
UCLA
Papers

Title
Forest understory soil temperatures and heat flux calculated using a Fourier model and 
scaled using a digital camera

Permalink
https://escholarship.org/uc/item/85f6w6sv

Journal
Center for Embedded Network Sensing, 150(4)

Authors
Graham, Eric
Lam, Yeung
Yuen, Eric

Publication Date
2010-04-01

DOI
doi:10.1016/j.agrformet.2010.02.005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/85f6w6sv
https://escholarship.org
http://www.cdlib.org/


Author's personal copy

Agricultural and Forest Meteorology 150 (2010) 640–649

Contents lists available at ScienceDirect

Agricultural and Forest Meteorology

journa l homepage: www.e lsev ier .com/ locate /agr formet

Forest understory soil temperatures and heat flux calculated using a Fourier
model and scaled using a digital camera

Eric A. Grahama,∗, Yeung Lamb, Eric M. Yuena

a Center for Embedded Networked Sensing, University of California, Los Angeles, 3563 Boelter Hall, Los Angeles, CA 90095-1596, USA
b Electrical Engineering Department, University of California, Los Angeles, CA 90095-1594, USA

a r t i c l e i n f o

Article history:
Received 13 November 2009
Received in revised form 26 January 2010
Accepted 8 February 2010

Keywords:
Multiscale sensing
Infrared thermometer
Remote sensing
Image processing
Sunflecks
Soil temperature

a b s t r a c t

The characterization of the solar radiation environment under a forest canopy is important for both
understanding temperature-dependent biological processes and validating energy balance models. A
modified sinusoidal model of soil heat conductivity was used to estimate subsurface temperature and
heat flux from the uneven but periodic solar heating of the soil surface due to sun flecks from a forest
canopy. Using a mobile sensor platform with an infrared thermometer along an 11 m transect, a sunfleck
model of soil surface temperature was tested using soil surface temperature maxima, air temperatures,
and photodiodes placed on the soil surface to measure sunflecks. A pan-tilt-zoom digital camera on a 10 m
tower above the site was then used to capture a time series of panoramic images of sunflecks reflected
from the soil surface and to scale the sunfleck temperature model to a wide area. Finally, this image-based
model of surface temperatures was combined with the modified sinusoidal model for heat conduction
to estimate soil subsurface temperatures and heat flux over a wide area due to sunflecks from a forest
canopy.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Soil temperature strongly influences a wide range of biologi-
cal, CO2-producing processes including soil microbial activity and
root metabolism and affects plant distributions on both large (e.g.,
Körner and Paulsen, 2004) and small scales (e.g., Schob et al., 2009).
Measurements or estimates of soil temperature are also neces-
sary components for estimating local and continental carbon and
energy budgets and for calculating evaporative fluxes (Zheng et al.,
1993; Gaumont-Guay et al., 2009). It has long been recognized that
a variety of factors influence soil temperature, including climate,
topography, above-ground vegetation, and soil physical charac-
teristics (Balisky and Burton, 1995; Geiger et al., 2003). Because
multiple factors influence soil surface heating, traditional in situ
sensors may be inadequate for measuring the large spatial and
temporal heterogeneity created by a forest canopy.

Most models for estimating soil temperature are based on sim-
plified, bare-soil, or agricultural conditions (e.g., Gonzalez-Dugo et
al., 2009; Saito and Simunek, 2009), although there are numerous
efforts that include the influence of natural vegetation (e.g., Paul et
al., 2004; Bond-Lamberty et al., 2005). Models for soil temperature
and heat flux also vary in complexity from estimations of soil tem-
perature based on readily available meteorological measurements

∗ Corresponding author. Tel.: +1 310 825 2643; fax: +1 310 206 3053.
E-mail address: egraham@cens.ucla.edu (E.A. Graham).

(e.g., Weiss and Hays, 2005) to more complex and physics-based
models requiring more specific measurements (e.g., Romano and
Giudici, 2009).

Sinusoidal soil temperature models that assume periodic
temperature fluctuations and are parameterized with simple mete-
orological measurements are particularly attractive due to their
ease of calculation and minimal data requirements (Paul et al.,
2004; Droulia et al., 2009). However, such models can provide
unsatisfactory results because they assume soil homogeneity and
ignore the spatiotemporal temperature variations caused by over-
story shading (Hardy et al., 2004; Bond-Lamberty et al., 2005).
A standard method of converting a complex signal into a set of
more manageable sinusoidal signals is the Fourier transform, which
when used in conjunction with sinusoidal heat conduction mod-
els, provides an elegant approach to modeling periodic but uneven
subsurface soil temperatures (Van Wijk and de Vries, 1966).

