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The gold-standard genome of Aspergillus niger NRRL 3 enables a
detailed view of the diversity of sugar catabolism in fungi
M.V. Aguilar-Pontes1,2, J. Brandl3, E. McDonnell4, K. Strasser4, T.T.M. Nguyen4, R. Riley5, S. Mondo5, A. Salamov5, J.L. Nybo3,
T.C. Vesth3, I.V. Grigoriev5, M.R. Andersen3, A. Tsang4*, and R.P. de Vries1,2*

1Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands; 2Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT,
Utrecht, The Netherlands; 3Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, DK-2800, Kongens Lyngby, Denmark;
4Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke Street West, Montreal, QC, H4B 1R6, Canada; 5US Department of Energy Joint
Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA

*Correspondence: A. Tsang, adrian.tsang@concordia.ca; R.P. de Vries, r.devries@westerdijkinstitute.nl
Abstract: The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity
within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial
when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to
identify key enzymes, reactions and pathways with the focus on primary carbon metabolism.

Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional
studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the
corresponding sugar as a carbon source.
Key words: Aspergillus, Genomic diversity, Gold standard genome, Sugar catabolism.
Available online 7 October 2018; https://doi.org/10.1016/j.simyco.2018.10.001.
INTRODUCTION

The fungal kingdom is estimated to contain over 1.5 million
species (Hawksworth 1991), but only a few species have been
studied in depth. In recent years, several hundreds of fungal
genomes have been sequenced through different initiatives to
gain insights into their biology and the variation within the
kingdom (MIT, Arnaud et al. 2012, Grigoriev et al. 2012). Even
though sequencing technology has evolved to produce the most
complete genome sequence, we are still facing hurdles with
respect to gene prediction and functional annotation (Aguilar-
Pontes et al. 2014, Watson 2018). Recognizing genes in DNA
sequences remains one of the most pressing problems in
genome analysis together with the functional annotation of the
predicted genes. This can only be improved using a large set of
-omics data, literature and human supervision, also known as
manual curation. If done properly, the output is a gold-standard
genome that can be used to improve the quality of other ge-
nomes, especially of related species, to study the evolutionary
mechanism that allow them to adapt to their lifestyles and
ecological niches. The investments required to generate gold
standard genomes go beyond what is feasible in a typical
genome sequencing project, as it requires the combined efforts of
not only sequencing centres, but also a broad research com-
munity that covers many of the biological aspects of fungal life.

Fungi and specifically Aspergilli, can be found in almost all
ecosystems. In order to survive in their niches, they have to be
able to accommodate their metabolism to the energy source
available. In nature, fungi need to recognize the plant biomass
Peer review under responsibility of Westerdijk Fungal Biodiversity Institute.
© 2018 Westerdijk Fungal Biodiversity Institute. Production and hosting by ELSEVIER B.V. This is an
nc-nd/4.0/).
components in order to induce the production of the right set of
degradative and metabolic enzymes that break down the com-
plex structures forming the plant cell wall into simple molecules.
Despite the complexity of the polymers forming the cell wall, the
skeleton is mainly formed by simple sugars, such as D-glucose,
D-fructose, D-xylose, L-arabinose, D-galactose, D-galacturonic
acid and L-rhamnose (Kowalczyk et al. 2014). The ensemble of
catabolic pathways that convert these sugars is known as pri-
mary carbon metabolism. A previous study investigated the
evolution of primary carbon metabolism in A. nidulans and
several Aspergilli based on the genome sequence available at
that moment, identifying enzyme homologs and additional copies
of several genes in some of the species (Flipphi et al. 2009).
However, a recent study indicated that extra copies of an enzyme
or a catabolic pathway does not necessarily affect the catabolic
efficiency of the species under specific growth conditions, but
correlates with the phylogenetic relationship between species
(de Vries et al. 2017). However, a positive correlation was found
between the presence of a gene predicted to encode a catabolic
enzyme and their ability to grow on a specific carbon source (de
Vries et al. 2017).

In this study, a network of reactions of primary metabolism
based on the Aspergillus niger NRRL 3 gold-standard genome
(Genozymes 2009) (manuscript in preparation) was generated
and used to find orthologous genes and pathways involved in the
catabolism of monosaccharides in a set of closely related fungal
species (Fig. 1). The main focus was to evaluate whether there is
a link between genome content and growth abilities. Our aim
here is to study the genome content related to primary carbon
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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Fig. 1. Primary carbon metabolism pathways: summary overview of all pathways included in the A. niger NRRL 3 manually curated carbon metabolic network. Substrates
are in green, reactions are depicted with an arrow, reversible reaction are indicated with double arrow. Enzyme Commission (EC) number for each reaction is indicated beside
each reaction, while reactions are identified by numbers in brackets (for more information see Supplementary file 6). Proteins assigned to the reactions are indicated in black,
common gene name used in A. niger is noted beside the protein ID where possible. Characterised enzymes are in red, enzymes involved in more than one reaction are
indicated in lighter colour. Dash lines connect metabolites from different pathways. * The enzymes associated to that reaction form a complex. Each pathway is highlighted with
a background shade, the legend for the shades is on the right.

AGUILAR-PONTES ET AL.
metabolism to identify key enzymes or reactions that explain
growth under specific conditions. The advantage of using a gold-
standard genome, with telomere-to-telomere chromosomes and
manually curated gene models, as a reference for this study is
that it significantly reduced the risk of missing genes due to gaps
in the genome sequence and errors in electronic gene calling.
MATERIALS AND METHODS

Whole genome phylogeny

Whole genome phylogeny was performed among the 28 species
selected (Saccharomyces cerevisiae S288C, Neurospora crassa
OR74A, Trichoderma reesei QM 6a, Talaromyces marneffei
ATCC 18224, Talaromyces stipitatus ATCC 10500, Penicilliopsis
zonata CBS 506.65, Penicillium digitatum PHI 26,
62
P. chrysogenum CBS 307.48, P. rubens Wisconsin 54-1255,
Aspergillus glaucus CBS 516.65, A. wentii CBS 141173,
A. clavatus NRRL 1, A. novofumigatus CBS 117520, A. fumigatus
Af293, A. fischeri NRRL 181, A.s campestris IBT 28561, A.terreus
NIH 2624, A. flavus NRRL 3357, A. oryzae RIB40, A. nidulans
FGSC A4, A. sydowii CBS 593.65, A. versicolor CBS 795.97,
A. aculeatus ATCC 16872, A. carbonarius ITEM 5010,
A. brasiliensis CBS 101740, A. niger NRRL 3, A. luchuensis CBS
106.47 and A. tubingensis CBS 134.48). The tree was built using
200 bidirectional best-blast hits (BBH), which were aligned using
mafft V7.221 (Katoh & Standley 2013) with default parameters.
Uninformative/ambiguous sites were removed from the alignment
using Gblocks v0.91b (Nielsen et al. 1997) with parameters – t = p
–e = .gb –b4 = 5. The maximum likelihood tree was built using
FastTree v2.1.9 with parameters –gamma –wag.20 rate cate-
gories were used during phylogeny reconstruction. This phylo-
genetic tree was visualized using R language and environment v.



Table 1. List of species used in this study.

Species Strain Section Species
abbreviation 1

Number of
genes

Assembly
length (Mb)

Reference

Saccharomyces cerevisiae S288C Sacce1 6 575 12 (Goffeau et al. 1996)

Neurospora crassa OR74A Neucr2 10 785 41 (Galagan et al. 2003)

Trichoderma reesei QM 6a Trire2 9 143 33 (Martinez et al. 2008)

Talaromyces marneffei ATCC 18224 Talaromyces Talma1_2 10 638 29 (Nierman et al. 2015)

T. stipitatus ATCC 10500 Talaromyces Talst1_2 13 252 36 Unpublished

Penicilliopsis zonata CBS 506.65 Aspzo1 9 886 29 (de Vries et al. 2017)

Penicillium digitatum PHI 26 Penicillium 9 118 29 (Marcet-Houben et al. 2012)

P. chrysogenum CBS 307.48 Chrysogena Pench1 11 396 31 (de Vries et al. 2017)

P. rubens Wisconsin 54-1255 Chrysogena PenchWisc1_1 13 671 32 (van den Berg et al. 2008)

Aspergillus glaucus CBS 516.65 Aspergillus 11 277 28 (de Vries et al. 2017)

A. wentii CBS 141173 Cremei Aspwe1 12 442 31 (de Vries et al. 2017)

A. clavatus NRRL 1 Clavati Aspcl1 9 121 28 (Fedorova et al. 2008)

A. novofumigatus CBS 117520 Fumigati 11 549 32 (Kjaerbolling et al. 2018)

A. fumigatus Af293 Fumigati Aspfu1 9 781 29 (Nierman et al. 2005)

A. fischeri NRRL 181 Fumigati Neofi1 10 406 33 (Nierman et al. 2005)

A. campestris IBT 28561 Candidi Aspcam1 9 764 28 (Kjaerbolling et al. 2018)

A. terreus NIH 2624 Terrei 10 406 29 (Arnaud et al. 2012)

A. flavus NRRL 3357 Flavi 12 604 37 (Payne et al. 2006)

A. oryzae RIB40 Flavi 12 030 38 (Machida et al. 2005)

A. nidulans FGSC A4 Nidulantes Aspnid1 10 680 30 (Galagan et al. 2005)

A. sydowii CBS 593.65 Nidulantes Aspsy1 13 620 34 (de Vries et al. 2017)

A. versicolor CBS 583.65 Nidulantes Aspve1 13 228 33 (de Vries et al. 2017)

A. aculeatus ATCC 16872 Nigri Aspac1 10 845 35 (de Vries et al. 2017)

A. carbonarius ITEM 5010 Nigri Aspca3 11 624 36 (de Vries et al. 2017)

A. brasiliensis CBS 101740 Nigri Aspbr1 13 000 36 (de Vries et al. 2017)

A. niger NRRL 3 Nigri Aspni_NRRL3_1 11 846 35 Unpublished

A. luchuensis CBS 106.47 Nigri Aspfo1 13 530 37 (de Vries et al. 2017)

A. tubingensis CBS 134.48 Nigri Asptu1 12 322 35 (de Vries et al. 2017)

The order of the species follows the taxonomic organization in the phylogenetic tree (Fig. 2).
1 The species abbreviations correspond to JGI acronyms used as species and genome released unique identifiers in the portal. This identifier is used as species identifier
in the heatmap figures.

