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ABSTRACT OF THE THESIS

A Study on Graph Neural Network

by

Mengyao Shi

Master of Science in Computer Science

University of California, Los Angeles, 2021

Professor Cho-Jui Hsieh, Chair

This thesis summarizes the work I have done during my master’s study at UCLA. We ranked

38th among all the participants of the KDD 21 challenge on large-scale graph machine

learning. We built a two-stage model, taking the most out of UniMP and Correct and

Smooth architectures in Pytorch. We studied a social network graph with 121 million nodes

and 153 categories, achieving node classification accuracy of 65%.

The second part of thesis summarizes a mini-batch attention-based graph machine learn-

ing model that we developed. We first learned a dense self-attention based on graph node

features and overlayed it with the original adjacency matrix. It achieves about the same

test accuracy of 69.00 ± 0.28% on the Arxiv dataset compared to clusterGCN, but it has

the potential to outperform. This is especially true when graph node features are rich and

informative. Interesting results may yield for a deeper GCN.
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CHAPTER 1

Introduction

A lot of real-world data naturally exists in a graph format. This includes social networks,

financial transaction networks between different entities, supply chain networks, knowl-

edge graphs, and so on. Graphs can be classified into different types, such as homoge-

neous/heterogeneous graphs, directed/undirected graphs, or static/dynamic graphs. A dy-

namic graph evolves with time, for example financial transactions between different entities.

For graph machine learning tasks, the graph community has been focused on the following

levels,

Node level tasks focus on node-level prediction such as classification, node regression,

and clustering. This is the main focus of this thesis. For example, predicting paper category

in a citation network.

Edge level tasks focus on edge-level prediction such as edge classification, link prediction,

and link ranking. For example, predicting competitors in a supply chain network.

Graph level tasks include graph classification and graph regression. Graph-level repre-

sentation will be learned.

Figure 2.1 from review [1] gives an overview of the major design components of graph

machine learning. For a propagation module, mainstream methods include a convolution

operator, recurrent operator, and skip connection. Convolutional operators are mainly cat-

egorized into two: spectral and spatial. I will go over convolutional neural network [3]. For

the sampling module, I will discuss one of each method, talking about node sampling method

GraphSAGE [4], layer sampling LADIES [5], and subgraph sampling ClusterGCN [6] pooling
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module. Then, I will talk about the attention mechanism on graphs.

Convolutional neural networks have been applied and have seen major improvements in

different areas such as computer vision. For example, this is seen in image segmentation and

classification and natural language processing such as machine translation. Yet, it was not

until recently that people started to explore how to generalize convolutional neural networks

into domains of graph-structured data [3].

Graph convolutional networks (GCN) get the name ’convolutional’ from that filters are

learned during the training. These filter parameters are typically shared over all locations

in the graph. In a manner similar to that of computer vision, filters are learned from image

input and how they are shared over all pixel locations.

Define a graph G = (V , E). Each node i is associated with initial node features xi. The

initial input of the models are two fold, the graph itself and initial node features X. X is of

dimension N × D, H(0) = X. The goal is to learn node representations for each node. At

the final layer H(L) = Z, Z is of dimension N × F .

H(l+1) = σ(AH(l)W (l)) (1.1)

σ(·) is a non-linear activation like ReLU. Above is the simplest form of GCNs. More

sophisticated forms of convolutional neural networks are as the following, which includes

normalization of the adjacency matrix and adding identity connections.

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (1.2)

Where Ã is A + I with I being identity matrix, D̃ is the diagonal node degree matrix of

Ã.

Original full-batch GCN requires calculating the representation of all nodes in the graph

for each GCN layer. Since this is computationally costly and not memory efficient, full-

batch GCN methods are difficult to generalize to larger graphs. Recent years have seen an
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increase in work that applies convolutional neural networks on graph nodes and operates

on nodes’ neighborhoods. For example, GraphSAGE samples graph nodes’ neighborhoods

with a certain budget, and it aggregates the neighborhood’s representation and updates the

representation of the node itself. This method achieves impressive results across multiple

large-scale graph benchmarks. Node-wise neighborhood sampling also suffers from exponen-

tial growth of neighborhood issues, and some other works explore how to solve this problem

and come up with smarter sampling. LADIES, a work that performs layer-dependent impor-

tance sampling, select neighborhood nodes based on the sampled nodes in the upper layer

by computing importance probability.