Digital cameras and data storage have become increasingly
affordable and hardware more easily integrated into systems for
ecological data collection (Hamilton et al., 2007; Rundel et al.,
2009). Image analysis from environmental studies, for instance
for plant phenology detection, has primarily involved simple color
transformations and analysis (Graham et al., 2009; Richardson et
al., 2009). The application of digital cameras to the detection of
sunfleck patterns on a soil surface requires similarly simple image
processing procedures and can be analogous to that for detection
of canopy parameters used in hemispherical canopy photography,
a robust and well-documented method using a binary threshold-

0168-1923/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.agrformet.2010.02.005
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ing of images (Ishida, 2004; Cescatti, 2007). Where hemispherical
canopy photography and its analysis can be concerned with pre-
dicting the amount of light that strikes the point at which the
photograph was taken, a downwardly facing camera system that
can recognize sunflecks on the soil surface can be used to monitor
a much greater number of points over a large area but at the loss of
the predictive power for each location.

Our objective was to combine a sunfleck model of soil surface
temperature with a modified sinusoidal model for estimating sub-
surface soil temperatures to examine the effects of the uneven
but periodic solar heating of the soil due to a forest canopy. The
sinusoidal model was modified to better deal with subsurface soil
heterogeneity. Because sunflecks can be captured as reflected light
using a downwardly facing camera, a second objective was to
spatially scale these models using a digital pan-tilt-zoom camera.
Specifically, we first verified that a modified sinusoidal model could
be used to predict subsurface temperature of an uneven but peri-
odic surface temperature signal in the field. Next we constructed
and tested a simple model of soil surface temperature based on
sunfleck occurrence, maximum observed surface temperature, and
air temperature. Then we applied the two models to a sequence
of images captured of the soil surface under a forest canopy by
a digital camera to spatially scale the soil surface and subsurface
temperature estimates.

2. Materials and methods

2.1. Field site

The University of California James Reserve (www.
jamesreserve.edu) is located in the San Jacinto Mountains of
southern California (33◦48′30′′N, 116◦46′40′′W) at 1658 m ele-
vation in a mixed conifer and hardwood forest with a perennial
mountain stream. The area receives a mean of 485 mm pre-
cipitation annually. The area at which soil surface temperature
measurements were taken is a forest gap 645 m2 in area, as
determined by the extent of the unobstructed view of the installed
camera system. The middle of the gap has a site openness of 47%,
as determined by the percentage of open sky seen from beneath
a forest canopy using the analysis of a hemispherical canopy
photograph (Gap Light Analyzer, Simon Fraser University, Canada).

Bulk density of the mineral soil, determined from 50 g sam-
ples taken just below the leaf litter at the James Reserve near the
experimental transect within the forest gap was 1.21 ± 0.13 g m−3

(n = 7; mean ± SD). The soil in the bulk density samples was com-
prised of 77.5 ± 10.6% sand, 13.2 ± 6.1% clay, and 9.2 ± 4.8% silt, with
0.9 ± 0.6% organic matter contained within those fractions. During
July, the soil was essentially dry from the surface to a depth of 8 cm.
In March, the volumetric water content of the soil, measured by
nearby dielectric sensors (EC-10, Decagon Devices, Pullman, WA,
USA), was 0.02 m3 H2O m−3 at 2 cm and 0.09 m3 m−3 at 8 cm; the
average volumetric soil water content between the surface and
8 cm depth in March was estimated at 0.04 m3 m−3. In the labo-
ratory, the volumetric heat capacity (C) and thermal conductivity
(�) were determined for dry soil from the site using the heat pulse
method with home-built probes that were calibrated in both air
and an aqueous gel with known C and �, following Nusier and Abu-
Hamdeh (2003). Both C and � of a moist soil was then calculated
from the values obtained from a dry soil (Cdry = 1.41 MJ m−3 ◦C−1;
�dry = 0.62 W m−1 ◦C−1) by assuming that the apparent C and �
of any soil are due to the sum of separate values of the com-
ponents of the soil, including the air and water fractions. Then,
using the bulk density, we substituted the C and � of air for that
of water to 0.04 m3 m−3 to determine for the moist soil Cwet of
1.60 MJ m−3 ◦C−1.

2.2. Surface and subsurface measurement system

The networked infomechanical systems (NIMS) family of cable-
based robotic systems, developed at the Department of Electrical
Engineering, University of California, Los Angeles (UCLA), includes
a rapidly deployable system (Jordan et al., 2007) that has been used
for multiple environmental monitoring applications (Harmon et al.,
2007; Caron et al., 2008; Graham et al., 2009). In this deployment,
the NIMS system support cable was secured to two trees on the
side of the forest gap and the motor control unit was attached to
a wireless Ethernet bridge for remote control and programming of
the system.

