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Abstract

Essays in Entrepreneurship, Venture Capital and Innovation

by

Mohammad Abbas Rezaei

Doctor of Philosophy in Business Administration

University of California, Berkeley

Professor Gustavo Manso, Chair

In chapter 1, I study a dynamic innovation race, in which firms invest to be the
first to attain a breakthrough invention. I examine how delays in monitoring firms’
investments affect their ability to achieve a coordinated under-investment equilib-
rium enforced by the threat of elevated investment by rival firms. When monitoring
delays are small, equilibrium investment can be considerably delayed, matching the
first-best solution under cooperation. Even with significant delays in monitoring,
equilibrium investment is below, and firm values are well above, the no-monitoring
competitive outcome. As a result, the regulatory goal of transparency can conflict
with the goal of encouraging investment in innovation. In addition I study how
changing the number of firms in the race can affect the outcome. As the number of
firms increases, the incentive to preempt escalates, and coordinated effort boundaries
decline, as does the maximum delay time in which the first best can be achieved with
coordination.

In chapter 2, I study the contracting problem between investors (limited partners
or LPs) and venture capitalists ( general partners or GPs) . In real world, GPs are
sometimes paid on a deal-by-deal basis and other times on a whole-portfolio basis.
When is one method of payment better than the other? I develop a model to see how
the method of compensation’s payment can affect the behavior of general partners
(GP) in a limited partnership agreement (LPA). I show that when assets (projects
or firms) are highly correlated or when GPs have low reputation, whole-portfolio
contracting is superior to deal-by-deal contracting. In this case, by bundling payouts
together, whole- portfolio contracting enhances incentives for GPs to exert effort.
Therefore, it is better suited to alleviate the moral hazard problem which is stronger
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than the adverse selection problem in the case of high correlation of assets or low
reputation of GPs. In contrast, for low correlation of assets or high reputation of
GPs, information asymmetry concerns dominate and deal-by-deal contracts become
optimal, as they can efficiently weed out bad projects one by one. These results shed
light on recent empirical findings on the relationship between investors and venture
capitalists.
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Chapter 1

Dynamic R&D Investment (Joint
with Mark Schroder)

1.1 Introduction

This article models a dynamic innovation race in which firms invest to be the first
to achieve a breakthrough invention. As in [41], costly effort toward R&D increases
the probability of success. The potential payoff (the present value of future profits
or royalties) evolves stochastically over time and is earned entirely by the winner
of the race when the breakthrough occurs. Information about the competitors’ ac-
tions facilitates non-cooperative coordinated equilibria in which reduced competition
(reduced R&D effort) is enforced by the threat of elevated effort by the competing
firms if any deviation is detected. Unlike other articles in the investment literature,
we focus on the effects on equilibria from delays in monitoring each other’s efforts.
Absent monitoring, strategies are based only on the publicly observed payoff pro-
cess, and effort is exerted only when the payoff process exceeds a fixed threshold.
The common threshold falls (i.e., efforts increase) as more firms enter. At the other
extreme, if the monitoring delay is sufficiently small, there always exists a coordi-
nated equilibrium which has the same outcome as the first-best cooperative solution
(which maximizes the aggregate market value of the firms), with investment that
is increasingly postponed as more firms enter the market (the opposite prediction
relative to the no-monitoring case).

When the monitoring delay is sufficiently large, the first-best cooperative solution
cannot be achieved in equilibrium because the incentive of each firm to preempt
the others is too strong. However, a coordinated equilibrium with effort between
the no-monitoring and first-best levels always exists and typically achieves large
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proportional gains in market value for the firms. As the monitoring delay increases,
the coordinated-equilibrium efforts increase. Both the effort levels and value-function
gains are very sensitive to the number of firms and our measure of R&D productivity
(which determines the expected waiting time to the first breakthrough). For example,
with two firms and a relatively low incentive to preempt the first best can be achieved
only when the monitoring delay time is less than 4.1 days. However, even when the
delay is 100 days, firm values in the (best) coordinated equilibrium are approximately
twice those of the no-monitoring competitive level. Considering that the first-best
value function is only 2.4 times higher than the competitive value function, it shows
that even with a long delay in monitoring, coordination yields substantial benefits.
Again with two firms, but a strong incentive to preempt, the ratio of the first-best to
competitive value functions is much higher at 5.7 but can be achieved in a coordinated
equilibrium only when the delay time equals a small fraction of a day. With a 100-
day delay time, the ratio of coordinated to competitive value functions falls to 1.9,
which is still a significant gain.

As the number of firms increases, the incentive to preempt escalates, and coordi-
nated effort boundaries decline, as does the maximum delay time in which the first
best can be achieved with coordination. But for any given monitoring delay time, the
relative value-function improvement from coordinating remains significant for even
large delays, and the relative gains are not always monotonic in the number of firms,
n (even though the ratio of the first-best to competitive value functions is always
increasing in n).

In summary, the incentives to coordinate are powerful, even with strong incentives
to preempt (which tends to reduce the benefits of coordination), long monitoring
delay times (which also inhibits coordination), and settings with two, three, or four
firms. Further, increased transparency (i.e., better monitoring) increases firm values
at the expense of curtailing investment in innovation.

We also show some comparative-statics differences between the no-monitoring
competitive equilibrium and the coordinated equilibrium with monitoring. Effort
boundaries are always decreasing in n in the competitive equilibrium (i.e., per-firm
effort increases as competition increases), but when the delay time is sufficiently
small that the first best can be achieved, the effort boundary is increasing in n in the
coordinated equilibrium. For larger delay times, effort boundaries decrease with n
in the coordinated equilibrium. Also when the first best can be achieved, the effort
boundaries and value functions are increasing in R&D productivity. Otherwise, both
the boundaries and value functions are hump-shaped functions of R&D productivity.
Low productivity implies that success is likely to be far in the future, and very high
productivity results in intense competition that exhausts resources.

The idea that monitoring rivals’ actions can facilitate coordination of strategies
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dates back to the infinite-horizon prisoner-dilemma problem, in which prisoners are
discouraged from defecting from the cooperative solution to avoid future retaliation.
The same mechanism is at work in our setting as well. Absent retaliation, each firm
would want to cheat and exert effort before the payoff process hits the first-best
cooperative effort barrier, giving it the exclusive chance to win the payoff until the
other firms begin exerting effort. The threat of retaliation eliminates the incentive
to cheat and results in a subgame perfect equilibrium. As the delay in monitoring
increases, the gain from deviating increases and the cost of retaliation decreases,
necessitating a lower effort boundary to restore equilibrium.

Our coordinated equilibrium has similarities to the joint-adoption equilibrium in
[16], although ours is a repeated game in a stochastic setting, and theirs is a deter-
ministic setting in which firms choose a single initial investment time, interpreted as
an adoption time for a new technology. Therefore, there is no uncertainty either
about the timing of innovation or about the payoff. However, the economic argu-
ments underlying their joint-adoption equilibrium are similar to those in our setting:
Each firm withholds initiating R&D effort for fear of provoking imitation by the
other firms, making all the firms better off.

As in our model, [47] considers a winner-takes-all competition with a stochastic
payoff, but, as in [16], it is a model of initial entry (i.e., technology adoption).1 Once
a firm enters, there is uncertainty about the timing of innovation and who will win
the innovation race, but unlike in our model, the firm cannot influence the outcome.
But the earlier adopters have a higher probability of winning. In our model, the
conditional probability of winning is determined by the costly effort by the firm,
and so each firm can continue or discontinue the R&D process in a dynamic way.
Moreover the results of both [16] and [47] are restricted to a two-firm setting because
of the use of the rent-equalization principle. Our results hold for any number of
firms, allowing us to examine the effects of increasing competition.

[39] studies a dynamic game of investment in product quality and shows that if the
interest rate is sufficiently small, there is a coordinated under-investment equilibrium
characterized by a single immediate investment outlay. [32] (building on [44] and [6])
examines a model of product-market competition in which firms coordinate pricing
strategies.2 In contrast to the above models, ours is a stochastic game, which raises
novel issues in modeling the effects of monitoring delays. We also allow for any
number of firms (the above models assume two firms).

1The deterministic entry times of [16] are replaced with deterministic boundaries, such that
entry occurs when first hit by the payoff process.

2[32] also considers disclosure delays, but in a two-firm deterministic model of product-market
competition.
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Empirical work on coordinated strategies had focused on product-market com-
petition, where increased disclosure can have conflicting effects: Price transparency
facilitates coordination of firms’ actions, but also potentially increases competition
by reducing consumer search costs. [32], for example, shows that implementation of
online gas-price disclosure in Chile raised profit margins in the retail gas industry.3

[5] show that when cartel enforcement increases, firms respond by sharing more data
about their clients and products in their financial disclosures. Increased disclosure
facilitates the coordination of product-market strategies, which improves profitabil-
ity. We are unaware of empirical work on coordination of investment strategies,4

but we provide a number of novel predictions about the effects of transparency on
the investment strategies of competing firms.

There is also a theoretical literature on innovation races that do not consider
coordination. [27] examine an incomplete-information model in which each of two
competing firms chooses a single initial investment time, but each is uncertain about
the other’s cost function.5 After entry by the first firm, the remaining firm is blocked
from entry and cannot react in a meaningful way. In [23], the time to an innovation
breakthrough is exogenous (independent across firms and exponentially distributed
with a fixed hazard rate), but the waiting time to file for a patent is chosen by
the firm. The first to file gets the largest prize, which is a deterministic increasing
function of the waiting time. No coordination is possible because firms have no infor-
mation about other firms’ possible breakthroughs until a patent is filed, and then the
game ends. [41] also considers a costly effort R&D problem in which effort increases
the conditional probability of winning,6 but prizes are deterministic. Our winner-
take-all assumption corresponds to her perfect-patent-protection case, in which she
finds that more competition increases R&D effort and speeds up innovation (similar
to our no-monitoring equilibrium results).

On the technical side of our paper, [45], henceforth S-S, show that problems can
arise in modeling games in continuous time, particularly when reactions can occur
instantaneously (as in the case of no monitoring delay) and discontinuously change
the information available to the other agents. In the spirit of S-S, in Section 1.6, which
examines the case of no delay, we deal with this issue by defining the continuous-time
game as a limit of a sequence of discrete-time games, in which periods have random

3See [32] for a discussion of other empirical papers on the effects of transparency on product-
market competition.

4One issue is the difficulty of measuring R&D expenditure.
5See also [1], who add some generalizations to their model.
6See also [34], who introduce a time-0 unobserved drawing of the success intensity from a

binomial distribution (either 0 or λ > 0). Passage of time without success therefore increases the
posterior probability that the intensity is zero.
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length. The random length is modeled so that each discrete-time game is time
homogeneous and Markovian, and has subgame-perfect equilibria solved in closed
form.

In other theoretical models with imperfect monitoring (see, for example, [43], and
[4]), actions are partly hidden by Brownian noise, and information arrives continu-
ously.7 In our applied model, imperfect monitoring is caused by a fixed delay time,
and information arrives discontinuously when cheating is discovered.

[3] also discuss the difficulties that arise in defining coordination strategies in a
continuous-time setting with discontinuous information (as is the case in our model)
and perfect monitoring. They show that the equilibrium in [20] violates subgame per-
fection because of each firm’s incentive to preempt, and the equilibrium is, therefore,
a competitive equilibrium but not a coordinated equilibrium.8 We show that there
are coordinated equilibria that are much different from the competitive equilibrium,
and these equilibria are characterized by significantly delayed investment and much
higher firm values.

This paper is organized as follows. Section 1.2 presents the setting and derives
the basic properties of each firm’s value function. Section 1.3 solves for the n-firm
competitive equilibrium in a setting with no monitoring. Section 1.4 solves for the
cooperative solution, with effort strategies chosen to maximize the aggregate value
of the firms (as if the n firms had a common owner). This establishes the first-best
effort strategies and firm values, which we show in Section 1.5 matches the (firm-
value-maximizing) coordinated equilibrium when the monitoring delay is sufficiently
small. Section 1.5 defines the family of coordinated strategies for each firm, based
on maintaining a common effort boundary and all firms retaliating by reverting to
the competitive strategy as soon as cheating by any firm is discovered (subject to
a fixed delay in monitoring). Then the coordinated equilibrium is derived: it is
given by the value-maximizing (which corresponds to the highest effort boundary)
common boundary such that cheating is, with certainty, never optimal. Section 1.6
deals with the technical issues associated with zero delay (i.e., perfect monitoring).
Finally, Section 7 concludes the paper.

7See also [12] and [13], who examine properties of the continuous-time limits of a class of
discrete-time games with imperfect monitoring. Note that the continuous-time strategies are well
defined in such imperfect monitoring games.

8That is, the equilibrium is open loop (in which the strategies of the competitors are held
fixed) but not closed loop (in which firms can react to each other’s actions). [3] also show that
Grenadier’s perfectly competitive outcome, with each firm following a simple net-present-value rule,
is a coordinated equilibrium.
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1.2 Setting

We assume that n identical risk-neutral firms compete, over an infinite horizon, for
the right to invest in a single project. Only the first to achieve success wins the
project. This model might apply to several firms competing for a single government
contract, or pharmaceutical companies competing to develop a drug or vaccine with
perfect patent protection. The assumption that only current effort matters in de-
termining the probability of success is a common assumption in the literature, but
is obviously a simplification made for tractability. If the probability of success also
depended on the aggregate past effort of all firms (e.g., research findings are quickly
made public), the essential trade-offs between adhering to and deviating from the
trigger strategy remain, but the effort barrier and value functions would now depend
on past aggregate effort.

The probability of winning the project depends on the firms’ effort exertions.
Firm i exerts a time-t effort rate of eit at a cost rate of q (eit).

9 The probability of
firm i winning the project over the next instant dt, conditional on no firm having
won to date, is eitdt (where eit ∈ {0, θ}). However, the existence of competing
firms reduces firm i’s chance of being the first to win, and only the first to win is
awarded the payoff. That is, with time-t effort rates e1

t , . . . , e
n
t , the probability of

some firm succeeding over the next instant dt, conditional on no success to date, is
(e1
t + · · ·+ ent ) dt, and, conditional on a success in the next instant, the probability of

firm i winning is eit/ (e1
t + · · ·+ ent ). The analog is n independent exponential clocks

running simultaneously, with clock i running at the time-t intensity rate eit. If clock
i rings first, then firm i wins the project. More precisely, we can model the time
to first success, τ , as the first time that one of the n independent Poisson counting
processes N i, i ∈ {1, . . . , n}, hits one, where the intensity-rate process of N i is ei,
and each initial value is N i

0 = 0.10 Then τ = inf {t : N1
t + · · ·+Nn

t = 1}, and the
winning firm is the i satisfying N i

τ = 1.
We assume, for each firm i, a binary effort choice eit ∈ {0, θ} with instantaneous

cost q (eit) = Qeit. We interpret θ as a measure of R&D productivity: Higher θ
implies, ceteris paribus, a greater probability of success per unit of time that effort is
exerted. Generalizations are considered in Section 1.7, but the qualitative properties
are similar.

The payoff uncertainty is modeled by a price-process P , which follows geometric

9The firm is assumed to have access to unlimited funding to finance effort.
10The assumption of Poisson arrival for uncertainty is common. See, for example, [31]; [8]; [17];

and [10]. However, the return to investment in R&D is assumed to be deterministic in these papers.
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Brownian motion:
dPt
Pt

= αdt+ σdBt, (1.1)

where α is the growth rate, σ the volatility, and B is standard Brownian motion.
We can interpret Pt as the time-t present value of future royalties if the project is
adopted at t. Letting r denote the interest rate, we assume r > α to obtain finite
firm values (the same assumption is needed in the standard real-options setting).

If success for the winning firm occurs at time t, the project is undertaken, yielding
a time-t payoff f (Pt) for that firm, where f is a non-decreasing function. Typically,
we let f (Pt) = max (0, Pt −K), with K denoting the required investment outlay to
initiate the project.

Proposition 1 gives a convenient representation of firm i’s value function vi (Pt; e
i, e−i)

for a given own effort process ei and total effort process e−i =
∑
j 6=i

ej of the other firms.

Proposition 1 For any bounded effort processes (e1, . . . , en), firm i’s value function
is uniquely given by

vi
(
Pt; e

i, e−i
)

= Et

[∫ ∞
t

{f (Ps)−Q} eis
ξs (ei + e−i)

ξt (ei + e−i)
ds

]
, t ≥ 0, (1.2)

where e−i =
∑
j 6=i

ej denotes the total effort of the other n − 1 firms, and, for any

bounded process y,

ξs (y) = exp

(
−
∫ s

0

(r + yu) du

)
. (1.3)

Proof. See Appendix A.
In the expression (1.2), the net payout f (Ps)−Q is multiplied by the probability of

success per unit time, as well as a discount factor that accounts for both interest-rate
discounting as well as the declining unconditional probability of success at any future
date. This unconditional probability of success at some future date t is declining in
aggregate effort, both over time [0, t] and across firms.

1.3 The No-Monitoring Competitive Equilibrium

This section derives the equilibrium effort strategies and firm values when firms can
neither monitor nor react to each other’s actions. We refer to this as the competitive
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equilibrium, as distinguished from the coordinated equilibria introduced in Section
1.5. We show that the competitive equilibrium is also one of the possible equilibria
in the setting with monitoring (firms resort to the competitive equilibrium when
retaliating for deviations in coordinated equilibria).

Define E as the set of feasible effort processes of each firm: Any e ∈ E must be
adapted and valued in {0, θ} (all-or-nothing effort).

Definition 1 The collection of effort processes (ê1, . . . , ên) ∈ En is a competitive
Nash equilibrium if

vi
(
P0; ei, ê−i

)
≤ vi

(
P0; êi, ê−i

)
, all ei ∈ E , i = 1, . . . , n.

The definition characterizes a competitive equilibrium, where each firm’s effort
process is optimal holding fixed the effort processes of the other firms.

Optimal Effort

Let V i (P ; e−i) denote firm i’s optimal value function given the aggregate effort pro-
cess e−i exerted by the other firms. The usual dynamic-programming argument
implies the HJB equation (using the abbreviation V i = V i (P ; e−i))

0 = max
eit∈{0,θ}

eit
{
f (Pt)− V i −Q

}
−
(
r + e−it

)
V i + αPtV

i
P +

σ2

2
P 2
t V

i
PP , (1.4)

and, therefore, optimal effort satisfies

êit ∈ arg max
et∈{0,θ}

et {f (Pt)− Vt −Q} , (1.5)

with the solution

êit =

{
θ if f (Pt)−Q ≥ V i (P ; e−i) ,
0 otherwise

, i = 1, . . . , n, t ≥ 0. (1.6)

Optimality has a simple form: Firm i exerts effort-rate θ when the potential
immediate payoff f (Pt), less the effort-cost rate Q, exceeds the present value of the
future payoff. Otherwise, it is best to wait and exert no effort. Even under more
general Markovian price dynamics, the optimality condition takes the same form,
and the boundary P ∗, above which effort is exerted, solves V i (P ∗; e−i) = f (P ∗)−Q.
Whether immediate effort is optimal at P depends only on whether the net immediate
payout exceeds the value function. Because V i (P ; e−i) and f (P ) are both increasing



CHAPTER 1. DYNAMIC R&D INVESTMENT (JOINT WITH MARK
SCHRODER) 9

in P , a reduction in the value function, resulting from an increase in r, for example,11

implies a reduction in P ∗ and, therefore, more effort (i.e., effort exerted over a larger
price region). Increased discounting makes an immediate payoff more desirable
compared to a possible future payout, inducing higher effort.

This effort-boundary characterization differs from that in the traditional real-
options setting, in which the exercise boundary satisfies both value matching and
smooth pasting, and the value function equals the intrinsic value above the boundary
(the analog in our setting is V i (P ; e−i) = f (P )−Q for P ≥ P ∗, which holds in our
model only in the limiting case of θ → ∞). In our setting, the optimal boundary
satisfies value matching, but V i (P ; e−i) is strictly below f (P ) − Q for P above
P ∗. The difference in the boundary characterizations is because the firm can choose
exactly when to adopt the project in the traditional setting, but in our setting, the
firm can only exert effort to increase the likelihood of adopting (or winning) the
project.

With our assumed payout f (P ) = max (0, P −K) and our linear cost assump-
tion, the cost parameter Q enters the HJB equation (1.4) only via the term K+Q.12

This follows because the time-t conditional probability of succeeding and, therefore,
paying K, is et; adding the effort-cost rate Q yields a total cost rate of (K +Q) et.

Solution for the Competitive Nash Equilibrium

The following proposition shows that there is a unique n-firm Nash equilibrium within
the space of non-decreasing effort functions,13 and this equilibrium is symmetric,
characterized by a common effort boundary P ∗cmp above which effort is exerted by
every firm. Let Einc ⊂ E denote the set of feasible effort processes that are non-
decreasing in the price (i.e., et is a non-decreasing function of Pt for each t).

Proposition 2 Suppose there are n identical firms.14 Within the space Eninc of non-
decreasing effort processes, there is a unique Nash equilibrium, and this equilibrium
is characterized by a common (and constant over time) effort boundary. Letting
P ∗cmp and V cmp (P ) denote the Nash equilibrium effort boundary and value function

11See Lemma 9.
12Note that P ≥ K always holds in the optimal effort region, and therefore the payoff function

could be written as f (P ) = P −K.
13This restriction is relaxed in the proof, where we assume that the aggregate effort of any n− 1

firms is non-decreasing in price. That assumption is made mainly to simplify the proof and can
be further relaxed.

14This assumption (in this proposition and the propositions below) can be relaxed slightly to n
essentially identical firms, with equal Qi +Kis across firms.
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of each firm,

P ∗cmp = P ∗ (θ, δ) , (1.7)

V cmp (P ) = V (P ; θ, δ) , for all P > 0, (1.8)

with δ = θ (n− 1), and where P ∗ (θ, δ) and V (P ; θ, δ) are given by

P ∗ (θ, δ) =

(
θ + r + δ − α
θ + r + δ

)
[β+ − β− (θ + δ)] (r + δ) + β+θ

[β+ − β− (θ + δ)] (r + δ − α) + θ (β+ − 1)
(K +Q) ,

(1.9)

V (P ; θ, δ) =

 [P ∗ (θ, δ)−K −Q]
(

P
P ∗(θ,δ)

)β+

, if P ≤ P ∗ (θ, δ) ,

−a (θ, δ) + b (θ, δ)P + c (θ, δ)
(

P
P ∗(θ,δ)

)β−(θ+δ)

, if P > P ∗ (θ, δ) ,

(1.10)
where the polynomial roots β+ and β− are defined in (A.1) (recall the abbreviation
β+ (0) = β+), and where

a (θ, δ) =
θ

θ + r + δ
(K +Q) , b (θ, δ) =

θ

θ + r + δ − α
, (1.11)

c (θ, δ) = a (θ, δ)
r + δ − αβ+

[β+ − β− (θ + δ)] (r + δ − α) + θ (β+ − 1)
.

Each firm’s equilibrium effort process is to exert effort θ when Pt exceeds P ∗cmp, and
zero effort otherwise:15

êt = θ1{Pt≥P ∗cmp}, for all t > 0.

The equilibrium is subgame perfect and is therefore also an equilibrium when firms
can monitor and react to each other’s efforts.16

Proof. See Appendix A.

