microbes. These are recurring features of the environment 
in which hosts evolve. When they are suddenly and drastically changed, a lot
can go wrong.

A relatively well-studied example of EA concerns the wasp Asobara tabida, 
which is chronically infected with the bacterial endosymbiont Wolbachia. A. 
tabida requires Wolbachia to carry out oogenesis [28]. When experimentally 
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deprived of Wolbachia, the wasps exhibit extensive apoptosis of nurse cells, 
which are needed for oocyte maturation [29]. Other Asobara species that are
not chronically infected with Wolbachia (and some that are) do not need 
them for oogenesis [28,30]. Relative to the other wasp species, the ability of 
A. tabida to make eggs has not been improved by Wolbachia.

How did microbial dependence evolve in this case? One potential pathway is 
adaptive. Wolbachia are common reproductive manipulators [31], and in 
ancestral A. tabida wasps they may have interfered with apoptosis in host 
ovaries (where Wolbachia are most abundant) [29]. The resulting harm to 
host reproduction could then have selected for wasps that integrated 
Wolbachia’s manipulative effects into how it regulates ovarian function. In 
the process, the wasp’s reproductive system became reliant on it. Another 
potential pathway is neutral. If Wolbachia produce a redundant oogenesis-
mediating factor, relaxed selection would allow loss-of-function mutations to 
accumulate in the host version [29]. These two mechanisms of EA are 
discussed at a more general level below.

Adaptive accommodation

An evolutionary addiction can arise when a host trait adapts to 
accommodate microbes, in the process becoming dependent on them to 
function (Fig. 2). Adaptive accommodation occurs because, especially in the 
early stages of a host-microbe symbiosis, there is a lot of room for 
improvement. This is clear in the case of a purely parasitic interaction. 
Alternatively, symbionts may provide a benefit but also come with harmful 
side effects. For example, they may grow excessively or in the wrong place, 
induce inflammation, manipulate the host to further their transmission, or 
antagonize other beneficial microbes. More generally, the symbiosis is in a 
suboptimal state. For example, the microbe’s microhabitat within the host 
may not be well-adjusted for its growth, or existing transmission mechanisms
do not transmit the microbe with high fidelity.

Selective pressures such as these favor adaptive host responses, which may 
be induced or otherwise dependent on the microbes themselves. For 
example, some mammalian gut bacteria degrade the mucus layer lining the 
colon [32]. A sensible host response is to create a mucus production system 
that is activated when potentially mucus-degrading bacteria are detected. 
This process can explain why germ-free rodents produce a thinner mucus 
layer than conventional rodents, and why normal mucus can be restored by 
adding peptidoglycan or lipopolysaccharide [33]. Those molecules are 
structural components of bacterial cells and do not directly contribute to 
building the mucus layer. Microbes are often said to maintain gut 
homeostasis [8] or promote gut barrier function [34]. Such phrasing is not 
inaccurate, but may convey a microbially mediated improvement that has 
not actually occurred.
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Adaptive accommodation may contribute to the widespread dependence of 
endogenous immune function on microbial symbionts [16,35–37]. Imagine a 
new symbiosis between a host and a non-pathogenic microbe. Hosts 
experience some inflammation as a side effect of new microbial cells 
consistently colonizing their bodies. The elevated baseline of inflammation-
inducing microbes selects for a less-sensitive immune response, thereby 
increasing infection tolerance. (A similar mechanism may partly explain why 
reservoir hosts of zoonotic pathogens are often highly tolerant of them, with 
little sign of morbidity when infected [38]). The host now possesses a 
regulatory system that requires the microbes for normal immune function. It 
is commonly said that microbes activate, induce, or stimulate the host 
immune system, but in this scenario, they have not benefitted it. Note that 
there are other adaptive pathways to immune dependence on symbionts. For
example, hosts may experience inflammation if deprived of coevolved 
symbionts that produce immunomodulatory molecules [39].