A surface scan of temperatures along the 11 m long NIMS tran-
sect involved moving the payload of sensors in 0.25 m increments,
at which point the system dwelled for 30 s for sensor equili-
bration, then movement to the next location commenced. Data
were captured continuously for 36 h for each measurement period
by a datalogger (23X, Campbell Scientific, Logan, UT, USA). Data
from a second datalogger (CR7, Campbell Scientific) connected to
fixed sensors were collected simultaneously. Data were remotely
archived in an open source database (MySQL Inc., Cupertino, CA,
USA) with a custom front-end designed to facilitate the sharing of
streaming sensor data (SensorBase, www.sensorbase.org; Chang et
al., 2006).

Micrometeorological sensors on the NIMS shuttle included a
downwardly facing infrared thermometer (Model 4000.3ZL, Ever-
est Interscience Inc., Tucson, AZ, USA) to measure soil surface
temperature. An emissivity of 0.9 was used for temperature conver-
sion. Fixed sensors were clustered in four locations on the transect,
at 1.75, 5, 7, and 9 m. Buried sensors included copper-constantan
thermocouples (0.3 mm diameter) buried at 2, 8, and 16 cm depth
and four self-calibrating heat flux plates (HFP01SC-L, Hukseflux
Thermal Sensors B.V., Delft, The Netherlands) located at a depth
of 8 cm. Depths refer to depths in mineral soil and do not include
the thickness of the leaf litter layer, which were 3.2 ± 1.4 cm thick
at position 1.75 m, 4.8 ± 2.6 cm at position 5 m, 3.9 ± 2.7 cm at posi-
tion 7 m, and 2.6 ± 1.6 cm at position 9 m (values are mean SD; n = 4
at each location). Surface soil sensors included copper-constantan
thermocouples and calibrated, upwardly facing gallium arsenide
phosphide photodiodes (Hamamatsu, Bridgewater, NJ) in the same
location as the buried sensors.

A dried and a wetted soil treatment were included within 3 m
of the middle of the NIMS transect for energy balance comparisons
(Qiu et al., 1998). Soil was previously excavated in approximately
10 cm layers to a depth of 0.5 m in an area without vegetation for
each treatment and for the dried treatment each layer was spread
on a plastic tarp and allowed to dry for 24 h. For both treatments,
each layer was then sequentially placed into a rigid cylinder 30 cm
in diameter and 36 cm deep that had an aluminum base to allow for
vertical heat transfer through the cylinder (Qiu et al., 1998). Each
layer was sequentially tamped down to approximate the original
bulk density before excavating and a thin leaf litter layer, simi-
lar to the surrounding area, was spread over the soil surface of
each treatment. Each treatment had a heat flux plate placed at 8 cm
below the mineral soil and a thermocouple at 8 and 2 cm depths. An
additional, stationary infrared thermometer was alternately placed
approximately 20 cm above the soil surface to measure the temper-
ature of each cylinder of soil during measurements made by NIMS.

2.3. Camera and image analysis

Images were captured using a pan-tilt-zoom (PTZ) networked
video camera (Model VB-C50iR, Canon U.S.A., Lake Success, New
York) mounted on a 10 m fiberglass tower at the James Reserve
and connected to a local area network using Wi-fi. Images were
collected at two different zooms, near maximum magnification
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Table 1
Attenuation (d1 in Eq. (2)) and delay (d2 in Eq. (2)) depths calculated using the attenuation of the amplitude and the phase shift of the measured temperature maxima at the
surface (of either bare soil or leaf litter surface) and with depth for two treatments (wet or dry) and two locations along the NIMS transect; values are means ± SD (n = 2 d for
both bare wet and for dry soil with added litter; n = 11 d for all other locations).

Soil type Surface to 2 cm Surface to 8 cm 2–8 cm 8–16 cm

Attenuation
(d1; cm)

Delay
(d2; cm)

Attenuation
(d1; cm)

Delay
(d2; cm)

Attenuation
(d1; cm)

Delay
(d2; cm)

Attenuation
(d1; cm)

Delay
(d2; cm)

Wet, bare 7.3 ± 0.04 33.2 ± 1.08 8.2 ± 0.71 31.2 ± 0.96 10.4 ± 0.85 31.5 ± 0.37 10.3 ± 0.38 19.2 ± 3.45
Dry, bare 7.7 ± 0.37 5.2 ± 1.37 6.5 ± 0.12 13.1 ± 0.80 6.1 ± 0.12 11.8 ± 0.60 7.1 ± 0.13 11.0 ± 1.80
Dry, 1.5 cm litter 4.2 ± 0.13 6.8 ± 0.24 5.4 ± 0.02 11.1 ± 0.25 6.0 ± 0.05 12.0 ± 0.73 7.2 ± 0.39 12.7 ± 1.74
NIMS, 5 m location, 4.2 cm litter 3.1 ± 0.08 4.9 ± 0.78 5.5 ± 0.07 12.6 ± 1.26 7.4 ± 0.13 12.1 ± 1.27 7.0 ± 0.30 11.8 ± 1.67
NIMS, 7 m location, 6.7 cm litter 3.3 ± 0.34 6.1 ± 0.13 5.1 ± 1.02 11.0 ± 1.38 6.6 ± 0.09 14.1 ± 1.34 8.9 ± 0.14 10.1 ± 0.41