15The proof shows that the function V (P ; θ, δ) is increasing and convex in P and satisfies

P − (K +Q) ≥ V (P ; θ, δ) ⇐⇒ P ≥ P ∗ (θ, δ) . (1.12)

Therefore, the immediate net payout from winning exceeds the value function only in the effort
region.

16That is, the equilibrium is both open loop (in which the effort processes of the other firms are
held fixed, as in Definition 1) and closed loop (in which each firm can react to the actions of the
other firms). It is not always the case that an open-loop equilibrium is also closed loop: See, for
example, [3], who show that the equilibrium in [20] is open loop but not closed loop.
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Regardless of the history of the effort strategies played by the agents, the fixed-
boundary strategies in the proposition are always a Nash equilibrium, and, therefore,
the equilibrium is subgame perfect.

The following lemma presents some comparative statics and limits.

Lemma 1 The equilibrium effort boundary P ∗cmp and value function V cmp (P ), for
all P > 0, are both increasing in σ and α and decreasing in r. Both P ∗cmp and
V cmp (P ) are decreasing in n and satisfy

lim
n→∞

P ∗cmp = K +Q, lim
n→∞

V cmp (P ) = 0, all P > 0.

If n > 1, then P ∗cmp and V cmp (P ) are not monotonic in θ and satisfy17

lim
θ→0

P ∗cmp = lim
θ→∞

P ∗cmp = K +Q, lim
θ→0

V cmp (P ) = lim
θ→∞

V cmp (P ) = 0, all P > 0.

Proof. See Lemma 9 in Appendix B for monotonicity in σ, α, r, and n. The
limits are obtained from Proposition 2.

An increase in r increases impatience and elicits earlier effort. An increase in
either the growth rate, α, or the volatility, σ, increases the value to waiting and
delays effort.

As the number of firms increases, each firm increases effort by reducing its ef-
fort boundary. The effort boundary is reduced because the aggregate competing
effort exertion reduces the firm’s value function (because each firm is less likely to
ultimately win the project), and, therefore, an immediate payoff becomes relatively
more attractive than the possibility of a deferred payoff. In the limit, as the number
of firms increases to infinity, each firm’s effort boundary falls to the total cost, K+Q,
and each firm’s value function falls to zero (see [20], for a similar result in a different
setting).

As the common maximum effort level θ increases, there are two opposing effects.
For low common productivity (θ small), the dominant effect of increased effort pro-
ductivity is to reduce the expected time to breakthrough, thereby increasing the

17When n = 1, the effort boundary and value function are monotonically increasing in θ, and
the infinite-θ limits match the effort boundary and value function of the single-firm traditional real-
options problem with strike price K +Q. Defining P ∗cmp (∞) = limθ→∞ P ∗cmp, then P ∗cmp (∞) =
β+

β+−1 (K +Q) and

lim
θ→∞

V cmp (P ) =


(

1
β+−1

)
(K +Q)

(
P

P∗cmp(∞)

)β+

if P ≤ P ∗cmp (∞) ,

P − (K +Q) if P ≥ P ∗cmp (∞) .
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value function and, therefore, the effort boundary (i.e., firms concentrate effort on
more favorable payoff states). But as the common productivity level becomes large,
the incentive to preempt the other firms’ effort boundaries increases with θ, and,
therefore, the value function and effort boundary decrease. The effort boundary
and value function of each firm are highest for intermediate productivity, such that
effort exertion has a reasonable chance of yielding success, but not so high that
competition drives out profits.

In the traditional real-options problem with multiple firms (the limit as θ →∞),
each firm chooses a stopping time. If the project is awarded only to the firm who
exercises first, there is such a strong incentive to preempt that all the competitive
Nash equilibria are zero-profit ones. The symmetric zero-profit equilibrium is the
limiting case of θ → ∞ in Lemma 1, with Q = 0. In our setting, the preemption
incentive is much weaker: breaking from the competitive equilibrium by exerting
effort sooner yields an increase in the chance of winning, but this benefit is outweighed
by the cost of the additional effort.

Appendix D presents a simple iterative scheme for finding a Nash equilibrium
with heterogeneous firms. As in the homogeneous case, the computed fixed bound-
aries of the effort strategies constitute a Nash equilibrium, regardless of the history
of strategies played, and, therefore, the equilibrium is subgame perfect. In any equi-
librium, the lower cost firm will exert more effort, and the more productive firm (the
one with the higher maximum effort level) will exert effort less frequently (i.e., set a
higher effort boundary).

1.4 The Cooperative Solution

In this section, we suppose that the n identical firms can cooperate (e.g., there is a
common owner) and choose their efforts to maximize the aggregate value of the firms.
The cooperative solution will be the basis for determining the first-best coordinated
Nash equilibrium in Section 1.5, which can be achieved for sufficiently small delay
times.

We imagine a single manager choosing the effort strategies of the n firms to
maximize the total value function. The problem is equivalent to that of a combined
firm choosing aggregate effort ẽt ∈ {0, θ, 2θ, . . . , nθ} at a per-unit effort cost Q.
Letting V denote the aggregate value of the n firms, the combined firm’s problem at
each t is

0 = sup
ẽt∈{0,θ,2θ,...,nθ}

ẽt {f (Pt)−Q− V (Pt)} − rV (Pt) + αVP (Pt)Pt +
σ2

2
VPP (Pt)P

2
t .
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Because the cost is linear, we get the corner solution (similar to the optimal effort
choice in Williams, 1993):

ẽt =

{
θn if f (Pt)− V (Pt) ≥ Q.
0 otherwise.

(1.13)

The optimal boundary and aggregate value function are obtained from the single-firm
(n = 1) case of Proposition 2 by simply replacing θ with θn.

The results are collected in the following proposition, whose proof follows from
the above arguments. The optimal effort and value function are expressed per firm.

Proposition 3 Suppose there are n identical firms. Letting P ∗co and V co (P ) denote
the optimal cooperative effort boundary and value function of each firm, then

P ∗co = P ∗ (nθ, 0) , V co (P ) =
1

n
V (P ;nθ, 0) ,

where P ∗ (nθ, 0) and V (P ;nθ, 0) are obtained from (1.9) and (1.10) (by letting δ = 0
and replacing maximum effort θ with nθ). The cooperative effort process for each
firm is to exert effort θ when Pt exceeds P ∗co, and zero effort otherwise:

êt = θ1{Pt≥P ∗co}, for all t > 0.

The sum of the n value functions equals the value function of a single firm with
maximum effort intensity nθ instead of θ. The total firm value satisfies value match-
ing and the property (1.12), but for any individual firm, the net payoff from winning
the project will exceed the firm’s value function for prices in a region below P ∗co.
That is, without some mechanism to enforce cooperation, each firm has an incentive
to cheat and exert more than the cooperative effort level (assuming all other firms
maintain the boundary P ∗co) by choosing an effort boundary that lies somewhere in
the interval (P ∗cmp, P ∗co).

Lemma 1 implies the following ordering of the equilibrium effort boundaries (we
add an argument to the effort boundary to indicate the number of firms):

β+

β+ − 1
(K +Q) > P ∗co (n+ 1) > P ∗co (n) > P ∗cmp (n) > P ∗cmp (n+ 1) > K+Q , for all n > 1.

The boundary for the cooperative solution always exceeds the boundary for the com-
petitive equilibrium and is strictly increasing in n, converging toward the traditional
real-options boundary β+

β+−1
(K +Q) as n → ∞. This contrasts with the competi-

tive equilibrium, which is strictly decreasing in n, converging toward the zero-profit
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boundary K+Q. Therefore, for any n firms, less effort is exerted under cooperation
than under the competitive equilibrium, with the gap growing in n.

The cooperative effort boundary is also strictly increasing in θ because higher θ
works in the same way as an increase in n. In the competitive case, the boundary
is highest for intermediate values of θ and is decreasing for sufficiently large θ.

1.5 Coordinated Equilibria

We assume throughout this section that firms can monitor each other’s effort with
a strictly positive delay time of D years. The technical issues for the case of no
delay (D = 0) are handled in Section 1.6. We show in Section 1.5 that when D is
below some threshold D∗ > 0, the first-best cooperative outcome can be achieved
in a coordinated equilibrium. In Section 1.5, we show that if D exceeds D∗, the
first best cannot be sustained in equilibrium, but large value-function gains can be
achieved for some common effort boundary P ∗ that satisfies P ∗ ∈ (P ∗cmp, P ∗co).

For any common effort boundary P ∗ ∈ (P ∗cmp, P ∗co], we define the P ∗ coordinated
strategy for each firm as follows:

If no deviations have ever been observed, each firm exerts effort only
when P ≥ P ∗. If, subject to a delay of D, a deviation by any firm has
been observed, all firms revert immediately to the competitive equilibrium
with effort boundary P ∗cmp, which they maintain forever.

The P ∗ effort boundary constitutes a coordinated equilibrium if no firm chooses to
deviate from the above strategy. The first step is to determine the optimal deviating
strategy for any firm. If the value function for this strategy never exceeds (with
probability one) the value function for conforming, then the P ∗ effort boundary is a
coordinated equilibrium.

Optimal Cheating Strategy

Let D > 0 denote the monitoring delay time (in years) and P ∗ ∈ (P ∗cmp, P ∗co]
denote an effort boundary. We suppose all firms except firm i are following the P ∗

coordinated strategy. Suppose also that firm i has deviated from this strategy in the
past and knows that this deviation will trigger all firms to revert to the competitive
effort boundary P ∗cmp in τ years (where τ ∈ [0, D])18, once the deviation has been

18That is, firm i began deviating D − τ years ago.
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detected by the other firms. We characterize firm i’s optimal effort strategy and
value function.

Let V cht (P, τ) denote the value function of the cheating (deviating) firm τ years
before retaliation begins. We can apply the general value-function expression (1.2)
to get the firm-i value function.19 Because all firms revert to the competitive equi-
librium at τ = 0, the value function satisfies the initial condition

V cht (P, 0) = V cmp (P ) all P > 0,

where V cmp (P ) is given in Proposition 2. The HJB equation for the cheating firm,
firm i, is (omitting the arguments of V cht and replacing calendar time with time to
retaliation), for τ > 0, equivalent to (1.4) with some notational changes:

0 = sup
eτ∈{0,θ}

eτ
{
Pτ − (Q+K)− V cht

}
−
(
r + e−iτ

)
V cht− ∂

∂τ
V cht+αPτV

cht
P +

σ2

2
P 2
τ V

cht
PP ,

(1.14)
and, therefore, firm i’s optimal effort process, denoted êcht, satisfies (analogous to
(1.6), but expressed in terms of time to retaliation)

êcht
τ =

{
θ if Pτ − (Q+K) ≥ V cht (P, τ) ,
0 otherwise.

(1.15)

The following lemma shows that effort is exerted only above a deterministic price
threshold which lies between the competitive and cooperative effort boundaries.

Lemma 2 Suppose only firm i has deviated from the P ∗coordinated strategy, and
all firms will revert to the competitive equilibrium in τ years. Then there is a
deterministic boundary function P ∗cht (τ), τ ≥ 0, such that optimal firm-i effort
under the cheating strategy is

êchtτ =

{
θ if Pτ ≥ P ∗cht (τ) .
0 otherwise.

The boundary P ∗cht (τ) is strictly increasing in τ and satisfies

P ∗cht (0) = P ∗cmp, and P ∗cmp < P ∗cht (τ) < P ∗, τ ∈ (0, D] .

The value function of firm i is strictly increasing in τ and satisfies

V cht (P, 0) = V cmp (P ) , and V cmp (P ) < V cht (P, τ) , τ ∈ (0, D] .

19Expressed in years to retaliation, τ , the aggregate effort of the other firms is e−iτ =
(n− 1) θ1{Pτ≥P∗} for all τ > 0 and e−iτ = (n− 1) θ1{Pτ≥P∗cmp} for all τ ≤ 0.
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Notice that we cannot order V cht (P, τ) relative to the value function from not
deviating (although if the P ∗ coordinated strategy were a Nash equilibrium, it must
be the case that cheating does not increase value for any P ). Letting êcmp

τ and
êP
∗

τ denote the optimal effort processes in the competitive equilibrium and the P ∗

coordinated strategy, respectively, the lemma implies that êP
∗

τ < êcht
τ < êcmp

τ , τ > 0.

Sustainability of the First Best

The main result in this section is Proposition 4, which shows that the cooperative
solution can be achieved in a coordinated equilibrium (we call this the first-best
coordinated equilibrium) if the delay time is below some strictly positive cutoff D∗.
We present numerical solutions showing that D∗ is sensitive to the parameters of the
model, particularly the number of firms, n, and the maximum effort intensity, θ.

The previous section examined the optimal strategy for a firm deviating from
the P ∗ coordinated strategy that is followed by the other firms, where the effort
boundary P ∗ satisfies P ∗ ∈ (P ∗cmp, P ∗co]. Throughout this section, we let P ∗ = P ∗co

(the cooperative boundary) and determine the maximum delay such that the first-
best coordinated strategy is a Nash equilibrium. The longer the monitoring delay
time, the greater the benefit to cheating (this is shown in Lemma 2), and if the delay
is sufficiently large, the value function from cheating, even accounting for retaliation
after D years, will exceed the cooperative value function. In fact, we know that as
D →∞ (i.e., no monitoring), the unique equilibrium is the competitive one given in
Proposition 2, which is always associated with strictly lower value functions (when
n > 1) than in the first-best solution.

The following lemma shows that there is a critical delay time, which we denoteD∗,
such that the first-best coordinated equilibrium can be sustained for any monitoring
delay time D satisfying D ≤ D∗.

Proposition 4 There exists a strictly positive D∗, which is a function of the param-
eters (θ, n, α, r, σ), such that for any delay time D ≤ D∗, the first-best coordinated
equilibrium is sustainable, and for D > D∗, it is not.

Numerically, we compute D∗ as the largest delay time such that cheating is not
optimal at any price (see the proof of Lemma 4):

D∗ = sup
{
τ > 0 : V cht (P, τ) ≤ V co (P ) all P ≥ 0

}
.

(It is easy to show that in the above supremum, it is sufficient to consider only
P ∈ [P ∗cmp, P ∗co].) Note that the cheating value function must be (weakly) worse
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than the cooperative value function to ensure that deviating is suboptimal with
probability one (see the proof of Lemma 4).

D∗ is very sensitive to effort intensity, θ. Low θ implies a small benefit to
deviating from the cooperative effort strategy because of the small per-unit-time
probability of winning when firm i cheats and is the only firm exerting effort. For a
project with a low chance of success, θ = 0.1, and two competing firms, the maximum
delay time under which the first-best coordinated equilibrium is sustained is 306.1
days. The maximum delay falls to 4.1 days for θ = 1 and just under 1 day when
θ = 2. In addition D∗ is also sensitive to the number of competing firms. A larger
number of competitors results in a higher cooperative effort boundary and a larger
aggregate effort rate above the boundary; both factors generates a strong incentive
to preempt the other firms by cheating. With 4 firms, for example, D∗ is below 1
day for any θ above 0.8.

Increasing α, the growth rate of P , reduces D∗. Increasing the growth rate
encourages firms to be more patient and raise their effort thresholds (see Lemma 1),
which increases the incentive to preempt and cheat. The effect of increasing the
interest rate r (results not included here) is the opposite: higher discounting reduces
P ∗co and the cooperative value functions and, therefore, increases D∗.

Finally D∗ is hump shaped in σ, the volatility of P : first increasing in σ but
eventually decreasing for sufficiently large σ. This appears to be driven by the fact
that (from numerical results) the difference in the cooperative and competitive value
function is also hump shaped in σ.20

Less-Than-First-Best Coordinated Equilibria

In this section, we determine, for each monitoring delay time D, the coordinated-
strategy effort boundary that maximizes the value of each firm. That is, we find
the maximum common effort boundary in the interval [P ∗cmp, P ∗co] such that not
cheating (i.e., not deviating) is a Nash equilibrium. The previous section showed
that when D ≤ D∗, the first-best coordinated equilibrium, with effort boundary
P ∗co, can be attained. The critical delay time D∗ can be large when effort intensity,
θ, is small and the number of firms, n, is small. However, for large θ or n, the
maximum delay D∗ tends to be small because of the high reward to preemption
relative to the cost of future retaliation.

We show that even when the delay time D exceeds D∗, and first best cannot
be attained in a Nash equilibrium, large proportional gains in the value function
can be achieved in a coordinated equilibrium with a common effort boundary above

20It can be shown that limσ→∞ V co (P ) = limσ→∞ V cmp (P ).
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the competitive level, but sufficiently below the cooperative level to eliminate any
incentive to cheat (and elicit retaliation).

We denote by P ∗max (D) the maximum effort boundary among all the coordi-
nated strategies that generate a subgame-perfect equilibrium. Recall that in this
equilibrium, each firm exerts effort only when Pt ≥ P ∗max (D). Any effort boundary
above P ∗max (D) will elicit cheating with positive probability (followed by retaliation
D years later).

To compute P ∗max (D), we need the value function assuming all firms adhere to
an arbitrary common effort boundary P ∗, with each firm exerting effort only when
Pt exceeds P ∗. Letting v (P ;P ∗) denote this value function, its solution is provided
in the following proposition. The proposition also shows that v (P ;P ∗) is strictly
quasiconcave in P ∗, achieving its maximum at the cooperative effort boundary (i.e.,
P ∗ = P ∗co).

Proposition 5 (value function with a common effort boundary) Suppose there
are n identical firms, and each exerts effort if and only if Pt equals or exceeds the
effort boundary P ∗ where P ∗ > K +Q. Then each firm’s value v (P ;P ∗) satisfies

v (P ;P ∗) =
1

n
·

{
{−a (nθ, 0) + b (nθ, 0)P ∗ + C (P ∗)} (P/P ∗)β

+

if P < P ∗

−a (nθ, 0) + b (nθ, 0)P + C (P ∗) (P/P ∗)β
−(nθ) otherwise

where

C (P ∗) =
b (nθ, 0) (1− β+)P ∗ + a (nθ, 0) β+

β+ − β− (nθ)
.

For any P > 0, the value function v(P, P ∗) is maximized at the effort boundary
P ∗ = P ∗co and is strictly increasing in P ∗ for P ∗ ∈ (K +Q,P ∗co) and strictly
decreasing for P ∗ > P ∗co.

We compute P ∗max (D) numerically as follows (we add the effort-boundary argu-
ment P ∗ to the value function V cht of the cheating firm):

P ∗max (D) = sup
{
P ∗ ∈ [P ∗cmp, P ∗co] : V cht (P,D;P ∗) ≤ v (P ;P ∗) all P > 0

}
.

we map P ∗max (D) to a [0, 1] scale by transforming it to the proportion of its distance
from P ∗cmp to P ∗co and denote this distance by λ (D):

λ (D) =
P ∗max (D)− P ∗cmp

P ∗co − P ∗cmp
.
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Propositions 5 and 2 imply that for any effort boundary P̄ > K + Q, the value-
function ratio is constant in the price region {P ≤ P ∗cmp} and satisfies

v
(
P ; P̄

)
V cmp (P )

=
v
(
P̄ , P̄

)
nV cmp (P ∗cmp)

(
P ∗cmp

P̄

)β+

> 1, for P ≤ P ∗cmp.

As P → ∞, the value-function ratio converges to one because the probability that
effort will always be exerted henceforth converges to one in both the coordinated and
competitive equilibria.

Longer delay times (larger D’s) are associated with lower effort-boundary levels
that can be sustained as an equilibrium (i.e., λ (D) is decreasing in D), and an
increase in the number of firms (which also incentives preemption) results in lower
effort boundaries (i.e., λ (D) is decreasing in n). The declines become more rapid
as we progress. Consistent with Proposition 4, when D is sufficiently small, the first
best is achieved, and, therefore, λ (D) equals one for D ≤ D∗. As D increases toward
infinity, λ (D) decreases toward zero, corresponding to the competitive equilibrium.

For the two-firm case and D ≤ 4 days, λ (D) = 1 (the first best is achieved),
and the corresponding value-function ratio is 2.28 (a 128% improvement over the
competitive equilibrium). As D increases, the proportionate gains decrease as λ (D)
decreases, but even for a delay time of 200 days, the value-function ratio is 1.73
despite a small λ (D) value of 0.167. For n = 4, the proportionate gains from the
cooperative outcome are much larger for small D (equal to 4.02 at D = 0), with the
ratios for all three values of n tending to converge as D increases to 200 days. The
ratios at D = 200 are 1.73, 1.81, and 1.76 for n = 2, 3, and 4, respectively. The
ratio is not always monotonic in n: The n = 3 and n = 4 ratios cross near D = 100
days.

The higher maximum effort intensity and higher growth rate of the price process
together increase the incentive to preempt, resulting in lower λ (D)’s, which converge
toward zero faster as D increases. However, the relative firm-value gains under the
coordinated equilibria are still large for all three values of n for D ≤ 31. For n = 4,
the ratio declines from 6.79 to 1.59 as D increases from 0 to 200, and for n = 2, the
ratio declines from 3.66 to 1.77.

Finally, with parameters consistent with strong incentives to preempt, the coop-
erative effort boundaries decline very rapidly toward the competitive boundaries as
D increases. For a 10-day delay, for example, we get λ (D) values of 0.0779, 0.0361,
and 0.0225 for n = 2, 3, and 4 firms, respectively. But despite the low values of
λ (D), the relative value-function gains are again large, with corresponding 10-day-
delay value-function ratios of 3.93, 4.25, and 4.10, and 200-day-delay value-function
ratios of 1.66, 1.52, and 1.41, for n = 2, 3, and 4, respectively.
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The large benefit to a small effort-boundary increase above the competitive effort
boundary is consistent with the following expression (from the proof of Proposition
5) for the sensitivity of the value function v (P ∗cmp;P ∗) to an increase in the effort
boundary from the competitive level, particularly when the cooperative boundary is
well above the competitive boundary:

d

dP ∗
v (P ∗cmp;P ∗)

∣∣∣∣
P ∗=P ∗cmp

=
(β+ − 1) (1− β− (nθ))

β+ − β− (nθ)
b (nθ, 0)

(
P ∗co − P ∗cmp

P ∗cmp

)
.

The value function v (P ∗cmp;P ∗) is maximized when the boundary P ∗ equals the
cooperative boundary P ∗co (and hence is flat at that point) and is increasing in P ∗

(as shown in Proposition 5) for boundaries below P ∗co. The slope tends to be steep
near the competitive boundary in the cases when incentives to preempt are strong.

To summarize, the maximum coordinated effort boundaries consistent with equi-
librium (that is, the Nash equilibrium that maximizes firm value) decline rapidly as
the monitoring delay time increases, and the decline increases faster as θ, α, and
n increase. however, the value-function ratio (coordinated relative to competitive)
declines very slowly toward the limiting value of one, demonstrating large proportion-
ate gains to coordination even when the coordinated effort boundary is only slightly
above the competitive boundary.

1.6 The Case of Zero Delay

The case of zero monitoring delay, D = 0, requires special treatment because, as has
been pointed out by S-S (in a deterministic setting), the meaning of an immediate
response to a deviation in the continuous-time setting is not well defined. We
therefore formulate the strategy in a sequence of discrete-time approximations, in
which the strategies are well defined. The continuous-time solution is defined as the
limit of the discrete-time solutions.

