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Electrocorticogram encoding of upper extremity movement trajectories

Po T. Wang3, Christine E. King3, Andrew Schombs3, Jack J. Lin2, Mona Sazgar2, Frank P.K. Hsu4,
Susan J. Shaw5,6, David E. Millett5,6, Charles Y. Liu7,8, Luis A. Chui2, Zoran Nenadic3,9 and An H. Do1,2

Abstract— Electrocorticogram (ECoG)-based brain computer
interfaces (BCI) can potentially control upper extremity pros-
theses to restore independent function to paralyzed individuals.
However, current research is mostly restricted to the offline
decoding of finger or 2D arm movement trajectories, and these
results are modest. This study seeks to improve the fundamental
understanding of the ECoG signal features underlying upper
extremity movements to guide better BCI design. Subjects
undergoing ECoG electrode implantation performed a series
of elementary upper extremity movements in an intermittent
flexion and extension manner. It was found that movement
velocity, θ̇, had a high positive (negative) correlation with
the instantaneous power of the ECoG high-γ band (80-160
Hz) during flexion (extension). Also, the correlation was low
during idling epochs. Visual inspection of the ECoG high-γ
band revealed power bursts during flexion/extension events that
have a waveform that strongly resembles the corresponding
flexion/extension event as seen on θ̇. These high-γ bursts
were present in all elementary movements, and were spatially
distributed in a somatotopic fashion. Thus, it can be concluded
that the high-γ power of ECoG strongly encodes for movement
trajectories, and can be used as an input feature in future BCIs.

I. INTRODUCTION

Brain-computer interface (BCI)-controlled upper extremity
prostheses are a much sought-after application to restore
upper extremity function and independence after paralyzing
conditions such as cervical spinal cord injury, subcortical
stroke, or brainstem lesions. Recently, there has been a grow-
ing interest in using electrocorticogram (ECoG) as a long-
term signal acquisition platform for BCI-control of upper
extremity prostheses. Several studies have shown that ECoG
signals can be used to decode movement trajectories of the
arm and fingers, thereby indicating that the ECoG-based BCI
platform for upper extremity prosthesis control is promising.
Studies such as [1], [2], [3], [4], [5], [6] used local motor
potentials (LMPs) and/or the high-γ band of ECoG signals
to decode trajectories of repetitive finger or arm movements
[7], [8], [9]. The maximum correlation coefficients between
the actual and decoded finger trajectories averaged across
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all subjects within each study ranged between 0.32 – 0.64.
Similarly, the correlation between the actual and decoded 2D
arm trajectory was 0.3 in [8], and varied from 0.50 – 0.62
in [9].

The development of an ECoG-based BCI-controlled upper
extremity prosthesis to restore motor function and indepen-
dence to paralyzed individuals must still overcome many
limitations. First, with the exception of [1] and [4], the
existing decoders were unable to accurately predict idling
periods, or these idling periods were completely omitted.
Hence, it remains unclear how well idling periods can be
decoded from ECoG signals for multiple degrees of freedom
(DOF). Second, the ability to decode movement trajectories
has mostly been studied in the context of repetitive move-
ments. In everyday life, however, intermittent movements of
upper extremities are much more common, so it remains
unclear if existing decoders can be generalized to these types
of movements. Third, the majority of ECoG decoding studies
have focused on finger [2], [3], [4], [5], [6] or 2D arm
movement trajectories [7], [8], [9]. However, since activities
of daily living require many unique configurations of upper
extremities, a ECoG-based BCI must be able to decode at
least 6 DOF in order to control an upper extremity prosthesis
and restore independence to a user [10]. Furthermore, the
BCI must be able to control each DOF with high accuracy.
Unfortunately, the moderate decoding accuracies reported in
the current literature may not be sufficient for online BCI
control of an upper extremity prosthesis.

To address the above limitations and unknowns, a better
fundamental understanding of how ECoG encodes upper
extremity movements is required. This may reveal more
salient features underlying upper extremity movements, and
may lead to the design of superior decoding algorithms. In
order to build a viable ECoG-based BCI system for upper
extremity prosthesis control, there must exist robust ECoG
signal features which encode information that answers the
following questions: 1. which joint(s) are in the idling or
movement state?; and 2. for joints that are moving, what
are their trajectories? In this exploratory study, the authors
examine the time-frequency characteristics of ECoG signals
during 6 elementary upper extremity movements to increase
the fundamental understanding of ECoG motor encoding.

II. METHODS

A. Overview

In order to examine how ECoG signals encode for move-
ment trajectories at individual joints in the upper extremities,
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subjects undergoing subdural electrode implantation over pri-
mary motor cortex were asked to perform a series of elemen-
tary upper extremity movements while their ECoG signals
were recorded. Each elementary movement was performed
in a continuous oscillation of flexion and extension, and again
with intermittent flexion and extension (intervened by a rest
period in between each flexion and extension). The resulting
signal was then visually and quantitatively compared to
kinematic parameters (e.g. position and velocity). Various
analysis techniques were applied in order to characterize the
relationship between ECoG signals and trajectory.

B. Subjects and ECoG Signal Acquisition

The study was approved by the Institutional Review
Boards of the University of California, Irvine and the Rancho
Los Amigos National Rehabilitation Center. Subjects were
recruited from a patient population undergoing temporary
subdural electrode implantation for epilepsy surgery evalua-
tion. Subject selection was limited to those with electrodes
placed over the upper extremity representation area of the
primary motor cortex (M1). Up to 64 channels of ECoG data
were recorded using a pair of linked Nexus-32 bioamplifiers
(Mind Media, Roermond-Herten, The Netherlands), and sig-
nals were acquired at 2048 Hz sample rate with common
average referencing.