(10.3◦ view angle) on March 18, 2007 and at the widest view angle
(41.3◦) on August 12, 2007. Images were collected continuously
in a slightly overlapping circular pattern in order to create a time
series of panoramas of the entire forest gap for each day. The time
between complete panoramas was 30 min for March and 10 min for
August. Panoramas were then compared to an initial panorama cre-
ated in the mornings of the same days, when no sunflecks occurred
in the forest gap, to establish areas of different soil surface reflec-
tivity; these early panoramas were subsequently subtracted from
later ones and the results thresholded at 50% of the maximum
value into binary images using a program written in Python with
the Python Imaging Library (Secret Labs AB; Linköping, Sweden;
www.pythonware.com) set of tools. Panoramas for March were
scaled to those collected in August and then each was examined
in 3 × 3 blocks of pixels for sunfleck analysis. The total number of
blocks examined was 199,544 covering 644.9 m2 of forest gap soil
surface. The total area per block of pixels was established from an
exponential calibration of distance related to camera tilt using a
meter stick and repeated photographs.

2.4. Models

A modified sinusoidal model was based on a simpler model
that uses a single “damping depth”, the depth at which the ampli-
tude of the temperature variation is attenuated to 37% of that at
the surface, to also describe the accompanying phase shift with
depth (Van Wijk and de Vries, 1966). The single damping depth
was divided into both attenuation (decrease in amplitude) and
delay (phase shift) depths in the modified sinusoidal model and
fit to multiple-day measurements in the four NIMS transect loca-
tions during the two dates of measurement using a least squares
optimization in R, a freely available language and environment
for statistical computing and graphics (R Development Core Team,
2006; www.cran.r-project.org). The modified sinusoidal model is
thus:

Tz = T̄surf + �Tsurfe−z/d1 cos
(

2�t

p
− 2�tmax

p
− z

d2

)
(1)

where Tz is the temperature at any depth z in the soil, T̄ surf is the
average surface temperature, �Tsurf is the amplitude of tempera-
ture variation at the surface, d1 is the attenuation depth, tmax is the
time at which the surface is at the maximum temperature, and d2 is
the delay depth describing the time for the temperature maximum
to be reached at depth z.

Fourier transforms (FT) of the uneven but periodic tempera-
ture oscillations at the surface and at depth were used with Eq.
(1) to estimate d1 and d2 for different harmonic periods. Specifi-
cally, after the FT decomposition of the surface temperature signal,
the multiple constituent surface temperature sine waves of differ-
ent harmonic periods were transformed by the modified sinusoidal
model and then summed to calculate the 2, 8, and 16 cm subsurface
temperatures. Values for d1 and d2 were optimized with measured
data at 2, 8, and 16 cm depths and then averaged and used to predict
subsurface temperatures in different surface locations.

A time series of direct solar radiation for the entire forest gap in
each thresholded panoramic image was established for each pixel
by the average value of the surrounding eight binary pixels in the
image. Pixels that included vegetation that masked the soil surface
from the view of the camera were removed from analysis. Aver-
aged pixel values then ranged from 0.0 to 1.0 and were related to
soil surface temperature using an empirical model (Eq. (2)) based
on the combination of two general methods used to predict soil
temperature or heat flux used in remote sensing, one relating net
solar radiation to soil heat flux (e.g., Santanello and Friedl, 2003)
and the other equating air temperature to soil surface temperature
(e.g., Bond-Lamberty et al., 2005):

Test
t = pixel value × Tsurf

max
if Test

t < Tair
t : Test

t = Tair
t

(2)

where Test
t is the estimated temperature of the soil surface at time

t for any given pixel, Tsurf
max is the maximum observed temperature

of the soil surface during a 24 h period, and Tair
t is the observed air

temperature at time t. The procedure was as follows: each pixel in
the image was assigned a soil temperature equal to the averaged
pixel value multiplied by the maximum observed soil surface tem-
perature. After this assignment, if the soil surface temperature for
any pixel was below that of the air temperature for the time period,
then the soil surface temperature was assigned the value of the air
temperature. Each pixel in the 24 h sequence of images represented
a separate temperature time series that was then treated with the
same FT decomposition and reconstruction of subsurface temper-
atures as above, using the previously determined d1 and d2 values
for the forest gap on each of the separate dates of measurement.