ClusterGCN is an efficient algorithm to train deep and large scale graphs. ClusterGCN

uses graph clustering algorithm to constrain the neighborhood search within a smaller, scaled,

sub graph. This strategy is really effective in improving memory usage and problem scala-

bility. It endures tests on large-scale graphs and achieves impressive results across several

benchmarks including Amazon2M with 2 million nodes and 61 million edges.

There have been many academic endeavours in recent years to understand why graph

machine learning works. Correct and smooth [7] is an interesting one that separates the

contributions of node features and node labels. The algorithm first ignores the graph struc-

ture and uses shallow layers to learn on node features. Then, at a later stage, they leverage

the graph structure and label information to correct errors made in this first stage. They

make the assumption that the nearby nodes have error correlation and prediction correlation.

Because this approach abandons computational expensive convolutional neural network cal-

culation, it has great scalability. This method also achieves impressive results on certain

known datasets such as OGB-Products [8]. The correct and smooth stages can be used as a

post-processing strategy for people using different initial architecture.

Recently, there has been research work in attention mechanisms on sequence-based tasks.

For example, ”Attention is all you need” [9] describes the approach of using attention mech-

anism to learn to focus on different parts of the sequence while generating the representation
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of a sequence. Attention mechanisms also have generalization on music analysis and vision

tasks. Researchers have also recently tried to extend attention mechanisms into graph learn-

ing domains. For example, Graph attention network (GAT)’s [10] main idea is to compute

an attention map of how a node should attend to its neighborhood’s representations. The

computation is efficient because it can be computed in parallel manner.

The input to GAT layer is a set of node features, {h⃗1, h⃗2, ..., h⃗N}, where N is number of

nodes, h⃗i ∈ RF . The output will be a set of node representations {h⃗′
1, h⃗′

2, ..., h⃗′
N}, where

h⃗′
i ∈ RF ′

. To obtain sufficient expressive power, a shared linear transformation W is applied

to every node. Then a self-attention coefficients a : RF ×RF ′
is computed across node pairs

that indicate node i’s importance for node j.

eij = a(W h⃗i,W h⃗j) (1.3)

In GAT, the algorithm only computes eij for first order neighbors j ∈ Ni. WhereNi is the

neighborhood of i. As per their paper, the attention mechanism is a single layer feedforward

neural network with LeakyReLU nonlinearity. To stabilize the learning process, GAT uses

multi-head attention, and each head’s features are concatenated together. GAT is widely

known to have achieved impressive results across multiple benchmarks.

Transformer architecture has been dominant in many areas in NLP [9] and Vision [11].

People have recently started to generalize and extend transformers to the graph domain.

Graphomer [12] tried to generalize the transformer on a graph and asked a question, ”Do

transformers really perform bad for graph representation?”. Our study tries to answer this

open question and leverage the transformer method by incorporating the unique character-

istics of a graph.

A graphomer inherits the design of transformer modules and includes design for unique

characteristics of a graph. The major considerations are the following three components:

centrality encoding, spatial encoding, and edge encoding in the attention.
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Centrality encoding is about adding an additional feature that includes encoding of graph

node centrality. The philosophy behind this is that additional information in graph nodes

should not be neglected. Such as the number of followers of celebrities in a network, popular-

ity or centrality plays an important role in making graph node predictions. Spatial encoding

is about encoding the structural information of a graph. If two nodes are connected, then the

distance of the shortest path would be encoded, otherwise it would encode a special value.

The third consideration is edge encoding. Attention mechanism estimates a correlation for

each pair of nodes, and the edges connecting them should be considered. For each pair, they

find the shortest path and compute an average of the dot-products of the edge feature and

a learnable embedding along the path.