Developmental functions may become dependent on microbes via adaptive 
accommodation. For example, mosquito larvae depend on hypoxia 
generated by the growth of aerobic gut microbes to induce molting
[17,40,41]. In theory, this could be because insect molting serves as a useful
way to clear excess microbes from the gut, as well as a critical 
developmental process. By triggering molting when excess numbers of 
microbes have accumulated—sensed by hypoxia—a normal developmental 
pathway has become microbe-dependent. The observation that germ-free 
mice have slower gastrointestinal transit [42] could have a similar 
explanation: they have adapted to regulate bacterial overgrowth through 
microbially induced transit. In pigs, gut transit is stimulated by parasitic 
worms [43], a presumably adaptive response to clear infections.

Compensated trait loss

Another way EA can arise is compensated trait loss (CTL; [44]), where: 1) 
microbes perform a similar function as the host, 2) selection on host function
is relaxed because of microbial compensation, 3) host function is lost 
neutrally (Fig. 2). The microbes have not improved the trait in taking it over. 
In fact, the end result could be worse for hosts; for example, there are long-
term costs to relying on microbial partners for essential functions [45,46]. 
Note that as a mechanism of evolutionary addiction, CTL is distinct from 
outsourcing [47] or Black Queen dynamics [48], where relinquishing a task to
microbes is adaptive because it reduces costs or provides other advantages.

The concept of constructive neutral evolution, formulated to explain 
intermolecular dependencies [49,50], illustrates how CTL could operate. Take
the process of subfunctionalization. After gene duplication, both copies 
compensate for each other, allowing the accumulation of degenerative 
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mutations that create interdependence without any improvement to the 
ancestral function. The same compensation can occur between organisms. 
For example, Wolbachia can restore fertility to otherwise-sterile Drosophila 
mutants [51], showing how deleterious host mutations could persist in the 
presence of compensatory symbionts.

Jeon and colleagues’ experimental evolution of a protist-bacteria symbiosis 
illustrates how a metabolic dependence could be generated by CTL. At first, 
the protist grows fine on its own. After co-culture with pathogenic bacteria, it
evolves to tolerate and then depend on them [52]. The dependence is linked 
to the enzyme S-adenosylmethionine (SAM) synthetase, a highly conserved 
enzyme encoded by both host and symbiont [53]. SAM is integral to many 
metabolic processes. The symbiont-evolved protists no longer express the 
enzyme; when deprived of the symbionts, they die [54]. The symbiont’s 
version of S-adenosylmethionine synthetase appears to have compensated 
for the host’s version, allowing the latter to incur regulatory defects. 
However, the possibility of other underlying mechanisms cannot yet be ruled
out.

CTL has been suggested to explain why maturation of the host immune 
system requires microbial cues [55]. Microbial cues are often needed to 
“prime” immunity, but they are not necessarily better than endogenous 
ones. If microbial cues are consistent and compensatory, they can relax 
selection on endogenous cues, allowing the latter to be lost (or never gained)
[55]. This process could also operate on other endogenous pathways 
regulated by redundant inputs, including those mediating growth and 
reproduction. For example, CTL has been proposed to underlie the obligate 
dependence of fungal sporulation (in Rhizopus microsporus) on bacterial 
symbiont-produced factors [56].

CTL can operate on host defense, as shown experimentally in Drosophila 
melanogaster [57]. Virus resistance in D. melanogaster is controlled to a 
large degree by the gene pastrel. Wolbachia contribute to (and thus 
compensate for) virus resistance. When flies are experimentally evolved with
just the virus, a virus-resistant pastrel allele rapidly reaches fixation. When 
evolved alongside Wolbachia as well, selection on pastrel is relaxed, slowing 
spread of the resistant allele and resulting in a more virus-susceptible fly 
population [57]. A similar “divestment” of endogenous defense has been 
shown to occur when C. elegans nematodes are experimentally evolved with 
a defensive bacterial symbiont [58].