3. Results

Different locations of soil surface in the forest understory
received different repeated but uneven patterns of solar input
(Fig. 1). Such different surface temperature patterns were also
evident in the subsurface soil but with attenuated and delayed tem-
perature peaks, which depended on soil conditions. For example,
the peak soil temperature at the surface for a dried soil occurred
at 13:26 h and for an untreated site at a distance of 3 m away, the
peak occurred 1.5 h later (Fig. 1A and C). The condition of the soil
(wet or dry) also affected the time of day at which the temperature
was at its maximum at various depths. For two locations within 1 m
of each other, one dried and the other maintained with a moisture
content near field capacity, the temperature peak at 8 cm depth
occurred 2.7 h later than at the surface for the dry soil and 0.9 h
later for the wet soil (Fig. 1A and B). Soil water content also altered
d1 of the daily temperature variation. For example, the difference in
maximum temperature between the surface and at 8 cm depth for a
dried soil was 37.8 ◦C and for a wet soil was 21.9 ◦C. High-frequency
changes in the surface temperature of the soil were conducted into
the soil proportionally less than low-frequency changes for both
wet and dry soils (Fig. 1).
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Fig. 1. Measured soil temperatures for 24 h at the mineral soil surface (solid line)
under a thin layer of leaf litter, at 2 cm depth (long dash), and at 8 cm depth (short
dash) for (A) a dried, partly shaded location, (B) a wetted, partly shaded location, and
(C) an untreated, mostly shaded location. Data for all three locations were collected
on similarly sunny days within the first week in July of 2007 and all locations are
within a radius of 3 m from each other.

Both d1 and d2 varied with distance between soil layers and with
conditions of the soil (Table 1). Both d1 and d2 were greater for wet
soils than for dry, except for when calculating d1 between shallow
layers (surface to 2 cm depth). d2 tended to be larger than d1, except
for the shallow layer case in a dry soil. A thin mostly pine needle
leaf litter did not seem to greatly affect d1 or d2. Both d1 and d2 were
similar when calculated for the soil layers 0–8 cm and for 2–8 cm
(Table 1).

Daily surface and subsurface soil temperature cycles at different
locations in the forest understory were reconstructed with increas-
ing accuracy using an increasing number of component harmonic
sine waves derived from a FT of the original signal (Fig. 2). Apart
from a constant offset, the largest FT harmonic component of the
daily signal at upto 8 cm depth was the 24 h temperature signal.
The single 24 h sine wave function was not a good predictor of
the actual temperature at the surface (RMSE is 8.2 ◦C), although
it became a better predictor at greater depths (Fig. 2B and C). The
addition of the second largest harmonic component of the signal,
with a period of 12 h, increased the accuracy of temperature recon-
struction at the surface of a dried soil to an RMSE of 4.6 ◦C. Using the
first eight harmonic components to reconstruct the surface tem-
perature resulted in an RMSE of 1.3 ◦C. In comparison, the RMSE

Fig. 2. Measured soil temperature for the same location in Fig. 1A (solid gray line)
and FT reconstructions of soil temperature for the largest, first harmonic component
(24 h; dotted lines), the sum of the first and second components (24 and 12 h; short
dashed line), and the sum of the first eight components (24–3 h; solid line) at (A)
the surface, (B) at 2 cm depth, and (C) at 8 cm depth.

Fig. 3. Attenuation (open triangle) and delay (closed circle) depths calculated for
each harmonic component of an FT decomposition for 24 h of surface temperatures
of a dry soil. The theoretical “damping depth” calculated from thermal properties of
the soil is indicated with a solid line.
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Table 2
Root mean square errors and maximum difference between calculated and measured values of temperatures over 24 h for unmodified and modified sinusoidal models using
Fourier analysis predicting subsurface temperatures from surface layers of a dry soil; values were sampled at about 72 s intervals for 24 h.

Fourier components
(shortest period)

RMS error (◦C) Maximum absolute difference (◦C)

0–2 cm 0–8 cm 2–8 cm 8–16 cm 0–2 cm 0–8 cm 2–8 cm 8–16 cm

Simple
model

One frequency (24 h) 5.62 1.76 1.67 0.40 13.35 4.09 3.38 0.84
Four frequencies (6 h) 0.95 0.62 0.24 0.18 4.25 1.17 0.67 0.37
Eight frequencies (3 h) 0.59 0.62 0.23 0.18 2.23 1.09 0.57 0.38

Modified
model

One frequency (24 h) 5.61 1.66 1.66 0.34 13.07 3.25 3.14 0.84
Four frequencies (6 h) 0.90 0.08 0.14 0.18 4.28 0.25 0.30 0.35
Eight frequencies (3 h) 0.49 0.04 0.12 0.18 2.58 0.15 0.24 0.38

of reconstruction of temperature at 8 cm using only the first 24 h
period was 1.7 ◦C and using the first eight harmonic components
was 0.1 ◦C (Fig. 2C). Artifacts of the technique are apparent at the
surface when using only eight harmonic components, with higher
frequency oscillations (about 2 h in period) occurring within the
original signal (Fig. 2A).