C. Task

The subjects performed six elementary arm movements
on the side contralateral to their ECoG electrode implant
[11]: 1. pincer grasp and release (PG); 2. wrist flexion and
extension (W); 3. forearm pronation and supination (PS),
4. elbow flexion and extension (E); 5. shoulder forward
flexion and extension (SFE); 6. shoulder internal and external
rotation (SR). The trajectories of PG and W were measured
by a custom-made electrogoniometer [12], while the move-
ment trajectories of PS, E, SFE, and SR were measured
by a gyroscope (Wii Motion Plus, Nintendo, Kyoto, Japan).
The trajectory signals, including position, θ(t), and velocity,
θ̇(t), were acquired using an integrated microcontroller unit
(Arduino, Smart Projects, Turin, Italy). ECoG data were
synchronized with the trajectory signals using a common
pulse train sent to both acquisition systems.

The above elementary movements were performed se-
quentially from 1 to 6. Prior to each movement, the ap-
propriate physical sensor was mounted and calibrated using
conventional goniometry at 10◦ intervals throughout the
joint’s range of motion. Two types of motor paradigms
were performed–an intermittent and a continuous paradigms.
Note that except for SFE movement type, subjects’ arms
were positioned in such a way that these movements were
performed in a gravity neutral manner.

1) Intermittent Motor Paradigm: Subjects performed in-
termittent, alternating flexion and extension movements. A
flexion movement was performed until the end of the range
of motion and was followed by a idling period (while in the
fully flexed position) for 3-5 seconds. Subjects then extended
to the end of the range of motion and idled in this fully

extended position for 3-5 seconds. This was repeated for a
total of 25 cycles for each elementary movement.

2) Continuous Motor Paradigm: Each elementary move-
ment type was performed in a continuous oscillatory man-
ner, in which flexion is followed immediately by extension
with no resting period in between. Four sets of 25 flex-
ion/extension continuous cycles were performed, with each
set intervened by a 20-30-second long resting period.

D. Time-Frequency Analysis

Modulation of the low frequency bands in EEG and ECoG
is believed to represent the activity of thalamocortical tracts
to the sensorimotor cortex as opposed to the activity within
the motor cortex (M1). On the other hand, the high-γ band
in ECoG likely represents the activity of local cortico-cortico
tracts of the motor related cortices (e.g. M1, supplementary
motor area, premotor area), and therefore may contain infor-
mation on movement trajectories. Spectral analysis in prior
studies [13], [1] described that high γ power increases during
movement when compared to rest. However, the exact nature
of movement trajectory encoding within the ECoG high-γ
band is not yet clear. Here, the authors explore the high-
γ band encoding by examining the temporal relationship
between the γ-band power and trajectory. This is performed
by first calculating the ECoG instantaneous power in the
high-γ band:

Pn(t) = f(x2n(t)) (1)

where xn(t) is the bandpass filtered ECoG signal in the high-
γ band at channel n and Pn(t) is its power, enveloped by
a low-pass filter, f(·). In order to determine the appropriate
frequency range for the high-γ frequency band, spectrograms
were first plotted for each channel across all subjects to help
visualize the presence of high-γ modulation during epochs
of movement and idling. Inspection of these spectrograms
were used to empirically determine the parameters of the
bandpass filter in Eqn. 1.

Subsequently, Pn(t) during the intermittent motor tasks
were segmented into flexion, extension, and idle epochs
based on θ̇(t). The cross-correlations between Pn(t) and θ̇(t)
were then calculated during flexion, extension, and idling
epochs. The cross-correlations during flexion and extension
epochs were lag-optimized independently, while idling cross-
correlations were calculated at zero lag. The procedure was
repeated for all channels and for all 6 elementary movements
in all subjects.

Further exploration was then performed to determine if
any difference exists in P (t) between flexion and exten-
sion underlying each movement type. To this end, spectral
energies of the high-γ band will be calculated during the
intermittent motor paradigm. Since the flexion and extension
movements were separated by a sufficiently long idling
period (3-5 s), ECoG signals encoding these directions were
expected to be well separated, and thus their energies should
be well defined. For each movement type, the P (t) signals
were first standardized to median absolute deviations (MAD)
of the idle epochs, such that all idle epochs for any electrode,



movement type and paradigms and across subjects have
MAD=1. Next, the area above 3×MAD and below the P (t)
signal corresponding to flexion and extension were calculated
and averaged across all epochs. Finally, the spectral energies
between flexion and extension epochs were compared using
an unpooled t-test.

Similarly, the lag-optimized cross-correlation between
P (t) and θ̇(t) was calculated for all movement types for
all subjects for the continuous motor paradigm. Note that for
the continuous movement paradigm, only “moving” (flexions
and extensions) and “idling” were separated. Also, the lags
were only optimized using the moving epochs, whereas the
correlations during the idling epochs were calculated at the
same lag as those of the moving epochs.

Due to the periodicity of the continuous movement
paradigm, cross-correlation analysis was susceptible to align-
ing P (t) to θ̇ over more than one cycle away. A closer
examination was necessary to explore the time delays be-
tween P (t) and θ̇ for the continuous movement paradigm.
To this end, P (t) signals from the top correlating channels
in the M1 area were plotted synchronously with θ̇ and were
visually inspected for any corresponding features. The delays
between the P (t) features and corresponding θ̇ peaks were
measured. The delays were analyzed statistically to reveal
their underlying temporal relationship. The averaged P (t)
centered around θ̇ maxima and minima were also calculated
to verify the results of the visual inspection.

To explore similarities and differences between the contin-
uous and intermittent paradigms, the same is also performed
for intermittent paradigm.

III. RESULTS

Six subjects undergoing subdural electrode implantation
for epilepsy surgery evaluation were recruited for this study.
Their demographic data are summarized in Table I. Most
subjects were able to perform both the intermittent and con-
tinuous movement paradigms for all 6 elementary movement
types. Due to time constraints, Subject 4 was only able to
perform PG movements, and Subject 6 was only able to
perform the continuous paradigm for PG, W, PS, and E. Their
ECoG data were then analyzed as described in Section II.

A. Spectrogram

In all subjects, visual inspection of the spectrograms
revealed an obvious presence of increased high-γ power
during movement epochs and decreased power during idling
epochs. It was observed that high-γ power in the range of
60-160 Hz was the most common feature during movement
epochs across all subjects. Since there was considerable
noise at 60 Hz, the frequency range for P (t) in Eqn. 1
was set to 80-160 Hz. Note that low-frequency bands were
observed to modulate in an opposite manner. A representative
spectrogram can be seen in Fig. 1.