FUNGAL SUGAR CATABOLISM
3.4.0 (R Core Team 2017) with the package ggtree v. 1.8.2 (Yu
et al. 2017) from ggplot2 v. 2.2.1 (Wickham 2009).

Protein quality assessment

Protein quality assessment was performed using BUSCO v3
(Simao et al. 2015) with default parameters and specific lineage
database accordingly (Aspergillus, Penicillium, Penicilliopsis and
Talaromyces species against eurotiomycetes_odb9 database,
N. crassa and T. reesei against sordariomycetes_odb9 database
and S. cerevisiae saccharomyceta_odb9 database).
Protein functional annotation

Protein functional annotation of selected species was down-
loaded from the JGI Mycocosm Portal (Table 1). Exclusively
InterPro and Pfam domains (Quevillon et al. 2005) with E-value
>1e−15, KEGG database information (Kanehisa et al. 2006) and
SignalP annotation (Nielsen et al. 1997) was used. Additionally,
S. cerevisiae, N. crassa, T. reesei and A. nidulans functional
information was obtained from the SGD database (Cherry et al.
www.studiesinmycology.org
2012), Ensembl Fungi Biomart release 38 (Kinsella et al. 2011),
(Benocci et al. 2018) and the AspGD database (Cerqueira et al.
2014), respectively.
Protein profiling

Gene families (clusters) were download from JGI Mycocosm
Portal (Grigoriev et al. 2014)

https://genome.jgi.doe.gov/clm/run/fungi-2016-08.1352. Clus-
ters were predicted by Blast (Altschul et al. 1990) E-value 1e−5

and MCL inflation parameter −2 (Enright et al. 2002). Clusters
with only one protein assigned were removed from the original
data set. In total, 112 gene clusters containing A. niger NRRL3
proteins of interest were selected. Amino acid sequences of
selected species were downloaded from the JGI Mycocosm
Portal (Table 1). Alignment of the amino acid sequences of the
proteins included in the clusters was performed using mafft
V7.221 (Katoh & Standley 2013) with default parameters.
Alignments were manually curated and nucleotide sequences of
split genes were fixed where possible, otherwise the protein
sequence was removed from the alignment (Supplementary file
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X1). A Neighbor joining tree was built using MEGA-CC (Kumar
et al. 2012) with complete deletion and bootstrap 500. Phylo-
genetic trees were inspected manually and rooted to
S. cerevisiae where possible. Proteins included in a mono-
phyletic tree with an A. niger NRRL3 proteins will be considered
as NRRL3 orthologs. Close orthologs of a NRRL3 protein will be
defined as group of proteins included in a monophyletic tree after
a gain or loss event where no NRRL3 protein is present. These
are identified with the closest NRRL3 protein id and the suffix
“like”. A. niger protein functional information was used to assign
function to ortholog groups within a cluster. Groups with func-
tional annotation not related to monosaccharides metabolism
were removed from the final set when supported by more than
one protein. If no NRRL3 protein was present in the group,
curated database information of other species was used
(Supplementary file X2). If more than one transcript per protein
was included in the tree, they were counted as one
(Supplementary file X3). Membership in a group was used to
determine whether a protein was conserved across the selected
species. If a protein is found at least once in all members or all
members of an organism subset (e.g. section Nigri), it is
considered conserved. A protein was considered specific to an
organism subset if it was found in at least one organism of the
subset, but not in any organisms outside the subset. Heatmaps
were generated using R language and environment with the
package ComplexHeatmap v. 1.14.0 (Gu et al. 2016). Columns
are ordered according to the phylogenetic tree and rows follow
the order of the reactions in the pathway. Growth graphs were
generated using Adobe Illustrator CC.
Growth profiling on different monosaccharides

For growth profiling, all strains were grown on MM (de Vries
et al. 2004) with 33 different carbon sources (http:/www.fung-
growth.org/). Growth was performed at 30 °C for all Asper-
gilli and 25 °C for the other species. Growth was continued
until the largest colony of a species set almost reached the
edge of the plate. Growth per species was scored from 0 when
there is no visible growth to 10 when maximum growth among
all carbon sources has been reach. Growth profiles containing
monosaccharides and disaccharides (de Vries, et al.) were
selected for this study (Supplementary file X4). Media with no
carbon source was used as a control. If growth on a specific
carbon source is the same as with no carbon source, it is
considered no growth.
RESULTS

Phylogenetic relationships and proteome
assessment

To provide an overview of the relationship among the selected
species (Table 1) a genome-wide phylogeny was conducted
(Fig. 2A). The constructed tree supports the results described
before (Kocsube et al. 2016). Members of the section Nigri are in
a single clade close to section Nidulantes that also appears as a
single clade. Section Flavi (A. oryzae and A. flavus) are placed
close to the representative of section Terri with section Candidi as
an outgroup. Section Fumigati and section Clavati are in another
clade with A. wentii from section Cremei as a close relative. The
64
genus Penicillium sections Chrysogena and Penicillium are
placed close to the related species Penicilliopsis zonata (previ-
ously Aspergillus zonatus (Kocsube et al. 2016)). T. reesei and
N. crassa are at the base of the tree with S. cerevisiae at the root.

The genomes used in this study have been sequenced over
the years by different consortia and technologies. S. cerevisiae
was the first fungal genome published in 1996 (Goffeau et al.
1996) while A. campestris was published in 2018 (Kjaerbolling
et al. 2018) sequenced with the latest technology PacBio RS.
Hence the quality of assembled genomes and annotation can
vary substantially. We used BUSCO (Simao et al. 2015) to
evaluate the completeness across their predicted proteomes. The
average of complete proteins is higher than 95 % in most species
with the exception of A. carbonarius, where only 88 % of the
genes are complete with more than 8 % of the core proteins
missing. The proportion of the proteomes that are duplicated
comprise approx. 1 % except for S. cerevisiae, N. crassa,
Talaromyces species and A. carbonarius that varies between
5–10 %. With the exception of A. carbonarius, the genomes with
the higher number of missing proteins also contain a higher
number of fragmented proteins. High numbers of fragmented
proteins were observed regardless the genus, technology,
assembler or automatic gene calling methodology. Species with
more than 150 fragmented proteins (A. oryzae, A. flavus,
A. terreus, P. digitatum) were removed from the analysis (Fig. 2B).

Complete genomic sequences from diverse phylogenetic lin-
eages reveal notable increases in genome complexity from pro-
karyotes to multicellular eukaryotes (Lynch & Conery 2003).
However, the genome size of an organism varies from species to
species and is not proportionally correlated with organismal
complexity. In our dataset, the smallest genome is 12 Mb and the
largest 41 Mb, corresponding to S. cerevisiae and N. crassa
respectively, but the N. crassa genome only contains twice the
number of genes of the S. cerevisiae genome. With the exception
of S. cerevisiae and N. crassa, more than 95 % of the predicted
proteins were included in the gene families downloaded from the
JGI Mycocosm portal (Grigoriev et al. 2014) (Fig. 2C).