The unmodified and modified sinusoidal temperature models
were compared to predict deeper layer temperatures using dif-
ferent numbers of harmonic components of the FT of overlying
soil layers (Table 2). Predictions of subsurface temperatures using
only the largest harmonic component from the FT resulted in sim-

ilar errors and maximum differences between models and adding
FT harmonic components increased accuracy in both. Predict-
ing temperatures between shallow layers (surface to 2 cm depth)
resulted in the greatest errors and maximum differences com-
pared to predicting temperatures between more separated depths.
The modified sinusoidal model predicted subsurface temperatures
more accurately between separated layers of soil than the unmod-
ified model when more than one harmonic component was used
(Table 2).

Both d1 and d2 for a dry soil decreased with decreasing FT har-
monic components (Fig. 3). Such decreases were similar between d1

Fig. 4. Soil temperature data for 24 h along a 10.75 m transect on (A and B) July 16, 2007 and on (C and D) March 3, 2008. Soil temperatures at (A and C) the surface were
measured every 0.25 m and those at (B and D) 8 cm depth were calculated using the modified sinusoidal model and FT.



Author's personal copy

E.A. Graham et al. / Agricultural and Forest Meteorology 150 (2010) 640–649 645

and d2 and followed the theoretical trend based on heat conduction
models for homogeneous solids. The concordance with the theo-
retical and measured d1 and d2 indicated that using the theoretical
value based on soil physical properties as an initial parameter for
calculating best fits for both d1 and d2 was appropriate. The maxi-
mum absolute difference between the theoretical and measured d1
was 0.15 cm and for d2 was 0.19 cm.

Soil surface temperature measured over a 24 h period in July
2007 with the mobile NIMS resulted in a maximum measured
temperature of 77.5 ◦C and a minimum of 8.7 ◦C (Fig. 4A) with an
average of 26.7 ± 21.8 ◦C (mean ± SD). Time of day varied for the
maximum temperature along the NIMS transect. For example, the
maximum temperature at the 3 m position along the NIMS transect
occurred at 13:36 h and at the 10 m position occurred 18.4 min later.
Surface temperatures were affected by shadows of the overlying
vegetation and were not strongly correlated with leaf litter thick-
ness (data not shown). The predicted temperature at 8 cm depth
was maximal at about 5 h after the maximal at the surface (Fig. 4B).
The maximum temperature at 8 cm depth was 28.1 ◦C and the min-
imum was 17.7 ◦C. At the 1 m position on the NIMS transect where
overlying vegetation was most dense and shading greatly altered
the pattern of soil surface heating, the minimum temperature was
about 2.6 ◦C warmer than at 3 m farther into the transect where
shading was less.

The NIMS transect was measured again in early March of 2008,
after the soil had been wetted by winter rains. The maximum
surface temperature was 57.4 ◦C and the minimum was −2.1 ◦C
(Fig. 4C), about 87% of the temperature range measured in July.
The average temperature in March at 4 m along the NIMS transect
was 13.3 ± 17.8 ◦C, about 14.0 ± 9.4 ◦C cooler than in July. The max-
imum temperature at 3 m along the transect occurred about 2.3 h
later than in July. The predicted temperature at 8 cm depth was
maximal 1.9 h after the maximum at the surface (Fig. 4D) at 46.8 ◦C
with the minimum of 9.3 ◦C. At the 1 m position on the transect, the
minimum temperature achieved was about 3.2 ◦C warmer than at
3 m farther into the transect where shading was less.

Simultaneous measurements of air temperature, soil surface
temperature, and incident shortwave radiation at four locations
under the NIMS transect were used to create the sunfleck model (Eq.
(2)) for soil surface temperature as a function of air temperature,
maximum 24-h surface temperature, and timing of direct sunlight.
Measured soil surface temperatures were similar to air tempera-
tures during times of the day without incident direct sunlight for
all locations (Fig. 5A and B). A sharp rise in soil surface tempera-
ture above that of air temperature occurred with incident direct
sunlight and modeled soil surface temperature captured this trend
(Fig. 5B). Subsurface temperature estimations, based on the surface
temperature model and the modified sinusoidal model, were also
similar to those measured (Fig. 5C), deviating by only a few degrees.

Panoramic composite images of the forest gap soil captured with
the PTZ digital camera captured the dynamic light environment of
the soil surface (Fig. 6). Single images within the composite varied
in average pixel intensity (Fig. 6A and B) because of automatic expo-
sure compensation by the camera and different reflectivity of the
soil surface in portions of the forest gap. These differences were
removed after subtracting images taken from the same pan-tilt
camera location but captured before direct sunlight was present.
Subsequent thresholding of each image within the panorama cre-
ated binary (black and white) images that captured shadowed and
sunlit portions of the soil surface for multiple time periods (Fig. 6C
and D).