Other mechanisms and features of evolutionary addiction

Adaptive accommodation and compensated trait loss are not the only ways 
by which host-microbe dependencies can arise. Microbes might actively 
impose addictions to promote their persistence. Proof of concept comes from
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plasmids and other mobile genetic elements (MGEs) that encode coupled 
toxin-antitoxin systems wherein the toxin persists longer than the antitoxin
[59]. The host cell is protected from poisoning only so long as the MGE is 
present and expressing the antidote, effectively forcing it to maintain the 
MGE. In theory, the same dynamic could occur in host-microbe symbioses. 
One potential case is the protist Bodo saltans, which rapidly dies when 
deprived of its bacterial endosymbiont. The endosymbiont genome encodes 
multiple toxin-antitoxin systems but no metabolic functions with discernible 
value for the host [60].

Divisions between EA and MB, and between the various mechanisms of EA, 
may not be clear-cut. Multiple processes may operate on different traits in 
the same host. For example, the fungus Rhizopus microsporus requires its 
symbiont for the endogenous process of sporulation, but also benefits from a
uniquely symbiont-synthesized toxin [56]. Multiple process may also operate 
within the same trait in the same host, depending on how broadly the trait is 
defined. For example, both EA and MB can explain the susceptibility of 
Wolbachia-free Drosophila to viral infection [57]. 

Different mechanisms of dependence may interact. For example, EA may 
counter-balance MB. Returning to the analogy of a coffee addiction, one 
could argue that there is a moderate gain in alertness—a benefit—with initial
consumption. But once the addiction sets in, continued consumption is 
needed to avoid a much larger loss of alertness. And one process may 
engender the other. A microbe providing an adaptive function can be 
expected to spread among hosts, facilitating the subsequent evolution of 
dependence. Conversely, parasitic or commensal microbes to which hosts 
are addicted might be co-opted for novel, beneficial functions.

Evolved dependencies can be narrow or broad. Some examples involve 
specific, coevolving symbionts, such as Wolbachia. Others appear to be 
diffuse, where a variety of taxa (or broadly conserved microbial molecules) 
rescue defective phenotypes of microbe-free hosts. For example, colonic 
mucus production in germ-free rodents can be restored by feeding 
lipopolysaccharide or peptidoglycan, as discussed above [33]. Development 
of axenic mosquito larvae can be restored by a broad range of bacteria or 
eukaryotes, including taxa not normally present in the microbiome [40,61]. 
But in most cases, it is not known exactly which microbes are required for a 
given host trait to function. Colonizing microbe-free hosts with isolates or 
defined communities is restricted to hosts with culturable symbionts. 
Dependencies may also involve interactions among microbes (e.g., [62]), 
which will be challenging to tease apart in hosts with complex microbiomes.

Why evolutionary addiction matters, and how to study it
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By largely ignoring EA, the microbiome field has missed a plausible and likely
common evolutionary explanation for microbially dependent host traits. Its 
probable commonality is due to the fact that any host organism is a 
complex, internally interconnected system; the absence of a microbe that 
has been integrated into it, like a cog in a machine, will cause components to
malfunction. EA and MB are fundamentally different processes, though they 
can lead to the same experimental result (Fig. 1).

Are there real-world implications of whether a host trait depends on 
microbes due to MB versus EA? One may be the evolutionary potential of 
host traits following microbiome disturbance. Consider the aforementioned 
wasp Asobara tabida. If Wolbachia disappeared, A. tabida could likely adapt 
from standing genetic variation [30] or new mutations and gain the ability to 
make eggs on its own. The dependence is relatively recent, and derived 
within Asobara; closely related wasps can make eggs without Wolbachia
[28,30]. Now consider a legume that depends on rhizobia to fix nitrogen. If 
rhizobia disappeared, it is extremely unlikely that the host could gain the 
ability to fix nitrogen on its own (considering that no plant has ever been 
able to do this). EA-generated dependencies could thus be more reversible, 
though obviously more work is needed to formalize and test this hypothesis. 
Reversibility matters when we consider disruptions of long-associated 
microbial symbionts. Which traits, in which hosts, will evolution be able to 
rescue in the microbes’ absence?