Genome content related to primary carbon
metabolism

In contrast to the most accepted theory (Gregory 2001), the
present study shows that genome size and gene content are an
indication of primary carbon metabolism complexity
(Supplementary Fig. 5). In general, S. cerevisiae lacks several of
the enzymes associated with primary carbon metabolism pre-
dicted in A. niger. In some cases, entire pathways are missing,
even though growth has been described (Oliva Neto et al. 2014).
Therefore, in the following sections we will describe the preva-
lence of orthologous genes in the different species without
considering S. cerevisiae except for special cases. Starting with
glycolysis and acid production (glyoxylate, tricarboxylic and D-
gluconic acid) from glycolytic products, the pathways have been
ordered according to the step in which the final product enters
glycolysis and to the number of carbon atoms in the main sub-
strate: maltose, sucrose, D-mannose, D-galactose, D-galacturonic
acid, L-rhamnose, pentose catabolic and pentose phosphate
pathway. In each case, a brief description of the pathway with the
EC numbers of each enzymatic reaction and common protein
names used in A. niger will follow a deep analysis of the rela-
tionship between phylogeny, genome content and growth

http://http:/www.fung-growth.org
http://http:/www.fung-growth.org


Fig. 2. Phylogenetic tree, proteome assessment and orthology assessment. A) Phylogenetic tree inferred from 200 best bidirectional hits of 28 species. Sections are
identified by colours, white indicates the section is not determined. Name of the genus and sections are indicated in the left of the figure. Bold letters indicated the species
selected for further analysis. B) Protein conservation, calculated using BUSCO v.3 indicates the degree of completeness of the proteins predicted per genome against a
database of conserved proteins, bars showing number of proteins being aligned to individual species to the left-hand side. Black line indicates where the value 150 is in the
graph. Species with number of fragmented proteins (red bar) higher than 150 were removed from the analysis. Dark blue: complete genes (duplicated and single), light blue:
complete single genes, red: fragmented, and yellow: missing. C) Total number of proteins included in the gene family orthology against the total number of proteins predicted.
Bars indicates the size of the genome (Kb), number of proteins in the proteome and number of proteins included in phylogeny aligned to individual species to the left-hand side.
Green, size of genome (Kb); red, total proteome predicted; and purple, total number of proteins included in the gene families.

FUNGAL SUGAR CATABOLISM
abilities. The ortholog groups will be referred to by the protein
number of the A. niger NRRL 3 gene present in the group. If no
NRRL 3 gene is present, the group will be referred to by the
closest NRRL 3 paralog, followed by ‘-like’. Despite ‘after’ and
‘before’ not being the appropriate phylogenetic terms, we will use
them to refer to moments in evolution when proteins have been
gained or lost between two groups. Due to the limited number of
species from each clade in this study we cannot determine when
this exactly happened, e.g. in glycolysis, NRRL3_11729_like
appears in members of the genus Talaromyces and is lost after
section Fumigati. Meaning that species from clades after section
Fumigati branched off, resulting in sections Candidi, Nidulantes
and Nigri having lost this ortholog.
Glucose and fructose catabolism

D-Glucose is the preferential monomeric carbon source for most
microorganisms. Although fungi rarely find free high concentra-
tion of D-glucose in their environment, it is the major component
www.studiesinmycology.org
of the plant cell wall (Kowalczyk et al. 2014). Therefore, it is
common that all species contain at least one enzyme per re-
action for D-glucose catabolism (Fig. 3).

This first step in the glycolysis in the conversion of D-glucose
into D-glucose 6-phosphate by two different enzymes, the
hexokinase (Hxk, EC 2.7.1.1) (Panneman et al. 1998) and the
glucokinase (Glk: EC 2.7.1.2) (Panneman et al. 1996). Isomer-
ization of D-glucose 6-phosphate by glucose 6-phosphate
isomerase (PfkA, EC 2.7.1.11) produces fructose 6-phosphate.
This compound can be obtained from D-fructose through fruc-
tokinase reaction by hexokinase enzymes exclusively
(Panneman et al. 1998). A kinase reaction catabolized by the 6-
phosphofructose kinase (PfkA, EC 2.7.1.11) converts D-fructose
6-phosphate into D-fructose 1,6-bisphosphate (Habison et al.
1983). The reverse reaction, is catalysed by the D-fructose 1,6-
phosphatase (FbpA, EC 3.1.3.11). Both reactions are strongly
regulated by the accumulation of D-fructose 2,6-bisphosphate,
which activates PfkA and inhibits FbpA (Harmsen et al. 1992,
Ruijter & Visser 1999, Poulsen et al. 2005, Upadhyay & Shaw
65
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Fig. 3. Glycolysis heatmap abundance of A. niger orthologous proteins in the glycolytic pathway. Columns are arranged according to the phylogenetic tree and rows are
arranged according to the order in which the enzymatic reaction occur in A. niger metabolism. Top: The graph on the top represents growth from 0 to 10 with no carbon source
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number are in brackets, see Supplementary file 6 for more information. Cluster column: colours correspond to clusters in which proteins have been found. Bottom legend:
species abbreviation according to Table 1. Aspzo1: Penicilliopsis zonata, Aspfp1: Aspergillus luchuensis.
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2006). D-Fructose 1,6-bisphoshate is split into dihydroxyacetone
phosphate and D-glyceraldehyde 3-phosphate by fructose-
bisphosphate aldolase (Fba, EC 4.1.2.13) (Jagannathan et al.
1956). Dihydroxyacetone phosphate, also produced in glycerol
metabolism, is converted into D-glyceraldehyde 3-phosphate by
triphosphate isomerase (Tpi, EC 5.3.1.1) (McKnight et al. 1986)
contributing to the equilibrium of the glycolysis. Glyceraldehyde
3-dehydogenase (Gdp, EC 1.2.1.12) (Punt et al. 1988) catalyses
the reversible enzymatic reaction between D-glyceraldehyde 3-
phosphate and 1,3-bisphosphate D-glyceraldehyde, which is
further converted into 3-phosphate D-glyceraldehyde by phos-
phoglycerate kinase (Pgk, EC 2.7.2.3) (Clements & Roberts
1985, Streatfield et al. 1992, Streatfield & Roberts 1993).
Phosphopyruvate hydratase, also known as enolase (EnoA, EC
4.2.1.11) (Clements & Roberts 1985, Streatfield & Roberts 1993),
converts 2-phospho D-glycerate into phosphoenolpyruvate, the
substrate of the last reaction in the glycolysis, the conversion of
phosphoenolpyruvate into pyruvate by pyruvate kinase (PkiA, EC
2.7.1.40) (de Graaff et al. 1992).

Four out of ten enzymatic reactions in glycolysis - PgiA, PfkA,
PgkA and PkiA - have a single, conserved enzyme assigned to
them in all species (PgiA is present in more than one copy in
P. zonata and PkiA in S. cerevisiae and N. crassa). A FbpA
paralog was found through orthology in N. crassa and T. reesei
while EnoA paralogs were only present in the genomes of
S. cerevisiae, N. crassa, P. zonata and A. aculeatus.

Orthologs of HxkA and GlkA have undergone several
changes in the number of proteins encoded in the genome of the
tested species. Compared to a previous study (Flipphi et al.
2009), we found only one cluster containing a glucokinase and
three hexokinases, out of which only two have catalytic function.
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HxkA (NRRL3_05100) is present in all species while its paralog,
NRRL3_11729 has two main groups. An orthologous gene
present in P. rubens, A. nidulans, A. sydowii and section Nigri
genomes and a close orthologous group that appears in mem-
bers of the genus Talaromyces and got lost after section Fumi-
gati. Three different Glk groups were identified in the phylogeny.
An orthologous gene of A. niger GlkA (NRRL3_03068) is present
in all species. A second sequence (NRRL3_03068_like_1) is
present in the genome of the Talaromyces species, section
Fumigati, A. sydowii and A. carbonarius. A third Glk protein
(NRRL3_03068_like_2) is also present in these species except
for the Talaromyces species.

Proteins from two different clusters have been assigned to
Fba activity. The ortholog of A. nidulans FbaA, NRRL3_05672
(FbaA) is present in all species (Roumelioti et al. 2010) in a
single cluster. The second cluster contain two orthologous
groups NRRL3_00967 and NRRL3_08838, respectively.
NRRL3_00967 is present in all species except T. reesei, and a
NRRL3_00967_like group is formed from genes of sections
Cremei, Nidulantes and several species from section Nigri. A
similar distribution is observed for NRRL3_08838, including
members from the genus Penicillium and T. reesei. Iso-enzymes
assigned to Pgm activity belong two different clusters. Both
PgmA (NRRL3_07072) and the second enzyme NRRL3_03100
are present in all species. A NRRL3_03100_like orthologous
gene was present in P. zonata, A. clavatus and section Fumigati.

Due to the importance of the pathway metabolizing D-glucose
and D-fructose and the absence of orphan reactions, we pre-
dicted positive growth for all species on these sugars, which was
confirmed by our growth data. T. reesei and A. tubingensis grew
better on these substrates compared to other carbon sources
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than any of the other species. Remarkably, P. zonata grew below
average on both substrates despite the genome content not
showing major differences with respect to the genes related to
glycolysis compared with the rest of the species.

Glyoxylate and tricarboxylic acid cycle
metabolism

The final product of glycolysis is metabolized further through the
tricarboxylic acid (TCA) and the glyoxylate cycles. The glyoxylate
cycle was described as a modified TCA cycle (Kornberg &
Madsen 1958) with which it shares activities (Kunze et al.
2006). The partial parallelism between both cycles requires
that identical enzymatic activities have to participate indepen-
dently in different metabolic pathways, which is accomplished in
most cases by paralogous proteins that are differently com-
partmentalized in the cell. The TCA cycle enzymes are mainly
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Fig. 4. Glyoxylate and TCA cycles heatmap abundance of A. niger orthologous protein
MdhA_P: peroxisomal MdhA and MdhA_M: mitochondrial MdhA.
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localized in the mitochondria while the glyoxylate cycle enzymes
are located both inside and outside the peroxisome. The
glyoxylate cycle allows cells to utilize C2 carbon sources, e.g.
ethanol and acetate, when other carbon sources are not avail-
able and it further allows the cell to produce carbohydrates
through gluconeogenesis from acetyl-CoA. The glyoxylate cycle
bypasses the reactions catalysed by isocitrate dehydrogenase
and 2-oxoglutarate complex. Two molecules of acetyl-CoA enter
the glyoxylate cycle during each turn, while only one enters the
TCA cycle. Bypassing the TCA cycle conserves carbon atoms
for gluconeogenesis while simultaneously diminishing the flux of
electrons into respiration (Hynes et al. 2007).