Consistent with Proposition 4, the first best is always achieved with perfect mon-
itoring. In our continuous-time setting, the benefits of deviating are infinitesimal be-
cause retaliation is immediate, and, therefore, no discount-rate restriction is needed
to sustain the equilibrium. Further, the equilibrium is robust to future renegotia-
tion. Any strictly positive time lag before renegotiating is sufficient to sustain the
coordinated equilibrium.

The phenomenon of having a coordinated solution as a competitive outcome in
repeated games is well known in the literature. See, for example, [15], with perfect
monitoring; [14], with imperfect public monitoring; and [24], with private almost-
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perfect monitoring in the discrete setting. The imperfect monitoring problem in the
continuous-time setting is considered in [43] and [4].

Our problem, however, is not a result of the (continuous-time) cases studied
before. The focus in the above-mentioned papers is mainly on the distortion of the
(signal) observation via Brownian motion rather than the dependence of the payoff
on the external stochastic process (the price process, in our model). In the two-firm
case, our result is related to the result of [15], where one agent rationally punishes
any deviation by the other. However, we cannot apply the method used in that
paper. First, payoffs in our model are not a deterministic function of the players’
actions. Second, the game studied here has a stochastic stopping time, and it is
not an infinity repeated game. The construction in our setting works as well for
n > 2 because of the uniqueness of the Nash equilibrium. In the course of doing so,
we discretize the model at random times rather than fixed times, a method briefly
mentioned in [4]. We hope this approach can have potential applications beyond this
paper.

Discrete-Time Price-Process Approximation

To use some of our earlier continuous-time results (in particular, the representation
(1.2), the HJB equation, and the verification proof), we formulate a binomial model
with random period lengths. We use random (Poisson) times between consecutive
jumps to ensure that the price process and value functions are homogeneous Markov
processes. We assume each firm’s effort rate can be changed only at the beginning
of each period, and, therefore, the effort strategies are well defined.

We approximate the diffusion price process (1.1) with a right-continuous pure-
jump process, in which jumps arrive with constant Poisson intensity rate κ, and the
gross return at each jump time ti, i = 1, 2, . . ., is Ji, which is i.i.d. across i. That
is, the price process is constant, except at jump times, when

Pti = Pti− · Ji, i = 1, 2, . . . . (1.16)

For simplicity, we will assume a binary jump distribution:

Ji =

{
u with probability p,

1/u with probability 1− p. (1.17)

Analogous to a common implementation of the binomial option-pricing model,
for any κ we calibrate the jump model to the continuous-time model by choosing the
following u and p:

u = eσ/
√
κ, p =

α
κ

+ 1− 1
u

u− 1
u

. (1.18)
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Lemma 3 With the parameters (1.18), the pure-jump model, defined by (1.16) and
(1.17), converges in distribution to the continuous-time price process (1.1) as κ→∞.
If κ > (α/σ)2, then p ∈ (0, 1).

Proof. See Appendix A.
We henceforth assume that κ > (α/σ)2 (and, therefore, p ∈ (0, 1)).

Solutions in the Pure-Jump Setting

The jump-model counterparts to the diffusion-model parameters β± (η) are given
by β±κ (η), which are defined in (A.3). The following proposition shows that the
solutions in the pure-jump model are obtained by simply replacing β± () in the
diffusion solutions with β±κ ().

Proposition 6 The pure-jump-model solutions, with intensity κ, for the competitive
equilibria and the cooperative solution, are given by Propositions 2 and 3, respectively,
after replacing β+ () and β− () with β+

κ () and β−κ (), respectively, in the solution
formulas (1.9), (1.10), and (1.11).

Proof. See Appendix A.
All the solutions in the discrete approximation (for any κ > (α/σ)2) have the

same qualitative properties and comparative statics as in the continuous-time case
examined earlier.

Finally, as the jump frequency blows up, β±κ (η) converge to the corresponding
diffusion values:

Lemma 4 For any η ≥ 0, then β+
κ (η) > 1, β−κ (η) < 0, and

lim
κ→∞

β+
κ (η) = β+ (η) lim

κ→∞
β−κ (η) = β− (η) .

Large-κ Coordinated Equilibria

Denote by P ∗co (κ) and P ∗cmp (κ) the jump-model (with intensity κ) effort barriers for
the cooperative and competitive solutions, respectively. We consider the following
coordinated strategy for each firm:

Maintain the cooperative effort strategy, with boundary P ∗co (κ), as
long as no firms have ever exerted effort below the cooperative bound-
ary. As soon as any firm deviates in this manner, all firms revert at the
beginning of the next period to the competitive equilibrium, with effort
boundary P ∗cmp (κ), which they maintain forever.
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Proposition 7 For all sufficiently large κ, the coordinated strategy generates a subgame-
perfect competitive equilibrium (which we call the first-best coordinated equilibrium)
in which each firm exerts effort only when Pt ≥ P ∗co (κ).

Proof. See Appendix A.
The idea of the proof is straightforward. The benefit to firm j from deviating,

by exerting effort at a price below P ∗co (κ), gives only firm j a chance of winning the
project until the other firms respond at the next price jump. This benefit is only
temporary, however, and converges to zero as κ → ∞. The cost of deviating is a
permanent shift to the more costly higher-effort competitive equilibrium. For large
enough κ, therefore, deviating is sub-optimal.

The equilibrium is similar to one in the discrete-time infinite-horizon repeated
prisoner’s dilemma, in which players cooperate as long as neither player defects,
then perpetually defect if either player defects. In our context, however, there is
no discount-rate condition. Further, it is robust to future renegotiation. As long
as there is some fixed time delay before renegotiation, the limiting result still holds
because the benefit to deviating disappears as κ → ∞, but the cost is uniformly
strictly positive for any κ.

1.7 Extensions

In this section we briefly discuss an extension to the case in which the agent can
choose different levels of efforts. Suppose g : R+ → R+ is an increasing convex
function such that g(0) = 0 and g(1) = 1. Assume the agent can choose among
m + 1 effort levels: et ∈ E =

{
0, 1

m
, ..., 1

}
. We assume q( i

m
) = g( i

m
)Q and effort

level i
m

corresponds to an intensity rate of i
m

. The agent’s problem is then equation
(1.4),

0 = sup
et∈E

et {f (Pt)− V (Pt)} − q (et)− rV (Pt) + αPtVP (Pt) +
σ2

2
P 2
t VPP (Pt) ,

and the optimal effort satisfies equation (1.5):

ê (Pt, Vt) ∈ arg max
et∈E

et {f (Pt)− Vt} − q (et) .

Because the cost function is convex, by writing the equations like the binary case,
we can see there exists

0 = P0 < P1 ≤ P2 ≤ P3... ≤ Pm < Pm+1 =∞,
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such that the firm exerts effort i
m

for P ∈ [Pi, Pi+1) for 0 ≤ i ≤ m. If Pi = Pi+1,
it means that it is never optimal to exert effort i

m
, as in the corner solution in the

cooperative problem in which the central decision maker always chooses either 0 or
n firms to work. For the sake of completeness, we explain the procedure to compute
the value function and P1, ..., Pm in case m = 2. The method can be extended to
arbitrary m in the obvious way. Assume we have

0 = P0 < P1 ≤ P2 < P3 =∞,

such that the effort i
2

is optimal in [Pi, Pi+1) for i = 0, 1, 2. We want to find P1, P2,

and V (P ). In the interval [0, P1], the value function is V (P1)( P
P1

)β
+

as we had in
the binary case because the ODE that we obtain in the no-effort region is the same
as in the binary case. In the interval [P1, P2], we have

V (P ) = a1P + b1 + c1P
β1 + d1P

β′1 .

We can compute a1, b1, β1 > 1, β′1 < 0 because V (P ) for P ∈ [P1, P2] satisfies equation
(1.4) for e = 1

2
. The constants c1 and d1 remain to be determined. Similarly, for

P ∈ [P2,∞] we have
V (P ) = a2P + b2 + d2P

β′2 ,

where β′2 < 0. Therefore, we have five unknowns P1, P2, c1, d1, d2, and we need five
equations to determine them. Three of the equations come from the fact that V is
C1: differentiability at P1, as well as continuity and differentiability at P2. Note that
continuity at P1 is automatically satisfied. The next two equations come from the
optimality equation (1.5). At P1 we have

0 =
1

2
[f(P1)− V (P1)]− q

(
1

2

)
,

and at P2 we have

1

2
[f(P2)− V (P2)]− q

(
1

2

)
= f(P2)− V (P2)− q(1).

Solving these equations will give us the desired quantities.

1.8 Conclusion

We examine a dynamic model of R&D, which incorporates both economic and techno-
logical uncertainties, as well as competition and monitoring between firms. Without
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monitoring, the essentially unique equilibrium is the competitive one. With perfect
monitoring, there are a multitude of equilibria, including the competitive one, as well
a coordinated equilibrium that matches the cooperative equilibrium and is enforced
by the credible threat of retaliation if any firm deviates. Thus, transparency in R&D
investment can benefit firms by allowing them to coordinate, delaying investment and
increasing profits.

We show that projects for which the probability of success for each firm is low
(i.e., low θ) can have a substantial delay time in monitoring, especially in a two-firm
setting, and yet the first best is still attained in a coordinated equilibrium. The
maximum delay time under which the first best is achieved is found to be increasing
in the discount rate, decreasing in the growth rate of the payout and the number of
firms, and hump shaped in volatility.

Finally, our numerical solutions show that even when the monitoring delay time is
too large to sustain the first-best outcome, there always exists a coordinated equilib-
rium that is superior to the competitive equilibrium, with a common effort bound-
ary in between the competitive and cooperative boundaries. The proportionate
firm value gains over the competitive levels can be very large even when preemption
incentives and delay times are large.

In our model, competition can increase in two different ways: through an increase
in the number of firms or through an increase in productivity (i.e., θ) of each firm. In
the competitive equilibrium, an increase in the number of firms increases each firm’s
effort and reduces firm value, a result consistent with the erosive effect of competition
found, for example, in [20] and [21]. But the competitive effort boundaries and firm
values are not monotonic in productivity. The effort boundary (and firm value)
is smallest for low and high productivity and is maximized at some intermediate
productivity. In the first-best coordinated equilibria, however, both an increase in
the number of firms and an increase in productivity always result in delayed effort,
and the increase in productivity increases firm value.

Various generalizations of the model can be considered. We sketch the case of
different levels of effort in Section 1.7. Alternative time-homogeneous Markovian
price processes are straightforward. We show that the solutions in our pure-jump
price process require only a slight modification to the geometric Brownian motion
solutions.

We also use a novel method for solving the coordinated equilibria in the case of
perfect monitoring by discretizing the game to intervals of random length to preserve
the time-homogeneous-Markovian setting. This method enables us to obtain the
continuous-time game as a simple limit of the closed-form discrete-time solutions.
This method can have applications to other settings with instantaneous reactions of
players in continuous time.
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Chapter 2

Optimal Design of LPA

2.1 Introduction

In private equity, the relationship between fund managers (general partners or GPs)
and investors (limited partners or LPs) is governed by a “limited partnership agree-
ment” (LPA). These contracts are crucial in determining how GPs behave for the
following reasons. First, LPs have limited resources outside of these contracts to dis-
cipline GPs. Second, these agreements typically remain in effect for about a decade,
and recently up to 15 years, (with little room for renegotiation). Finally, GPs’ ac-
tions are hard to observe and writing a contract which provides the right incentives
for GPs is of critical importance.

In general, there are three main financial components in an LPA. These are the
management fee, carried interest, and the method of payments to GPs. While the
structure of the management fee and carried interest has been the subject of exten-
sive research, there is virtually no theory on why the method of payment is important
and how it effects GPs’ performance. Historically LPAs offer two methods for pay-
ing carried interest to GPs. The first method is deal-by-deal or “American”. This
provision allows GPs to earn the interest as soon as each deal is exited. The second
method is whole-fund or “European”. In this method, LPs receive the entire interest
on their investment(s) before GPs get any carried interest.1

At first glance, it seems that the European method is more favorable to LPs--in
fact, [25] calls it the “LP-friendly contract”. In particular, if we assume that the
GP does not change her strategy under different types of contracting, then whole-

1In [30], there is detailed explanation on different provisions for these methods.
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portfolio contracting is preferred to the deal-by-deal method for investors. However,
as the GP changes her strategy as the contract changes, it is not clear which method
is more efficient for investors. Here is an example which illuminates the difference
between these two methods. Suppose a GP has invested in a fund consisting of two
firms. Suppose one of the firms exits with a high return but the other one loses
money so that in total the return is low. In a deal-by-deal contract, the GP would
get some interest on the successful exit. However in the whole-portfolio method,
since the low-return investment offsets the high-return one, the GP will receive al-
most nothing and the whole return will go to the investor. 2

To fix ideas, consider the following scenario. Suppose there is an LP who wants
to invest in a pool of two projects but has no expertise to find profitable investment
opportunities. As a result, he hires a GP to do the job. The GP has to exert effort
to find good investment opportunities, but even with significant effort she may end
up with low quality projects. As is prevalent in this setting, the LP has no control
over the GP’s actions, nor does he know the quality of the projects, unlike the GP.
Thus, the contracting is subject to both moral hazard and adverse selection.

Within the setting outlined above, I investigate the conditions under which each
method of payment (deal-by-deal or whole-portfolio) is optimal. As a result, I can
explain some empirical findings documented in the literature. First, I show that
when projects are highly correlated, whole-portfolio contracting is optimal for the
LP. As the correlation declines, the space of portfolios where deal-by-deal contracting
is preferred expands. This phenomena has been documented empirically in [33]. The
mechanism behind this result comes from the trade-off between the moral hazard
about the effort to find good projects versus the information asymmetry about the
quality of projects. When projects have high correlation, bundling the performance
of projects together can enhance incentives for the GP to exert effort on them. In
this case, even when projects are subject to different degrees of adverse selection,
the loss of efficiency is still low enough that whole-portfolio contracting is preferred
to deal-by-deal contracting which can handle adverse selection efficiently.

Second I show that when the GP is not reputable, it is more likely that the LP
should use whole-portfolio contracting compared to when contracting with a rep-

2Even in the presence of claw-back provisions which requires GPs to return some of the return
at the end to the LP, still the GP gets an interest free loan from the LP in the meantime. Moreover
in the sample of contracts considered in [7], only about 26% of contracts had claw-back.
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utable agent. 3This result is in alignment with the findings in [25]. In this paper, the
authors propose that when a GP is more reputable, they have more market power
and hence can get more favorable contracting terms. In my setting, however, this
comes from the fact that for non-reputable agents, whole-portfolio contracting can
reduce the chance of making bad investments, hence improving the investment strat-
egy. Therefore, the sorting effect exists in this environment, but indirectly as a result
of the change of behavior of the agent due to the terms of the contract.

The model yields other results and predictions. For example, I show that when
there is little or no information asymmetry about the quality of projects between
investor and agent, whole-portfolio contracting is the dominant form of contracting.
This can explain why we see this form of contracting when the underlying assets are
public firms. Specifically in the case of hedge funds or mutual funds, the payout
to the agent is almost always a function of the performance of the whole portfolio
rather than the individual performance of assets in the portfolio. I also predict that
investors’ information can affect the method of payment. When investors are not
fully informed on the structure of an investment, they prefer to have a narrower
scope of investment (hence higher correlation) and use the whole-portfolio contract-
ing method.

The main feature of the model which enables me to show these results is the fact that
projects are heterogeneous. If different projects are always subject to same degree of
moral hazard and information asymmetry, then bundling the payouts together has
no efficiency loss and whole-portfolio contracting is the dominant method of con-
tracting, as is the case for many contracts in the real world. This is the dominant
assumption in the literature, in the seminal work of [9] and subsequent studies. For
example, [28] considers a pool of homogeneous projects and show how investors can
design better contracts by the pooling and loosening of limited liability. However,
when a typical VC invests in a pool of projects, it is reasonable to assume a high
degree of heterogeneity between projects.4

The heterogeneity of projects creates a trade off between moral hazard and ad-
verse selection. When a contract is written on the whole-portfolio basis, investors

3By non-reputable agent, I mean an agent that investor can not verify her access to investment
opportunities hence needs to be distinguished from fly-by-night operators.

4VCs invest in projects which are highly innovative with unique business plans with very few
assets in place unlike for example banks which give loan to ordinary businesses or mortgages to
residential/commercial properties. As a result, we expect much more heterogeneity in VCs invested
portfolios.
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can more easily persuade agents to exert effort on the projects through bundling the
payouts. However, whole-portfolio contracting takes away the flexibility to deal with
the different degrees of adverse selection that the projects are subject to. For higher
correlation between projects or lower reputation of agents, the priority is to mitigate
the more severe moral hazard problem, and the whole-portfolio contracting is there-
fore preferred. On the contrary, when the correlation between projects is low or the
agent is reputable, adverse selection is more severe, and deal-by-deal contracting is
better suited to deal with this issue.

This paper relates to the theoretical literature in the area of PE funding. In [2],
the authors study the problem of leverage in buyouts and show that a combina-
tion of ex-ante pooled financing and ex-post deal-by-deal financing is optimal. In
their setting, the timing of the investment on projects is different, while in a lot of
limited partnership contracts the GP is required to choose the portfolio firms early
in the life-span of the LPA. In another similar work, [11] shows why LPs restrict
the investment timing of GPs. In both of these works, the authors abstract away
from the moral hazard problem between LPs and GPs, and also consider a pool of
similar projects. Because of the homogeneity between projects, when the method of
financing is restricted to ex-ante, whole-portfolio financing is always optimal in their
setting and they are not able to explain the abundance of the deal-by-deal ex-ante
contracting in the PE industry.

This work also contributes to the literature on investment pooling and portfolio
contracting. [26] consider the case in which investors faces multiple agents and in-
vestment pooling and credit rationing can motivate optimal investment strategy.
Their main mechanism relies on the competition among agents, while in my work
credit rationing has no bite as investors face only one agent. [18] also consider the
case of contracting between an investor and multiple agents and focus on the double
moral hazard problem between GPs and entrepreneurs. In contrast, I abstract away
from GP/entrepreneur problems and focus on the contracting between GPs and LPs.
This paper also relates to the literature on moral hazard with learning, [22] and [37],
and experimentation and Bandit problems, [40], as well.

Empirically, the first work which addresses the importance of the method of compen-
sation in VC settings is [30]. She shows that the shift in the timing of compensation
can affect the present value of the payment to the GP as much as changing the
contracting terms themselves. While the importance of the compensation method
is discussed in [30], [25] and [33] study the effects of payment methods on the GP
investment strategy and fund’s return. All of these papers are empirical and offer
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little theory on the matter.

More broadly, the first work which studies GP compensation is [19]. The authors
explore the cross sectional and time variation of the management fee and carried
interest in the contract terms, assuming that contracts have the same method of
payment. [36] study a similar problem using an option-pricing framework, and focus
more on buyout funds. Unlike these works, [42] have access to cash flow data as
well as contracting terms, which links the management payment to the performance
using a novel data set containing all the payment from a big institutional investor to
GPs.

The paper proceeds as follows. Section 2.2, introduces the models and shows the
optimal contracting on one project. In Section 2.3, I solves the problem of optimal
whole-portfolio contracting and compare it to the deal-by-deal contract. Section
2.4 consider the same problem for non-reputable GPs and I compare the results to
the case of reputable agents. Section 2.5 considers various extensions of the model.
Finally Section 2.6 concludes.

2.2 Model

There are three classes of agents in the model: limited partners (investors or LPs),
general partners (GPs) and fly-by-night operators (FNOs). All agents are risk-neutral
and have access to a safe asset technology with a return which is normalized to zero.
There are two types of general partners, reputable and non-reputable. Both types of
general partners have access to a pool of projects in which they can invest in. The
limited partner has capital which is needed to run projects.5 FNOs have no access
to the pool of risky projects but they can mimic the behavior of a GP. I assume
that if the GP is reputable, then the LP can verify that she has access to projects.
However, the LP can not distinguish between a non-reputable agent and a FNO.
Initially, I focus on reputable GPs and discuss contracting with non-reputable GPs
in Section 2.4. Every project needs an investment outlay of I. The GP has no initial
money and should raise it from the LP if she decides to invest in the project(s).6

There are two types of projects, θ ∈ {G,B}. A good project (type G) has guaranteed
return R (hence it is always successful) but a bad project (type B) has return R with

5Throughout the paper, I use he/him to refer to the LP and she/her to refer to the GP.
6The assumption that GP has no initial capital has no effect on the results. We can assume

that GP needs extra capital I as long the payout of the contract to the GP is at least as her initial
capital.
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probability p and return 0 with probability 1− p. The GP can also opt to not invest
in a project and invest the raised capital in a safe asset, therefore receiving the return
I. Hence, the possible outcomes are {0, I, R, 2I, R + I, 2R} if the GP raises enough
capital for two projects (2I). Clearly, if the GP raises only I, then possible returns
are {0, I, R}. Type B projects are negative NPV, so I assume

Assumption 1
pR < I.

The GP can exert effort to increase the chance of getting a good project. More-
over, if the GP exerts no effort for a project, then the project which is chosen is
guaranteed to be bad (type B). Otherwise, if the GP exerts a binary effort with cost
c, the chance of getting a good project (type G) is λ. I assume that the decision to
exert effort is optimal in the following sense

Assumption 2
λR + (1− λ)I > I + c

which can be written as

R− c

λ
> I. (2.1)

However, it is possible that the agent exerts effort but does not commit to not invest
if the quality is bad. In this case, the return is

λR + (1− λ)pR

which is less than λR+ (1− λ)I by assumption 1. It can be seen that if there is no
agency friction, then when equation (2.1) holds, the agent/investor exerts effort to
obtain a good project and invest in the project if he ends up with a type G, otherwise
keeping the money in a safe asset. In this case, the profit made from the project is
λ(R−I)−c. In my definition 1

λ
measures the extent of the moral hazard issue. Higher

λ means higher chance of obtaining a good project, so the moral hazard problem is
less severe. On the other hand, p measures the extent of the information asymmetry
between agents, since for higher p it is harder to give incentives for the GP to not
invest in a bad project.

The model has three dates t = 0, 1, 2 and two periods. At t = 0, the contract
between the GP and the LP is written and capital is raised. Then between dates
0 and 1, the GP can exert effort to increase the chance of getting a good project.
At t = 1, the type of projects is revealed to the GP and she makes the investment
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either in these projects or safe assets. Finally, at t = 2, cash flows are realized and
agents receive their money based on the contract. In the real world, it is possible
that projects exit at different times but if the contract is based on whole-portfolio
performance, then money is stored in an escrow account until distributed later when
all the projects exit. Hence my assumption on having the same exit time is not
unrealistic.

Deal-by-deal contract

In this section, I consider the contracting problem when the contract between the
GP and the LP is written in a deal-by-deal way. Since agents are risk-neutral, the
optimal deal-by-deal contract consists of two optimal contracts on a single project.
Therefore, I only need to study the contracting problem for one project.

In order to fund projects, claims sGP (x) = s(x) and sLP (x) = x − sGP (x) are
issued, which determines how much agents will receive when the payout of the project
is x. I impose following apriori assumptions on the payout of securities.