Graphomer is an interesting exploration of how to extend transformers into the graph

domain. And at KDD 2021 OGB-LSC [13], the graphomer achieves a top 1 result in a

large-scale graph node classification task.
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Figure 1.1: design components of graph machine learning [1]
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CHAPTER 2

Participation of OGB-LSC KDD CUP 2021

Graph machine learning has attracted immerse attention in recent years because of a rising

need to understand graph structured data and deliver real-world applications. And these

graphs tend to come in large scales. For example, social networks connecting billions of

people around the world or recommendation systems with large user bases. Being able to

study graphs at a large scale has become increasingly important to make an impact on real-

world data. The OGB Large Scale Challenge KDD CUP 2021 [13] was launched in March

2021 with three very challenging tasks. My team consisted of Hengda Shi, Max Wu, and

I, and we participated as the team ’GoBruins’ and were ranked 38th on the first task. This

chapter will be on the participation process, model design, and results.

The first task was called MAG240M-LSC. The goal of this task was to predict papers’ sub-

ject area in a heterogeneous academic graph. MAG240M-LSC is a heterogeneous academic

graph extracted from the Microsoft Academic Graph (MAG). There were 121M academic

papers in English. The resultant paper set was written by 122M author entities, who are

affiliated with 26K institutes. Among these papers, there were 1.3B citation links captured

by MAG. Each paper was associated with its natural language title and most papers’ ab-

stracts were also available. We concatenated the titles and abstracts by period and passed

it to a RoBERTa sentence encoder [14] [15], generating a 768-dimensional vector for each

paper node. Among the 121M paper nodes, approximately 1.4M nodes were arXiv papers

annotated with 153 arXiv subject areas, e.g., cs.LG (Machine Learning).

The major challenge of this task was the scale of the problem. We centered the design
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around being able to handle a problem of this scale. Our first idea was to be able to do a

local ”summary” of graph nodes and make a high-level prediction of the graph super nodes.

Then, we went back down to low level of graph and made individual predictions with local

adjustments. Following this idea, we found an already-published paper called ”GraphZoom:

A multi-level spectral approach for accurate and scalable graph embedding” [16]. Graph-

Zoom shares the same idea across famous benchmarks provided by OGB, and this type of

approach usually performs well but does not rank at the top of leaderboards.

Our second idea was also centered around handling a large-scale graph. We found a

recent approach called ”correct and smooth”. The method first predicted graph node labels

based on just graph node features without considering graph structure. At the correct and

smooth stage, the method leveraged graph structure information and made corrections and

smoothing to improve the initial results. We tested the implementation on our MAG240M-

LSC dataset and found out that on a citation network with 121M nodes and 1.3B citation

links, we could get a training result within 3 hours, noting that a 250GB CPU memory

is necessary for correct and smooth. The hardware we required for these results were one

GeForce RTX 1080 GPU (11GB memory) and an intel(R) Xeon(R) CPU E5-2640 v4 CPU

@ 2.40GHz (512GB memory).

Noticing that the first stage of ”correct and smooth” is a simple MLP implementation,

we asked a question: If we could use a more sophisticated model as the initial stage, but

use correct and smooth as a post-processing method, will we achieve better results? We

implemented a hybrid model. We chose a sophisticated attention-based model. The model

is composed of two parts, the first of which is an attention-based graph learning model called

”UniMP” [2]. Then we took the UniMP results to the post-processing stage and used the

correct and smooth method. Here are the detailed descriptions of UniMP.

UniMP has two major interesting features in its design. 1) It uses a graph transformer

as its design module. 2) It uses partially observed labels as training data. I will expand on

both.
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Figure 2.1: The architecture of UniMP [2]

Correct and smooth is a multistage method that corrects and smooths the first-stage

results. Inputs first go through an MLP-based simple neural network that does not require

an adjacency matrix at all. Then the second stage, ”correct”, and third stage, ”smooth”,

will refine the learned results. In detail,

ELt,: = ZLt,: − YLt,:, ELv ,: = 0, EU,: = 0 (2.1)

Where Z ∈ Rn×c is the prediction from base model, Y is ground truth. E ∈ Rn×c is error

matrix. Error is residual on the training data Lt. For validation dataset Lv and unlabeled

U , this residual is zero. The iteration methods follows label spreading technique [17],

Ê = argmin trace(W T (I − S)W ) + µ∥W − E∥2F (2.2)

Where W ∈ Rn×c. The first term encourages smoothing the error of estimation, while the

second term puts a constraint that makes the results, after iterations, not vary too much

from the original.