Pyruvate produced through glycolysis can be converted into
acetyl-CoA through the pyruvate dehydrogenase complex
(EC1.2.1.-*) in the mitochondria or into oxaloacetate by pyruvate
carboxylase (PycA, EC 6.4.1.1) (Fig. 4). The pyruvate dehy-
drogenase complex involves three enzymatic reactions with
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independent enzymes associated to them: the pyruvate dehy-
drogenase alpha and beta subunits (PdaA), the dihydrolipoamide
S-acetyltransferase and the lipoamide dehydrogenase (LpdA).
Another source of acetyl-CoA is the reaction catalysed by the
acetyl-CoA synthetase (Acu, EC 6.2.1.1) from coenzymeA and
acetate. The acetate used as substrate in this reaction can be
provided by oxalaceteate acetylhydrolase (Oah, EC 3.7.1.1) after
converting oxaloacetate into oxalate (Ruijter et al. 1999,
Narayanan et al. 2009).

The glyoxylate and TCA cycles share three enzymatic re-
actions, with different paralogs for malate dehydrogenase and
citrate synthase, but the same enzyme for aconitase.

Malate dehydrogenase (Mdh, EC 1.1.1.37) catalyses
the reversible conversion between malate and oxaloacetate
(McAlister-Henn et al. 1995). Oxaloacetate is converted into citrate
by citrate synthase (Cit, 2.3.3.1). The citrate produced in the
glyoxylic cycle its transported to the mitochondria to be converted
first into cis-aconitate and finally to isocitrate (D-threo-isocitrate) by
aconitate hydratase (Aco, EC 4.2.1.3) that catabolizes both steps.
Isocitrate relocates to the peroxisome to continue the glyoxylate
cycle.

In the peroxisome, during the glyoxylate cycle, isocitrate lyase
(EC 4.1.3.1) will breakdown isocitrate into glyoxylate and suc-
cinate, which then enter the TCA. Finally, glyoxylate will be used
as substrate together with acetyl-CoA for malate synthase (EC
2.3.3.9) to produce malate and coenzymeA.

In the mitochondria, during the TCA cycle, isocitrate is con-
verted into 2-oxoglutarate by two different isocitrate dehydro-
genase reactions, with different cofactors (NADP, EC 1.1.1.42
and NAD, EC 1.1.1.41). The 2-oxoglutarate complex converted
coenzymeA to 2-oxglutarate to produce succinylCoA. This
complex requires three different enzymes, a mitochondrial 2-
oxoglutarate dehydrogenase (EC 1.2.4.2), a dihydrolipoliamide
succinyl-transferase (EC 2.3.1.61) and the dihydrolipoyl dehy-
drogenase (EC 1.8.1.4). Succinate-CoA ligases (GTP as
cofactor, EC 6.2.1.4 and ATP as cofactor 6.2.1.5) catabolize the
conversion of succinyl-CoA into succinate. Succinate dehydro-
genase (EC 1.3.5.1) oxidizes succinate into fumarate. Finally, the
last step in the TCA cycle is the conversion of fumarate into
malate by the fumarate hydratase (FumR, EC 4.2.1.2).

Most of the enzymatic reactions have multiple isoenzymes
assigned to them. Only PycA (NRRL3_08073), the peroxisomal
malate synthase (NRRL3_03733), isocitrate lyase
(NRRL3_02395) and the mitochondrial FumR (NRRL3_03113)
and MdhA_M (NRRL3_04395) are present as a single enzyme in
all genomes, some of them are present as more than one copy.

Within the pyruvate dehydrogenase complex, pyruvate de-
hydrogenase has two subunits, alpha and beta. The alpha sub-
units, PdaA (NRRL3_04970) and NRRL3_09769 belong to the
same cluster. PdaA is present in all species except in A. nidulans
while NRRL3_09769 is missing in N. crassa, T. reesei and
P. zonata. The beta subunit NRRL3_01584, belong to a different
cluster containing orthologs for all species. Enzymes from two
different clusters have been assigned to dihydrolipoamide S-
acetyltransferase activity, with the A. niger genes NRRL3_05302
and NRRL3_04398 assigned to them, and orthologs for both are
present in all species. The last component of the complex, LpdA
(NRRL3_04756), is present in all species. Acetyl-CoA synthase,
AcuA (NRRL3_07795) is also present in all species, but its
paralog (NRRL3_03516) is missing in A. aculeatus. A third
enzyme, NRRL3_03516_like is present in A. wentii, A. fischeri, A.
campestris A. versicolor, A. aculeatus and A. tubingensis. Even
68
though in the network only one protein was assigned to the
oxaloacetate dehydrogenase reaction, OahA (NRRL3_06354),
the orthology analysis shows two additional paralogous groups
(NRRL3_04875 and NRRL3_06354_like|NRRL3_04875_like). All
genomes contain at least one protein assigned to this reaction.
After T. stipitatis branched off multiple sequences are found
reaching the higher number of paralogs in section Nigri.

In glyoxylate cycle, three isoenzymes have been assigned to the
malate dehydrogenase reaction belonging to two different clusters.
MdhA_P (NRRL3_03570) is present in all species, except
A. campestris. A second enzyme in the same cluster,
NRRL3_09556 is present only in section Nigri, A. nidulans, A. wenti
and the Penicillium species. The third group of enzymes from a
different cluster, orthologs of NRRL3_08886, is present in all spe-
cies except A. luchuensis and A. fischeri. A NRRL3_08886_like
group containing genes from A. wenti, section Nidulantes, A. car-
bonarius and A. tubingensis was also identified.

Initially, two citrate synthases assigned in the network were
identified, NRRL3_02449 and NRRL3_11764, but according to in
house data they do not participate during glyoxylate production.
Nevertheless, A third paralog was identified through orthology.
NRRL3_00288 appeared after genus Talaromyces split off and it
is only missing in A. aculeatus.

In the TCA cycle, citrate synthase is assigned to two
mitochondrial enzymes, CitA (NRRL3_00547) and McsA
(NRRL3_03739) that belong to the same cluster and are present
in all species. NADPH+-dependent isocitrate dehydrogenase
(NRRL3_05263) is also present in all species. This cluster also
contains NRRL3_05263_like sequences from S. cerevisiae and
A. campestris that group separately. NADH+-dependent isocitrate
dehydrogenase isoenzymes (NRRL3_10706 and NRRL3_11176)
that belong to the same cluster, are present in all species.

Interestingly, one enzyme of each component of the 2-
oxoglutarate dehydrogenase complex is present in almost all
species, NRRL3_07854, NRRL3_09217 (missing in T. marneffei)
and LpdA (NRRL3_04756). A second 2-oxoglutrate dehydroge-
nase NRRL3_11728 and a dihydrolipoamide S-succinyl trans-
ferase NRRL3_11727 are only present in A. wentii, A. versicolor
and some members of section Nigri.

Succinate-CoA ligases NRRL3_06528 and NRL3_00603
belong to different clusters. Both enzymes are present in all
species. In addition, a NRRL3_06528_like group contains a
T. reesei and A. sydowii sequence, and these species also
contain a NRRL3_00603_like sequence together with P. zonata,
Penicillium species, A. wenti, A. clavatus, species from section
Fumigatus and A. campestris.

Succinate dehydrogenases assigned in the network belong to
several clusters. All species contain between six and eight
paralogs encoded in their genome, section Nigri contain up to ten
paralogs.

Beside production of different acids, the intermediate metab-
olites of both cycles are used to produce different amino acids
essential for the fungus to survive in the environment. Since
growth on the pyruvate precursors D-glucose and D-fructose was
positive, we can predict that all species have functional TCA and
glyoxylate cycles.

D-Gluconate metabolism

In the presence of D-glucose, some fungi will produce gluconate
and its acid form D-gluconic acid as the primary overflow
metabolite under non-limiting growth on glucose (Shindia et al.
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2006) (Fig. 5). A. niger oxidizes D-glucose to D-glucono-1,5-
lactone by a glucose oxidase from the carbohydrate active
enzyme (CAZy) family AA2 (Lombard et al. 2014) (Gox, EC
1.1.3.4). D-glucono-1,5-lactone lactonodehydrolase or glucono-
lactonase (EC 3.1.1.17) converts D-glucono-1,5-lactone to D-
gluconate, which can be dehydrated to 2-keto-3-deoxy-D-gluco-
nate by D-galactonate dehydratase (GaaB, EC 4.2.1.146) that is
also involved in D-galacturonic acid metabolism. This is further
cleaved to D-glyceraldehyde and pyruvate by 2-dehydro-3-
deoxy-D-gluconate D-glyceraldehyde-lyase (EC 4.1.2.51). D-glu-
conate can enter the pentose phosphate pathway through the
conversion to D-gluconate-6-phosphate catalysed by gluconoki-
nase (EC 2.7.1.12).