• Limited Liability: 0 ≤ sGP (x), sLP (x).

• Monotonicity: s(x) and x−s(x) are non-decreasing in x when x is an outcome
on the equilibrium path.

This monotonicity assumption is common in the literature on security design–See
[38], for example. Sometimes the security is assumed to be monotonic on the whole
possible set of payouts. . I will revisit this issue in Section B.2.

The LP can not observe the quality of the chosen project (projects) or if the GP
exerts effort or not. However, the LP can observe whether the GP invests in the
project or in the safe asset. Also, the cash flow is verifiable at the end of period 2 as
well.

For one project, after the issuance of s(x), there are four possible strategies by
the GP.

1. Do not invest: The return to GP is s(I).

2. Invest with no effort: The return is ps(R).

3. Exert effort and invest regardless of quality: λs(R) + (1− λ)ps(R)− c.

4. Exert effort and invest only in the good project: λs(R) + (1− λ)s(I)− c.
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Clearly, the optimal strategy is the fourth one if there was no agency friction (I will
show later that strategy (4) is also optimal even in the presence of agency friction.)
. Assuming this, here is how the LP can implement strategy (4). The scheduled
payment’s system (s(I), s(R)) induce the GP to choose strategy (4) if and only if it
satisfies

s(R) ≥ s(I) +
c

λ
(2.2)

s(I) ≥ ps(R). (2.3)

The first condition insures that the agent exerts effort to obtain a good project
and the second one insures that the agent does not invest if the quality of the project
turns out to be bad. As usual, we have the participation constraint by the LP which
is

E[sLP (x)] = E[x− s(x)] ≥ I. (2.4)

The problem faced by the LP can then be written as

max
s(I),s(R)

E[x− s(x)]

where (s(I), s(R)) satisfy equations (2.2) and (2.3). Inserting equation (2.3) in equa-
tion (2.2) gives

s(R) ≥ ps(R) +
c

λ

hence s(R) ≥ c
λ(1−p) . As a result, the optimal contract will be ( c

λ(1−p) ,
pc

(1−p)λ). Using

equation (2.4), The project is funded if and only if we have

λ[R− c

λ(1− p)
] + (1− λ)[I − pc

(1− p)λ
] ≥ I. (2.5)

Under this contract, the profit made by the GP is

ΠGP = Π = λ
c

λ(1− p)
+ (1− λ)

pc

λ(1− p)
− c

=
pc

λ(1− p)
(2.6)

Since the optimal effort/investment strategy is chosen by the GP, we have ΠLP +
ΠGP = λ(R− I)− c. So the profit made by the LP from the contract on one project
is

ΠLP = λ(R− I)− c− pc

λ(1− p)
. (2.7)
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GP exerts effort.
t = 0 t = 1 t = 2

• Securities sGP and sLP
are issued.

• 2I is raised.

• GP realises the type of
projects.

• Investment decision is
made.

• Cash flows are realized.

• It is distributed
according
to securities.

Figure 2.1: Timeline

We can see that for higher p, the LP makes less profit (and therefore the GP makes
more). This is because, as mentioned before, higher p is associated with more severe
adverse selection and it makes it harder to motivate the GP to invest optimally since
the outside option (the bad project) is more appealing. On the contrary, when λ
goes up, the profit goes up for the LP (and down for the GP) because the chance of
success when exerting effort is higher, so less payment is needed to motivate effort.
It is also worth noting that when there is no bad option for investment by the GP,
which means p = 0, then the LP can get the whole surplus of the project. This case
is effectively means that there is no asymmetric information between the LP and the
GP. As a result, in a setting with binary effort, contracting alleviates all the friction
in the model. In section 2.5, I consider implications when there is more variance for
effort in this special important case.

In order to compare the outcome of the results of different strategies induced by
the LP, first note that the LP never induces strategy (1) as he personally has access
to the safe asset. The second strategy has always negative NPV since the profit by
the LP is

p(R− s(R))− I
≤ pR− I < 0

by assumption 1. Finally to optimally induce strategy (3), note that in this case
the LP optimally sets s(I) = 0 as I is not the outcome of the induced strategy. To
induce effort, the payout should satisfy

s(R) ≥ ps(R) +
c

λ

which implies s(R) ≥ c
λ(1−p) . Hence the LP issues security (0, c

λ(1−p)). The profit
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made by the LP by this contract is

(λ+ (1− λ)p)(R− c

λ(1− p)
)− I.

This is less than the profit made by the LP by strategy (4) (equation (2.7)) by
assumption 1.

In summary, we have the following for investment on one project.

Proposition 8 (optimal deal-by-deal contract) The optimal strategy that the
LP induces the GP to choose is strategy (4). Moreover, the security (s(I), s(R)) =
( c
λ(1−p) ,

pc
(1−p)λ) is issued optimally by the LP to fund the project. The funding is

possible if and only if

ΠLP = λ(R− I)− c− pc

λ(1− p)
≥ 0. (2.8)

When there are two projects with parameters (λ1, p1) and (λ2, p2),in a deal-by-
deal contract, the optimal contract for one project is written for each of the projects.
Therefore the expected profit by the GP will be

ΠGP =
2∑
i=1

pic

λi(1− pi)
.

In the next section, we see how tying the payouts of the projects together can change
the expected payout to the LP (and the GP).

2.3 Optimal Portfolio Contracting

In this section, I analyze the question of optimal contracting when a portfolio of
projects is chosen by the GP and the payout can depend on the whole return of the
portfolio. Then I compare whole-portfolio contracting with deal-by-deal contracting
to see how the investment environment can affect the choice of contract by investors.
But first I need to introduce the dependency between projects, which I do in the
next part.

Correlation structure of the portfolio

When the GP forms a portfolio of investments, not only the return and quality of each
project is important, but the correlation structure between projects is important as



CHAPTER 2. OPTIMAL DESIGN OF LPA 36

well. In [33], the correlation structure in the invested portfolio under different types of
contracting is studied, analyzing the correlation between projects in two dimensions
of industry and geography.

Here I assume that the correlation between projects is given by a parameter
0 ≤ ρ ≤ 1 which means that if the GP exerts effort on both projects, then

P[project 1 and 2 are good ‖ effort exerted on both projects]=ρmin(λ1, λ2). (2.9)

Here I assume that investors can observe ρ and potentially write a contract condi-
tioned on it. I relax this condition in section 2.5.The cost of exerting effort on both
projects is twice that of one project, 2c. The correlation structure is irrelevant when
the contract is written on a deal-by-deal basis. This is because, by risk neutrality,
deal-by-deal contracting is equivalent to writing a contract with two different agents.
Therefore I only need to study the problem when the payout depends on the payout
of both projects.

Before going into detail on the whole-portfolio contracting, let me introduce some
preliminary results which are needed later in the discussion. As in the deal-by-
deal case, the GP should not invest in the type B project. Hence possible optimal
outcomes from the projects are 2I, R+I and 2R. These correspond to cases in which
the GP comes up with zero, one or two good projects respectively. As a result, I and
R are not possible outcomes if the GP makes optimal investment decisions. Hence
to minimize the incentive for these outcomes, it is easy to show that the optimal
contract satisfies

s(0) = s(I) = s(R) = 0. (2.10)

Whole-Portfolio Contract

In this section, I want to see how the optimal contract should be written when the
return is a function of the total payouts of the projects. This resembles whole-
portfolio contracting. I then compare it to deal-by-deal contracting to find under
which parameters each type of contracting is efficient .

When writing the contract on the whole portfolio, as we saw in equation (2.10),
we have s(I) = s(R) = s(0). Set

(x, y, z) = (s(2R), s(R + I), s(2I)) (2.11)

The LP needs to impose some restrictions on the payment to the GP to make sure
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that the GP only invests in good projects. These conditions are

z ≥ max{p1y, p2y, p1p2x}
y ≥ max{z, p1x, p2x}
x ≥ max{z, y}.

These inequalities make sure that the GP will invest in good projects and only in
good projects (hence withholding money from bad projects). For example, when the
agent comes up with two bad projects, the payout for not investing in any bad project
(z) is not less than the (expected) payout if the agent invests in one bad project (piy
for i = 1, 2) or invests in two bad projects (p1p2x). A similar explanation applies
to yi ≥ p3−ix for i = 1, 2. These conditions therefore discourage the GP from
making bad investment decisions. Also since x ≥ y ≥ z, the GP will invest in good
projects when they are available rather than investing in the safe asset. Note that
when the contract satisfies these conditions, the payout to the GP is increasing on
the equilibrium as the GP does not invest in a bad project, hence satisfying the
monotonicity condition. Set λmax = max[λ1, λ2] and λmin = min[λ1, λ2]. In addition,
the GP should have incentive to exert effort on both projects. This gives

ρλminx+ [λ1 − 2ρλmin + λ2]y + [1− λ1 − λ2 + ρλmin]z

≥ max{z + 2c, λmaxy + (1− λmax)z + c}

The LHS term is the expected payout to the GP if she exerts effort on both projects.
On the RHS we have expected payouts if no effort is exerted or if it is exerted on
only one project. For simplicity and without loss of generality, assume that p1 ≥ p2.
Note that in the optimum

ρλminx+ [λ1 − 2ρλmin + λ2]y + [1− λ1 − λ2 + ρλmin]z (2.12)

= max{z + 2c, λmaxy + (1− λmax)z + c}.

This is a typical phenomenon when dealing with moral hazard issues. This means
that the expected payout to the GP is binding by the condition which induces exert-
ing effort on both projects, otherwise the investor can lower payment in some states
of the world without changing GP incentives. More formally, if equation (2.12) does
not hold, the transformation z → z − ε for small enough ε should violate the opti-
mality conditions. Otherwise the LP can have a feasible contract with less expected
payout to the GP. This means that z = p1y, hence z can not be reduced. Similarly
y → y− ε should violate the conditions as well, hence one gets y = p1x. But then in
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Figure 2.2: GP Problem

any case x→ x− ε is possible because by the last two equalities we have x > y ≥ z.
Therefore the LP problem can be written as

min
x,y,z

αx+ βy + γz

αx+ βy + γz = max{z + 2c, λmaxy + (1− λmax)z + c}
x ≥ y ≥ z ≥ p1y ≥ p2

1x

where (α, β, γ) = (ρλmin, λ1 − 2ρλmin + λ2, 1 − λ1 − λ2 + ρλmin). In a similar vein,
conditions that induce the choice of optimal investment strategies by the GP are
binding as well. Therefore we have the following proposition.

Proposition 9 (Optimal whole-portfolio contract) The optimal whole-portfolio
contract satisfies

z = p1y = p2
1x (2.13)

where

z =
2c

β 1−p1
p1

+ α
1−p21
p21

if

ρ ≥ ρ∗ =
λmax − λmin
λmin( 1

p1
− 1)

otherwise
z =

c
α(1−p21)

p21
+ β 1−p1

p1
− λmax 1−p1

p1
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Here is the intuition behind this proposition. When the investor writes the con-
tract, he wants to choose the maximal value for x to give the biggest incentive to
the agent to exert effort. However, because of adverse selection, the prize for success
cannot be too large, as it leads to inefficient investment decisions by the GP (invest-
ing in type B projects). The maximum possible value for x is z

p1p2
and maximum

attains if and only if equation 2.13 holds. The two different regimes in the propo-
sition correspond to the fact that the expected payout to the GP (αx + βy + γz),
becomes equal to z + 2c or λmaxy + (1 − λmax)z + c. When the correlation is high,
the GP either prefers to exert no effort or to exert effort on both projects because of
high dependency between the success in both projects. Hence for high values of ρ,it
is needed to pay enough to the GP such that the GP exerts any effort at all. This
amount is s(2I) which is the reserve value for the GP. However, when the correlation
is low, the payout should compensate for the lower level of inter-dependency between
projects. So the payout should be high enough for the case success in both projects
so that the GP does not find it beneficial to exert effort on only the easier project
(corresponding to λmax).

Note that, as we mentioned, the security as defined here is increasing on the set of
possible outcomes on the equilibrium path. However since sGP (R) = 0 and sGP (2I) >
0, when R > 2I, optimal security is not increasing on all possible outcomes. This
stems from the fact that the LP wants to push the GP to invest in only good projects
and reserve the money if the project is bad. The non-monotonicity of the optimal
security has been observed before in the literature, like [35]. The mechanism in [35]
which leads to this phenomena is the fact that the contract is written in a way to
motivate experimentation by the agent. Hence the principal has to reward for failure
so that the agent can take the risk. However, my setting has quite an opposite
mechanism–the monotonicity arises because the GP wants to make the LP take less
risk. For example, suppose the principal wants the agent to invest in a safe asset,
and the agent goes and invests in a bad project instead. So if the payoff is high, it
means that the agent deviated from the optimal strategy and as a result she gets
punished.

The derivative of α 1+p1
p1

+ β with respect to ρ equals to

λmin(
1

p1

− 1) > 0

hence the payout to the GP decreases as ρ increases. Also note that the total payout
of projects (which is E[sGP ] + E[sLP ]) equals to

α2R + β(R + I) + γ2I
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it has derivative (w.r.t ρ)

2λminR− 2λmin(R + I) + 2λminI = 0

so total payout of projects is constant. Therefore we have the following

Proposition 10 (Comparing whole-portfolio with deal-by-deal) As the cor-
relation ρ increases, the expected payout to the GP decreases and the expected pay-
out to the LP increases. Therefore, for admissible values (λ1, λ2, p1, ps), there is
ρ∗∗ = ρ(λ1, λ2, p1, ps),such that for ρ > ρ∗∗, whole-portfolio contracting is preferred
by the LP and for ρ < ρ∗∗deal-by-deal contracting is preferred by the LP. In addition
if ρ ≥ ρ∗, whole-portfolio contracting is better for the LP ( equivalently ρ∗∗ ≤ ρ∗).

The intuition for the proposition above comes from the fact that when the cor-
relation between projects is higher, it becomes easier to encourage the GP to exert
effort on both projects since success in one project increases the chance of success in
the other one. As a result, the LP needs to pay less to motivate effort by the GP,
hence the LP makes more profit because the total payout of projects is the same
for all ρ. Since the deal-by-deal contract is independent from the correlation, from
the monotonicity of payout with respect to correlation, we can see that if the LP
prefers whole-portfolio contracting to deal-by-deal contracting for a given ρ,then as ρ
goes up it is still the case. As I pointed out in the introduction, this result observed
empirically in [33]. There the author shows that deal-by-deal compensation induces
greater heterogeneity in portfolio investments. So the proposition above rationalizes
this finding. In section B.2, I show that this result holds when a strong form of
monotonicity is imposed on the security as well.

Whole-portfolio contracting does not depend on p2. This is because since p1 ≥
p2, the first project has more severe adverse selection problem compared to the
second one. Therefore when information asymmetry constraint binds for the first
project, it is already alleviate the adverse selection for the second project as well.
Mathematically speaking when z ≥ p1y then already we have z > p2y as well. When
ρ is large enough, projects are similar to each other and as we saw in Proposition
10, whole-portfolio contracting is more appealing for the LP. This is because, in this
case, bundling efforts together gives the LP a big enough benefit that makes up
for the loss which comes from having inefficient treatment of adverse selection (in
contrast to the deal-by-deal contract which handles this issue efficiently). However
for smaller values of ρ, the comparison of benefiting from bundling effort is smaller
than the loss of sub-optimal handling of the information asymmetry problem. Recall
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that the expected payout to the GP in the deal-by-deal case is

2c+ ΠGP = 2c+
2∑
i=1

pic

λi(1− pi)

which is increasing in p2. Therefore the discussion above implies the following.

Proposition 11 (Asymmetry of information VS moral hazard) For given val-
ues (λ1, λ2, p1, ρ) , there is p∗2 = p2(λ1, λ2, p1, ρ) such that for p2 < p∗2 deal-by-deal
contracting is better for the LP and for (p1 ≥)p2 > p∗2 whole-portfolio contracting.
When ρ > ρ∗∗, p∗2 = 0.

While Proposition 10 resolves the comparison between whole-portfolio contracting
and deal-by-deal in terms of correlation, Proposition 11 helps us to understand the
comparison in terms of information asymmetry. Here is the intuition behind this
statement. As mentioned before, the investor should take into account the loss
of efficient handling of the adverse selection problem. The term p1 − p2 measures
the difference between the adverse selection issues that two projects are subject to.
When p1 − p2 is large (equivalently p2 is small), the heterogeneity of asymmetry of
information between the two projects is large. As a result, it is more efficient to
have a deal-by-deal contract for better handling of this issue. Whereas for large p2

(small p1− p2), the loss of efficiency on this issue is negligible, hence whole-portfolio
contracting is better.

Whenever p∗2 = 0, whole-portfolio contracting is dominant for the set of parame-
ters given. When λmax = λ1,then p∗2 > 0 whenever ρ < ρ∗. However when the moral
hazard problem is more severe in the first project as well (i.e λmax = λ2),then for a
larger set of ρ, whole-portfolio contracting is dominant. In this case, the investor uses
the payout on the second project, which dominates the first in both moral hazard
and information asymmetry aspects, as a prize to motivate GP to exert effort on the
first project. From the proof of the Propositions 10, the equation that computes p∗2
is given by (when ρ < ρ∗)

λmax
z

p1

+ (1− λmax)z + c = 2c+
2∑
i=1

pic

λi(1− pi)

z =
c

α(1−p21)

p21
+ β 1−p1

p1
− λmax 1−p1

p1

Relative to other variables, we have the following Proposition.
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Proposition 12 (Comparative Statics) In the region ρ > ρ∗,expected payout to
the GP is increasing in p1 and is decreasing in λmax and λmin. For ρ < ρ∗,expected
payout to the GP is increasing with respect to p1 and λmax and decreasing with respect
to λmin.

Here is the intuition behind Proposition 12. In both regimes of ρ, when p1

increases, the information asymmetry to be overcome by the LP worsens as the
GP finds it more profitable to invest in bad projects. As a result, the expected
payout to the GP increases when p1 increases to compensate for information rent
by the GP. With respect to λmin, as λmin increases, it becomes easier for the LP to
motivate the GP to exert effort for the harder project, hence the expected payout
is decreasing. However with respect to λmax, the relation to the payout depends on
which regime ρ is in. In the high correlation regime (ρ > ρ∗),as we saw above, the
GP has to compensate as much as needed to make the GP exert any effort. As in a
classical moral hazard problem, when the task becomes easier the expected payout
to the agent decreases. However, in the regime ρ < ρ∗, the LP has to compensate
the GP for the strategy of exerting effort only on the easier project. This outside
option’s payout increases as λmax increases, hence the LP has to compensate the GP
more for not choosing this strategy.

2.4 Non-Reputable GP

Following [2] and as mentioned in section 2.2, when the GP is not reputable, the LP
cannot distinguish the non-reputable GPs from a fly-by-night operator (FNO). In
this case the following assumption should be imposed on the securities to discourage
FNOs from getting the investment outlay 2I and enjoy the managerial fee s(2I)
without exerting any effort..

• sGP (x) = 0 for x ≤ K where K is the committed capital (FNO assumption).

This assumption was first introduced in [2] and has been used in subsequent works
(for example [11]). Here I investigate how enforcing this condition can change the
contract. Therefore, in essence we have a separating equilibrium in which a contract
between the LP and a non-reputable GP satisfies the FNO assumption while a con-
tract between the LP and a well-established (i.e., reputable) GP does not need this
condition.

First note that with this assumption, first-best can not be implemented for a
single project. This happens since sGP (I) = 0, the GP will invest in a project no
matter the quality of the project as there is no reward for not investing in a type B
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project, hence he implements strategy (3) discussed in section 2.2. The GP exerts
effort if

sFNO(R) ≥ c

λ(1− p)
. (2.14)

It is feasible to fund through this contract if and only if

R− c

λ(1− p)
≥ I

λ+ (1− λ)p
. (2.15)

Here λ + (1 − λ)p is that chance of having return R. When the project is good
(which has probability λ), return R has probability 1 and if the project is bad (with
probability 1− λ), the probability of success is p. The profit made by the GP is

ΠFNO
GP = (λ+ (1− λ)p)

c

λ(1− p)
− c

=
pc

λ(1− p)
. (2.16)

Comparing with equation (2.6), we can see that both reputable and non-reputable
agents make the same profit. This comes from the fact that s(I) = ps(R) for a
reputable agent. Therefore a reputable GP gets the same payout as a non-reputable
GP in the case of getting of a bad project and investing in the safe asset instead of
making a bad investment, which is in the interest of the LP. Not surprisingly, the
feasibility condition (2.15) is weaker compared to the case of a reputable agent which
is (2.5) since here the investment strategy by the agent is not optimal. In the next
part I find the optimal whole-portfolio contract and compare the results with that
of section 2.3. If p = 0, in a single project’s contract, LP gets the whole surplus of
the project so for the next part we assume max(p1, p2) > 0.

Whole-Portfolio Contracting With FNO

In this part I find the optimal whole-portfolio contracting in the presence of the FNO
assumption. By the FNO assumption, the contract satisfies

sFNO(I) = sFNO(2I) = 0.

Since sFNO(2I) = 0, it is impossible to motivate the GP to not invest in any bad
project when both projects are bad (as the return to the GP will be zero in this
case). So the best strategy that the LP can hope to achieve, similar to [2], is the
following
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• The GP exerts effort on both projects.

• If at least one of the projects is good, the GP invests in only good projects
(optimal choice).

• If both projects are bad, the GP invests in just one bad project.

As we can see, again R is not the outcome of the optimal strategy, so in the optimal
contract sFNO(R) = 0 holds as well. To induce (constrained) optimal choice of
investment after efforts are exerted, assuming p1 ≥ p2, the LP should impose

sFNO(2R) ≥ sFNO(R + I) ≥ p1s
FNO(2R)

Under these conditions, the GP invests only in good projects if any are available and
invests in only one bad project if both projects are bad. With this strategy, the total
payout to the GP becomes

ρλmins
FNO(2R) + (λ1 − 2ρλmin + λ2)sFNO(R + I) + p1(1− λ1 − λ2 + ρλmin)sFNO(R + I)

= αx+ β̃y

where (x, y) = (sFNO(2R), sFNO(R + I)) and (α, β̃) = (ρλmin, λ1 − 2ρλmin + λ2 +
p1(1−λ1−λ2 +ρλmin)). The only term which is different compared to the reputable
agent is the last term. This comes from the fact that in the case of two bad projects,
the GP invests in the project corresponded to p1 and withhold money on the other
one. Similar to what we had in Section 2.3, in order to induce effort on both projects,
the contract should satisfy

αx+ β̃y ≥ p1y + 2c, θiy + c

where θi = λi + p1(1− λi). Therefore, the LP problem can be written as

min
x,y

αx+ β̃y

x ≥ y ≥ p1x; αx+ β̃y ≥ max{θmaxy + c, p1y + 2c}

Like before, in the optimum the moral hazard constraint binds, hence

αx+ β̃y = max{θmaxy + c, p1y + 2c}

Similar to the reputable agent, adverse selection binds as well, and we have the
following proposition.
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Proposition 13 (Optimal whole-portfolio contract for non-reputable GP)
In the optimal whole-portfolio contract we have

y = p1x

If ρ ≥ ρ∗ = λmax−λmin
λmin( 1

p1
−1)

then

y =
2p1c

α− p1(p1 − β̃)

otherwise
y =

p1c

α− p1(θmax − β̃)

Moreover y = sFNO(R+ I) coincides with the payout to the GP in the reputable case
s(R + I) = z

p1
from Proposition 9.