9



On the official leaderboard, our team ’GoBruins’ achieved 0.6517 test accuracy. We

trained for 50 hours on a GeForce RTX 1080 GPU (11GB memory) and an intel(R) Xeon(R)

CPU E5-2640 v4 CPU @ 2.40GHz (512GB memory). The parameters are summarized as

follows: learning rate 0.001, num of layers 3, size [10, 10, 10], hidden channels 128, heads 4,

dropout 0.5 label rate 0.625, epochs 100.

The correct and smooth stage yielded an additional 6% increase of accuracy. As opposed

to what was in the original paper, correct and smooth can give a major boost to the MLP

baseline. I find this result really interesting. Our thoughts are that correct and smooth works

best on conditions where the first-stage model does not use graph structure in training.
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CHAPTER 3

Algorithm Design for Mini-batch Attention Based

Graph Machine Learning

This is a joint work in collaboration with Ruochen Wang (UCLA), Minhao (UCLA), Cho-Jui

Hsieh (UCLA), and Si Si (Google). Motivated by the self-attention mechanism in NLP, we

designed the algorithm that I am going to discuss in this chapter. We asked one question:

Does dense self-attention also work on node classification tasks? We first learned a dense

self-attention based on graph node features and overlayed it with the original adjacency

matrix.

So we can assume that the graph is A+ βW , where A is the original graph and W is the

dense graph computed by a transformer. An interesting thing about this is that it’s like a

sequence data with only one very long sequence (e.g., million), while in a traditional NLP

or graphormer you usually have millions of short sequences.

Notice now that the new A + βW graph structure is no longer a sparse matrix. We

tackle this issue by using mini-batch methods such as using clusterGCN to partition the

graph into many clusters and using attention mechanism only on subgraphs. The algorithm

is summarized in Algorithm 1.

ClusterGCN samples a dense graph and restricts the neighborhood search within the

subgraph. We used clusterGCN as our mini-batch algorithm, therefore I would like to sketch

and design the idea, time, and space complexity of the algorithm. Vanilla mini-batch SGD

have slow per epoch time. This is because, in order to calculate the gradient for one node i:
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Algorithm 1 mini-batch attention based graph learning algorithm

Input: Graph A, feature X, label Y

Output: Node representation X̄

Partition graph nodes into c clusters, V1, V2, ..., Vc by METIS

1: for i← 1 to max iter do

2: Randomly choose q clusters, t1, ..., tq from V without replacement

3: Form sub graph Ḡ with nodes V̄ and links AV̄ ,V̄

4: Use self attention mechanism to calculate matrix W with node features as input

5: Compute Norm(A + βW ) and use it to replace the original adjacency matrix

6: Compute g ← ∇LAV̄ ,V̄

7: Conduct Adam update

8: end for

9: Output weights

∇loss(yi, z(L)i ), we need the embeddings from its 1-hop neighborhood. To get the embeddings

of its neighborhood, the aggregation needs to be further propagated to 2-hop neighborhoods

and so on. Assume that on average each node has d degree, GCN has L + 1 layers, time

complexity of calculation is O(dLF 2), where F is feature dimension. By using clustering

algorithms such as METIS [18] first and constraining the neighborhood expansion within

the subgraph, calculation can be both efficient in terms of time and memory. In summary,

clusterGCN’s time complexity is O(L∥A∥0F+LNF 2) and space complexity is O(bLF+LF 2).

With ∥A∥0 being number of nonzeros in the adjacency matrix, N is number of nodes, and b

is the batch size . In the original paper, authors showed how clusterGCN’s time and space

complexity would compare to some well-known algorithms such as GCN, GraphSage, and

FastGCN [19].

Self attention is the module we used here to compute W . Let input be H ∈ RN×d, where

N is the number of nodes in a minibatch and d is the hidden dimension. The input H is

projected by three matrices, WQ ∈ Rd×dK , WK ∈ Rd×dK . The projected results become their
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corresponding representations.

Q = HWQ, K = HWK (3.1)

W = softmax(
QKT

√
dK

) (3.2)

We separately normalize W and adjacency matrix A, Norm(A+βW ) = (1−β)(D̃− 1
2 ÃD̃− 1

2 )+

βW . The normalization method is the same as that used in GCN.