Overall, genomes from sections Nigri, Nidulantes and genus
Penicillium contain several predicted proteins associated to the
reactions above, explaining the higher amount of gluconic acid
production reported for these fungi (de Vries et al. 2017). They
seem to have gained additional copies of glucose oxidase (Gox),
after N. crassa diverged from the other species. The highest
number of enzymes is observed for section Nigri with five Gox
enzymes belonging to a single cluster, including the charac-
terised GoxC (NRRL3_02841). The high number of isoenzymes
might suggest production of alternatives for lactonate, but no
other enzymatic products have been described despite the broad
use of GOX in industrial processes (Malherbe et al. 2003). Two
gluconolactonases, belonging to different clusters, were pre-
dicted but the iso-enzyme NRRL3_07416 is only present in
section Nigri. A second enzyme belonging to GaaB cluster was
present in many species outside the Aspergilli, suggesting it got
lost after the Aspergilli branched off the other fungi. A similar
situation was detected for 2-dehydro-3-deoxy-D-gluconate D-
glyceraldehyde-lyases. Only one enzyme for this function was
associated to the reaction in the network (NRRL3_01716), but
through orthology, we were able to identify eight different
paralogous groups belonging to one of the largest clusters
resulting from the orthology analysis. As mentioned above, there
is a connection between D-gluconate and the pentose phosphate
pathway not involving glycolysis for which NRRL3_02224, the
only enzyme assigned is present in all species, including
S. cerevisiae.
D
−g

lu
co

na
te

S
ac

ce
1

N
eu

cr
2

Tr
ire

2

Ta
lm

a1
_2

Ta
ls

t1
_2

A
sp

zo
1

Pe
nc

h1

Pe
nc

hW
is

c1
_1

A
sp

w
e1

A
sp

cl
1

A
sp

fu
1

N
eo

fi1

A
sp

ca
m

1

A
sp

ni
d1

A
sp

sy
1

A
sp

v e
1

A
sp

ac
1

A
sp

ca
3

Fig. 5. D-gluconate heatmap abundance of A. niger orthologous proteins in the D-glucona
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Metabolism of the disaccharides maltose and
sucrose

Maltose is a disaccharide formed by two molecules of α-D-glucose
with a 1,4-glucoside linkage. Through hydrolysis, α-glucosidase
produces two molecules of D-glucose that enters glycolysis.
α-glucosidase or maltase (EC 3.2.1.20) belongs to CAZy families
GH13 and GH31 (Lombard et al. 2014) (Fig. 6). Seven different
A. niger proteins have been assigned in the network. Enzymes from
family GH31, AgdA (NRRL3_07700), AgdB (NRRL3_02524), AgdE
(NRRL3_00475), AgdF (NRRL3_10609) and AgdG (NRRL3_04254)
belong to four different clusters (Kimura et al. 1992, Nakamura et al.
1997). Enzymes from family GH13, AgdD (NRRL3_01282) and
NRRL3_05201 belong to a unique cluster. All species contain more
than one protein in their genome from family GH31 from different
clusters. Within family GH13, NRRL3_05201 ortholog is present in all
species of the Eurotiales. The NRRL3_01282_like group is mostly
missing in section Nigri, while AgdD (NRRL3_01282) is specific for
section Nigri.

All species in this study contain more than one α-glucosidase
in their genome, which match their ability to grow on maltose as
sole carbon source. T. stipitatus, A. fischeri and A. niger grew
better on maltose than on D-glucose. S. cerevisiae is not able to
grow on D-maltose which correlates with the presence of only two
α-glucosidases in its genome, AgdE and AgdD orthologs. Other
than this example, there is no correlation between the number of
enzymes encoded and their ability to grow on maltose.

Sucrose is a disaccharide of D-glucose and D-fructose and its
hydrolysis is catalysed by β-D-fructofuranoside fructohydrolase
(EC 3.2.1.26) belonging to CAZy family GH32 (Lombard et al.
2014), also known as invertase (Fig. 7). The catalytic reaction
releases two monomers, an α-D-glucose and a β-D-fructose that
both enter glycolysis through the enzymatic reactions catabo-
lized by hexokinases (HxkA and NRRL3_11729) and glucoki-
nases (Glk), where the latter only acts on α-D-glucose.

There are three invertases (SucA-C) assigned to A. niger su-
crose degradation (Boddy et al. 1993, Wallis et al. 1997), all of
which belong to the same cluster. Invertases SucB (NRRL3_03595)
and SucC (NRRL3_11821) appeared firstly in T. stipitatus genome.
SucA (NRRL3_11752) appeared when Penicillium species
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Fig. 6. Maltose heatmap abundance of A. niger orthologous proteins in the maltose catabolic pathway. The legends are the same as that of Fig. 3.
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branched off. SucC is only present in T. stipitatis, Penicillium spe-
cies, A. brasiliensis andA. niger, while SucB is present in all species
except P. zonata, A. clavatus and A. campestris. SucA is missing in
A. clavatus, A. campestris, A. nidulans and section Fumigati. In
summary, P. zonata, A. clavatus and A. camptestris lack all three
enzymes, section Fumigati only contains SucB, section Nidulantes
and Nigri contain mainly SucA and SucB, while Penicillium species
contain all three.

All species show different degrees of growth on sucrose.
T. stipitatus, A. wentii, A. brasiliensis and A. luchuensis grew
better on this disaccharide that on the monosacchrarides, D-
glucose and D-fructose. T. marneffei showed reduced growth on
sucrose compare to D-glucose and D-fructose. Trichoderma
reesei is known for lacking invertases in its genome; however, it
is able to grow when invertases from other species are heter-
ologously produced (Berges et al. 1993), which corroborates the
use of the resulting monosaccharides as substrates of glycolysis.
On the other hand, S. cerevisiae and N. crassa showed growth
on sucrose although they miss all three ortholog of genes
identified in A. niger NRRL 3, which showed the sequence di-
versity within the CAZy family or a different mechanism to
degrade sucrose.
D-Mannose metabolism

α-D-Mannose can be metabolized through glycolysis or utilized
for the formation of glycoproteins through the production of GDP-
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α-D-mannose (Fig. 8). α-D-mannose is converted to α-D-
mannose-6-phosphate by Hxk (see glycolysis metabolism sec-
tion) and it is linked to glycolysis through mannose-6-phosphate
isomerase (PmiA, EC 5.3.1.8) (Ruijter & Visser 1999, Upadhyay
& Shaw 2006) that convers D-mannose 6-phosphate in D-fruc-
tose-6-phosphate.

To produce GDP-α-D-mannose, phosphomannomutase
(PmmA, EC 5.4.2.8) converts D-mannose into α-D-mannose 1-
phosphate that is further converted by the mannose-1-
phosphate guanylyltransferase (EC 2.7.7.13) to GDP-α-D-
mannose.

PmiA (NRRL3_11229) and its ortholog NRRL3_07971 and
PmmA (NRRL3_10685) are present in all species. Two clusters
encoding mannose-1-phosphate guanylyltransferase were
found. All species contain enzymes from these two clusters
(NRRL3_07837 and NRRL3_09951) except A. carbonarius that
contains also a NRRL3_07837_like protein.

In general, all species show growth on D-mannose similar to
D-glucose, except T. marneffei that showed highly reduced
growth compared to D-glucose.
D-Galactose metabolism

In A. niger D-galactose can be metabolized through three
different pathways (Fig. 9). The Leloir pathway and the oxidor-
eductive pathway final products of which enter glycolysis as D-
fructose 6-phosphate or D-glucose 6-phosphate, and the non-
NRRL3_11752: SucA
NRRL3_11821: SucC
NRRL3_03595: SucB

A
sp

ac
1

A
sp

ca
3

A
sp

br
1

A
sp

ni
_N

R
R

L3
_1

A
sp

fo
1

A
sp

tu
1

Section

E
C

 n
um

be
rs

C
lu

st
er EC numbers

3.2.1.26 (31)

Section
nd
Talaromyces
Chrysogena
Cremei
Clavati

Fumigati
Candidi
Nidulantes
Nigri

Growth profile

Absence/Presence
≥ 2
1
0

No Carbon Source
D-glucose
D-fructose
sucrose

tabolic pathway. The legends are the same as that of Fig. 3 .



D
−m

an
no

se

S
ac

ce
1

N
eu

cr
2

Tr
ire

2

Ta
lm

a1
_2

Ta
ls

t1
_2

A
sp

zo
1

Pe
nc

h1

Pe
nc

hW
is

c1
_1

A
sp

w
e1

A
sp

cl
1

A
sp

fu
1

N
eo

fi1

A
sp

ca
m

1

A
sp

ni
d1

A
sp

sy
1

A
sp

ve
1

A
sp

ac
1

A
sp

ca
3

A
sp

br
1

A
sp

ni
_N

R
R

L3
_1

A
sp

f o
1

A
sp

tu
1

Section

E
C

 n
um

be
rs

NRRL3_07837
NRRL3_07837_like
NRRL3_09951

NRRL3_10685: PmmA

NRRL3_05100: HxkA
NRRL3_11729
NRRL3_11729_like
NRRL3_11229: PmiA
NRRL3_07971

C
lu

st
er

EC numbers

Section
nd
Talaromyces
Chrysogena
Cremei
Clavati

Fumigati
Candidi
Nidulantes
Nigri

Absence/Presence
≥ 2
1
0

0

2

4

6

8

10

No Carbon Source
D-glucose
D-mannose

Growth profile

2.7.1.7 (39)
2.7.7.13 (40)
5.3.1.8 (42)
5.4.2.8 (41)

Fig. 8. D-mannose heatmap abundance of A. niger orthologous proteins in the D-mannose catabolic pathway. The legends are the same as that of Fig. 3.