With the same reasoning as in Proposition 9, two cases are associated with the
fact that the expected payout to the GP (αx + β̃y) becomes θmaxy + c or p1y + 2c.
In the non-reputable case, the total payout of both projects is

2αR + β̃(R + I) + (1− α− β̃)I.

The derivative with respect to ρ of the total payout is

λmin(p1R− I) < 0.

As we can see, on one hand the total payout of projects is decreasing with respect
to the correlation between projects. Intuitively this is because the only scenario in
which the investment decision is not optimal is when both projects are bad and the
chance of this scenario is higher for higher correlation. On the other hand, the total
payout to the GP is decreasing with respect to correlation as again it gets easier
to motivate the GP to exert effort when the correlation goes up. As a result, the
total payout to the investor is ambiguous with respect to correlation and depends
on the relative magnitude of p1R − I and c. Here p1R − I measures the inefficiency
associated with investing in the bad project with success chance p1 (hence expected
return p1R) instead of investing in the safe asset (with return I). When c is large
enough, since the expected payout to the GP is proportional to c,the total payout to
the GP decreases faster compared to the loss of inefficiency which is proportional to
p1R − I. As a result, by increasing ρ the total payout to the LP increases as well.
If c is small enough, the reverse phenomenon happens and hence the total payout to
the LP is decreasing with respect to ρ. Finally, in the middle range of c, total payout
to the GP has an interior optimal correlation. Hence we do not have a monotonic
relationship between the LP’s payout and the correlation in the non-reputable case.
However, we can show the following.
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Proposition 14 (Reputable VS Non-reputable agent) Suppose for parameters
(λ1, λ2, p1, p2, ρ),the investor prefers whole-portfolio contracting when writing con-
tracts with a generic (reputable) GP. This will also be the case when writing a contract
with a non-reputable GP. In particular, if ρ ≥ ρ∗ = λmax−λmin

λmin( 1
p1
−1)

, then whole-portfolio

contracting is dominant in the non-reputable case as well.

This proposition comes from the fact that when dealing with non-reputable
agents, whole-portfolio contracting can help to improve the investment strategy.
Hence the space of parameters in which whole-portfolio contracting is better for
the LP is larger compared to the reputable case. As mentioned in the introduction,
this result has been observed empirically in [25].

2.5 Extension

In this section, I consider various modifications of the model and how it can affect
the results. I make some predictions/observations as well.

No Asymmetric Information

In the special case when p1 = p2 = 0, as we mentioned in section 2.2, there is no
profitable bad option for the GP to invest in. Equivalently, there is no information
asymmetry about the quality of projects between the GP and the LP as there is no
possible profitable deviation. Under binary effort assumption, by equation (2.6), the
whole surplus of every project goes to the LP and hence the method of contracting
is irrelevant in this setting. In this case when adverse selection is absent, since
effort is binary, contract makes the GP indifferent between exerting effort and not
exerting effort and hence the LP can get the first-best outcome. In order to analyze
this important special case in depth, here I allow for different levels of effort to
see how it affects the contract. Therefore for the purpose of this section, suppose
with the variable cost ci(λi), the chance of getting a good i−project is λi. I assume

ci(0) = c′i(0) = c′′i (0) = 0 and c
(3)
i > 0. I first consider the general case and then

restrict to the especial case p1 = p2 = 0 which we are interested in. As before, the
chance of success for a i−project of type B is pi . The first-best effort satisfies

max
λi

λiR + (1− λi)I − ci(λi)− I

By FOC the optimal effort satisfies c′i(λ
FB
i ) = R− I. Not surprisingly it is indepen-

dent of pi as there is no adverse selection problem. I Assume c′i(1) > R− I to make
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sure that λFBi < 1. Now suppose the contract (sGP (I), sGP (R)) is offered to the GP.
Similar to the binary case, the contract should satisfy

sGP (I) ≥ pisGP (R) (2.17)

to make sure that GP does not invest in the bad project. Once offered, the agent
chooses effort λi which is the solution to the problem

max
λi

λisGP (R) + (1− λi)sGP (I)− ci(λi)

FOC implies
sGP (R)− sGP (I) = c′i(λi) (2.18)

in particular by decreasing sGP (I), the effort increases which is in the favor of LP
(both lower payment and higher effort). Hence in the optimal sGP (I) = pisGP (R) as
contract should satisfies equation (2.17). This gives

c′i(λ
∗
i ) = (1− pi)sGP (R) (2.19)

in the optimum. Once we have this, λi is determined by solving

max
λi

λi(R− I)− λic
′
i(λi) + (1− λi)pic′i(λi)

1− pi

which comes from the LP problem

max
λi

λi[R− sGP (R)] + (1− λi)[I − pisGP (R)]

and equation (2.19). Specializing to the case pi = 0,one gets c′i(λ
∗
i ) = sGP (R). The

equation to determine λi becomes

max
λi

λi(R− I)− λic′i(λi)

and FOC gives
R− I = c′i(λ

∗
i ) + λic”i(λ

∗
i ).

When comparing the second-best effort with first best (equation (2.18)), the extra
term λic

′′
i (λi) measures the moral hazard issue and it reduces the effort by the agent.

So in this more flexible setting, first-best is not contactable even without adverse
selection. The expected payout from one project to the LP is

λi(R− c′i(λi)) + (1− λi)I − I,
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which can be written as

λi(R− I − c′i(λi))
= λ2

i c
′′
i (λi).

The expected payout to the GP is λic
′
i(λi) and λic

′
i(λi)− ci(λi) > 0 is the expected

profit for the the GP.
For the whole-portfolio contracting, I consider a simple whole-portfolio contract

which pays agent only when the outcome is 2R. In this case, the GP problem is

max
λ1,λ2

λ1λ2sGP (2R)− c1(λ1)− c2(λ2)

which gives

c′2(λ2) = λ1sGP (2R)

c′1(λ1) = λ2sGP (2R)

Once this, the LP problem is to determine sGP (2R) to maximize the expected revenue
which is

max
sGP (2R)

λ1λ2(2R− sGP (2R)) + [λ1(1− λ2) + λ2(1− λ1)](R + I) + (1− λ1)(1− λ2)2I

where λ1, λ2 satisfy GP’s optimality equations. We have the following proposition
which gives answer for a wide class of cost functions.

Proposition 15 (No asymmetric information case) If c1 = aλm and c2 = bλm

for m > 2 and a, b > 0, then whole-portfolio contracting is better for the LP compared
to deal-by-deal contract.

The intuition behind the proposition is simple. When there is no asymmetry of
information, it is better that contract motivates effort as easily as possible. Tying
outcomes together can provide a bigger incentive relative to contracting on projects
in deal-by-deal basis. This proposition shed light on the fact that in settings where
the investor and agent have same information about the quality of projects, the
whole-portfolio contracting is dominant. This includes hedge-funds, mutual-bonds
or other contracts on public equities.
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Uninformed Investor

In this part, I consider the case in which investor is not informed about the corre-
lation. Other than this, I assume the same setup as in the main model. Since in
the deal-by-deal contract correlation has no effect on the outcome, I only focus on
the whole-portfolio contracting. Assume that the GP can privately and strategically
choose the correlation ρ in the interval [ρ1, ρ2]. While the interval is common knowl-
edge, the LP does not observe ρ directly. The case of informed investor is a special
case when ρ1 = ρ2 = ρ. Since investment compatibility conditions are independent
from ρ, as in the informed case, optimal contract satisfies

z ≥ p1y, p2y, p1p2x

y ≥ z, p1x, p2x

x ≥ z, y

where variables are as in equation (2.11). As before, assume p1 ≥ p2. The expected
payout to the GP from choosing ρ is

ρλminx+ [λ1 − 2ρλmin + λ2]y + [1− λ1 − λ2 + ρλmin]z.

Derivative with respect to ρ of the expression above is

λmin(x− 2y + z).

There are two possible scenarios for the GP to choose the correlation. If x > 2y− z,
the payout for two successful exits are relatively high hence GP wants to maximize
the chance of having two successful exits. Therefore GP chooses the highest possible
correlation i.e ρ = ρ2. In contrary, if y is relatively high (2y > x− z), then it is more
profitable for GP to have only one successful exit. This event has the highest chance
when ρ is smallest which is ρ = ρ1. Now suppose (x, y, z) has the form of ( z

p21
, z
p1
, z)

which is the same as in the optimal contract with informed investor from Proposition
9. In this case, the derivative with respect to ρ of the payout to GP becomes

λminz(
1

p2
1

− 2

p1

+ 1) = λminz(
1

p1

− 1)2 > 0.

Therefore as argued above, GP chooses the highest value of ρ which is ρ2. As we saw in
the informed problem, when ρ goes up, E[sLP ] goes up as well in the optimal informed
contract. Therefore LP optimally offers the contract ( z

∗

p21
, z
∗

p1
, z∗) where z∗ = z∗(ρ2) is

the management fee in the optimal contract for the correlation ρ2 from Proposition
9. GP optimally chooses ρ2 as well from discussion above. Therefore if for ρ = ρ2,
LP prefers whole-portfolio contracting to deal-by-deal, then the contract above is
offered. Otherwise deal-by-deal contract is offered. In summary we have
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Proposition 16 (Uninformed Investor) Suppose GP can privately chooses ρ in
the interval [ρ1, ρ2].Then

• If ρ2 < ρ∗∗, a deal-by-deal contract is offered to GP.

• If ρ2 ≥ ρ∗∗,a whole-portfolio contract associated to ρ = ρ2 is offered to GP and
GP chooses ρ = ρ2 optimally.

Conditional Contract

In this part, I consider conditional contracting which means that the payout of
the contract is a function of the outcome of each project. This definition contains
both deal-by-deal contracting as well as whole-portfolio contracting as special cases.
When the payout of projects are 2I or 2R, it corresponds uniquely to two bad or
good projects respectively. However, there are two possible ways to get the outcome
R + I. When the first project is type G or when the second one is and the other
one is type B. Unlike the whole-portfolio and similar to deal-by-deal, when the
contract is fully conditional, total payout to GP can be different in these two cases.
Therefore take y1 and y2 as possible payouts to GP where y1 is s(R + I) when the
first project is successful and y2 is that of when the second one is type G. Set
x = s(2R) and z = s(2I) as in the whole-portfolio contracting. Also recall that from
equation (2.10), we have s(I) = s(R) = 0. Similar to whole-portfolio contracting, in
the optimal contract, payouts satisfy

z ≥ p1p2x, p1y1, p2y2

y1 ≥ z, p2x

y2 ≥ z, p1x

x ≥ z, y1, y2

When comparing these to analogues inequalities in the whole-portfolio contracting,
we see that there is efficiency gain. recall that in the whole-portfolio contracting, z
should be bigger than both p1y and p2y since there is no difference between payouts
to GP when the return is R + I and the first project is successful or the return is
R+I and the second project is successful. As a result LP should overcompensate GP
to cover both cases and this causes some inefficiency when compared to conditional
contracting. The same phenomena happens when comparing y and x. y should
be bigger than both p1x and p2x while in the conditional contract there are two
different values y1 and y2 instead of single payout y. Assume ymin and ymax are the
corresponding payouts for when the project with λmin or λmax succeed respectively.
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To motivate GP to exert effort on both projects (moral hazard problem), the contract
should satisfy

ρλminx+ (λmax − ρλmin)ymax + (1− ρ)λminymin + (1− λ1 − λ2 + ρλmin)z

≥ z + 2c, λ1y1 + (1− λ1)z + c, λ2y2 + (1− λ2)z + c

So LP problem is

min
x,y,z

αx+ β1y1 + β2y2 + γz

αx+ β1y1 + β2y2 + γz ≥ z + 2c, λiyi + (1− λi)z + c

x ≥ yi ≥ z ≥ piyi ≥ p1p2x

where (α, β1, β2, γ) = (ρλmin, λmax − ρλmin, (1− ρ)λmin, 1− λ1 − λ2 + ρλmin). With
similar reasoning as in the whole-portfolio contracting, in the optimum

αx+ β1y1 + β2y2 + γz = max{z + 2c, λiyi + (1− λi)z + c} (2.20)

Similar to Proposition 9 we have the following.

Proposition 17 (Optimal Conditional Contract) In the optimal contract,

z = p1y1 = p2y2 = p1p2x (2.21)

z is determined such that equation (2.20) is satisfied.

As in the whole-portfolio contracting, the inequalities which are dealing with
adverse selection issue are binding as well. It is worth mentioning that when p1 = p2,
we get y1 = y2 even in the case that λ1 6= λ2,hence the contract reduces to a whole-
portfolio contract. This is because the variation in λs affect the moral hazard problem
and has no bearing on the asymmetric information issue which rises after exerting
effort on projects. In fact when we compare whole-portfolio contracting with the
conditional contracting for the loss of efficiency for LP, we have (recall thatp2 < p1)

Proposition 18 (Efficiency loss for whole-portfolio contracting) The profit made
by GP in the conditional contracting decreases as p2(≤ p1) increases. When p2 =
p1,the profit equals the profit made in the whole-portfolio contracting.

Here is the intuition behind statement above. . As we mentioned in the discussion
after proposition 11, p1 − p2 measures the difference between adverse selection that
problems are subject to. When this measure is zero, handling of the problem for
one project, efficiently takes care of the other project as well hence whole-portfolio
contracting becomes the best conditional contract. As this measure grows, whole-
portfolio contracting becomes less and less efficient and GP can extract more rent
on the projects.
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Bargaining Power

In this part, I consider what happens when GP has the bargaining power for writing
the contract. For the moment I assume that the offered contract has to be incentive
compatible to induce the GP to choose the optimal strategy (justify it at the end).
For reputable GP, the problem becomes

max
x,y,z

αx+ βy + γz

x ≥ y ≥ z ≥ p1y ≥ p2
1x; αx+ βy + γz ≥ z + 2c, λmaxy + (1− λmax)z + c

E[sLP ] ≥ 2I

The last inequality is the participation constraint for the LP. Here notation are the
same as in subsection 2.3. Not surprisingly, in the optimum, the equality E[sLP ] = 2I
happens otherwise the contract can be altered in the GP’s favor without violating
participation constraint by LP (for example by increasing x). Hence unlike investor
problem we do not have a unique contract and the contract only needs to satisfy the
incentive compatibility equations. Also, as we saw in subsection 2.3 , E[sLP ]+E[sGP ]
is independent of ρ. Therefore, investor breaks even in the optimum and the contract
is not unique. To justify the imposing of the incentive compatibility, note that in
any feasible contract E[sLP ] ≥ 2I is required. Also the optimal investment strategy
guarantees the maximum possible payout of the projects. Hence imposing them does
not reduce the profit by GP.
This result is not surprising as when GP has the market power, since she is the party
who takes the action and also observes the quality of the project, she can extract all
the rent from projects. So in the presence of the market power by GP, the method
of contracting or correlation does not play a role.

When GP is not reputable hence FNO is imposed, take E[sGP ] = αx + β̃y as in
section 2.4 and then the GP problem becomes

max
x,y

αx+ β̃y

x ≥ y ≥ p1x; αx+ β̃y ≥ max{θmaxy + c, p1y + 2c}
E[sLP ] ≥ 2I

Similar to the case of reputable GP, investor breaks even and he is not concerned
about the correlation. In addition, if GP can choose the correlation as well, she
maximizes the surplus of the project. So as we saw in the section 2.4, total payout
is decreasing in ρ so she chooses ρ = 0 in this case. Since even for ρ = 1, total
payout of projects is more than deal-by-deal contract, when GP has market power
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she chooses whole-portfolio contracting. This stems from the fact that the whole-
portfolio contracting persuade GP to have a better investment strategy. Hence in
summary we get

Proposition 19 When GP has the bargaining power, for reputable GP there is no
difference between deal-by-deal and whole-portfolio contracting. For non-reputable
GP whole-portfolio contracting is preferred for all values of ρ. In addition the contract
is not unique and only needs to satisfy the IC by GP as well as PC by LP.

2.6 Conclusion

In this paper, I proposed a framework to study the scheme of payment in LPA. Un-
like usual contracts which only determine the amount of payment for a given return,
since GP and LP write a contract on a portfolio, the method of payment is also
of vital importance. I compared the main two methods of payments which are the
deal-by-deal and the whole-portfolio. Within my setting, I showed that the whole-
portfolio contracting is more prevalent when the correlation of investment companies
is high or when the reputation of GP is low. Previously documented findings support
these result.

In addition, I make some predictions which can guide future studies. For exam-
ple the informativeness of the investor can also affect the method of contracting and
hence the portfolio as well. More informed investors tend to have more deal-by-deal
contract and a diverse portfolio while less informed ones have a narrower range of
investment and more whole-portfolio contracting. Also when underlying assets are
public, whole-portfolio contracting is the typical method of payment which is used.
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Appendix A

Appendix to Chapter 1

A.1 Proofs

To characterize the effort boundary and value function, we define, for any η ≥ 0,

β± (η) =
1

2
− α

σ2
±

√(
1

2
− α

σ2

)2

+
2 (r + η)

σ2
, (A.1)

which are the roots of the polynomial

p (b) = b2σ2 +
(
2α− σ2

)
b− 2 (r + η) . (A.2)

For the special case when η = 0, we use the abbreviation β+ (0) = β+. The
following lemma provides bounds and comparative statics for β+ (η). (The root
β− (η) is obviously negative.)

Lemma 5 β+ (η) is increasing in η and decreasing in α and σ. β+ (η)→ (r + η) /α
as σ2 → 0, and β+ (η)→ 1 as σ2 →∞. Finally,

β+ (η) ∈ (1, (r + η) /α) , η ≥ 0.

Proof. β+ (δ) > 1 is easy to confirm. From the form of the polynomial (A.2), we
get that β+ (δ) < (r + δ) /α if and only if the polynomial evaluated at b = (r + δ) /α
is strictly positive, which is true if and only if r + δ > α. The comparative statics
with respect to δ and α follow because the polynomial (A.2) is decreasing in δ and
increasing in α, for every b > 0.

We now show that β+ (δ) is decreasing in σ. Differentiate the implicit equation
p(b) = 0 to get

db

dσ
=

2σb(1− b)
2bσ2 + 2α− σ2

.
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Because β+ (δ) > 1 and β− (δ) < 0, the numerator is negative at either root. It is
easy to see that the denominator is positive for β+ (δ) and negative for β− (δ).

The jump-model counterparts to the diffusion-model parameters β± (η) are

β+
κ (η) =

ln (ψ+ (η))

ln (u)
, β−κ (η) =

ln (ψ− (η))

ln (u)
, η ≥ 0, (A.3)

where, for any η ≥ 0, ψ+ (η) and ψ− (η) are the two roots of the polynomial

κpψ2 − (r + η + κ)ψ + κ (1− p) = 0, (A.4)

with ψ+ (η) being the larger (the roots are real when p ∈ (0, 1)).

Proof of Proposition 1
To simplify notation, we consider only the single-firm (n = 1) case (the ideas for

the n > 1 case are the same). Without loss of generality, we assume that t = 0. For
any effort process e, the time-0 firm value, conditional on no success to date (i.e., on
{τ > t}), is the expected discounted payoff:

v (P ; e) = Et

[
e−r(τ−t)f (Pτ )−

∫ τ

t

e−r(s−t)Qesds

]
, t ≤ τ, (A.5)

where τ is the time to success. We want to show

v (P ; e) = E

[∫ ∞
0

{f (Ps)−Q} esξs (e) ds

]
,

where ξs (e) is defined in (1.3). First consider the finite-horizon problem; that is,
assume that at some time T , the process is killed. Then Proposition 1 of Duffie,
Schroder, and Skiadas (1996) implies that

vT (P ; e) = E

[∫ T

0

{f (Ps)−Q} esξs (e) ds

]
= E[YT ].

Here YT represents the integral inside the square brackets. In order to finish the
proof, we have to show that the family YT of random variables converge. Because et
is nonnegative and bounded and |f(P )−Q| ≤ P +Q, this reduces to show that the
family

Xn =

∫ n

0

e−rsPsds
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(absolutely) converges. By using Cauchy criteria and the fact that family Xn is
increasing, we have to show that

lim
n→∞

lim
m→∞

P (Xn+m −Xn ≥ ε) = 0.

We have

P (Xn+m −Xn ≥ ε) ≤
E
[∫∞
n
e−rsPs

]
ε

=

∫∞
n
e(α−r)sds

ε
=

1
r−αe

(α−r)n

ε
,

which goes to zero as n goes to ∞. This completes the proof.

Proof of Proposition 2
Uniqueness in the Two-Firm (n = 2) Case. Lemma 11 in Appendix B

shows that the optimal response to a competitor’s effort process e (P ), with e non-
decreasing in P , is to choose a fixed boundary P ∗, with effort exerted only when the
payoff process exceeds P ∗. Changing notation for this proof, we let v (P ; p) denote
the optimal value function of one of the firms given that the other firm chooses the
fixed effort-boundary p. Let P ∗ (p) denote the optimal effort-boundary response of
one firm to a given effort-boundary p chosen by the other firm.

It follows from the firm-value expression (1.2) that v (P ; p) is strictly increasing in
p for each P (because the other firm’s effort is decreasing in p) and strictly increasing
in P for each p. Lemma 11 implies that P ∗ () is the unique solution to

v (P ∗ (p) ; p) = P ∗ (p)− (K +Q) .

If p̂ > p, then v (P ∗ (p) ; p̂) > P ∗ (p)−(K +Q) together with P−v (P ; p̂) increasing in
P (using Lemma 10), imply that P ∗ (p̂) > P ∗ (p). That is, P ∗ (·) is increasing. Con-
tinuity of v (P ∗ (p) ; p) in p implies that P ∗ (·) is continuous. Also, P ∗ (0) ∈ (0, P ∗n),
P ∗n = P ∗ (P ∗n) and limp→∞P

∗ (p) = P ∗1 , where P ∗1 is the single-firm optimal effort
boundary (p→∞ corresponds to the other firm never exerting effort). Uniqueness
of the symmetric Nash equilibrium implies that P ∗ (·) only intersects the identity
line at P ∗n . Together, these properties imply

P ∗ (p) > p if p < P ∗n , and P ∗ (p) < p if p > P ∗n . (A.6)

The response-function properties (A.6) imply a unique equilibrium (whether sym-
metric or not) because the optimal response to any boundary p̄ < P ∗n is a boundary
P ∗ (p̄) ∈ (p̄, P ∗n), which induces an optimal response P ∗ (P ∗ (p̄)) ∈ (P ∗ (p̄) , P ∗n), and
so on. That is, we get an increasing monotonic sequence, which must converge to
P ∗n (by continuity of P ∗ (·) and uniqueness of the symmetric Nash equilibrium). An
analogous argument applies to any boundary P̄ > P ∗n .
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Uniqueness in the n-Firm Case. Consider any pair of firms, which we label
a and b, and hold fixed the total effort of the other n− 2 firms. Let v (P ; p) denote
the optimal value function of either of the pair, given that the other firm chooses
the effort-boundary p. The proof in the two-firm case shows that a and b must
share a common boundary in the Nash equilibrium effort problem for the pair. It
follows that in the n-firm case, there must be a common Nash equilibrium boundary.
(Otherwise, if we suppose there is a pair of firms a and b with P ∗a 6= P ∗b, we get a
contradiction.)