EA could be considered as an eventual outcome when we create new and 
persistent host-microbe associations. This may occur unintentionally, such as
when wild hosts are brought into captivity and exposed to novel microbes, or
with the intentional introduction of probiotics. In the latter case, unexpected 
dependencies could evolve in traits beyond those which the probiotic was 
originally intended to benefit. We may even consider EA in probiotic 
engineering if we want to better lock in the new symbiosis. For example, 
harmful side effects or compensatory features are not normally desirable 
properties of a probiotic, but they might have stabilizing effects in the long 
term.

The standard experimental design does not distinguish MB from EA (Fig. 1) 
and doing so is not trivial. In theory, one way to do so is to compare trait 
function of hosts evolved with the microbes, in the presence of those 
microbes, to hosts evolved without the microbes, in the absence of those 
microbes [21]. This approach—though not broadly feasible—would reveal 
whether a trait has been expanded or improved by microbes. Conceivably, 
one could follow host evolutionary responses to natural introductions of 
microbes over time—especially for hosts that can be collected over time, 
stored, and revived for experiments. Or, one could analyze host-microbe 
interactions over space, using a mosaic of host populations with 
heterogenous microbial histories [63]. For hosts with short generation times, 
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new symbioses can be experimentally evolved. This approach would allow a 
host trait to be directly compared between pre-microbe ancestors and post-
microbe descendants.

Mapping microbial associations and dependencies onto the host phylogeny 
can also guide inference [22]. If one host is naturally infected with a microbe 
and requires it to perform endogenous function X, while a second, closely 
related host naturally lacks the microbe and can perform X without it, EA is 
likely to have operated on X in the first host. The derived dependence of 
Asobara tabida oogenesis is a good example. A dependence has been 
gained, but the function has stayed the same.

Even with just the standard experimental design and the data we already 
have, we can acknowledge EA as a viable interpretation of microbe-free host 
malfunctioning. EA is less familiar and less intuitive than MB but is arguably 
a less onerous explanation in some cases. This is particularly true for 
endogenous processes (Box 1), like regulation of host gene expression (Box 
2), for which there is no evidence of a hypothetical missing benefit. EA 
should also be considered likely when the defective function can be rescued 
with microbial structural components that, in and of themselves, probably do
not do anything useful for that function.

Concluding Remarks

It will be difficult to empirically distinguish EA from MB for particular microbe-
dependent traits in particular hosts. An alternative approach is to develop 
theory determining the conditions under which EA is most likely to arise. A 
recent theoretical model shows that life cycle overlap—i.e., shared habitat 
preferences and dispersal routes—can cause a microbe to become enriched 
in the host’s local environment without it necessarily having provided any 
benefit to the host [64]. In turn, enrichment sets the stage for EA. Attention 
should also be paid to the types of traits that are most likely to evolve 
dependence on microbes. Microbe-free hosts are not completely defective in 
all respects. On the contrary, some traits are unaffected or improved in the 
microbe-free condition (e.g., [1,2]). It should also be noted that some hosts 
appear not to need microbial symbionts at all [45].

More generally, we need a better understanding of the EA process itself. 
Among other unknowns (see Outstanding Questions), what is the role of 
coevolution in EA? I have taken the host’s perspective, considering microbes 
as just another feature of the environment. But microbes also evolve and 
may coevolve with hosts. Coevolution is not required for EA to arise, only 
persistence of the host-microbe association, which may be highly 
asymmetrical or generalized. But when it occurs, coevolution could change 
the dynamics of EA, particularly when mutual dependencies evolve in both 
partners.
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Evolutionary addiction complicates the common narrative that microbes are 
“important” to animals, plants, and other hosts. They are certainly 
important, but the reasons why matter. Are hosts and microbes “friends” 
(e.g., [65])? That view accords well with MB, but not EA. Similarly, the 
standard classification of host-associated microbes as mutualists, 
commensals, or parasites based on their contemporary fitness effects does 
not easily accommodate the nuances of EA. The microbial histories of 
individual traits in individual hosts are varied and will be difficult to fit neatly 
into boxes. If we are to achieve a broadly representative conceptual model of
host-microbe interactions, we should not only measure microbial effects on 
hosts and study their mechanisms, but also further explore why they exist at
all.