FUNGAL SUGAR CATABOLISM
phosphorylated DeLey-Doudoroff pathway whose final products
are pyruvate and D-glyceraldehyde 3-phosphate (Elshafei &
Abdel-Fatah 2001, Khosravi et al. 2015).

The Leloir pathway requires α-D-galactose, but the β-anomer
is the most common form released during polysaccharides
degradation. Aldose 1-epimerase (EC 5.1.3.3), also known as
mutarotase epimerizes β-D-galactose into its α-anomer,
which can occur both extracellularly and in the cytosol. α-D-
galactose is phosphorylated by the galactokinase (GalK, EC
2.7.1.6) to form α-D-galactose 3-phosphate. Galactose-1-
Fig. 9. D-galactose heatmap abundance of A. niger orthologous proteins in the D-galact

www.studiesinmycology.org
phosphate uridylyltransferase (GalT, EC 2.7.7.12), catalyses
the transfer of a UMP group from UDP-glucose to galactose 1-
phosphate, generating glucose 1-phosphate and UDP-
galactose. To balance the reaction, UDP-galactose is con-
verted to UDP-glucose by UDP-galactose 4-epimerase (EC
5.1.3.2). Finally, phosphoglucomutase (PgmB, EC 5.4.2.2) ca-
talyses the conversion of glucose 1-phosphate into glucose 6-
phosphate that enters glycolysis.

GalK (NRRL3_06978) and PgmB (NRRL3_05655) are present
in all species while GalT (NRRL3_05970) is only missing in
ose catabolic pathways. The legends are the same as that of Fig. 3.
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T. stipitatus. There are two mutarotases predicted, belonging to
different clusters, NRRL3_09251 (intracellular) and NRRL3_05510
(extracellular), which are both present in all species. A second
extracellular mutarotase, NRRL3_10372 was found through
orthology, and is present in A. wentii, A. clavatus A. fumigatus and
A. niger exclusively. An ancestral group in this cluster contains an
N. crassa sequence. Four clusters contain enzymes assigned to
UDP-galactose 4-epimerase. GalE (NRRL3_00925) is the only
ortholog present in all species. GalE and the other members of its
cluster (NRRL3_05343 and NRRL3_02929) are the most
conserved orthologs assigned to this activity. Phylogenetic anal-
ysis showed that almost every species contains one or more
orthologs from other clusters, with the maximum number of pro-
teins in section Nigri. β-D-galactose is metabolized directly by the
oxidoreductive pathway. Several of the enzymes in this pathway
have been shown to also be involved in L-arabinose and D-xylose
metabolism (Fekete et al. 2004, Mojzita et al. 2010a,b, Mojzita et al.
2012a,b, Metz et al. 2013). The first step is the reduction of β-D-
galactose to galatitol (EC 1.1.1.21). The reduction of the galactitol
into L-xylo-3-hexulose is catalysed by the galactitol dehydrogenase
(LadB, EC 1.1.1.-) follow by reduction to D-sorbitol catalysed by a
reductase specific to D-galactose metabolism, the L-xylo-3-
hexulose reductase (XhrA, EC 1.1.1.-). Sorbitol dehydrogenase
(SdhA, EC 1.1.1.14) catalyses the conversion of sorbitol to keto-D-
fructopyranose which through spontaneous reaction is trans-
formed into its furanose form to enter glycolysis after Hxk transfers
a phosphate group to it.

LadB (NRRL3_07283) and XhrA (NRRL3_07289) are the only
single enzymes assigned in the oxidoreductive pathway, and both
appear after Penicillium species splits off from the other species.
They are missing in A. clavatus, A. fischeri and A. aculeatus. In
contrast, there are several oxidorreductases from the same
cluster assigned to the production of galactitol (EC 1.1.1.21), but
XyrA (NRRL3_01952) and NRRL3_05038 are the only orthologs
present in all species. The last step of the pathway, includes SdhA
(NRRL3_04328) and GutB (NRRL3_01929) from two different
clusters. GutB is present in all species after T. reesei except for
A. campestris. While SdhA appears after P. zonata splits off from
the other Eurotiales and is present in all species except
A. clavatus and A. campestris. Neither the A. niger NRRL 3
genome functional annotation nor the curated network revealed
an aldolase with tagatose-biphosphate affinity suggested in a
previous study for the A. nidulans genome (Flipphi et al. 2009).
This suggests that not all Aspergilli are able to convert D-galac-
tose into dihydroxyacetone phosphate and D-glyceraldehyde 3-
phosphate.

In the non-phosphorylated DeLey-Duodoroff pathway, the
starting substrate is the β-D-galactose form which is oxidized into
its lactone form, D-galactono-1,4-lactone by D-galactose dehy-
drogenase (EC 1.1.1.48). Gamma 1,4 lactonase (EC 3.1.1.25)
converts D-galactone 1,4-lactone into D-galactonate, which is
further converted by D-galactonate dehydratase (DgdA and DgdB,
EC 4.2.1.6) into 2-dehydro-3-deoxy-D-galactonate. Although no
aldolase has been associated to the reaction (EC 4.1.2.51), it has
been shown (Elshafei & Abdel-Fatah 2001) that the last reaction
produces pyruvate and D-glyceraldehyde from 2-dehydro-3-
deoxy-D-galactonate. Pyruvate enters the TCA and glyoxylate
cycles while D-glyceraldehyde enters glycolysis as D-glyceralde-
hyde-3-phosphate after a kinase (EC 2.7.1.28) transfers a
phosphate group.

Two enzymes from different clusters have been assigned to D-
galactose dehydrogenase. NRRL3_06411 is present in all species,
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while NRRL3_03123 is missing inN. crassa, P. zonata, A. clavatus,
section Fumigati and A. nidulans. A second NRRL3_03123_like
group that contains sequences of Talaromyces species, A. wentii,
A. clavati, section Fumigati and some species of sections Nidu-
lantes and Nigri was found during phylogenetic analysis. A single
cluster, contains two γ-1,4-lactonase orthologs (NRRL3_08839
and NRRL3_10750) that are present in most species after Talar-
omyces, but Penicillium species lack both. Either DgdA or DgdB
(NRRL3_08012 and NRRL3_10522) is present in all genomes
after T. reesei, except in P. zonata and A. nidulans. An A. nidulans
ortholog is present in a NRRL3_10522_like|NRRL3_08012_like
group as well in other species before A. campestris. D-glycer-
aldehydo 3-phosphate (NRRL3_01127) is detected in all species
except P. rubens.

For most of the species that were able to grow on D-galactose,
mycelia was used as starting material. In spite of the genomes
encoding the enzymes needed for D-galactose metabolism, growth
from spores is impossible. Different scenarios need to be consid-
ered, transportation inside the cell or lack of induction (Fekete et al.
2012). Except for A. brasiliensis which was shown before to be the
only Nigri able to grow from spores in D-galactose (Meijer et al.
2011). A. brasiliensis protein profile differs from the rest of the
section Nigri in having a close ortholog NRRL3_05510_like. This
group further contains A. versicolor, A. wentii and both Penicillium
species orthologs. With the exception of P. chrysosporum, all three
species show growth on D-galactose from spores. More studies
need to be done to understand the different pathways involved on
D-galactose metabolism.

D-galacturonic acid and L-rhamnose metabolism

D-galacturonic acid and L-rhamnose are both components from
pectin and are metabolized through similar but different non-
phosphorylated pathways (Alazi et al. 2017, Khosravi et al.
2017). Their recent identification explains why these pathways
were not included in the previous inventory of central carbon
metabolism in several Aspergilli (Flipphi et al. 2009).

Pectin hydrolysis released D-galacturonic acid monomers that
are metabolized through the D-galacturonic pathway (Fig. 10). D-
galacturonic acid reductase (GaaA, EC 1.1.1365/1.1.1.-) con-
verts D-galacturonic acid into aldehyde-L-galactonate. (Alazi et al.
2017), which then is converted by GaaB (NRRL3_06890, EC
4.2.1.146), encoding a L-galactonate dehydratase, into 2-
dehydro-3-deoxy-L-galactonate. 2-keto-3-deoxy-L-galactonate
aldolase (GaaC, EC 4.1.2.54) catabolized the reaction splitting 2-
keto-3-deoxy-L-galactonate into L-glyceraldehyde and pyruvate.
Pyruvate enters TCA and glyoxylate cycles among other path-
ways, while L-glyceraldehyde is reduced to glycerol by aldolase
reductase, (GaaD/LarA, 1.1.1.372). This enzyme has been
shown to also be involved in L-arabitol, D-xylitol, D-eritritol and
glycerol metabolism (de Groot et al. 2005, Mojzita et al. 2010a,
Jovanovic et al. 2013).