B. Time-Frequency Analysis

Visual inspection of the P (t) signals revealed a burst of
power that was time-locked to every flexion or extension

event during the intermittent paradigm. The P (t) signal
during idling appeared noisy and chaotic. Additionally, the
waveform of P (t) during these bursts closely matched the
visual appearance of the flexion and extension waveforms
seen in θ̇(t). A representative set of tracings can be seen in
Fig. 4.

1) Intermittent Motor Paradigm: To quantify the similar-
ity between P (t) and θ̇(t) during the intermittent paradigm,
the cross-correlation between P (t) and θ̇(t) during flexion,
extension, and idling epochs were calculated (see Section II-
D). Based on the visual appearance of P (t) and θ̇(t), the
results were as expected: high positive cross-correlation for
flexion epochs, low correlation for idle epochs, and high
negative cross-correlation for extension epochs. The elec-
trodes located over M1 were ranked based on the correlation
pattern, and the top 1-3 electrodes were reported in Table II.
Note that electrodes straddling the central sulcus were also
considered in this ranking report. The optimal latencies were
generally small and did not consistently lead or lag the onset
of movements. However, results from the optimal lag search
indicate that correlations generally start strengthening before
the onset of movement as demonstrated in the correlation-
lag diagrams in Fig. 3. To better characterize the temporal
relationship between P (t) and θ̇, the timestamps of each peak
of the power burst and of the corresponding velocity extrema
were manually identified. The time difference of each pair of
timestamps were calculated, and the results are summarized
in Fig. 5. There were no consistent lead or lag times for the
small joints. On the other hand, P (t) for large joints tend to
lead θ̇, such as the SFE flexion movements that showed a
500 ms lead time across all subjects. When averaged, P (t)
peaks also lead for large joints, and the widths of the peaks
are also wider than those of the small joints (see Fig. 9).

The spectral energy of high-γ power bursts during flexion
and extension were quantified, and the results are sum-
marized in Table II. A disparity between the flexion and
extension energies were observed in the relevant M1 elec-
trodes across all available subjects in all movement types.
In particular, PG movements were typically represented by
at least one electrode with a very strong difference between
flexion and extension energies across all available subjects
(e.g. Subject 3, PG movement in Fig. 4). However, no
systematic preference of direction was seen in any movement
types or electrodes.

2) Continuous Motor Paradigm: During continuous
movements, multiple patterns of high-γ bursts in the P (t)
signals were observed. First, idling was characterized by low
powered, noisy and chaotic P (t) signal, which is similar to
idling during the intermittent motor tasks. Next, the flexion
movement events coincided with the high-γ power bursts,
similar to the pattern observed in the intermittent movements
above. However, not all extension events were coupled
with power bursts. More specifically, extension-associated
power bursts are mostly absent or very weak in small joint
movements such as PG, W, and PS (see Figs. 6a and 9). The
numbers of visually detectable extension-associated power
bursts are presented in Table IV. An exception to this is



TABLE I
SUBJECT DEMOGRAPHICS

Subject Age Gender Electrode Location

1 27 F 6×8 right frontal-parietal grid
2 49 F 8×8 left frontal-temporal grid, 1×6 posterior frontal-anterior parietal strip
3 22 M 4×5 left frontal-parietal grid, two 2×5 frontal-temporal strips
4 35 F 1×6 right frontal-parietal strip
5 23 F 8×8 right frontal-temporal-parietal grid
6 20 F 8×8 left frontal-temporal grid, 1×6 frontal-parietal strip

Fig. 1. Spectrogram during the PG continuous movement task for Subject 1. θ̇ shows idling and movement epochs, where a positive (negative) deflection
represents flexion (extension), respectively. The spectrogram, with a 4 Hz × 5 s Mexican-hat window, shows the log power spectral density (PSD) from
0 to 160 Hz for the duration of the movement task. Note the increased power in the high-γ band during the movement epochs. On the other hand, the µ
and β bands show increased power during idling epochs.

observed when subjects unintentionally fail to maintain con-
tinuous movement and introduce a brief pause between each
flexion and extension movement, such as depicted in Fig. 6b.
In this case, the extension peaks became more noticeable. On
the other hand, for large joint movements such as E, SFE,
and SR, both flexion and extension peaks are visible even
while the subject engaged in seamless movements (Figs. 6c
and 9). Finally, a consistent phase shift was also observed
between the power bursts and the movement events in large
joint movements (compare Figs. 6a and c).

To quantify these observed patterns relating P (t) to
θ̇, a series of analyses were performed as described in
Methods. First, a lag-optimized cross-correlation analysis
was performed. Electrodes located over M1 were ranked
based on the correlation, and the top 1-3 electrodes were
reported in Table III. However, the correlations were much
weaker (average 0.38) compared to those during intermittent
movements (average 0.56).

Second, the temporal relation between P (t) and θ̇ was
determined. Where visually identifiable, the high-γ power
bursts were marked (see Fig. 6), and the lag times relative to
the corresponding flexion/extension events (based on θ̇) were

measured. The results are summarized in Fig. 5. It was found
that the time at which the P (t) peak occurred are different
for small and large joints. For small joints, the P (t) peaks
occurred 11±12 % of the movement periods after θ̇ peaks.
On the other hand, P (t) peaks of large joints lead the θ̇ peaks
by 24±14 % of the periods, with the lead times in the E and
SFE movements being significant. The individual details are
provided in Appendix Table VI.