The percentage of soil surface area in the forest gap receiv-
ing direct sunlight as measured with the digital camera differed
between the two dates measured (Fig. 7). The maximum amount
of time that any one pixel’s amount of soil surface area received
direct sunlight was 6.5 h in March and 9.5 h in July. The average

Fig. 5. Representative 24 h time series of (A) air temperature (long dash) and short-
wave solar radiation (solid line), (B) measured (solid line) and modeled (dotted line)
soil surface temperature, and (C) measured and modeled soil temperature at 2 cm
depth along the NIMS transect on July 15, 2007.

amount of time that each pixel received direct sunlight, not includ-
ing those that received none, was 3.1 h in March and 3.3 h in July.
The most frequently occurring amount of time for any pixel to be
in direct sunlight was 4 h in March and 3.5 h in July (Fig. 7).

The spatial distribution of the amount of time that any pixel
in the panoramas of the forest gap received direct sunlight varied
between the two dates of measurements (Fig. 8). For example, the
areas that were farthest from the camera in the forest gap (Fig. 8A,
top of the image) received the greatest amount of direct sunlight
over the course of the day in both March and July (Fig. 8B). Different
areas in the forest gap in July received additional direct sunlight,
based on the difference values between July and March (Fig. 8B,
lower left of the image). Only small amounts of area in July received
less direct sunlight than in March (data not shown).

Using the surface temperature calculations based on received
direct sunlight as detected with the camera, measured air tem-
perature, and the first 20 harmonic components from a FT of this
temperature series, subsurface temperature to 8 cm depth was cal-
culated for each pixel based on previously determined values of d1
and d2 using the modified sinusoidal model. In March, the maxi-
mum positive change in temperature of a unit volume of soil, as
defined by a single pixel, was 1.5 ◦C during 30 min and the nega-
tive change was 1.3 ◦C. In July, the maximum positive change was
1.8 ◦C and negative change was 1.6 ◦C. In March when the soil was
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Fig. 6. Representative panoramic images of a forest gap constructed from multiple 640 × 480 pixel images captured with a pan-tilt-zoom camera positioned at the top of
a 10 m tower at the James Reserve in July of 2007. The NIMS supporting cables and sensor platform is located in the upper right of the composite image. Panoramas were
captured at (A) 10:10 h and (B) 11:40 h. Images captured at 07:20 h were subtracted from subsequent images and the resulting difference image was thresholded to result
in (C and D) binary images for each time period. Vegetation is masked as black after thresholding.

wet, the maximum surface heat flux was 0.21 kJ m−2 s−1. In July, the
maximum surface heat flux was 0.29 kJ m−2 s−1. The heat balance
for both dates for a 24 h period, as calculated by this method, was
effectively zero. The total heat stored and then lost over the course
of a day was 2.49 GJ d−1 for the 645 m2 area of forest gap in March
and 3.36 GJ d−1 in July.

4. Discussion

The soil surface and subsurface in a forested environment can be
influenced by canopy shading, causing uneven but periodic changes

in temperature that deviate from the simple sinusoidal models that
are often used to predict soil temperature and energy balance. Yet
estimates of hourly energy budgets used for eddy flux measure-
ments usually depend on a very limited number of fixed-locations
for measurement of spatially and temporally heterogeneous of soil
heat fluxes (e.g., Ogée et al., 2001). The spatial variability of leaf
area index makes even evapotranspiration impractical to model
over heterogeneous lands (Suleiman and Crago, 2004). This limi-
tation is important to consider in both studies of forest soil CO2
efflux, with the greatest temporal variations of temperature occur-
ring near the soil surface, as well as those of plant distribution,
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Fig. 7. Percentage of soil surface area in the forest gap over 24 h with direct incident
solar radiation, as determined from repeated thresholded panoramic images. Areas
of vegetation and soil surface that did not receive direct solar radiation were ignored.
Measurements made in March are indicated by solid grey bars and those made in
July by solid black bars.

where forest gaps and their associated microclimates are thought to
play a major role in the regeneration of many plant species in both
tropical and temperate areas (Balisky and Burton, 1995; Schnitzer
et al., 2000).

Sinusoidal models for heat conduction in soil historically have
been used (Van Wijk and de Vries, 1966) and continue to be used
(Chen et al., 2009) because of their simplicity and first-principles
derivation. The use of the same value for both attenuation of the
surface temperature oscillation and the delay of the maximum with
depth in these equations is based on a uniformly conducting solid.
Introducing two variables for this one parameter adds an increased
in accuracy for predicting subsurface temperatures from surface
temperatures but at the cost of some physically based explanations
of how heat conduction is occurring. We also acknowledge that this
modified sinusoidal model also adds yet one more variation on the
plethora of variations that exist for this simple and powerful model
that is by itself sufficient for many agricultural and exposed location
applications.

