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RESEARCH ARTICLE Open Access

Serum metabolomic profiling predicts
synovial gene expression in rheumatoid
arthritis
Rekha Narasimhan1†, Roxana Coras1,2†, Sara B. Rosenthal3, Shannon R. Sweeney4, Alessia Lodi4, Stefano Tiziani4,
David Boyle1, Arthur Kavanaugh1† and Monica Guma1,2*†

Abstract

Background: Metabolomics is an emerging field of biomedical research that may offer a better understanding of the
mechanisms of underlying conditions including inflammatory arthritis. Perturbations caused by inflamed synovial tissue
can lead to correlated changes in concentrations of certain metabolites in the synovium and thereby function as potential
biomarkers in blood. Here, we explore the hypothesis of whether characterization of patients’ metabolomic profiles in
blood, utilizing 1H-nuclear magnetic resonance (NMR), predicts synovial marker profiling in rheumatoid arthritis (RA).

Methods: Nineteen active, seropositive patients with RA, on concomitant methotrexate, were studied. One of the involved
joints was a knee or a wrist appropriate for arthroscopy. A Bruker Avance 700 MHz spectrometer was used to acquire NMR
spectra of serum samples. Gene expression in synovial tissue obtained by arthroscopy was analyzed by real-time PCR. Data
processing and statistical analysis were performed in Python and SPSS.

Results: Analysis of the relationships between each synovial marker-metabolite pair using linear regression and controlling
for age and gender revealed significant clustering within the data. We observed an association of serine/
glycine/phenylalanine metabolism and aminoacyl-tRNA biosynthesis with lymphoid cell gene signature.
Alanine/aspartate/glutamate metabolism and choline-derived metabolites correlated with TNF-α synovial expression.
Circulating ketone bodies were associated with gene expression of synovial metalloproteinases. Discriminant analysis
identified serum metabolites that classified patients according to their synovial marker levels.

Conclusion: The relationship between serum metabolite profiles and synovial biomarker profiling suggests that NMR
may be a promising tool for predicting specific pathogenic pathways in the inflamed synovium of patients with RA.

Keywords: NMR, Metabolomics, Biomarkers, Synovium, Rheumatoid arthritis, Gene expression

Background
The hallmark of rheumatoid arthritis (RA) is chronic
synovitis that affects multiple joints and invades cartilage
causing bone erosions and joint destruction [1]. As the
synovium is the principal target of inflammation in RA,
and the resident synoviocytes (fibroblast-like synoviocytes
and macrophages-like synoviocytes) along with recruited

cells (myeloid cells and lymphocytes) are implicated in the
pathogenesis of synovitis, special interest has been given
to the study of synovial tissue in this disease. These studies
not only aim to clarify RA pathogenesis and provide
insight into the mechanisms of action of therapeutic inter-
ventions [1, 2], but are also a promising approach to
search for biomarkers in the inflamed synovial tissue [1].
Changes in the cellular infiltrate or biomarkers such as
cytokines or growth factors in RA-affected synovial tissue
have long been known to be associated with the clinical
course of disease and have been used to identify specific
responses to RA therapies [1–4]. Recently there has been
increasing interest in synovial biopsies to obtain inflamed
synovial tissue from joints and thereby gain a better
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understanding of the pathogenic events in these diseases
[5]. Histopathotype and pathological pathways-based pa-
tient stratification prior to therapeutic intervention could
be exploited to identify biomarker predictors of clinical
outcomes and responses to therapy [6, 7].
Tissue pathology and pathogenic pathways cannot yet

be reliably explored through noninvasive circulating or
imaging biomarkers. Given the complexity and heteroge-
neous nature of RA, it is unlikely that a single cytokine
will provide sufficient discrimination between patients
and thus be a good biomarker [8, 9]. Global biomarker
signatures may represent a more appropriate approach
for improving treatment protocols and outcomes for
patients with RA. Metabolomics is the science of identifying
and quantifying the biochemical byproducts of metabolism
in a cell, tissue, or organism [10]. Metabolomics is an emer-
ging field of biomedical research that can offer a better
understanding of the mechanisms underlying disease and
help to develop new strategies for treatment [11]. Unlike
genes and proteins, which are epigenetically regulated and
post-translationally modified, metabolites are direct signa-
tures of biochemical activity and thus it may be easier to
test whether they are correlated with phenotype [12].
The fundamental rationale in metabolomics is that