C. Spatial Patterns

1) M1: Based on the results from the intermittent and
continuous movement paradigm, the electrodes over M1
with the strongest correlation for each movement type were
encircled with dotted lines in Fig. 2 to characterize their
spatial distribution. These electrode groups are more lateral
for movements at distal joints (PG, W, and PS), and are
progressively more medial for more proximal joints (E,
SR, and SFE). However, there is a significant amount of
overlap between each of these groups. Of note, within
each movement type, the power bursts associated with both
directions (e.g. flexion and extension) were present on the
same electrodes. There were no instances where an electrode



TABLE II
CROSS-CORRELATION RESULTS AND SPECTRAL ENERGY OF THE TOP CHANNELS FOR ALL SUBJECTS DURING INTERMITTENT MOVEMENT. F, I, AND E

DENOTE FLEXION, IDLE, AND EXTENSION SEGMENTS, RESPECTIVELY. LAG TIME IN SECONDS ARE PROVIDED IN PARENTHESES. IDLE RESULTS ARE

CALCULATED AT ZERO LAG. FLEXION/EXTENSION ENERGY ARE OBTAINED BY INTEGRATING THE AREAS UNDER THE CORRESPONDING HIGH-γ
POWER BURSTS, REPORTED IN Z-SCORES × TIME. P-VALUES ARE FROM TWO-TAIL T-TEST BETWEEN THE FLEXION AND EXTENSION ENERGIES.

SUBJECT 6 DID NOT PERFORM ANY INTERMITTENT MOVEMENTS.

Electrode ρ(PF , θ̇F ) ρ(PI , θ̇I) ρ(PE , θ̇E) Flex Energy Ext Energy Stronger P-value

Subject 1
PG G20 0.75 (0.02) -0.21 -0.64 (0.01) 11.28±3.66 14.88±4.33 E 0.0042

G22 0.66 (0.02) -0.29 -0.42 (-0.06) 8.48±3.71 5.60±2.13 F 0.0029
W G20 0.73 (0.44) -0.17 -0.55 (-0.11) 14.23±2.50 11.18±3.06 F 0.0012

G28 0.56 (-0.11) -0.00 -0.58 (-0.03) 7.33±3.12 6.85±2.06 - 0.57
PS G28 0.47 (0.00) 0.03 -0.62 (-0.18) 11.81±2.96 9.63±2.80 F 0.014

G36 0.58 (0.43) 0.12 -0.45 (-0.04) 8.32±3.30 3.75±2.02 F 1.06×10−6

E G28 0.36 (0.18) -0.07 -0.38 (-0.56) 6.33±4.29 6.16±3.12 - 0.87
SR G28 0.45 (0.45) 0.10 -0.47 (-0.30) 11.93±2.97 9.84±2.59 F 0.019

G36 0.32 (0.50) 0.06 -0.39 (-0.24) 3.82±2.00 4.32±1.90 - 0.42
SFE G28 0.60 (-0.52) 0.05 -0.83 (0.27) 3.12±1.98 6.46±1.36 E 1.77×10−8

G36 0.56 (-0.41) 0.08 -0.47 (0.20) 4.72±1.58 5.89±2.06 E 0.035

Subject 2
PG G56 0.76 (0.07) -0.10 -0.75 (0.04) 9.27±3.59 5.52±2.06 F 8.13×10−6

G47 0.49 (0.07) 0.03 -0.50 (0.10) 5.19±3.27 6.47±2.89 - 0.12
W S6 0.71 (0.09) 0.18 -0.65 (0.07) 12.75±5.01 15.10±6.74 - 0.16

G47 0.42 (0.02) 0.07 -0.41 (-0.02) 5.94±3.92 4.89±2.16 - 0.25
G56 0.61 (0.08) 0.02 -0.30 (-0.08) 3.93±1.73 1.88±2.00 F 0.00024

PS S6 0.61 (0.08) 0.05 -0.60 (0.07) 17.46±8.10 12.66±6.70 F 0.019
G47 0.40 (-0.05) 0.05 -0.58 (0.00) 4.55±2.52 6.60±2.31 E 0.0025

E S6 0.44 (-0.16) -0.37 -0.59 (0.13) 26.94±8.84 24.90±5.83 - 0.34
G47 0.45 (-0.28) -0.21 -0.34 (0.05) 12.85±5.31 11.35±5.69 - 0.34

SR S6 0.51 (0.18) 0.08 -0.32 (-0.34) 13.67±3.21 10.87±1.96 F 0.0013
SFE S6 0.75 (-0.21) -0.20 -0.55 (0.23) 21.62±5.57 20.70±5.28 - 0.55

Subject 3
PG LFG4 0.62 (0.15) 0.06 -0.81 (-0.09) 5.80±2.51 1.75±0.98 F 1.21×10−8

LFG10 0.54 (-0.05) 0.06 -0.62 (-0.10) 3.67±2.10 3.31±2.83 - 0.64
W LFG10 0.61 (-0.19) 0.15 -0.44 (-0.24) 6.87±3.88 11.22±6.10 E 0.0037

LFG15 0.71 (-0.21) 0.19 -0.48 (-0.23) 3.77±1.77 3.23±2.77 - 0.43
PS LFG15 0.51 (-0.16) 0.04 -0.48 (-0.21) 8.88±5.84 3.77±2.71 F 0.0001

LFG10 0.47 (-0.22) -0.01 -0.42 (-0.11) 2.84±2.56 4.25±3.03 - 0.063
E LFG15 0.61 (-0.51) 0.05 -0.75 (-0.31) 5.96±3.11 8.88±3.16 E 0.0015

SR LFG15 0.48 (-0.42) -0.12 -0.61 (-0.41) 7.89±2.58 6.68±2.75 - 0.11
SFE LFG15 0.71 (-0.52) 0.01 -0.74 (-0.44) 5.20±1.99 9.31±2.32 E 1.03×10−8

Subject 4
PG F4 0.64 (0.32) -0.05 -0.42 (-0.05) 8.66±4.09 2.75±1.92 F 1.71×10−8

W F10 0.39 (-0.51) -0.04 -0.26 (-0.59) 2.53±1.61 2.22±1.32 - 0.5

Subject 5
PG G52 0.65 (0.17) -0.12 -0.66 (-0.08) 12.62±4.77 7.85±3.63 F 0.00023

G60 0.64 (0.18) -0.23 -0.39 (-0.10) 14.26±4.96 5.53±3.17 F 1.66×10−9

G45 0.43 (0.17) 0.03 -0.42 (-0.01) 4.07±3.40 3.18±2.98 - 0.33
W G59 0.63 (0.02) 0.08 -0.52 (-0.07) 5.96±2.86 3.93±1.81 F 0.0082