Derivation of the Closed-Form Solution. We omit the “cmp” superscript
for V and P ∗. The HJB equation (1.4) implies that the ODE in the no-effort region
is

0 = −rV (P ) + αPVP (P ) +
σ2

2
P 2VPP (P ) , if P < P ∗, (A.7)

which represents the discounted expected value of V (P ∗) at the next time the value
Pt hits P ∗. The well-known solution is

V (P ) = V (P ∗)

(
P

P ∗

)β+

, P ≤ P ∗. (A.8)

The optimal-effort equation (1.5) implies that the net potential payoff from exerting
effort at the boundary P ∗ is zero; that is, P ∗ − K − Q = V (P ∗). Together with
(A.8), we get the no-effort-region value function (1.10) with δ = 0.

The solution in the effort region, P ≥ P ∗, is obtained from Lemma 8 in Appendix
B.

Finally, for the effort and no-effort regions to match the conjectured regions, the
solution must satisfy

f (P )− V (P ) ≥ Q ⇐⇒ P ≥ P ∗. (A.9)

This is also shown in Lemma 8 in Appendix A.2. The verification proof in Appendix
A.3 completes the proof of the proposition.

Proof of Lemma 2
From the effort strategy (1.15) and continuity of the value function in price, the

cheating boundary satisfies P ∗cht (τ) = V cht
(
P ∗ cht (τ) , τ

)
+ Q + K, for all τ ≥ 0.

Fixing τ and defining

H (p) = p− V cht (p, t,D)− (Q+K) ,

we show that there is a unique zero of H (p). The time-0 value is H (0) = − (Q+K),
and a slight modification of Lemma 10 shows that there exists a ε > 0 such that

H ′ (p) = 1− ∂

∂p
V cht (p, τ) > ε all p, τ ≥ 0.
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A unique p̂ satisfying H (p̂) = 0 therefore exists, which is the cheating boundary.
Lemma 6 below shows that V cht (P, τ) is strictly increasing in τ , and, therefore,

(1.15) implies that P ∗cht (τ) is increasing in τ .
The inequality V cht (P, τ) > V cmp (P ) for all P, τ > 0 implies, from (1.15) and

(1.6), that êcht
τ < êcmp

τ for τ > 0 (and êcht
τ = êcmp

τ for τ = 0).

The following lemma shows that firm i’s value function under the cheating strat-
egy is increasing in delay time (or time to retaliation).

Lemma 6 Let P ∗ ∈ (P ∗cmp, P ∗co] and suppose all firms except firm i are following
the P ∗coordinated strategy. Firm i’s value function, V cht (P, τ), is strictly increasing
in τ for any P > 0.

Proof. Without loss of generality, let the current time be zero. For any τ > 0,
the total effort process of the other agents under the coordinated strategy is

e−it (τ) = (n− 1) θ ·
{

1{Pt≥P ∗} if t < τ,
1{Pt≥P ∗cmp} if t ≥ τ.

If τ1 < τ2, then e−it (τ1) ≥ e−it (τ2) for all t and Pr
(
e−it (τ1) > e−it (τ2)

)
> 0 for

t ∈ [τ1, τ2). The value-function characterization (1.2) implies a strictly higher firm-i
value process for τ2 relative to τ1.

Proof of Proposition 4
We make the following notational change for this proof: We introduce K +Q as

an explicit argument in all value functions and let Q = 0 to simplify notation. The
effort boundary for the cooperative strategy is P ∗co throughout the proof.

Lemma 6 shows that V cht (P,K, τ) is strictly increasing in τ for any P > 0.
We also know that V cht (P,K, 0) = V cmp (P,K) (immediate retaliation) and that
limτ→∞ V

cht (P,K, τ) > V co (P,K) (no threat of retaliation), for any P > 0. By con-
tinuity and strict monotonicity of V cht (P,K, τ) in P , there exists a unique τ (P,K)
such that

V cht (P,K, τ) R V co (P,K) if τ R τ (P,K) .

Further, degree-1 homogeneity of the value functions in P and K implies that the
function τ can instead be expressed in terms of the ratio K/P :

V cht (1, K/P, τ) R V co (1, K/P ) if τ R τ (K/P ) .

Finally, define
D∗ = inf

K/P>0
τ (K/P ) .
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The variable D∗ depends on neither the current price P0 nor the required investment
outlay K (nor the effort cost Q). We interpret D∗ as the maximum monitoring
delay time under which the first-best coordinated equilibrium can be sustained. We
justify this interpretation as follows. For any D < D∗, the definition of D∗ implies
V cht (P,K,D) < V co (P,K) for all P,K > 0, and, therefore, deviating from the
cooperative equilibrium with exactly D years remaining before retaliation is subop-
timal (regardless of the price). By monotonicity of the cheating value function in τ
(Lemma 6), it follows that any future cheating must also be suboptimal.

Conversely, suppose D > D∗. Then, for any K > 0, there must exist some

price P̃ > 0 such that V cht
(
P̃ ,K,D

)
> V co

(
P̃ ,K

)
. If the current price P0 equals

P̃ , then cheating now is optimal. If P0 6= P̃ , then by continuity, there must exist

∆t > 0 such that V cht
(
P̃ ,K,D −∆t

)
> V co

(
P̃ ,K

)
, and there is some strictly

positive probability that the price could hit the value P̃ in the next ∆t units of time.
Therefore, if D > D∗, then there is a strictly positive probability that cheating will
be optimal in the future.

Finally, we now show that D∗ > 0. Our value-function formulas imply that there
is a constant C1 > 0 such that

V co(P,K) > V cmp(P,K) + C1, all K +Q < P < P ∗co. (A.10)

We next derive the following inequality: Given any ε > 0, if D > 0 is sufficiently
small, then

V cht(P,K,D) < V cmp(P,K) + ε, all K +Q < P < P ∗co. (A.11)

To show (A.11), note that V cht(P,K,D) − V cmp(P,K) is bounded above by the
discounted expected prize from the cheating firm alone exerting effort in the next
D years and allowing that effort to be cost-less. The probability of success in the
time interval [0, D] is less than 2θD, and, therefore, the expected prize is less than
2θD · E [max0<t<D Pt]. Doob’s inequality implies that E [max0<t<D Pt] < 2E[PD],
and E[PD] < C · P0 for some C that can be computed explicitly for GBM. Because
we need consider only P in a bounded range, we obtain the uniform bound in (A.11).

To complete the proof that D∗ > 0, let ε = C1 in (A.11) and combine with (A.10)
to get V cht(P,K,D) < V co(P,K) (i.e., cheating is suboptimal) for all K +Q < P <
P ∗co (which is the only price range in which cheating would be considered).

Proof of Proposition 5
Fix an effort boundary P ∗ satisfying P ∗ > K + Q, and assume that each of the

n firms follows the effort strategy et = θ1{Pt≥P ∗}, for all t ≥ 0 (i.e., exerts effort only
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when Pt exceeds P ∗). Let v (P ) denote the aggregate value function at price P (we
omit the argument P ∗ for the first part of the proof). The integral representation
(A.5) for the value function implies that v is a C1 function. In the no-effort region,
the ODE for the value function is

−rv (P ) + αPvP (P ) +
σ2

2
P 2vPP (P ) , for P < P ∗,

and in the effort region P > P ∗, we have

nθ {P − (K +Q)− v (P )} − rv (P ) + αPvP (P ) +
σ2

2
P 2vPP (P ) .

From the results in Appendix B, the solution has the form

v (P ) =

{
v(P ∗) (P/P ∗)β

+

if P ≤ P ∗,

−a (nθ, 0) + b (nθ, 0)P + C (P ∗) (P/P ∗)β
−(nθ) otherwise.

Continuity of v (P ) at P ∗ implies

v(P ∗) = −a (nθ, 0) + b (nθ, 0)P ∗ + C (P ∗) , (A.12)

and differentiability in P at P ∗ implies

β+v(P ∗)/P ∗ = b (nθ, 0) + β− (nθ)C (P ∗) /P ∗. (A.13)

Substituting (A.12) into (A.13) yields the expression for C (P ∗).
To finish the proof, we restore the effort boundary as an argument to v and

now denote the boundary by x instead of P ∗. To simplify notation, we omit the
arguments to a () and b (). From (A.12) and the expression for C (P ∗), the value
function at the effort boundary is

v (x;x) =
1

β+ − β−
[
aβ− + bx

(
1− β−

)]
.

Fix some P < x and differentiate the value function v (P ;x) = v (x;x) (P/x)β
+

to
get

d

dx
v (P ;x) =

1

(β+ − β−)

(
P

x

)β+ {
−aβ

+β−

x
− b
(
β+ − 1

) (
1− β−

)}
. (A.14)

The derivative is zero at the value

x̂ = −a
b

β−β+

(β+ − 1) (1− β−)
. (A.15)
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Some tedious calculations confirm that x̂ = P ∗co, the cooperative boundary. Sub-
stitute, from (A.15), aβ+ |β−| /P ∗co = b (β+ − 1) (1− β−) into (A.14) to get

d

dx
v (P ;x) =

(
P

x

)β+

(β+ − 1) (1− β−)

β+ − β−
b

{
P ∗co − x

x

}
, all P < x.

Therefore, v (P ;x) is increasing in x for x < P ∗co and decreasing if x > P ∗co. We
obtain the same properties for d

dx
v (P ;x) when we consider any P > x.

Proof of Lemma 3
The instantaneous expected stock return for the jump process is

DPt
Pt

= κ {pu+ (1− p) 1/u− 1} .

Substituting p in (1.18), this equals α, the instantaneous return in the diffusion case.
Now consider the conditional quadratic variation (the compensator of the quadratic

variation) of the log jump price process:

1

dt
Et (d lnPt)

2 = κ
{
p (lnu)2 + (1− p) (− lnu)2} = κ (lnu)2 .

This equals σ2 for the value of u in (1.18), which matches the conditional quadratic
variation in the diffusion case. Convergence follows as in the convergence of the
discrete binomial model to geometric Brownian motion (for example, in the Black-
Scholes setting). We can use Skorokhod embedding or KMT embedding of a random
walk in Brownian motion to prove this. A proof can be found in [29].

Obviously, p > 0. The inequality p < 1 holds if and only if α
κ

+ 1 < u (i.e.,

ln
(
α
κ

+ 1
)
< σ/

√
κ). Our condition κ > (α/σ)2 is sufficient for p < 1 because

ln
(
α
κ

+ 1
)
≤ α

κ
.

Proof of Lemma 4
From the polynomial (A.4), we have

ψ+ (δ) =
r + δ + κ+

√
(r + δ + κ)2 − 4κ2p (1− p)

2κp
,

or equivalently,

√
κ
(
ψ+ − 1

)
=

1

2p

[
(r + δ)√

κ
+
√
κ (1− 2p)

]
+

1

2p

√
(r + δ)2

κ
+ 2 (r + δ) +

[√
κ (1− 2p)

]2
.

(A.16)
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Use the Taylor-series expansion ex = 1 + x+ 1
2
x2 + o (x2), x ∈ R, and the expression

for p in (1.18) to get

lim
κ→∞

√
κ (1− 2p) =

σ

2
− α

σ
.

Substitute into (A.16) and together with limκ→∞ p = 1/2 to get

lim
κ→∞

β+
κ (δ) =

1

σ
lim
κ→∞

√
κ ln

(
ψ+ (δ)

)
=

1

σ
lim
κ→∞

√
κ
(
ψ+ (δ)− 1

)
.

Finally,

1

σ
lim
κ→∞

√
κ
(
ψ+ (δ)− 1

)
=

1

σ
lim
κ→∞

√
κ (1− 2p) +

1

σ
lim
κ→∞

√
2 (r + δ) +

[√
κ (1− 2p)

]2
,

which matches the expression for β+ (δ) in (A.1).
We now prove the inequalities for β+

κ (δ) and β−κ (δ), which are equivalent to
ψ− (δ) < 1 < ψ+ (δ). We obtain the latter inequalities by substituting ψ = 1 into
(A.4) and showing that the left side is strictly negative. Finally, we show that α < r
implies that ψ+ (δ) > u. The inequality u < ψ+ (δ) follows because the left side of
(A.4) is negative at ψ = u; that is,

κ (pu+ (1− p) /u) < r + δ + κ,

which follows from (1.18) because κ {pu+ (1− p) 1/u− 1} = α and α < r.

Proof of Proposition 6
We can, without loss of generality, consider the case of a single firm. The strategy

is to find a smooth value function V (P ) and an optimal-effort boundary P ∗ such
that effort is optimally exerted only when Pt ≥ P ∗. The same value function will
apply for the grid of prices corresponding to any starting price level P0.

Defining
pi = P0u

i, j ∈ Z,

where Z denotes the set of integers, then if, at time t, there have been m jumps, i
of which are u jumps, the price will be Pt = P0u

i−(m−i) = p2i−m. The HJB equation
(1.4) in this setting is

0 = sup
e(pj)∈{0,θ}

e (pj) {f (pj)− V (pj)−Q}−rV (pj)+κ {pV (pj+1) + (1− p)V (pj−1)− V (pj)} , j ∈ Z,

and, therefore, optimal effort is êt = θ1{f(pj)−V (pj)≥Q}. Note that between jumps, the
price and the value function do not change. Therefore, it is either optimal to exert
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effort for the entire period between jumps or optimal to exert no effort for the entire
period (i.e., it is optimal to keep effort constant between jumps).

The value function in the no-effort region is given by Lemma 7 below. The
effort-region difference equation is

0 = θ {f (pj)− V (pj)−Q}−rV (pj)+κ {pV (pj+1) + (1− p)V (pj−1)− V (pj)} , pj ≥ P ∗.

Rearrange and substitute f (pj) = pj −K to get

V (pj) =
θ

θ + r + κ
{pj −K −Q}+

κ

θ + r + κ
{pV (pj+1) + (1− p)V (pj−1)} , pj ≥ P ∗.

To find the value function in the effort region, first we find a specific solution
to the equation, which we guess takes the form V (P ) = a + bP . Now we have to
match coefficients to find a and b (as in the diffusion case). From the effort-region
difference equations, pj+1 = upj and pj−1 = pj/u, we get

a+ bP =
θ

θ + r + κ
{P −K −Q}+

κ

θ + r + κ
{p(a+ bPu) + (1− p)(a+ bP/u)}.

We obtain a by matching the constant terms (implying a = − θ
θ+r

(K +Q)) and b by
matching the coefficients of P ,

b =
1

θ + r + κ
{θ + κb (pu+ (1− p)1/u)} ,

and substituting pu+ (1− p) 1/u− 1 = α/κ to get b = θ
θ+r−α(the same solutions as

in the diffusion case).
The general form of the value function (using the same arguments as in the

continuous-time case) is

a+ bP + d · P β−κ (θ)

for some constant d. The rest of the proof, solving for d and P ∗, proceeds exactly as
in the diffusion case.

To apply the verification result in Proposition 20 (Appendix C), the only modi-
fication of the proof is to redefine the drift operator as

Deuφ(P ) = κ {pφ(Pu) + (1− p)φ(P/u)− φ(P )} , P ∈ R++.

Note that all our main results hold in this setting (in particular, the representation
(1.2), the HJB equation, and the verification proof).
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Lemma 7 In the no-effort region,

V (P ) = V (P ∗)

(
P

P ∗

)β+
κ (0)

, P ≤ P ∗. (A.17)

Proof. The difference equation in the no-effort region is

0 = −rV (pj) + κ {pV (pj+1) + (1− p)V (pj−1)− V (pj)} , pj < P ∗.

Rearrange to get

V (pj) =
κ

r + κ
{pV (pj+1) + (1− p)V (pj−1)}. (A.18)

It is easy to see that if V1 and V2 are solutions, then aV1 + bV2 is a solution as well,
so the space of the solution is linear. Also if V (p1) = V (p0) = 0, then V (pi) = 0 for
all i ∈ Z, so the space is two-dimensional. We guess that V (pj) = ψj is the solution
for some ψ > 0. Dividing (A.18) by ψj−1, we get ψ = κ

r+κ
(pψ2 + 1 − p), which is

equivalent to (A.4) when δ = 0. The roots are ψ+ (0) and ψ− (0). Because the value
function goes to zero as the price goes to zero, the coefficient of ψ− (0) in the value
function is zero. Therefore, V (pi) = k(ψ+ (0))i for some constant j or, equivalently,

V (P ) = C (P/P0)β
+
κ (0) for some constant C. Finally, from continuity of the value

function at P ∗, we solve for C to get (A.17).

Proof of Proposition 7
To simplify notation, throughout the proof, we omit the argument κ from the

effort boundary and value function.
For the subgame in which a firm has previously deviated (and, therefore, both

firms henceforth play the competitive strategy), we have already shown that the
competitive equilibrium is subgame perfect.

For the rest of the proof, we consider the subgame in which no firm has previously
deviated. If firm i follows the cooperative effort policy, the proof of Proposition 2
shows that it is suboptimal for firm j to choose a higher boundary (i.e., exert less
than the cooperative effort level).

Now consider the case of firm j exerting too much effort. Suppose no firm has yet
won the project, and we are at the jump time ti, with Pti < P ∗co, and firm j follows
the deviating strategy of exerting effort until the next jump at ti+1. Obviously,
deviating cannot be optimal if f (Pti) ≤ Q, and, therefore, we henceforth assume that
f (Pti) > Q. Starting at ti+1, firm i will respond, and the competitive equilibrium
will prevail from time ti+1 onward. Let V co (P ) and V (P ) denote the cooperative
and competitive equilibrium value functions for price level P .
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Let (ej, e−j) denote the effort strategies in the competitive equilibrium, and let
(ẽj, ẽ−j) denote firm j’s deviating effort strategy and the other firms’ responses (coop-
erative over the next period, and then reverting to competitive). From representation
(1.2), the value function from deviating satisfies

vj
(
Pti ; ẽ

j, ẽ−j
)

= Γ + Eti

[∫ ∞
ti

{f (Ps)−Q} ejs
ξs (ej + e−j)

ξt (ej + e−i)
ds

]
= Γ + V (Pti) ,

where

Γ = Eti

[∫ ti+1

ti

{f (Pti)−Q}
{ẽjsξs (ẽj)− ejsξs (ej + e−j)}

ξt (ej + e−i)
ds

]
≤ {f (Pti)−Q} θEti

[∫ ti+1

ti

e−(r+θ)(s−ti)ds

]
.

Because the next jump time is exponential,

Eti

[∫ ti+1

ti

e−(r+θ)(s−ti)ds

]
=

∫ ∞
0

e−(r+θ)tP (ti+1 − ti > t) dt =
1

r + θ + κ
.

Further, because Pti < P ∗co, we have, from (1.13), f (Pti) − Q < nV co (Pti) and,
therefore,

Γ ≤ nV co (Pti)
1

r + θ + κ
.

Deviating is sub-optimal if

nV co (Pti)
1

r + θ + κ
+ V (Pti) < V co (Pti) ,

which is true for sufficiently large κ because limκ→∞ nV
co
n (Pti)

1
r+θ+κ

= 0 and

lim
κ→∞
{V (Pti)− V co (Pti)} = V (Pti)− V co (Pti) < 0.

A.2 Auxiliary Results

Note that ρ in the following lemma satisfies ρ = r + (n− 1) θ in the Proposition 2
application.

Lemma 8 Suppose the value function V (P ) is a C1 function and satisfies equation
(A.8), and, for constants ρ ≥ α and θ > 0,

0 = θ {P − (K +Q)− V (P )}−ρV (P )+VP (P )Pα+
1

2
VPP (Pt)P

2σ2 for P ≥ P ∗.
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Further, suppose the effort boundary P ∗ satisfies the optimality condition

P − (K +Q) R V (P ) ⇐⇒ P R P ∗, (A.19)

and assume the boundary condition

0 < lim
P→∞

V (P )

P
≤ 1. (A.20)

Then, defining β′ = β′−, given by (A.22) below, the value function in the region
{P ≥ P ∗} satisfies

V (P ) =
θ

θ + ρ− α
P+

θ

θ + ρ
(K +Q)

{[
ρ− αβ+

(β+ − β′) (ρ− α) + θ (β+ − 1)

](
P

P ∗

)β′
− 1

}
,

where

P ∗ =

(
θ + ρ− α
θ + ρ

)
(β+ − β′) ρ+ β+θ

(β+ − β′) (ρ− α) + θ (β+ − 1)
(K +Q) . (A.21)

(Note that r only enters via β+.) Finally, V is convex.

Proof. In the region {P ≤ P ∗}, the value function has the well-known solution
(A.8). In the region {P ≥ P ∗}, the general form of the solution is

V (P ) = a+ bP + k−P
β′− + k+P

β′+ ,

where β′+ > 1 > 0 > β′− are the roots of the polynomial p (y) = − (θ + ρ) + αy +
1
2
y (y − 1)σ2. Therefore,

β′± =
1

2
− α

σ2
±

√(
1

2
− α

σ2

)2

+
2 (θ + ρ)

σ2
. (A.22)

The boundary condition (A.20) implies that k+ = 0 because k+ > 0 implies the
upper bound of (A.20) is violated for sufficiently large P , and k+ < 0 implies the
value function would be negative for sufficiently large P , violating the lower bound.
Therefore, the value function (in the effort region) satisfies

V (P ) = a+ bP + kP β′ P ≥ P ∗, (A.23)

where β′ = β′−. Substitute

VP (P ) = b+ kβ′P β′/P, VPP (P ) = kβ′ (β′ − 1)P β′/P 2,
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into the ODE to get

0 = θ {P −K −Q} − (θ + ρ)
(
a+ bP + kP β′

)
(A.24)

+
{
bP + kβ′P β′

}
α +

1

2
kβ′ (β′ − 1)P β′σ2.

We can then solve for b and a:

a = −θ (K +Q)

θ + ρ
, b =

θ

θ + ρ− α
. (A.25)

Substituting b and a, we have

V (P ) =
θ

θ + ρ− α
P − θ (K +Q)

θ + ρ
+ kP β′ , for P ≥ P ∗. (A.26)

We now solve for P ∗ and k. The optimality condition (A.19) implies that

V (P ∗) = P ∗ −K −Q = a+ bP ∗ + k (P ∗)β
′
, (A.27)

and the smoothness of the value function (matching the derivatives of (A.8) and
(A.23) at P ∗) implies that

β+V (P ∗)
1

P ∗
= b+ β′k (P ∗)β

′−1 .

Combined with (A.27) to solve for k (P ∗)β
′

and substituting a, we get

β+ (P ∗ −K −Q) = bP ∗ + β′
{

(1− b)P ∗ − ρ (K +Q)

θ + ρ

}
.

It is immediately apparent that P ∗ = λ (K +Q) with λ given by

λ =
1

θ + ρ

β+ (θ + ρ)− β′ρ
β+ − β′ + b (β′ − 1)

.