Endogenous functions in a microbial world (Box 1) 

Evolutionary addiction involves endogenous functions: those that hosts 
should be able to perform independently. Consider a hypothetical host 
function whose performance depends on certain microbes. The dependence 
exists in a contemporary host population that has evolved with the microbes 
in question. The function can be considered endogenous if it was fully 
executable before the host acquired those microbes. Or, if there was no pre-
microbe state—e.g., as with gut bacteria generally—we can think of 
endogenousness in terms of functionality: are the microbes needed for their 
unique contribution to the function, or only because their presence has been 
integrated into the regulatory systems that control it?

Does it even make sense to talk about a currently microbe-dependent yet 
endogenous function, given that hosts evolved in a microbial world [4]? If 
they have always interacted with microbes, can any organism do anything 
on its own? I argue that it does if we keep in mind that microbial associations
and dependencies are highly heterogeneous across hosts. Even just focusing
on animals, many taxa either do not need microbial symbionts at all [45], or 
only need them for a specific function, like bioluminescence or biosynthesis 
of certain nutrients. Their existence implies that fundamental host processes
—such as behavior, development, physiology, and defense—are, in a very 
general sense, viable without microbial symbionts.

Why be regulated by microbes? (Box 2) 

Defects of microbe-free hosts are often regulatory in nature. For example, 
expression of metabolic or immune genes, developmental pathways, or 
physiological processes may be under-activated. These cases are likely to 
have arisen through EA because the function being regulated does not 
fundamentally require unique microbial services. This is especially apparent 
when structural components of microbial cells restore the function in 
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microbe-free hosts (e.g., [33,66]). Through the EA lens, microbe-associated 
stimuli or cues become woven into the host’s regulatory fabric; removing 
them rips holes in the fabric. There is no expanded functionality of the trait 
that becomes microbially regulated. Take epigenetic programming, bodily 
contractions, or circadian rhythms, which are disrupted in some microbe-free
animals [67–69]. Though microbially dependent now, it is not clear how 
those functions have been improved by symbiosis. This is distinct from 
whether they have adapted to better manage the symbiosis (see “adaptive 
accommodation” in the main text). 

The MB lens frames regulatory defects as evidence that microbes provide 
benefits such as “teaching”, “training”, or “promoting homeostasis” (e.g.,
[8,70,71]). There are certainly scenarios where microbial regulation could be 
adaptive for hosts. Microbes might serve as biosensors, providing unique and
useful information about the host’s internal or external environment. Hosts 
could leverage that information to, for example, decide where and when to 
best complete development and reproduce [25,72,73]. But overall, EA-
generated regulatory dependencies might be as, if not more, common.
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Figures

Figure 1. The same experimental result can be explained by missing benefits
(MB; top pathway) or evolutionary addiction (EA; bottom pathway). A model 
host with only one symbiont (blue or green cell) is shown, but other microbes
are expected to be present. The gray box shows the organisms we have 
available for experiments today. Note that the green symbiont (bottom) may 
or may not have functions useful to traits besides the focal one (grey arrow). 
Also note that EA is not mutually exclusive with MB, but they are depicted 
separately for clarity.
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Figure 2. Two paths by which an endogenous trait can become addicted to a 
focal microbe (shown as green cells). The gray boxes show the organisms we
have available for experiments today. For adaptive accommodation, 
endogenous immune function is used as an example. For compensated trait 
loss, metabolism is used as an example. The focal microbe may or may not 
have beneficial effects on other traits besides the focal one, and other 
microbes are expected to be present (not shown).
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