G52 0.62 (0.13) -0.07 -0.45 (-0.11) 11.18±4.43 6.40±3.78 F 0.00047
G60 0.57 (0.10) -0.09 -0.56 (-0.11) 6.59±1.87 2.14±1.49 F 9.55×10−11

PS G59 0.60 (0.00) 0.07 -0.55 (-0.06) 7.28±4.45 6.08±2.42 - 0.26
G52 0.54 (0.00) 0.02 -0.50 (0.15) 7.27±3.56 10.70±4.73 E 0.0089

E G59 0.44 (-0.36) 0.03 -0.32 (-0.03) 3.64±1.99 2.68±1.90 - 0.1
G45 0.43 (-0.07) -0.01 -0.38 (0.13) 3.46±2.14 3.36±2.61 - 0.89

SR G59 0.41 (-0.51) -0.05 -0.39 (-0.44) 5.01±3.57 3.66±3.10 - 0.17
G60 0.40 (-0.50) -0.01 -0.24 (-0.39) 1.64±1.19 1.64±1.36 - 0.99

SFE G59 0.50 (-0.53) -0.02 -0.65 (0.33) 2.10±2.11 2.71±2.10 - 0.28
G52 0.38 (-0.52) 0.09 -0.58 (0.40) 0.00±0.00 2.23±1.22 E 3.11×10−11



TABLE III
TOP CORRELATING (ρ) ELECTRODES AND VISUALLY DISTINGUISHABLE

ELECTRODES FOR ALL SUBJECTS DURING CONTINUOUS MOVEMENTS.
INDIVIDUAL ELECTRODE DETAILS IN APPENDIX TABLE V.

Subject Movement Highest ρ Top Channels

S1 PG 0.57 G14, G22, G21
S1 W 0.21 G20, G28
S1 PS 0.07 G28
S1 E 0.18 G28
S1 SR 0.47 G20, G28, G36
S1 SFE 0.47 G28, G22, G29

S2 PG 0.73 G64, G56, S6
S2 W 0.67 G56, G64, S6
S2 PS 0.11 S6, G47
S2 E 0.21 S6, G47, G56
S2 SR 0.27 G64, G39, S6
S2 SFE 0.44 S6, G39, G56

S3 PG 0.64 LPS12, LPS6, LFG4
S3 W 0.29 LFG4, LFG15, LFG10
S3 PS 0.26 LFG5, LFG10, LFG15
S3 E 0.17 LFG15, LFG10
S3 SR 0.26 LFG15, LFG10
S3 SFE 0.44 LFG4, LFG10, LFG15

S4 PG 0.73 F4, F10, F3
S4 W 0.29 F10

S5 PG 0.58 G60, G37, G52
S5 W 0.29 G52, G60, G59
S5 PS 0.28 G52, G60, G59
S5 E 0.19 G59
S5 SR 0.37 G39, G59
S5 SFE 0.41 G59, G52, G60

S6 PG 0.58 PS5, PS6, G32
S6 W 0.39 PS5
S6 PS 0.12 PS5
S6 E 0.62 PS5, G31, G40

was found to be correlated to flexion and not to extension
(and vice versa).

2) Non-M1 Areas: In an ancillary, yet important observa-
tion, movement-related high-γ power bursts were observed
in electrodes covering other areas outside of M1, such as
the supplementary motor area, posterior parietal cortex, and
auditory cortex. For example, Subjects 2 and 5 exhibited
highly correlated power bursts in the auditory cortex (see
Fig. 7), similar in shape to those found in M1 electrodes.
These power bursts may be the result of subjects receiving
verbal cues on every flexion and extension epochs.

IV. DISCUSSION

The pioneering studies in [15] first identified that there
is an event related synchronization (ERS) in the ECoG
high-γ band associated with cortical activation. In addi-
tion, the studies [15], [16], [17], [18] demonstrated that a
crude form of motor somatotopy can be observed in the
representation of high-γ ERS (e.g. mouth/tongue related
tasks were represented laterally on M1, while arm and leg
motor tasks were represented in progressively more medial
locations). Although spectro-spatial events have been well
described, there have been no rigorous physiological research
efforts to further characterize how the high-γ may relate

TABLE IV
RATIO OF THE NUMBER OF IDENTIFIED P (t) PEAKS TO TOTAL NUMBER

OF MOVEMENT CYCLES IN SMALL AND LARGE JOINT MOVEMENTS.

Continuous Intermittent
Movement Flexion Extension Flexion Extension

PG 92% 17% 98% 88%
W 86% 60% 94% 96%
PS 84% 77% 98% 99%
E 92% 82% 97% 97%

SR 86% 94% 93% 91%
SFE 92% 90% 74% 89%

Small 88% 44% 97% 94%
Large 90% 88% 88% 92%

Fig. 7. A representative segment of P (t) (blue trace) and corresponding
θ̇(t) (black) at selected auditory cortex electrodes. At the top-right corner
of each panel are the correlations and optimal lags (seconds, in parentheses)
for flexion (F) and extension (E) epochs. The correlation for idling (I) was
calculated without lag optimization.

to kinematic parameters of movement. Nevertheless, many
BCI studies have subsequently attempted to utilize high-γ
band information to build decoders for movement kinematics
without fully understanding the ECoG motor physiology
and its limitations. As a result, it is not surprising that the
trajectory decoding results are generally poor to moderate at
best.



The current study is a unique, comprehensive study which
examines the high-γ characteristics in M1 across 6 upper
extremity movements in order to provide greater details
on how the brain encodes for upper extremity movements.
The results provide insight into the spatial and temporal
relationship between high-γ and movement kinematics, add
to the understanding of how the brain encodes for upper
extremity movements, and may define the signal features as
well as potential limits which ECoG signals can be exploited
for BCI applications.