Substitute b to get (A.21).
Finally, substitute a into (A.27) to get

k (P ∗)β
′
= (1− b)P ∗ − ρ (K +Q)

θ + ρ
, (A.28)
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and then substitute (A.28) into (A.26) and simplify to get

V (P ) =
θ

θ + ρ− α
P − (K +Q)

θ + ρ

{
θ + ρ

(
P

P ∗

)β′}
+

(
ρ− α

θ + ρ− α

)
P ∗
(
P

P ∗

)β′
.

The last step is to confirm the optimality condition (A.19), which follows from
limP→∞ V

′ (P ) = θ
θ+ρ−α < 1 and convexity V , which we now show. Strict convexity

of V is equivalent to k > 0. From (A.28),

k > 0 ⇐⇒ (1− b)P ∗ > ρ (K +Q)

θ + ρ
.

Substituting b and P ∗ and simplifying, we get

k > 0 ⇐⇒ (ρ− α)
β+θ + (β+ − β′) ρ

(β+ − β′) (ρ− α) + θ (β+ − 1)
> ρ

and finally k > 0 ⇐⇒ β+ < ρ/α. The inequality β+ < ρ/α follows because ρ ≥ r
and β+ < r/α (from Lemma 5).

Lemma 9 The value function V and optimal boundary P ∗ in Lemma 8 are strictly
increasing in θ (holding fixed ρ), σ, and α, and strictly decreasing in ρ.

Proof for ρ. The value-matching condition V (P ∗) = P ∗ −K −Q implies that
any parameter that increases (decreases) that P ∗ must also increase (decrease) the
value function. From the value-function expression (see (1.2))

Vt (e) = Et

[∫ ∞
t

[f (Ps) es − q (es)] exp

(
−
∫ s

t

(
r + (ρ− r) 1{Ps>P ∗} + eu

)
du

)
ds

]
,

it is clear that V (e) is decreasing in ρ for any effort policy and P ∗. The result for
α follows because V (P ) is increasing in α for any P > 0.

Proof for θ. We use

dβ′

dθ
= − 1

σ2

1√(
1
2
− α

σ2

)2
+ 2(θ+ρ)

σ2

and write

P ∗ =

(
θ + ρ− α
θ + ρ

)
g (θ) (K +Q) , where g (θ) =

(β+ − β′) ρ+ β+θ

(β+ − β′) (ρ− α) + θ (β+ − 1)
.
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Because
(
θ+ρ−α
θ+ρ

)
is increasing in θ, it is sufficient to show that g is increasing.

Differentiate (note that β does not depend on θ) to get

g′ (θ) =
ρ− αβ+

{(β+ − β′) (ρ− α) + θ (β+ − 1)}2

(β+ − β′
)
− θ

σ2

1√(
1
2
− α

σ2

)2
+ 2(θ+ρ)

σ2

 .
The definitions of β+ and β′ imply that the square-bracketed term is positive.

Proof for σ. Differentiate P ∗ with respect to σ. To simplify notation, let
f = β+ and g = β−(δ), and denote by primes the derivatives with respect to σ. P ∗

is increasing in σ if and only if

αf ′g − αg′f + rg′ − (r + θ)f ′ ≥ 0.

We know from Lemma 5 that f < r
α

and g′ ≥ 0, and, therefore, a sufficient condition
is

αf ′g − (r + θ)f ′ ≥ 0,

which is true because f ′, g ≤ 0 (using Lemma 5).

Note that the following lemma holds for a more general effort-cost function, and
the upper bound is the same for general effort processes as long as each firm’s effort
is bounded above by θ. Generalizations to unbounded effort are possible.

Lemma 10 Suppose the total effort of the other n − 1 firms is not decreasing in
price. Then

d

dP
V (P ) ≤ 1− r − α

r + θ − α
. (A.29)

Proof. Let ē (Pt) denote the total time-t effort exerted by all the other firms,
and let êt denote the time-t optimal effort of the firm. We assume that ē () is a
non-decreasing function. The time-0 value function at price P0 is

V (P0) = E

[∫ ∞
0

{(Ps −K) ês − q (ês)} exp

(
−
∫ s

0

(r + ēu (Pu) + êu) du

)
ds

]
.

(A.30)
Defining the martingale

Mt = exp

(
−1

2
σ2t+ σBt

)
, t > 0,
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then Pt = P0Mte
at. Differentiating with respect to P0, using the envelope theorem

to disregard the terms involving ê, and using the ē () assumption to give an upper
bound, we get

d

dP0

V (P0) ≤ E

[∫ ∞
0

eαsMsês exp

(
−
∫ s

0

(r + ēu (Pu) + êu) du

)
ds

]
.

Now change the measure to P̃ , where Mt = Et

(
dP̃
dP

)
:

d

dP0

V0 (P0) ≤ Ẽ

[∫ ∞
0

eαsês exp

(
−
∫ s

0

(r + ēu (Pu) + êu) du

)
ds

]
≤ Ẽ

[∫ ∞
0

e(α−r)sês exp

(
−
∫ s

0

êudu

)
ds

]
.

Finally, we use integration by parts and êu ≤ θ to get

Ẽ

[∫ ∞
0

e(α−r)sês exp

(
−
∫ s

0

êudu

)
ds

]
= −Ẽ

[∫ ∞
0

e(α−r)s d

ds
exp

(
−
∫ s

0

êudu

)
ds

]
= Ẽ

[
1− (r − α)

∫ ∞
0

e(α−r)s exp

(
−
∫ s

0

êudu

)
ds

]
≤ Ẽ

[
1− (r − α)

∫ ∞
0

e(α−r−θ)sds

]
.

Evaluating the integral on the right side completes the proof.

Lemma 11 Assume the total effort of the other n − 1 firms is not decreasing in
price. Let P ∗ satisfy

P ∗ − V (P ∗) = K +Q. (A.31)

a) Suppose q (e) = Qe and e ∈ {0, θ}. Then P ∗ ∈ (0,∞) exists and is unique,
and optimal effort satisfies ê (P ) = θ1{P≥P ∗}.

b) Suppose q () is strictly increasing and convex, q (0) = 0, and q′ (0) = Q ≥
0. Then P ∗ ∈ (0,∞) exists and is unique, and optimal effort satisfies ê (P ) =
(q′)−1 (P −K − V (P )) 1{P≥P ∗}, where (q′)−1 is the inverse function of q′. Optimal
effort ê (P ) is, therefore, strictly increasing in P for P ≥ P ∗.

In either case (a) or (b), V (P ) is increasing for P ≤ P ∗.

Proof. The agent’s optimal effort function ê (P ) satisfies

ê (P ) = arg max
e≥0

e {P −K − V (P )} − q (e) .
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Concavity of the objective function implies either the boundary solution

P −K − V (P )− q′ (0) < 0 =⇒ ê (P ) = 0

or an ”interior” solution, if P −K − V (P ) ≥ q′ (0). If q (e) = Qe and e ∈ {0, θ},
then P − K − V (P ) ≥ q′ (0) implies that ê (P ) = θ. If q is strictly convex, then
optimal effort satisfies

P −K − V (P ) = q′ (ê (P )) .

That is, the zero-effort region is {P : P −K − V (P ) < Q} , and the positive-effort
region (strictly positive on P −K − V (P ) > Q) is {P : P −K − V (P ) ≥ Q}.

The bound (A.29) implies that P−V (P ) is strictly increasing in P from 0 toward
∞. Together with continuity of V and V (0) = 0, we get that P ∗ ∈ (0,∞) exists and
is unique, the zero-effort price region is [0, P ∗), and the positive-effort price region is
[P ∗,∞).

Choose any P < P ∗ and P̄ ∈ (P, P ∗) and define τ = inf
{
t : Pt = P̄

}
. Because

optimal effort is zero on {P : P < P ∗},

V (P ) = E

[
exp

(
−
∫ τ

0

(r + ēu (Pu)) du

)
V
(
P̄
)]
,

and, therefore, V (P ) < V
(
P̄
)
, which implies that V (P ) is increasing for P < P ∗.

A.3 Verification Proof

In this section, we verify the value functions that were conjectured in the previous
sections. The method is standard and follows the one in [46].

Proposition 20 The function V cmp (P ) defined in Proposition 2 is the value func-
tion for vi (Pt; e

i, e−i) as defined in equation (1.2).

Proof. The notation is simpler if we let n = 1, in which case e−i = 0 and we
can omit the e−i argument and drop the i superscripts from vi (Pt; e

i, e−i). We also
omit the “cmp” superscript from V . In order to prove this proposition, we need to
show that

V (p) ≥ v (p; e) ,

for any control process e, with equality holding at the optimal effort process ê in
(1.6). By the fact that Pt is Markov process and τ is memory-less, we can see that it
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is enough to prove the above inequality when e is Markovian (i.e., et is a function of
Pt only). Also we can assume that e(p) = 0 when p ≤ K + Q because the expected
payout is zero when the price is lower than K+Q. Consider any strategy e as above
and define the operators

Deuφ(x) = αxφ′(x) +
σ2

2
x2φ′′(x), and Leuφ(x) = −(r + eu)φ(x) +Deuφ(x).

By Ito’s formula, for any function φ(x) and any control process e, we have, for s > t,

ξs(e)φ(Ps)− ξt(e)φ(Pt) =

∫ s

t

ξu(e)Leuφ(Pu)du+

∫ s

t

ξu(e)φ
′(Pu)σPudWu. (A.32)

Now assume that we have initial condition P0 = p and consider T > 0.
By applying formula (A.32) to φ = V , we get

V (p) = ξT (e)V (PT )−
∫ T

0

ξu(e)LeuV (Pu)du−
∫ T

0

ξu(e)V
′(Pu)σPudWu.

Now note that ξu(e) ≤ e−ru, E[Pu] = eαu, and ||V ′||∞ < C <∞ for some constant
C (because V is asymptotically linear). These three facts imply that the stochastic
integral is a martingale. Also because V solves the HJB equation, we know that

LeuV (Pu) + [f(Pu)eu −Qeu] ≤ 0

for any feasible e, with equality holding at the optimal effort process ê defined in
(1.6). Taking the expectation, we get

V (p) ≥ E

[
ξT (e)V (PT ) +

∫ T

0

[f(Pu)eu −Qeu]ξu(e)du
]
,

with equality again holding for ê. Letting T go to ∞, the first term goes to zero
because V has linear growth. The second term converges to

E

[∫ ∞
0

[f(Pu)eu −Qeu]ξu(e)du
]

by the linear growth condition on f , which completes the proof.
The verification in the case of symmetric equilibrium is exactly the same as the

single-firm case when we take vi(p; ei, e−i) as in (1.2) and e−i = (n − 1)1{p ≥ P ∗}.
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A.4 Heterogeneous Firms

Departing from our assumption of identical firms, the following proposition shows
that a Nash equilibrium with heterogeneous firms can be computed using a simple
iterative scheme. An n-firm algorithm could constructed using the same ideas.

Proposition 21 (Construction of two-heterogeneous-firms Nash equilibrium)
Suppose there are two firms, a and b. Assume that each firm’s effort-cost function
satisfies qi (e) = Qie and e ∈ {0, θi}, i ∈ {a, b}. Let P ∗i (p) denote firm i’s optimal
effort-boundary response to the other firm’s effort boundary p.1 Define pb0 =∞ (i.e.,
at step 0, firm-b never exerts effort) and the sequence of effort boundaries

paj = P ∗a
(
pbj−1

)
, pbj = P ∗b

(
paj
)
, j = 1, 2, . . . .

Then the sequences {pa1, pa2, . . .} and
{
pb1, p

b
2, . . .

}
are each monotonically decreasing,

and their limits,
pa∞ = lim

j→∞
paj , pb∞ = lim

j→∞
pbj,

are a Nash equilibrium effort-boundary pair.

Proof. From the expression (1.2), each firm’s value function at any P is decreas-
ing as the other firm’s effort increases (equivalently, as the other firm’s boundary
decreases). Furthermore, from the optimal effort condition (1.5), a decrease in the
firm’s value function implies an increase in the optimal own-firm effort. The effort-
boundary sequences are, therefore, monotonically decreasing and bounded below by
zero. It follows that a limit must exist. Continuity of the functions P ∗a and P ∗b

(see the proof of Proposition 2) implies

pa∞ = lim
j→∞

paj = lim
j→∞

P ∗a
(
pbj−1

)
= P a∗ (pb∞) ,

and, similarly, pb∞ = P ∗b (pa∞), which proves the Nash equilibrium.
Note that we can compute paj = P ∗a

(
pbj−1

)
implicitly from the effort-boundary

condition paj −
(
Qb +Ka

)
= va

(
paj ; p

b
j−1

)
, where va

(
paj ; p

b
j−1

)
denotes the value func-

tion of firm a with firm-a effort boundary paj and firm-b effort boundary pbj−1. The

computation for pbj = P ∗b
(
paj
)

is analogous.

As in the symmetric case, the equilibrium is subgame perfect and is, therefore,
both a competitive and coordinated (i.e., closed-loop) equilibrium.

1See the proof for a method to compute P ∗i (p).
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The following lemma shows the intuitive result that in any equilibrium with het-
erogeneous firms, the lower cost firm will exert more effort, and the more productive
firm (the one with the higher maximum effort level) will exert effort less frequently
(i.e., set a higher effort boundary).

Lemma 12 Suppose there are two firms, a and b, with θa ≤ θb, Qa+Ka ≤ Qb+Kb,
and at least one inequality is strict. Then the effort boundaries

(
P ∗a, P ∗b

)
in any

equilibrium satisfy P ∗a < P ∗b.

Proof. Consider first the case when θa = θb and Qa +Ka < Qb +Kb. Suppose,
contrary to the statement of the lemma, that P ∗a ≥ P ∗b. Similar to the notation
in (1.2), we let va

(
Pt; p

a, pb
)

denote firm a’s value function corresponding to current
price Pt and firm a and b effort boundaries pa and pb. The notation for firm b is
analogous. Differencing the optimal boundary conditions P ∗i = Qi +Ki + V i (P ∗i),
i ∈ {a, b}, we get

P ∗a − P ∗b = (Qa +Ka)−
(
Qb +Kb

)
+ va

(
P ∗a;P ∗a, P ∗b

)
− vb

(
P ∗b;P ∗b, P ∗a

)
.

Now substitute, using Lemma 10,

va
(
P ∗a;P ∗a, P ∗b

)
≤ va

(
P ∗b;P ∗a, P ∗b

)
+ (1− ε)

(
P ∗a − P ∗b

)
,

where ε = (r − α) / (r + θ − α). Also, from monotonicity of the value function in
the other firm’s effort va

(
P ∗b;P ∗a, P ∗b

)
≤ va

(
P ∗b;P ∗a, P ∗a

)
, and, from optimality

of P ∗b for firm b, vb
(
P ∗b;P ∗b, P ∗a

)
≥ vb

(
P ∗b;P ∗a, P ∗a

)
. Together these inequalities

imply

P ∗a − P ∗b ≤ (Qa +Ka)−
(
Qb +Kb

)
+ va

(
P ∗b;P ∗a, P ∗a

)
− vb

(
P ∗b;P ∗a, P ∗a

)
(A.33)

+ (1− ε)
(
P ∗a − P ∗b

)
.

Using (1.2) and letting es = θ1{Ps≥P ∗a},

va
(
P ∗b;P ∗a, P ∗a

)
− vb

(
P ∗b;P ∗a, P ∗a

)
=

1

2
E

[∫ ∞
0

{(
Qb +Kb

)
− (Qa +Ka)

}
2esξs (2e) ds

]
<

1

2

{(
Qb +Kb

)
− (Qa +Ka)

}
E

[
−
∫ ∞

0

d

ds
ξs (2e) ds

]
<

1

2

{(
Qb +Kb

)
− (Qa +Ka)

}
.

Substituting, this implies that

ε
(
P ∗a − P ∗b

)
≤ −1

2

{(
Qb +Kb

)
− (Qa +Ka)

}
,



APPENDIX A. APPENDIX TO CHAPTER 1 79

which contradicts the supposition that P ∗a ≥ P ∗b.
Consider next the case when Qa + Ka = Qb + Kb and θa < θb. Suppose to the

contrary that P ∗a ≥ P ∗b. Using the same inequalities as above, we obtain (A.33),
which implies that

ε
(
P ∗a − P ∗b

)
≤ va

(
P ∗b;P ∗a, P ∗b

)
− vb

(
P ∗b;P ∗a, P ∗a

)
.

But this is a contradiction because θb > θa implies vb
(
P ∗b;P ∗a, P ∗a

)
> va

(
P ∗b;P ∗a, P ∗b

)
.

The case when Qa+Ka < Qb+Kb and θa < θb follows from the arguments above.
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Appendix B

Appendix to Chapter 2

B.1 Proofs

Proof of Proposition 17

Let’s recall the equations which LP should consider to design the security. We have

z ≥ p1p2x, p1y1, p2y2

y1 ≥ z, p2x

y2 ≥ z, p1x

x ≥ z, y1, y2

where as defined before, (x, z) = (s(2R), s(2I)) and yi is the payout to GP when
project i is successful and project 3− i is not. As we saw, LP problem is

min
x,y,z

αx+ β1y1 + β2y2 + γz

αx+ β1y1 + β2y2 + γz ≥ z + 2c, λiyi + (1− λi)z + c

x ≥ yi ≥ z ≥ piyi ≥ p1p2x

where (α, β1, β2, γ) = (λ1λ2, λ1− ρλ2, (1− ρ)λ2, 1− λ1− λ2 + ρλ2). In the discussion
before the proposition, we showed that

αx+ β1y1 + β2y2 + γz = max{z + 2c, λiyi + (1− λi)z + c} (B.1)

Now we claim that, in the optimum either z = p1y1 or z = p2y2. This happens
since if z can be reduced, the coefficient of z on the LHS which is γ = 1−λ1−λ2+ρλ2

is less than (or equal to if ρ = 1) the minimum of coefficients on the RHS of equation
(B.1) which is min(1−λ1, 1−λ2). Having this, assume that z = p1y1 ≥ p2y2. Consider
several cases
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• First assume that the maximum on the RHS of equation (B.1) happens at
z + 2c. Then we get

αx = z(1− β1

p1

− γ)− β2y2 + 2c.

After multiplying by p1p2 and using the facts that y2 ≤ z
p2
, x ≤ z

p1p2
we have

z[α(1− p1p2) + p2β1(1− p1) + p1β2(1− p2)]

≥ 2p1p2c

with strict inequality if either y2 <
z
p2

or x < z
p1p2

. This gives a lower bound

for z. In the optimum the inequality becomes equality (as LP looks for the
minimum payment to GP) hence we get z = p1y1 = p2y2 = p1p2x.

• Now assume that maximum happens at λ1y1 + (1− λ1)z + c. Then similar to
the previous case, we can write

αx = λ1
z

p1

+ (1− λ1)z − β1
z

p1

− β2y2 − γz + c

Again inequalities as in the previous case gives us a lower bound for z which is
binding in the optimum hence we get the same relationship between variables.

• Finally assume that maximum happens at λ2y2 + (1 − λ2)z + c and assume
this is strictly bigger than other two terms (z + 2c and λ1y1 + (1 − λ1)z + c).
If z = p1y1 = p2y2, then the same reasoning as in the previous case works. So
assume that z = p1y1 > p2y2 ≥ p1p2x. Now reduce z by ε and y1 by ε

p1
and

change x accordingly to x′ such that

αx′ + β1(y1 −
ε

p1

) + β2y2 + γ(z − ε) = λ2y2 + (1− λ2)(z − ε) + c

If this change is permissible, then the new contract (x′, y1 − ε
p1
, y2, z − ε) is

strictly better for LP. So it would not be permissible. If x′ > x,this means
that we should have had p1x = y2 so that an increase in x is not permissible.
However in this case, the original equation for the expected payout to GP,
becomes

α(x− y2) = αx(1− p1) = z(1− β1

p1

− γ − λ2) + c

so

α
z

p1p2

(1− p1) ≥ z(1− β

p1

− γ − λ2) + c
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and again in the optimum this should be equality hence z = p1p2x which proves
the claim. If x′ < x, then either x = y2 or x = y1. But these contracts can
not be optimal since reducing all the payouts z, y1 and y2 and increasing x is
allowed here which improves payout to LP.

Proof of Proposition9 and 10

Let’s recall the LP problem.

min
x,y,z

αx+ βy + γz

αx+ βy + γz ≥ z + 2c, λmaxy + (1− λmax)z + c

x ≥ y ≥ z ≥ p1y ≥ p2
1x

where (α, β, γ) = (ρλmin, λ1 − 2ρλmin + λ2, 1 − λ1 − λ2 + ρλmin). As in the case of
Proposition 17, we make two preliminary observations.

1. In the optimum, we have αx+βy+γz = max{z+2c, λmaxy+(1−λmax)z+ c}.
Suppose not. Then the transformation z → z − ε for small enough ε, should
violate the conditions of the LP problem otherwise reducing z improves the
payout to LP. This means z = p1y. But then y → y − ε should violate the
conditions so similarly we get y = p1x as well. But then x→ x− ε is legitimate
because by z = p1y = p2

1x we have x > y > z.

2. In the optimum, z = p1y. This comes from the fact that in the LP problem
γ = 1− λ1 − λ2 + ρλmin ≤ 1− λ1, 1− λ2. So if the move z → z − ε is allowed,
the subtraction on the LHS which is γε is less than the subtraction on the RHS
which is either ε or (1− λmax)ε.