Longer time-scale variations of soil temperatures are caused by
a juxtaposition of local weather conditions and seasonal variations
and can create even more complex signals. Indeed, we observed
such longer time-scale changes in subsurface temperatures and
chose relatively similar days in order to test our methodology.
However, using FT, all signals can be modeled using a series of
superimposed sine waves and superimposing annual and daily sur-
face temperature sinusoids achieves more accuracy in predicting
heat flux in soil (Hu et al., 2002; Elias et al., 2004; Droulia et al.,
2009). The method for applying a sine wave soil heat conduction
model to each of the harmonic components of a FT decomposition
has long been recognized to improve accuracy of predicting sub-
surface temperatures (Van Wijk and de Vries, 1966; Ballard, 1972).
Modern computing power and relatively simple programming lan-
guages like Python have allowed us to not only easily compute
the FT of a complex signal but to apply a model to every resultant
harmonic and then recombine them rapidly.

Mobility of sensor platforms is accompanied by many chal-
lenges, including optimizing the spatiotemporal components of
sampling; however the ability to rapidly deploy the cabled sys-
tem and automatically and adaptively relocate sensing equipment
has proved to significantly increase sensing system performance
(Rahimi et al., 2005). Several studies have incorporated mobility
with environmental sensing, decreasing sensing uncertainty and

Fig. 8. Spatial representation of the total amount of time that each corresponding
pixel in a daily time series of panoramic images received direct solar radiation for
(A) March, and (B) the time difference between March and July. Negative values,
indicating less direct solar radiation per pixel in July than in March in panel (B) are
not shown.

increasing the physical range of sensing (Caron et al., 2008; Graham
et al., 2009) or time of sampling (Singh et al., 2007). Innovation in
movement of sensors in three dimensions promises even greater
sensing capabilities (Borgstrom et al., 2007). In this study, mobility
of sensors along a linear transect allowed us to measure soil surface
temperature at a high spatial resolution over the course of multiple
days while simultaneously sampling with fixed sensors.

Visible light digital cameras are increasingly being used in envi-
ronmental sensing (Hamilton et al., 2007; Morisette et al., 2009;
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Porter et al., 2009). Automatic image segmentation by threshold-
ing is a commonly used image processing technique in ecological
applications (Cescatti, 2007; Graham et al., 2009). Simple image
processing techniques are making standard the use of digital cam-
eras for the detection of plant phenological events (Crimmins and
Crimmins, 2008; Graham et al., 2009, in press; Morisette et al.,
2009; Richardson et al., 2009) as well as for automating a range
of agricultural monitoring practices (Jia et al., 2004; Slaughter et
al., 2008). The uses of cameras in these studies have been primar-
ily based on the color reflectance of plants. Although many studies
have used visible light cameras to determine canopy structure and
estimate the effect of sunflecks using upwardly facing hemispheri-
cal lenses (e.g., Jonckheere et al., 2004), to the best of our knowledge
this study appears to be the first to use a camera to examine the
resultant spatial and temporal patterns of reflected solar radiation
on a forest soil surface. We have demonstrated that the combi-
nation of digital imagery, the Fourier transform decomposition of
these complex signals, and heat conduction models can be applied
to expand single-location measurements of temperature and heat
balance to larger areas that are heterogeneous in both time and
space.

Although we only tested the use of a camera and the combi-
nation of temperature models in one location for predicting soil
surface and subsurface temperature, the application of this method
to other locations should be straight-forward. Our use of a mobile
sensor platform allowed us to test our heat conduction model along
a transect but this is not necessary for application to other loca-
tions. Our method was an empirical one, predicting soil surface
and subsurface temperature using measured maximum surface
temperature (which would be affected by both soil properties in
different locations and solar conditions during different times of
the year), measured subsurface temperature, air temperature, and
visibly reflected sunflecks. Limitations to our method may include
errors associated with canopy vegetation differentially insulating
soil from radiation loss at night, insulation from snow, a deep leaf
litter layer, or other soil surface energy balance factors that would
require more complicated modeling.

Much work has been done on algorithms to integrate sensor
data collected at different times and from multiple observation
platforms (e.g., Mysorewala et al., 2009). Hierarchical systems that
enable the autonomous arrangement of sensors can optimize sens-
ing fidelity and spatial coverage and have resulted in algorithms
to increase the fidelity sampling of high-frequency spatiotemporal
environmental phenomena (Singh et al., 2006). In this study, we
were able to coordinate a higher level sensor, the digital camera, as
a top-tier but lower resolution sensor with in situ, higher resolution
sensors, creating a multiscale sensing system for soil surface and
subsurface temperature measurement. Including multiple sensing
tiers from buried and surface sensors with a digital camera appears
a practical and efficient method for measuring wide area temper-
atures and heat fluxes in temporally and spatially heterogeneous
environments.
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