A. High-γ Encoding and Spatial Distribution

During the intermittent motor task, the visual similarity
between P (t) and θ̇(t), as well as the high positive (negative)
cross-correlation values during flexion (extension) epochs
suggests that ECoG high-γ power strongly encodes for
elementary upper extremity movement velocity. Conversely,
idling periods are characterized by a lack of correlation, and
the P (t) signal appears desynchronized (lower amplitude,
noisy, and chaotic). Table II indicates that this encoding
pattern is present for all elementary movements in relevant
M1 electrode(s). The high-γ bursts are distributed in a
manner consistent with classical somatotopy (distal joints
located more laterally in M1, while proximal joints are
located more medially). These findings point to the existence
of somatotopically arranged neuronal generators that drive
each movement type. When active, these generators appear
to behave in a similar spectral-temporal manner by producing
high-γ bursts. Furthermore, within each movement type, the
observed energy disparity between power bursts associated
with flexion and extension is likely not due to a difference in
the amount of movement during each direction (since both
movements are over the full range of motion). Instead, this
implies the presence of spatially separate neuronal generators
for each movement direction that are differentially sensed
by each electrode. However, given the significant spatial
overlap between the relevant electrodes for each movement
type and direction, it will be difficult to distinguish between
each of them. Such a problem may require the use of
more sophisticated signal processing techniques (e.g. source
localization and separation) and/or signals from ECoG grids
with higher electrode density to disentangle these neuronal
generators.

This high-γ encoding for movement velocity agrees with
the prior work by Anderson et al. [19]. However, [19] only
examined the relationship between high-γ and movement
velocity during a complex center out, and circle tracing task.
Hence, further deconstruction for mapping and characteriza-
tion of the individual upper extremity elementary movements
was not possible. The ECoG high-γ motor maps from Crone
et al. (tongue, arm, foot) [15], Pfurtscheller et al. (fingers
and tongue) [16], Miller et al. (tongue, hand, shoulder,
hips) [17], and Yanagisawa et al. (hand and elbow) [18]
provided a crude sense of somatatopic organization in M1.
The current study provides the first detailed mapping of the
major upper extremity degrees-of-freedom, and reinforces
the concept of somatotopic arrangement within M1. The

findings are consistent the fMRI findings of [20], where
there are somtatopically arranged, but highly-overlapped
representation areas for finger, wrist, forearm, and elbow
movements. Although it is possible to interpret this overlap
of the relevant ECoG electrodes as being caused by the
interspersing of responsible neuronal populations amongst
one another, an alternative explanation is that the volume
conduction from each neuronal generator causes overlapping
signals when the electrode resolution is still inadequate.
Penfield and Boldrey [21] showed that electrical stimulation
on different pre-central areas can elicit isolated flexion or
extension for an individual upper extremity joint (ranging
from the fingers to the shoulder), suggesting the presence
of spatially separate brain areas for each of the joints and
movement directions. However, based on their figures, the
spatial separation seems to be in the order of millimeters,
which may explain why the significant degree of overlap
seen here with standard ECoG grids.

B. Non-M1 Areas

The presence of power bursts in areas outside of M1
implies that high-γ power bursts are not exclusive to M1,
and that other brain areas subserving non-motor functions
exhibit similar high-γ bursts when activated, which is con-
sistent with [22]. This is a confounding factor that can
complicate a BCI training data collection, as verbal cues
and other stimuli correlated to movement can inadvertently
be extracted as features encoding for movement trajectories,
resulting in a systematic error. To mitigate this confounding
factor, input channel selection should be based on anatomy,
or training data collection should be self paced. On the
other hand, it may also indicate that areas such as premotor
and supplementary motor can be further studied to elucidate
how they encode movements, which may help increase BCI
performances in the future. However, additional analysis and
discussion upon how these areas temporally relate to M1 or
are networked with one another is beyond the scope of the
present study.

C. Small and Large Joints

As shown in Figs. 5 and 9, a leading phase shift of ∼1/4-
cycle was observed in large joint continuous movements,
whereas no significant phase shift was observed in small
joint movements. The phase shift in large joint continuous
movements may be due to the difference in the kinematic
profile between small and large joint movements. In small
joint movements, the relatively lower mass of the appendage
(e.g. fingers, or hand) requires little activity from the op-
posing muscle group to transition to the opposite direction
of movement. A person can simply allow the limits in
range of motion to stop the movement before executing the
opposite movement. However, in order to achieve seamless
continuous movements in larger joints, it is well known
that the increased inertia necessitates eccentric contraction
of the opposing muscle group for braking and transitioning
to movement in the opposite direction. More specifically,
eccentric activation of the opposing muscle groups are known



Fig. 8. Closer examination of the early P (t) peaks on a large joint
continuous movement. At the times indicated by the red arrows, eccentric
extensor muscle activation at the maximum flexion velocity serves to
dampen the flexion movements. At the time indicated by the blue arrows,
eccentric flexor muscle activation at the maximum extension velocity serves
to decelerate the extension movements. Note that the grey dotted line
indicates when velocity is 0◦/s.

to initiate at the maximal flexion and extension velocities
[23]. For example, during large joint movements such as
SFE, subjects would utilize anterior deltoid muscles to lift
the entire arm against gravity for the flexion phase. This is
followed by the eccentric contraction of the posterior deltoids
to dampen the flexion and transition to extension movement.
In addition, due to the higher inertia, muscle activation in
large joints are expected to precede actual movement in order
to generate adequate force and tension. Kinematically, this
would result in a 1/4-cycle leading eccentric activation of
the opposing muscle group as depicted in Fig. 8. Since the
high- γ bursts coincide with this pattern, these observations
give rise to a possibility that the high-γ band power more
directly encodes for muscle activity. Note that during large
joint intermittent movements, some braking may also occur,
and may explain why binotched high-γ power bursts are
frequently seen (see Figs. 4 and 9 for movements E and
SFE). However, the rapid transition between flexion and
extension is not required, and hence the phase shift is
not as prominent when compared to continuous movements
(Fig. 5). These observations serve to further support this
hypothesis. Ultimately, since the current study did not ex-
amine electromyogram (EMG) data or systematically vary
the amount of force exerted during the movements, this will
require additional formal study to confirm.