All characterised enzymes, GaaA (NRRL3_05650), GaaB
(NRRL3_06890), GaaC (NRRL3_05649) and GaaD/LarA
(NRRL3_10050) are present in all studied species. A second
enzyme (NRRL3_06930) assigned to D-galacturonic reductase
activity that belongs to a different cluster than GaaA was found in
all species, including S. cerevisiae. This enzyme could be the
responsible for supporting reduced growth observed on D-gal-
acturonic acid when gaaA was deleted (Alazi et al. 2017).
Several species contain representatives of two
NRRL3_06930_like groups. Another group was found in the
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Fig. 10. D-galacturonic and glycerol heatmap abundance of A. niger orthologous proteins in the D-galacturonic and glycerol catabolic pathways. The legends are the same as
that of Fig. 3.

FUNGAL SUGAR CATABOLISM
GaaB cluster (NRRL3_06890_like) containing sequences from
Trichoderma reesei, Talaromyces stipitatus and Penicillium
species.

When evaluating growth on D-galacturonic acid, we need to
take into consideration glycerol metabolism. Glycerol can be
used as carbon source when present in the medium or as an
intermediate of other pathways. Glycerol can be converted into
sn-glycerol 3-phosphate by the glycerol kinase (EC 2.7.1.30).
The reverse reaction is catalysed by glycerol 1-phosphatases
(EC 3.1.3.21). Sn-glycerol 3-phosphate is converted into dihy-
droxyacetone phosphate that enters glycolysis, by two different
reversible reactions. A flavin-dependent glycerol 3-phosphate
dehydrogenase (EC 1.1.5.3) present in the mitochondrial
membrane and a glycerol 3-phosphate dehydrogenases (EC
1.1.1.8). Dihydroxyacetone phosphate can be produced from
dihydroxyacetone by a reversible reaction catalysed by glycer-
one kinase (EC 2.7.1.29). Dihydroxyacetone is produce by the
reduction of glycerol catalysed by glycerol hydrogenase (GldB,
EC1.1.1.156).

Glycerol 1-phosphatase NRRL3_10933, flavin-dependent
glycerol 3-phosphate dehydrogenase NRRL3_10724 and GldB
(NRRL3_01127) are present in all species. Glycerol kinase
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Fig. 11. L-rhamnose heatmap abundance of A. niger orthologous proteins in the L-rham
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NRRL3_07842 is also present in all species except S. cerevisiae
and T. reesei, and its ortholog group NRRL3_07842_like is only
missing in section Nigri and N. crassa. Besides NRR3_10933,
another phosphatase has been found in the same cluster
(NRRL3_11685), which is only present in some species from
section Nigri. The A. wentii genome lacks all glycerol 3-
phosphatase candidates (NRRL3_02122 and NRRL3_04170),
while the rest of the genomes contain at least one of the
orthologs. Glycerol metabolism in S. cerevisiae is an important
source of energy, and its genomes contains at least one copy of
each enzyme.

With the exception of P. rubens, A. clavatus, A. campestris
and A. versicolor, all species are able to grow on D-galacturonic
acid as sole carbon source with no difference related to genome
content. Therefore, we can assume, that glycerol metabolism is
also functional in the rest of the species.

L-rhamnose is released from polysaccharides such as pectin
or rhamnogalacturonan type I in its β-pyranose formed. Similar to
D-galacturonic acid, L-rhamnose is transformed into the furanose
form through a spontaneous reaction to enter the L-rhamnose
degradation pathway (Fig. 11). L-rhamnose is converted into L-
rhamnose-1,4-lactone by a NADH-dependent L-rhamnose-1-
NRRL3_08837
NRRL3_01494: LraA
NRRL3_01493: LraB
NRRL3_01495: LraC
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dehydrogenase (LraA, EC 1.1.1.173) (Khosravi et al. 2017). The
L-rhamnonic acid lactonase (LraB, EC 3.1.1.65), catalyses the
hydrolysis of L-rhamnono-1,4-lactone to L-rhamnonate, while L-
rhamnonate dehydratase (LraC, EC 4.1.2.53) converts this into
2-dehydro-3-deoxy-L-rhamnonate. The enzyme catalysing the
last step in the pathway, an aldolase (EC 4.2.1.53) remains to be
discovered.

All species contain one copy of each known Lra enzyme, LraA
(NRRL3_01494), LraB (NRRL3_01493) and LraC (NRRL3_01495),
exceptA. carbonarius that containmore than one copy of all three. A
second paralog of LraA, NRRL3_08837 was found in the same
cluster and is present in all species after P. zonata except
A. clavatus, A. campestris, A. aculeatus and section Fumigati.

A similar phenotype was observed in species belonging to
different clades. Those species that grow on L-rhamnose show
either reduced or similar growth to D-glucose, except N. crassa
which shows better growth than on D-glucose. Interestingly,
A. carbonarius was not able to grow on L-rhamnose even though
it has extra copies of all known Lra genes.

Pentose catabolism

Pentose catabolism in A. niger mainly involves two pathways, the
pentose catabolic and pentose phosphate pathways. The
pentose catabolic pathway includes L-arabinose and D-xylose
catabolism to produce D-xylulose, and the pentose phosphate
pathway includes D-ribulose, D-ribose and D-xylulose catabolism
and the production of several glycolytic intermediates including
NADPH necessary during glycolysis (Fig. 12).

In the first step in L-arabinose metabolism, L-arabinose
reductase converts L-arabinose into L-arabitol (GaaD/LarA, EC
1.1.1.-, 1.1.1.21) (de Groot et al. 2005, Mojzita et al. 2010a,
Jovanovic et al. 2013). L-arabitol oxidation to L-xylulose is cat-
alysed by L-arabitol 4-dehydrogenase (LadA, EC 1.1.1.12) (Kim
et al. 2010, Mojzita et al. 2012b). The last step is the reduction of
L-xylulose to produce xylitol by xylitol dehydrogenase (LxrA, EC
1.1.1.10).

D-xylose conversion into xylitol is catabolized by D-xylose
reductase (XyrA, EC 1.1.1.21). The final product of the separate
L-arabinose and D-xylose pathways, xylitol, is reduced to D-
xylulose by xylitol dehydrogenase (EC 1.1.1.9). which is phos-
phorylated by D-xylulose kinase to form D-xylulose 5-phosphate
(XkiA, 2.7.1.17).

D-xylulose 5-phosphate originates from the pentose catabolic
pathway and is one of the main substrates of the pentose
phosphate pathway. Glycolysis connects to the pentose phos-
phate pathway through D-glucose 6-phosphate conversion to 6-
phospho D-gluconate-1,5-lactone by the glucose-6-phosphate 1-
dehydrogenase (GsdA, EC 1.1.1.49) (van den Broek et al. 1995).
6-phosphogluconolactonase (EC 3.1.1.31) hydrolyzes 6-
phospho D-glucono-1,5-lactonate to produce D-gluconate 6-
phosphate, which is further catabolized by 6-phosphogluconate
dehydrogenase (EC 1.1.1.44) to D-ribulose 5-phosphate. The
D-gluconate pathway also connects to the pentose phosphate
pathway through D-gluconate 6-phosphate.

D-ribulose 5-phosphate can be produced from the degrada-
tion of D-ribulose catalysed by ribulokinase (RbtA, EC 2.7.1.47),
and is then converted by ribulose-phosphate 3-epimerase
(RpeA, EC 5.1.3.1) to D-xylulose 5-phosphate or by ribose 5-
phosphate isomerase (Rpi, EC 5.3.1.6) to D-ribose 5-
phosphate. Transketolase (TktA, EC 2.2.1.1) catalyses the re-
action between D-ribose 5-phosphate and D-xylose 5-phosphate
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to produce D-sedoheptulose 7-phosphate and D-glyceraldehyde
3-phosphate. The latter can enter glycolysis or be utilized by
transaldolases (Tal, EC 2.2.1.2) to produce D-erythrose 4-
phosphate and β-D-fructofuranose 6-phosphate that can also
enter glycolysis or other pathways. Transketolase (TktA), can
also convert D-erythrose 4-phosphate and D-xylose 5-phosphate
into β-D-fructose 6-phosphate and D-glyceraldehyde creating a
loop in the pathway. A different transketolase (TktB, EC 2.2.1.3)
catalyses the production of D-glyceraldehyde and dihydroxyac-
etone from D-xylulose 5-phosphate and formaldehyde.