By point 1 above, the expected payout to GP will be max{z + 2c, λmaxy + (1 −
λmax)z + c}. This function is increasing in z, equals to z + 2c for z ≤ p1c

λmax(1−p1)

(since z = p1y) and it is λmaxy + (1 − λmax)z + c otherwise. Because the payout is
increasing in z, GP searches for a feasible contract with least amount of z. First we
see when LP is able to write a contract with z ≤ p1c

λmax(1−p1)
. Here is how the contract

is designed. As we saw, in this range of z,

αx+ βy + γz = max{z + 2c, λmaxy + (1− λ1)z + c} = z + 2c

therefore

x =
z(1− γ − β

p1
) + 2c

α
(B.2)
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hence GP should solve

min z

x ≥ z

p1

≥ p1x z ≤ p1c

λmax(1− p1)

given x as in the equation (B.2). p1x ≥ z implies

2p1c ≥ (1− p1)(α + β)z

which implies

z ≤ 2p1c

(α + β)(1− p1)

On the other hand z ≥ p2
1x, implies

[β
1− p1

p1

+ α
1− p2

1

p2
1

]z ≥ 2c

which gives

z ≥ 2c

β 1−p1
p1

+ α
1−p21
p21

(B.3)

Since
2c

β 1−p1
p1

+ α
1−p21
p21

<
2p1c

(α + β)(1− p1)

one needs to compare the lower bound on the z from equation (B.3) with the initial
condition z ≤ p1c

λmax(1−p1)
. This gives us that there is answer in this region if and only

if

[β
1− p1

p1

+ α
1− p2

1

p2
1

] ≥ 2λmax(1− p1)

p1

which simplifies to

β + α
1 + p1

p1

≥ 2λmax

Substituting α and β gives us that this happens if and only if

ρ ≥ λmax − λmin
λmin( 1

p1
− 1)

In this case the contract is written with z as given by equality in the equation (B.3)
which is the minimal z hence z = p1y = p2

1x. Now consider the case ρ < λmax−λmin
λmin( 1

p1
−1)

.
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The expected payout to GP then has the form λmaxy + (1 − λmax)z + c for some
z > p1c

λmax(1−p1)
. In this case we get

αx+ βy + γz = λmaxy + (1− λmax)z + c = (
λmax
p1

+ 1− λmax)z + c

hence

x =
(λmax

p1
+ 1− λmax − β

p1
− γ)z + c

α

Similar to the previous case, the optimization becomes

min z

x ≥ z

p1

≥ p1x z ≥ p1c

λmax(1− p1)

p1x ≥ z implies

[λmax + p1 − p1λmax − β − p1γ]z + p1c ≥ αz

which is
p1c ≥ (α + β − λmax)(1− p1)z

We have α + β − λmax = λmin(1− ρ)

z ≤ p1c

(1− p1)λmin(1− ρ)

Finally z ≥ p2
1x implies

(
λmax
p1

+ 1− λmax −
β

p1

− γ)z + c ≤ αz

p2
1

which implies

c ≤ [
α

p2
1

− (
λmax
p1

+ 1− λmax −
β

p1

− γ)]z

We can write this as

c ≤ [
α(1− p2

1)

p2
1

+ β
1− p1

p1

− λmax
1− p1

p1

]z
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therefore again the contract has the following form

z =
c

α(1−p21)

p21
+ β 1−p1

p1
− λmax 1−p1

p1

y =
z

p1

x =
z

p2
1

Finally to check the upper bound p1c
(1−p1)λmin(1−ρ)

for z, one needs to verify

α(1− p2
1)

p1

+ β(1− p1)− λmax(1− p1) ≥ λmin(1− p1)(1− ρ)

Canceling 1− p1,we get

α(1 + p1)

p1

+ β − λmax ≥ λmin(1− ρ)

LHS equals to

λmin(ρ(
1

p1

− 1) + 1) ≥ λmin(1− ρ)

which is obvious.
The only part from Proposition 10, which needs proof is that when ρ ≥ λmax−λmin

λmin( 1
p1
−1)

,

then LP makes more profit by whole-portfolio contracting. This is because, as we
saw in the proof above, for these values of ρ,the expected profit by GP with whole-
portfolio contract is z + 2c for some z ≤ p1c

λmax(1−p1)
which is less than ΠGP = 2c +∑2

i=1
pic

λi(1−pi) that GP makes under the deal-by-deal contract.

Proof of Proposition 12

As we saw in the Proof of Proposition 9, when ρ > ρ∗, the expected payout to GP is
z + 2c. The expression for z in this region is

z =
2c

β 1−p1
p1

+ α
1−p21
p21

So it is only needed to look at how denominator changes when parameters change.
Denominator is equal to

β
1− p1

p1

+ α
1− p2

1

p2
1

=
1− p1

p1

[α
1 + p1

p1

+ β]
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Derivative with respect to p1 becomes

− 1

p2
1

[α
1 + p1

p1

+ β] +
1− p1

p1

× α−1

p2
1

< 0

With respect to λmin and λmax, derivatives are 1−p1
p1

[ρ1+p1
p1

+ 1 − 2ρ] and 1−p1
p1

and
both are positive. This proves the proposition in the region ρ > ρ∗. In the region
ρ < ρ∗,the expected payout to GP is λmaxy + (1 − λmax)z = λmax(1−p1)+p1

p1
z. The

expression for z in this area is

z =
c

α(1−p21)

p21
+ β 1−p1

p1
− λmax 1−p1

p1

with respect to λmin,the derivative of the denominator is same as above. With
respect to λmax, the derivative of z is zero. However since the expected payout in this
regime is λmax(1−p1)+p1

p1
z,it is increasing. Finally with respect to p1,the denominator

for 1−p1
p1
z, is α(1+p1)

p1
+ β−λmax. Derivative with respect to p1 of this term is − α

p21
< 0

hence denominator is decreasing and the whole term is increasing. This finishes the
argument.

Proof of Proposition 13

As we mentioned in the discussion proceeding the Proposition 13, in the optimal
contract we have

αx+ β̃y = max{θmaxy + c, p1y + 2c}
By this, LP problem can be written as

min
x,y

αx+ β̃y

x ≥ y ≥ p1x; αx+ β̃y = max{θmaxy + c, p1y + 2c}

Similar to the proof of Proposition9, we consider two possible cases for y.

• If y ≤ c
θmax−p1 = c

λmax(1−p1)
, then we p1y+ 2c = max{θmaxy+ c, p1y+ 2c},hence

one gets

x = f(y) =
(p1 − β̃)y + 2c

α

by p1y + 2c = αx+ β̃y. Therefore LP problem becomes

min y

min{f(y),
c

θm − p1

} ≥ y ≥ p1f(y)
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y ≥ p1f(y) implies

y ≥ 2p1c

α− p1(p1 − β̃)
(B.4)

x ≥ y implies
(α− (p1 − β̃))y ≤ 2c

if α− (p− β̃) > 0, then

y ≤ 2c

(α− (p1 − β̃))

otherwise always (B.4) is satisfied. Note that if α− (p− β̃) > 0, then

2p1c

α− p1(p1 − β̃)
≤ 2c

(α− (p1 − β̃))

So there is answer satisfying y ≤ c
θmax−p1 if

2p1c

α− p1(p1 − β̃)
≤ c

θmax − p1

(B.5)

In which case y = 2p1c

α−p1(p1−β̃)
and x = f(y) = y

p1
. Equation (B.5) holds if

α− p2
1 + p1β̃ ≥ 2λmaxp1(1− p1)

which, after canceling and factoring (1− p1),becomes

λmin[(1− p1)ρ+ p1] ≥ λmaxp1

which is equivalent to

ρ ≥ λmax − λmin
λmin( 1

p1
− 1)

• If ρ < λmax−λmin
λmin( 1

p1
−1)

, then the contract with y ≤ c
λmax(1−p1)

is not possible. In this

case,

f(y) = x =
(θmax − β̃)y + c

α

So LP should solve

min y

f(y) ≥ y ≥ max{p1f(y),
c

λmax(1− p1)
}
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y ≥ p1f(y) implies

y ≥ p1c

α− p1(θmax − β̃)

x ≥ y implies
(α− (θmax − β̃))y ≤ c

if α− (θmax − β̃) > 0 this means

y ≤ c

(α− (θ − β̃))

Otherwise always it is satisfied. In any case, in this region, the possible mini-
mum for y is p1c

α−p1(θmax−β̃)
, in which case x = y

p1
.

Finally to show the equality sFNO(R+I) = s(R+I), note that β̃ = β+p1(1−α−β).
Hence in the region ρ < λmax−λmin

λmin( 1
p1
−1)

, it is enough to show

α(1− p2
1) + βp1(1− p1)− λmaxp1(1− p1) =

α− p1(λmax + p1(1− λmax)) + p1(β + p1(1− α− β))

which is correct after simplification. In the region ρ ≥ λmax−λmin
λmin( 1

p1
−1)

similar algebra

works.

Proof of Proposition 14

We use the fact that sFNO(R + I) = s(R + I) which was proved in Proposition 13.
I claim, expected payout to both types of GPs are the same under whole-portfolio
contracting. For ρ < ρ∗ both are equal to p1y + 2c = z + 2c. In the region ρ > ρ∗,
for non-reputable GP, expected payout is equal to

θmaxy + c =

λmaxy + (1− λmax)p1y + c

By Proposition 9 is the same as λmaxy+(1−λmax)z+c which is the expected payout
to reputable GP by the same proposition. Also as we saw by equation (2.16) and
discussion after it, the expected payouts to both types of GP under deal-by-deal
are the same as well. Now in the reputable case, both types of contracting induce
the optimal investment strategy of exerting effort and invest only in good project.
However for non-reputable GP, whole-portfolio contracting improves total payout of
the projects compared to deal-by-deal as we saw in Subsection 2.4. Therefore it can
only increase the profit of the LP compared to the reputable case since the expected
payout to GP is the same for both types of GPs. This completes the argument.
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Proof of Proposition 15

With given cost functions, in the deal-by-deal, the effort λ1 is determined by

R− I = amλm−1
1 + am(m− 1)λm−1

1 = am2λm−1
1

so λ1 = m−1

√
R−I
am2 and the profit from first project is λ2

1c”(λ1) = aλ2
1m(m − 1)λm−2

1 .

For the second project we need only to change a to b. In the whole-portfolio case,
using equations

bmλm−1
2 = c′2(λ2) = λ1sGP (2R)

amλm−1
1 = c′1(λ1) = λ2sGP (2R)

we have amλm1 = bmλm2 which gives λ2 = Cλ1 where C = m
√

a
b
. Then second equation

above gives
a

C
mλm−2

1 = sGP (2R)

Therefore LP problem can be written as (λ1 = λ)

max
λ

Cλ2[2R− sGP (2R)] + [λ(1−Cλ) +Cλ(1− λ)](R+ I) + (1− λ)(1−Cλ)2I − 2I

From above Cλ2sGP (2R) = amλm and the profit is

2Cλ2R− amλm + λR− Cλ2R + λI − Cλ2I

+ CλR− Cλ2R + CλI − Cλ2I − 2λI − 2CλI + 2Cλ2I

which simplifies to
(λ+ Cλ)(R− I)− amλm

FOC gives
(1 + C)(R− I) = am2λm−1

so

λ1 = λ =
m−1

√
(1 + C)(R− I)

am2

Total profit by LP in this case can be written as

λ(1 + C)(R− I)[1− 1

m
]

So in order to show that LP makes more money with whole-portfolio compared to
deal-by-deal, we have to show

m−1

√
(1 + C)

a
(1 + C) >

m−1

√
1

a
+

m−1

√
1

b



APPENDIX B. APPENDIX TO CHAPTER 2 90

since b = a
Cm
, this simplifies to show

m−1
√

(1 + C)(1 + C) > 1 +
m−1
√
Cm

which is equivalent to (set C = dm−1)

(1 + dm−1)m > (1 + dm)m−1

Since the problem is symmetric with respect to a and b we can assume a ≤ b hence
d ≤ 1,which makes the inequality above trivial.

B.2 Robustness

Increasing Assumption

The security defined in Proposition 9 is increasing on the set of possible payouts with
positive probability (i.e on equilibrium path). However if the payout of good project
is not R for sure or GP makes a wrong decision, it is possible to get a payout of size
R. To show robustness of our main result on the relation between correlation and
security design, we have the following proposition.

Proposition 22 If the condition s(R) ≥ s(2I) is imposed to the security sGP = s,
the result of Proposition 10 remains unchanged if 1

4
≥ p1 ≥ p2.

Proof.
Take (z, w, x, y) = (s(2I), s(R), s(R + I), s(2R)). Similar to the case of security

with no restriction, in the optimum s(I) = 0. Also since R is not outcome of optimal
investment strategy, it should be the lowest possible value such that the security
remains increasing hence s(R) = s(2I) = z. With the same reason as discussed in
subsection 2.3, to motivate for optimal investment strategy, contract should satisfy

z ≥ p1p2x+ [p1(1− p2) + p2(1− p1)]z, p1y

y ≥ p1x+ (1− p1)z

x ≥ z, y

Also to motivate effort,

ρλminx+ [λ1 − 2ρλmin + λ2]y + [1− λ1 − λ2 + ρλmin]z

≥ z + 2c, λmaxy + (1− λmax)z + c
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Therefore LP problem is

min
x,y,z

αx+ βy + γz

subject to conditions above. Here as before, (α,β,γ)=(ρλmin,λ1-2ρλmin+λ2,1-λ1-λ2+ρλmin).
With similar argument as in the main case, we have

αx+ βy + γz = max{z + 2c, λmaxy + (1− λmax)z + c}
z = max{p1p2x+ [p1(1− p2) + p2(1− p1)]z, p1y}

Based on which terms becomes maximum on the RHS of the first equality, I consider
the following two cases

1. First consider the case z ≤ p1c
λmax(1−p1)

. In this case the maximum payout will
be z + 2c so we have

αx+ βy + γz = z + 2c

by this

x =
z(1− γ)− βy + 2c

α

Now divide this case to two sub-cases.

• p1y = max{p1p2x+ [p1(1− p2) + p2(1− p1)]z, p1y} = z. As the result

x =
z(1− γ − β

p1
) + 2c

α

hence the problem for LP can be written as

min z

x ≥ y =
z

p1

y ≥ p1x+ (1− p1)z

z = p1y ≥ p1p2x+ [p1(1− p2) + p2(1− p1)]z

The last two inequalities can be written as

z ≥ p2
1

1− p1 + p2
1

x = θ1x

z ≥ p1p2

1− p1 + 2p1p2 − p2

x = θ2x
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RHS of the second inequality is increasing in p2. So if p2 ≤ p∗, for some
p∗ ≥ 0, the first inequality is effective otherwise the second one is. In any
case, we get

αz/θi ≥ z(1− γ − β

p1

) + 2c

so for optimal z we have

z =
2c

β 1−p1
p1

+ α 1−θmax
θmax

which is similar to the formula as in Proposition 9. When comparing with
the initial inequality, we get

α
1− θi
θi

+ β
1− p1

p1

≥ 2λmax(1− p1)

p1

so similar to the main case, if we have

α
1− θi
θi

+ β
1− p1

p1

is increasing in ρ, then we have shown the proposition. The derivative
with respect to ρ is

λmin(
1− θi
θi
− 2

1− p1

p1

)

Maximum value for θi is when p1 = p2 and for this case by p1 ≤ 1
4

we get
1−θi
θi
≥ 21−p1

p1
hence the derivative above is always positive. This shows

that payout to LP is increasing in ρ in this case.

• p1p2x + [p1(1 − p2) + p2(1 − p1)]z = max{p1p2x + [p1(1 − p2) + p2(1 −
p1)]z, p1y} = z. From this we get

x =
1− [p1(1− p2) + p2(1− p1)]

p1p2

z = qz

on the other hand, we have

x =
z(1− γ)− βy + 2c

α

so we have
βy = 2c− αqz + z(1− γ)
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which gives y in terms of z. So LP problem is

min z

where p1y ≤ z and y ≥ p1x+ (1− p1)z = (p1q+ 1− p1)z. If the coefficient
in the later inequality is bigger than 1

p1
,there is no possible solution. Oth-

erwise, when insert y from equality above in the inequality p1y ≤ z, in the
optimal it binds hence p1y = z and problem reduces to the previous case.

2. Now consider the case z ≥ p1c
λmax(1−p1)

. As saw above this happens for small ρ.
In this case we have

αx+ βy + γz = max{z + 2c, λmaxy + (1− λmax)z + c}
= λmaxy + (1− λmax)z + c

like in the previous case, we consider two sub-cases.

• p1y = max{p1p2x+ [p1(1−p2) +p2(1−p1)]z, p1y} = z. Then the equation
for expected payout can be written as

x =
(λmax

p1
+ 1− λmax − β

p1
− γ)z + c

α

similar to the previous case, LP problem becomes

min z

x ≥ y =
z

p1

y ≥ p1x+ (1− p1)z

z = p1y ≥ p1p2x+ [p1(1− p2) + p2(1− p1)]z

p1x ≥ z implies that

p1c ≥ (α + β − λmax)(1− p1)z

which in turns implies that

z ≤ p1c

(1− p1)λmin(1− ρ)

similar to the previous case, we can write the last two inequalities as

z ≥ p2
1

1− p1 + p2
1

x = θ1x

z ≥ p1p2

1− p1 + 2p1p2 − p2

x = θ2x
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In any case this gives us

αz/θi ≥ (
λmax
p1

+ 1− λmax −
β

p1

− γ)z + c

which gives us the optimal z as the bigger term of two inequalities above
is binding. Hence we have

z =
c

α(1−θmax)
θmax

+ β 1−p1
p1
− λmax 1−p1

p1

Again this is similar to the formula we have as in Proposition 9 and with
the same reason as above z is decreasing in ρ which shows our claim in
this case.

• p1p2x + [p1(1 − p2) + p2(1 − p1)]z = max{p1p2x + [p1(1 − p2) + p2(1 −
p1)]z, p1y} = z. As previous case, this gives

x =
1− [p1(1− p2) + p2(1− p1)]

p1p2

z = qz

On the other hand we have

αx+ βy + γz = λmaxy + (1− λmax)z + c

which gives
(β − λmax)y = (1− λmax − γ − αq)z + c

so LP problem is
min z

p1y ≤ z and y ≥ p1x + (1 − p1)z = (p1q + 1 − p1)z. Similar to the case
we studied before either this does not have solution or we get p1y = z
in the optimum hence it reduces to the previous case. This finishes the
argument.

Return Distribution

Here I want to generalize the distribution function for the projects. Let’s assume
the support of both types of projects G and B are 0, R1, R2. For the G type the
chances are {0, p, 1− p} respectively and for the B type it is {1− p1− p2, p1, p2}. All
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the other variables, definitions and assumptions are the same as in the main model.
First want to see how contract on one project is written. In order to persuade the
optimal investment strategy (not investing on bad project), we should have

sGP (I) ≥ p1sGP (R1) + p2sGP (R2) (B.6)

Also in order to motivate effort, we have

E[sGP (G)] = psGP (R1) + (1− p)sGP (R2) ≥ sGP (I) +
c

λ
(B.7)

In the optimal, with the same reasoning as in the binary case, both these inequalities
are binding to minimize the expected payout to GP. LP problem is

min
sGP (R1),sGP (R2)

λE[sGP (G)] + (1− λ)sGP (I)

Conditioned to equations (equities in optimum) (B.6) and (B.7). Because of opti-
mality, LP problem can be written as

min
x,y

[λp+ (1− λ)p1]x+ [λ(1− p) + (1− λ)p2]y

where (x, y) = (sGP (R1), sGP (R2)). The relation between x and y comes from (B.7)
above which can be written as x = γy + ζ where

γ = −1− p− p2

p− p1

ζ =
c

λ
(B.8)

So the minimization problem is linear in y and hence in the optimum either we have
x = 0 or y = 0 as none of payouts can be negative. More precisely, the coefficient of
y in the LP problem is

−[λp+ (1− λ)p1]
1− p− p2

p− p1

+ [λ(1− p) + (1− λ)p2]

if this coefficient is positive then we should have y = 0 otherwise x = 0. Whichever
happens, we get the value of the other variable from equation x = γy + ζ above. If
the payout of the projects has n different values, the same conclusion holds as the
problem is linear in payouts. In summary we have
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Proposition 23 With setup as above, the optimal contract satisfies either s(R1) = 0
or s(R2) = 0. In particular s(R2) = 0 if and only if

[λ(1− p) + (1− λ)p2](p− p1) > [λp+ (1− λ)p1](1− p− p2)

The other one is computed by the equation x = γy + ζ, where γ, ζ are given in
equations (B.8). Finally s(I) is computed from the equation (B.6) when it is equality.

Let’s just explain the intuition behind the property that either s(R1) = 0 or
s(R2) = 0. LP wants to minimize the incentive for the GP to invest in a bad project.
To do this, LP considers the (weighted) difference of probabilities that either the
outcome is R1 or R2. Then he makes no payment in the state with lower chance.
The other outcome associates to higher chance of investing in the good project so
GP motivates it in the contract.

Now I look at the whole-portfolio problem. Again we assume that the policy
implemented is optimal so we have s(I) = s(R1) = s(R2) = 0. Possible returns from
optimal strategy are 2I when two projects are bad, Ri + I when one is good and
other is bad and finally 2Ri or R1 + R2 when both are good. I assume parameters
for the first projects are λ1, p, p1 and p2. For the second one λ2, q, q1 and q2. I show
the payouts to GP by z = s(2I), yi = s(Ri + I), xi = s(2Ri) and x = s(R1 + R2). I
assume correlation ρ between good projects as in the main case and assume that for
good projects the realization of the returns are independent. We have

s(2I) ≥
∑

pis(Ri + I),
∑

qis(Ri + I),
∑

piqjs(Ri +Rj)

ps(R1 + I) + (1− p)s(R2 + I) = EG1 [s(Ri + I)] ≥
s(2I), [pq2 + (1− p)q1]s(R1 +R2) + pq1s(2R1) + (1− p)q2s(2R2)

qs(R1 + I) + (1− q)s(R2 + I) = EG2 [s(Ri + I)] ≥
s(2I), [qp2 + (1− q)p1]s(R1 +R2) + qp1s(2R1) + (1− q)p2s(2R2)

[p(1− q) + q(1− p)]s(R1 +R2) + pqs(2R1) + (1− p)(1− q)s(2R2)

≥ EGj [s(Ri + I)] (B.9)

And finally LP should impose the equation which motivates effort. This can be
written as

ρλminEG1,G2 [s(Ri +Rj)] + (λmax − ρλmin)EGmax [s(Ri + I)]

+ (1− ρ)λminEGmin [s(Ri + I)] + (1− λ1 − λ2 + ρλmin)s(2I)

≥ z + 2I, λmaxEGmax [s(Ri + I)] + (1− λmax)z + c, λminEGmin [s(Ri + I)] + (1− λmin)z + c

As in the binary case, LP wants to minimize the expected payout to GP (LHS of
the last inequality) given constraints above. Similar to the binary case, we can see
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that EG1,G2 [s(Ri + Rj)] can be represented with an inequality. So LP problem can
be written as

minEG1,G2 [s(Ri +Rj)]

subject to conditions for optimal investment and motivation for effort. Since the
general problem seems hard to solve and get good intuition from, I stick to two
important especial cases.

1. Suppose either p1 and q1 are small or p2 and q2 are small. In this case, suppose
LP changes compensations for GP in the case of two successful investment,
while expected payout remains the same. By this I mean changing xi and x
such that

[p(1− q) + q(1− p)]x+ pqx1 + (1− p)(1− q)x2

remains fixed. By this change, RHS of the equations for optimal investment
in case of one success or no success can be changed (The first three equation
in the set of equations (B.9)) . As long as RHS becomes smaller in these
equations, the change can be good (or have no effect if conditions are not
binding on them). So it is better for GP to consider payouts to minimize RHS
of motivating equations. So in this case, in the optimal contract, we get only
xi > 0 (and xj, x are zero) when pi and qi are small. Similar reasoning implies
only yi > 0 and yj = 0 when pi and qi are small. Hence in this case problem
reduces effectively to the binary case.

2. Now consider the orthogonal problem to what we discussed in the previous
part. So I assume p2 = q1 = 0 so the first bad project only have return R1 and
the second one only R2. Equations (B.9) are reduced to

s(2I) ≥ p1s(R1 + I), q2s(R2 + I), p1q2s(R1 +R2)

ps(R1 + I) + (1− p)s(R2 + I) = EG1 [s(Ri + I)] ≥
s(2I), pq2s(R1 +R2) + (1− p)q2s(2R2)

qs(R1 + I) + (1− q)s(R2 + I) = EG2 [s(Ri + I)] ≥
s(2I), (1− q)p1s(R1 +R2) + qp1s(2R1)

[p(1− q) + q(1− p)]s(R1 +R2) + pqs(2R1) + (1− p)(1− q)s(2R2)

≥ EGj [s(Ri + I)]

In this case if we get s(2I) = z, then similar reasoning as in binary case,

z = p1s(R1 + I) = p2
1s(2R1)

z = q2s(R2 + I) = q2
2s(2R2)

z = p1q2s(R1 +R2)
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which implies that , as in the main case, E[sGP ] is decreasing in ρ as well.