D. Correlations in the Continuous Paradigm

Correlation coefficients for the continuous paradigm are
considerably lower than those for the intermittent paradigm
due to a combination of physiological and mathematical
causes. From the physiological standpoint, the disappearance
of the expected extension associated high-γ power burst
during fast movements, and their re-emergence whenever
subjects introduce a brief pause as they transition between

flexion and extension (Fig. 6a), suggests a merging of flexion
and extension related power bursts during fast, continuous
movements. This is usually only observed in PG movements.
Mathematically, since the P (t) waveform better matches
the θ̇ waveform, the cross-correlation for continuous PG
movements tend to be the highest (seen in 5 out of 6
subjects, Table III). However, these correlations are still
weaker than their intermittent counterparts. This is likely
due to the distortion caused by the merging of flexion
and extension power bursts. For the remaining joints, their
increased size generally precludes performing flexion and
extension movements in rapid succession. As a result, power
bursts are visible for both flexion and extension epochs,
similar to intermittent movements (see Fig. 6b and c, and
Fig. 9). Since a high-γ power burst during extension causes
anti-correlation, it reduces the overall correlation for the
entire movement session as seen in movements other than
PG in Table III. These findings have many implications
for ECoG-based BCIs. The merging of the power bursts
during rapid alternation of flexion and extension illustrates
the lack of spatial resolution in standard ECoG grids. As
above, this also indicates that source localization and sep-
aration techniques and higher resolution signals may help
to separate the activities underlying flexion and extension.
Also, the moderate-to-poor performances in other ECoG-
based decoders ([1], [2], [3], [4], [5], [6], [7], [8], [9]) are
due to the use of continuous movements in training, which
do not generalize to all manners of movements. Finally, due
to the nature of P (t) during continuous movement, measures
such as correlation coefficient may not be the best method
to objectively quantify how well ECoG signals encode for
movement trajectory in the continuous paradigm. Instead,
different quantitative approaches such as mutual information
may need to be used for this purpose.

E. Additional Questions, Hypotheses, and Future Directions

Based on the observations of the current study and of prior
reports from the literature, there is evidence to suggest that
M1 contains separate neuronal generators that are responsible
for encoding movements on an individual muscle group basis
(thereby controlling the movement velocity and direction
at each joint). In turn, it can also be hypothesized that
complex movements (e.g. reaching tasks) are produced by
the summation of multiple generators acting simultaneously.
Although current literature for both neuronal single cell
populations [24] and ECoG ([19], [9] propose that M1 may
encode for arm trajectory (in a directional tuning model),
these studies only utilized a center-out reaching task, and
did not consider what the underlying patterns of individual
muscle groups are. For example, right arm movement to the
0◦ will always be associated with preferential firing of a
population of neurons or a specific ECoG pattern. However,
this type of movement always activates the infraspinatus
(shoulder external rotation) and triceps (elbow extension),
and without a control experiment to determine if the neurons
which are preferentially firing actually consist of 2 subpop-
ulations (one for each muscle). Likewise, it is unknown



if ECoG potentials from 2 different neuronal generators
occurred simultaneously.

It also is unclear if the high-γ bursts are simply present
with the onset of movement, or if they persist for the duration
of the movement. It is also unclear if and how they vary with
different velocity profiles. For example, a single power burst
at the onset of movement may encode for both the velocity
and duration of movement, while other centers of the nervous
system may be responsible for transducing these signals into
muscle activity. Based on the current study, the duration of
the high-γ bursts appeared to follow the movement duration.
However, the duration was not systematically varied to
establish this relationship. In a similar manner, the velocity
profile of movement was not systematically varied. These
relationship between high-γ warrant additional study as it
will help provide a more comprehensive understanding of
brain motor control for the upper extremities.

V. CONCLUSION

Despite minimal processing, the correlation between P (t)
and θ̇(t) at a single channel is already as high as (and
occasionally higher than) the decoded results reported in the
prior literature [7], [1], [2], [3], [4], [5], [6], [8], [9]. Hence,
the authors hypothesize that using P (t) from M1 as an input
feature for future BCI decoding algorithms may significantly
boost the decoding accuracies. However, an additional fun-
damental understanding of ECoG neurophysiology may be
necessary before a useful and generalizable model of upper
extremity movements can be designed. Specifically, it is
unclear if further spatial or spectral separation of individual
movement types, or flexion and extension generators, is
possible. Currently, it seems that the same 2-3 M1 channels
are involved across all movements in all subjects, indicating
that the separate neuronal generators of upper extremity
movements are densely packed in a small area of M1, which
may make it difficult to resolve them. This warrants further
investigation to determine how these generators can be better
distinguished, and subsequently exploited for BCI control.
This will require the application of more sophisticated signal
processing techniques, or possibly higher resolution signals,
such as those from mini- or micro-ECoG grids.
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VII. APPENDIX



TABLE V
CROSS-CORRELATION RESULTS OF THE TOP CHANNELS FOR ALL SUBJECTS DURING CONTINUOUS MOVEMENTS. THE CROSS CORRELATION OF

MOVEMENT EPOCHS, ρM , ARE LAG OPTIMIZED. THE CORRELATIONS OF IDLE EPOCHS, ρI , ARE CALCULATED AT THE SAME LAG. ?: VISUALLY

DISTINCT MOVEMENT EPOCHS BASED ON P (t) DESPITE POOR CORRELATIONS. †: VISUALLY INDISTINGUISHABLE MOVEMENT EPOCHS BASED ON

P (t) DESPITE GOOD CORRELATIONS.