Except for XkiA (NRRL3_04471) that is present in all species,
all reactions in the pentose catabolic pathway have multiple en-
zymes assigned. Five enzymes have been assigned to L-arabitol
and xylitol production. Through phylogenetic analysis, we found a
total of eight proteins predicted to be involved in those reactions,
but only two have been biochemically characterised GaaD/LarA
and XyrA (Hasper et al. 2000, Jovanovic et al. 2013). In vitro
analysis showed activity of GaaD/LarA and XyrA on L-arabinose, D-
xylose and for the latter on D-galactose as well, but growth on L-
arabinose or D-xylose is already reduced when LarA or XyrA are
missing (Mojzita et al. 2010a). GaaD/LarA (NRRL3_10050) shows
the highest affinity for L-arabinose and L-arabitol while XyrA
(NRRL3_01952) shows higher affinity for D-xylose and xylitol
compared to other enzymes. Orthologs of both genes can be found
in all studied species. The NRRL3_05038 ortholog is also found in
all species. Interestingly, both XyrA and NRRL3_05038 are the
only enzymes for these reactions that are also present in
S. cerevisiae and N. crassa. The other genomes contain different
orthologs for several enzymes, up to eight in some species from
section Nigri. LadA (NRRL3_02523) is present in all species but its
ortholog NRRL3_00896 is missing in N. crassa, T. stipitatus, P.
zonata, A. clavatus and A. campestris. Those species together
with Trichoderma reesei, Talaromyces marneffei, Penicillium
species, A. campestris and sections Fumigati and Nidulantes also
miss NRRL3_08407 in their genome. LxrA (NRRL3_10884) is the
only xylitol dehydrogenase characterised and it is present in all
species. From the same cluster, NRRL3_04510 is missing in the
genome of A. campestris. Species from section Nidulantes contain
all four orthologs.

Several enzymes have been assigned to D-xylulose production
but only some of them have been biochemically characterised.
XdhA (NRRL3_09204) shows the highest activity with xylitol and D-
xylulose, while LadA (NRRL3_02523) is also active on xylitol and
D-xylulose but has higher activity on L-arabitol and L-xylulose (de
Groot et al. 2007). XdhA, LadA and NRRL3_00319 are present
in all species. From the same cluster, five additional orthologous
groups were identified. A. wentii, A. versicolor, A. brasiliensis and
A. niger contain representatives of all eight groups.

GsdA (NRRL3_05283), RbtA (NRRL3_00588), RpeA
(NRRL3_00279), RpiA (NRRL3_10107) and TktA (NRRL3_11249)
are present in all species, while PgiA (NRRL3_02043) is missing in
A. campestris. Two different clusters contain five enzymes with 6-
phosphogluconate dehydrogenase activity (EC 1.1.1.44), which
were found through phylogenetic analysis. Only NRRL3_09981 is
present in all species, including S. cerevisiae. Most of the species
contain also NRRL3_09641 and NRRL3_09981 orthologs, except
for T. reesei, but NRRL3_08784 is only present in A. wentii, A.
sydowii, A. versicolor, A. aculeatus and A. niger.

Ribose 5-phosphate isomerase assigned enzymes (RpiA:
NRRL3_10107 and RpiB: NRRL3_06024) belong to different
clusters. RpiB is missing in A. fumigatus, while
NRRL3_06024_like group only contains orthologs from A. wentii
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Fig. 12. Pentose metabolism heatmap abundance of A. niger orthologous proteins in the pentose metabolic pathways. The legends are the same as that of Fig. 3.
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and A. campestris. There are two transaldolases predicted (TalA,
NRRL3_04528 and TalB, NRRL3_04473) that belong to the
same cluster. TalA is missing in A. fumigatus while TalB is
missing in T. reesei, A. clavatus, A. fumigatus and some species
from section Nidulantes. This implies that there is no trans-
aldolase similar to these genes in A. fumigatus, which implies
that a non-homologous gene is responsible for this function or
that the gene has not been identified or assembled in the
A. fumigatus genome. In contrast, NRRL3_04473_like orthologs
are only present in A. aculeatus, A. carbonarius, section Nidu-
lantes and Penicillium species. Dihydroxyacetone synthase (EC
2.2.1.3), TktC (NRRL3_00895) and NRRL3_10165 belong to the
same cluster as TktA (NRRL3_11249, EC 2.2.1.1). They have
been assigned a different reaction in the network. They catalysed
the production of dihydroxyacetone and D-glyceraldehyde 3-
phosphate from D-xylulose 5-phosphate and formaldehyde.
Only Penicillium species, A. versicolor and A. luchuensis contain
all three orthologs predicted, most species contain only two
orthologs in their genomes.

All species were able to grow on L-arabinose and D-xylose to
different degrees. Interestingly, even though both Penicillium
www.studiesinmycology.org
species have the same pattern (except extra copies of
NRRL3_09641) they behaved differently. P. chrysogenum grew on
D-xylose as good as on D-glucose while P. rubens showed better
growth on L-arabinose but always lower than on D-glucose.
A. campestris grew better than any other species on L-arabinose
compared to D-glucose, despite missing several orthologous en-
zymes for most of the activities. Yeasts likeS. cerevisiae are known
for being unable to grow on pentoses unless genetically modified
(Jeffries 2006, Hahn-Hagerdal et al. 2007). As shown in the Fig. 12,
they miss most of the orthologous proteins involved exclusively in
pentose catabolic metabolism, but not pentose phosphate meta-
bolism that is needed to produce NADPH for glycolysis.
DISCUSSION

Automated pipelines for genome assembly, gene prediction and
functional annotation have evolved over the years to handle
increasingly larger next generation sequencing output files. At
the same time, human supervision has reduced compared to the
initial genomes. In our protein assessment analysis, we show
75
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how gene prediction quality varies between genomes regardless
of organism, technology or consortia. Comparing the predicted
proteome against a database of conserved proteins enables
evaluation of the completeness of the proteome and therefore
the quality of the gene annotation and genome assembly.
Different options can be used to improve a new genome. The
most common option is to use a similar genome from a closely
related species to improve gene prediction and functional
annotation, but this only provides significant improvement if that
genome is of high quality. However, not many high-quality ge-
nomes are available. Gold-standard genomes are difficult to
acquire, they require a high amount of omics data and manual
curation by experts at every stage of the process. We showed in
this study that more than 90 % of predicted proteins in genus
Penicillium shared sequence similarity with proteins from genus
Aspergillus. Using a gold-standard genome can improve gene
prediction and protein functional annotation and, if combined with
metabolic network analysis, it can be used to predict metabolic
pathways with higher confidence. This analysis goes significantly
beyond the use of the KEGG automatic pipeline together with
orthology analysis and a partially completed genome sequence
that was used in the previous study based on A. nidulans (Flipphi
et al. 2009).

In this study, we also showed how orthology and protein
profiling based on a manually curated metabolic network of a
gold-standard genome (A. niger NRRL 3) can be used to predict
primary carbon metabolism in a number of species and correlate
the genome content with growth abilities. As expected, more
distant Ascomycota, S. cerevisiae, N. crassa and T. reesei,
contain lower number of orthologs of A. niger NRRL 3 genes
compared to other members of the genus Aspergillus. In
particular, S. cerevisiae lacks several proteins and even com-
plete pathways compare to A. niger NRRL 3.

Glycolysis operates with remarkable efficiency if we consider
the number of pathways that link to glycolysis through D-glucose
6-phosphate and D-fructose 6-phosphate. Some of the steps of
the pathway have been associated with several enzymes, but we
find less redundancy in key enzymatic reactions, especially in the
steps leading to production of pyruvate from D-glyceraldehyde 3-
phosphate. Species from section Nigri are known for citric acid
production (Max et al. 2010), which correlates with the high
number of orthologous genes assigned to the glyoxylate and
TCA cycles. A similar pattern is observed for the genes involved
in D-gluconate production from D-glucose, which also correlates
with previous data showing that Penicillium and Aspergillus
section Nigri species are high gluconate producers (de Vries
et al. 2017).

A clear example of the presence of an alternative pathway is
growth of S. cerevisiae on D-gluconate (Oliva Neto et al. 2014),
while our study indicates that its genome misses all the enzymes
of the pathway. Another example of alternative mechanism oc-
curs during growth on sucrose. S. cerevisiae, N. crassa, P.
zonata, A. clavatus and A. campestris genomes lack all three
GH32 proteins identified in A. niger, even though they can grow
on sucrose almost as well as on D-glucose and D-fructose. This
suggests that these species contain a non-homologous alter-
native enzyme that can split sucrose.

In contrast, the A. clavatus genome contains genes that
encode for all identified enzymes necessary for D-galacturonic
catabolism, but it is not able to grow on D-galacturonic acid as a
sole carbon source. A possible explanation for this is the
absence of the galacturonic acid transporter in A. clavatus
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(M€akel€a et al. 2018). Tight regulation on the transporter seems to
be causing the lack of growth from spores on D-galactose as sole
carbon source (Fekete et al. 2012). Even though most species
contain orthologs for the A. niger genes, most of them are still
unable to grow from spores, similar to what is observed for
A. niger itself. They are able to grow when small amounts of
other monosaccharides are present in the media or when they
are inoculated from mycelia, which supports that the problem is
mainly related to uptake of D-galactose during germination.

In summary, we show that combining a gold-standard
genome with a manual curated metabolic network and phylog-
eny can significantly improve functional annotation of less
studied species. It helps with the identification of essential pro-
teins and alternative pathways for the degradation of several
compounds that otherwise could have been missed or required
significant efforts through classical genetics. We observed low
diversity between closely related species for monosaccharide
catabolism, and even high conservation between more distant
fungi. This is likely due to the important role monosaccharides
have as a carbon source for fungi. We can expect a higher di-
versity between species for other aspects of fungal biology, such
as in polysaccharide degradation, transport affinity and regula-
tory systems. In fact, other papers in this issue reveal high di-
versity with respect to plant biomass degradation (M€akel€a et al.
2018), stress tolerance (Emri et al. 2018) and sexual and asexual
reproduction (Ojeda-L�opez et al. 2018).
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