To prevent/mitigate overfitting, we use random edge drop [20]. At the training time, this

method automatically drops a percentage of random edges to reduce overfitting. We also

use a standard random drop out. The third drop out used is attention drop out. We use

ray tune to automatically find the ultimate best combination of the three drop out methods

used.

13



CHAPTER 4

Experiments

We run an experiment with 130 epoch 10 times on Arxiv dataset. It takes 24 hours to train

on a GeForce RTX 1080 GPU (11GB memory) and an intel(R) Xeon(R) CPU E5-2640 v4

CPU @ 2.40GHz (512GB memory).

Hyper-parameter fine tuning is done by using a Ray Tune automatic hyper-parameter

search parallelly run on multiple GPUs. The detailed model parameters are summarized

as the following: Dataset ogbn-arxiv, hidden dim 256, lr 0.0011732, epoch 130, use pp

True, opt adam, dropout 0.2, num layers 3, partition 1500, bsize list 10, diag lambda 0.0,

sampling percent 0.6, use cluster, model trans fix, sepnorm 1, scale fn ’I’, att dropout 0.8.

The overall experimental results are the following: Highest Train: 75.87 ± 0.07, Highest

Valid: 70.36 ± 0.22, Final Train: 75.06 ± 0.54, Final Test: 69.00 ± 0.28.

The second experiment we performed was to randomly remove a percentage of edges

from the beginning. The Arxiv dataset with removed edges was used as input in the training

and results compared with a standard clusterGCN. The motivation of doing this experiment

was that our attention matrix W is learned from graph node features. At the limit of when

all the edges were removed, our methods should have been able to significantly outperform

clusterGCN. This could be generalized to a graph with sparse connections but rich node

features. Below are the results of this experiment.

Another experiment we performed was to visualize the β scale we learned as a learning

process. In a 3 layer network architecture, we plotted the scale of each layer and showed how

they evolved as the training went by. Interestingly, the first layer has an attention map scale
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Remove A Percentage of Edges Results

Model Percentage

removed

Train Ac-

curacy

Validation

Acc

Test Acc

mini-batch

Attention

(ours)

10% 0.73 0.68 0.67

ClusterGCN 0.69 0.70 0.68

ours 20% 0.73 0.68 0.68

ClusterGCN 0.68 0.70 0.69

ours 30% 0.72 0.69 0.67

ClusterGCN 0.69 0.70 0.68

ours 40% 0.71 0.66 0.65

ClusterGCN 0.67 0.68 0.67

ours 50% 0.70 0.66 0.65

ClusterGCN 0.65 0.68 0.66

ours 70% 0.67 0.64 0.63

ClusterGCN 0.62 0.66 0.65

ours 90% 0.63 0.60 0.59

ClusterGCN 0.57 0.61 0.59

Table 4.1: Remove a percentage of edges results

close to 0. And as the layers increased, the scales increased. See figure 4.1. This result could

be generalized to cases where we have a deep graph neural network. Then the contribution

from the self-attention part will be more dominant.

I analyzed nodes’ degree distribution that are correctly predicted and did not see any

difference in the shape of distribution. Future experiments that would be also very interesting

include increasing depth and batch size.
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Figure 4.1: Scale of additional attention matrix scale β change with training epoch.
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CHAPTER 5

Conclusion

This thesis summarizes the work I have done during my master’s study at UCLA. We

ranked 38th among all participants of the KDD 21 challenge on large-scale graph machine

learning. We built a two-stage model. taking the most out of UniMP and correct and smooth

architectures in Pytorch. We studied a social network graph with 121 million nodes and 153

categories, and we achieved node classification accuracy of 65%.

The second part of this thesis summarized a mini-batch attention-based graph machine

learning model we developed. It achieves about the same test accuracy on an Arxiv dataset

70% compared to clusterGCN, but it has potential to outperform it. This is especially true

at the case where the adjacency matrix of a graph is sparse or graph node features are

rich and informative. When the graph structure becomes deeper, the attention map learned

contributes more at an increased scale. Interesting results may be seen for a deep graph

neural network.
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