Subject Movement Electrode ρM ρI Lag (s)

S1 PG G14 0.57 -0.01 0.39
G22 0.54 -0.09 0.21
G21 0.53 0.01 0.36

W G20? 0.21 0.01 0.75
G28? 0.19 -0.16 -0.13

PS G28? 0.07 0.03 0.48

E G28? 0.18 0.25 0.11

SR G20 0.47 0.16 0.54
G28? 0.29 0.09 0.16
G36? 0.16 -0.05 -0.75

SFE G28 0.47 -0.19 -0.75
G22 0.45 -0.12 -0.75
G29 0.45 -0.21 -0.75

S2 PG G64 0.73 0.16 0.13
G56 0.68 0.10 0.03
S6 0.43 -0.01 0.05

W G56 0.67 0.17 0.13
G64 0.49 0.03 0.17
S6 0.33 0.21 0.23

PS S6? 0.10 -0.01 0.60
G47? 0.11 0.00 0.45

E S6? 0.10 0.14 0.10
G47? 0.21 0.07 -0.23
G56? 0.13 -0.08 -0.06

SR G64? 0.27 -0.01 0.27
G39? 0.25 0.19 0.37
S6? 0.22 0.28 0.34

SFE S6 0.44 -0.05 -0.47
G39 0.43 -0.01 -0.34
G56 0.42 -0.12 -0.47

S3 PG LPS12 0.64 0.00 0.23
LFG4 0.56 -0.11 0.11
LFG9 0.50 -0.06 0.09

W LFG4? 0.29 0.05 -0.75
LFG15? 0.23 0.11 -0.29
LFG10? 0.20 0.17 -0.75

PS LFG5? 0.26 -0.02 0.66
LFG10? 0.17 0.05 -0.73
LFG15? 0.14 -0.03 0.07

E LFG15? 0.17 -0.08 -0.75
LFG10? 0.09 0.02 -0.75

SR LFG15 0.26 0.03 0.75
LFG10 0.08 -0.10 -0.75

SFE LFG4 0.44 -0.05 -0.64
LFG10 0.30 -0.03 -0.63
LFG15 0.21 -0.18 -0.75

Subject Movement Channel ρM ρI Lag (s)

S4 PG F4 0.73 0.03 0.28
F10 0.43 -0.04 0.34
F3 0.43 -0.06 0.25

W F10 0.29 -0.05 0.33

S5 PG G60 0.58 -0.07 0.16
G37 0.58 0.04 0.21
G52 0.50 0.00 0.19

W G52? 0.29 0.06 0.22
G60? 0.23 0.13 0.17
G59? 0.17 0.24 0.16

PS G52? 0.28 0.21 -0.41
G60? 0.27 0.18 -0.29
G59? 0.21 0.31 -0.23

E G59? 0.19 0.02 -0.36

SR G39 0.37 0.11 0.15
G23† 0.36 0.03 0.34
G59? 0.17 -0.19 0.53

SFE G59 0.41 -0.03 -0.48
G52 0.39 -0.02 -0.49
G60 0.38 -0.02 -0.43

S6 PG PS5 0.58 0.19 0.11
PS6 0.54 -0.05 0.06
G32 0.49 0.00 0.16

W PS5 0.39 0.08 0.14

PS PS5? 0.12 0.00 0.40

E PS5 0.62 0.16 -0.35
G31 0.47 -0.03 0.12
G40? 0.22 0.38 -0.29
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Fig. 2. Magnetic resonance imaging (MRI) and computed tomography (CT) co-registration of ECoG electrodes locations. The colored circles represent
electrodes, and the black outlined circles are electrodes that were recorded in the present study (limited by amplifier capacity). The solid green lines
delineate the central sulcus. Colored dotted lines denote the electrodes with the highest correlation to the corresponding movement types (based on Table II
for Subjects 1-5 and Table III for Subject 6). Electrode localization was performed using the technique described in [14]. Refer to Table I for descriptions
of electrode locations.



Fig. 3. (Top) Representative lag-correlation diagrams of Subject 1 for PG intermittent movement. For each electrode, the colors represent the cross-
correlation at various lag times. Flexion, idling, and extension have their own lag-correlation diagram. Note how correlations strengthen before the onset
of movement (time=0 s). The supplementary motor area electrodes, G29 and G30 (see Fig. 2), have correlations that strengthen before the motor cortex
electrodes, G20, G21, G22, and G28. During idling, correlations are weak. (Bottom) Correlation vs. lag times averaged across subjects for each intermittent
movement type. Arm supination and shoulder internal rotation are also grouped with flexion.



Fig. 4. A representative segment of P (t) (blue trace) and corresponding θ̇(t) (black) at the best M1 electrode for each Subject. These are shown for
elementary movement types PG, E, SFE.



Fig. 5. Phase-shift analysis of small and large joint movements for both continuous and intermittent paradigms. Lags denote the time between the P (t)
peaks and the θ̇ peaks and are represented as percentages of one movement cycle duration for the continuous paradigm and as time for the intermittent
paradigm (P (t) leads θ̇ when lag is negative). The lags for each movement are divided between flexion/supination/internal rotation (green bars) and
extension/pronation/external rotation (red bars). The vertical bars in each lag denote means and ±1.96×standard deviations. Not all sessions have clearly
discernible P (t) peaks and the number of identified peaks are summarized in Table IV.



Fig. 6. (a) P (t) and θ̇ plots for Subject 2 during pincer grasp continuous movement. Vertical lines denote the times of maximum flexion (green) and
extension (red) velocities (θ̇ peaks) and assisted in finding the corresponding P (t) peak. Triangles denote manually marked flexion peaks sufficiently above
the baseline amplitude. Corresponding high-γ power bursts can be seen on P (t), slightly lagging behind flexion peaks. Also note the weaker, almost
non-existent, extension peaks (not marked). (b) P (t) and θ̇ plots for Subject 5 during elbow continuous movement. Similarly, corresponding high-γ power
bursts can be seen on P (t). For the first 2/3 of the movement epoch, the subject paused briefly after each flexion. The extension peaks were thus visible.
On the other hand, during ”Non-Paused” region where the subject did not pause, the extension peaks disappeared. (c) P (t) and θ̇ plots for Subject 6
during elbow continuous movement. Corresponding high-γ power bursts can be seen on P (t), but instead lead each flexion peak by 1/4-cycle.



Fig. 9. P (t) and θ̇ signals averaged across individual flexion and extension cycles. Blue lines: P (t), black lines: θ̇. Subject numbers (#) and electrodes
are shown at the bottom-left corner of each plot. The amplitudes of P (t) are standardized to the MAD of the idle epochs. For continuous movements,
time zero is set at the middle between a flexion and the next extension. For intermittent movements, the idling periods between flexions and extensions
are not shown. Note that for the continuous paradigm, P (t) signals from the next cycle may wrap-around.
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