perturbations caused by a disease in a biological system
will lead to changes that are correlated with the concen-
trations of certain metabolites [13, 14]. Metabolite pat-
terns represent the final response of biological systems
to disease status, or in response to a medical or external
intervention [12]. 1H-nuclear magnetic resonance
(NMR) can delineate patterns of changes in biomarkers
that are highly discriminatory for the observed disease
or intervention [15]. We propose in this work, that the
study of metabolomics in serum from patients with RA,
using NMR, can be used to predict synovial pathology.
We hypothesize that perturbations caused by inflamed
synovial tissue will lead to changes that correlate with
the concentration of certain metabolites in the syno-
vium. These changes will then be reflected in blood
serum and function as potential biomarkers of different
synovial markers. Here we describe the first study that
defines metabolite signatures in serum that correlate
with gene expression profiling in synovial tissue from
patients with active RA.

Methods
Patients
The Assessment of rituximab’s immunomodulatory syn-
ovial effects (ARISE) clinical trial (registered at Clinical-
Trials.gov, NCT00147966) has been described in detail
[3]. Briefly, the study enrolled people between 18 and
70 years of age with an established diagnosis of RA and
a positive serum test for rheumatoid factor (RF). Patients
had to have active disease (defined as a tender joint

count > 8/68, a swollen joint count > 6/66, and either
early morning stiffness > 45 min in duration, or an eleva-
tion in erythrocyte sedimentation rate (ESR) > 28 mm/h
or C-reactive protein (CRP) > 1.5 mg/dL), despite the
concomitant use of methotrexate (MTX) at a dose of >
12.5 mg/week for at least 12 weeks. One of the involved
joints had to be a knee or a wrist that could be appropri-
ately examined by arthroscopy. Concomitant use of
non-steroidal anti-inflammatory drugs and oral prednis-
one at doses of 10 mg/day or less were permitted, pro-
vided dosing was stable for at least 4 weeks before the
study. Patients previously treated with tumor necrosis
factor (TNF-α) inhibitors were permitted to enroll in the
study provided they had been off therapy for > 2 months
for etanercept and > 3 months for adalimumab or inflixi-
mab. Patients meeting eligibility criteria underwent base-
line arthroscopic synovial biopsy of an affected knee or
wrist. Nineteen patients for whom both baseline synovial
biopsy gene expression data and baseline serum metabo-
lomics data were available were analyzed in the current
study. Clinical disease parameters, including disease
activity score (DAS), health assessment questionnaire
(HAQ), pain, joint swelling and tenderness, ESR, RF, and
anti-cyclic citrullinated peptide (anti-CCP) are described
in Additional file 1: Table S1.

Synovial gene expression analysis
Synovial RNA was extracted from pools of six tissue frag-
ments and complementary DNA (cDNA) was synthesized.
TaqMan PCR was performed using predeveloped reagents
(Applied Biosystems, Foster City, CA, USA) as described
previously [3]. Gene expression, utilizing quantitative re-
verse transcriptase (RT)-PCR, was performed to measure
inflammatory mediators and B cell survival factors, includ-
ing IgM (heavy chain), IgG (heavy chain), IgKappa (light
chain), CD3E, TNF-α, interleukin (IL)-1β, IL-6, IL-8,
matrix metalloproteinase (MMP)-1, MMP-3, B lympho-
cyte stimulator (BLyS), stromal cell-derived factor 1
(SDF1), and a proliferation-inducing ligand (APRIL). Syn-
ovial gene expression for the 19 patients analyzed in this
study are summarized in Additional file 1: Table S2.

ELISA
TNF-α, MMP3 IL-1β, and IL-6 from serum were evalu-
ated by DuoSet enzyme-linked immunosorbent assays
following the manufacturer’s protocol (R&D systems).

Metabolomics analysis
Frozen serum was obtained from the Division of Rheuma-
tology, Allergy, and Immunology at the University of
California (UC) San Diego School of Medicine (San Diego,
CA, USA). Lipid and protein fractions were removed via
ultrafiltration (Nanosep 3 K OMEGA, Pall Corporation,
Ann Arbor, MI, USA) at 4 °C. The filtered biofluid was
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used for NMR analysis. An aliquot of 160 μL of filtered
serum was mixed with 20 μL D2O and 20 μL of phosphate
buffer (100 mM final concentration) containing TMSP-d4
(0.1 mM final concentration) and sodium azide (0.05% (w/
v) final concentration). The prepared samples were centri-
fuged to remove any remaining particulates and a 180 μL
aliquot was transferred to a 3 mm NMR tube (Norell,
Landisville, NJ, USA) prior to acquisition. NMR spectra
were acquired with a 16.4 T (700 MHz) Bruker Avance
spectrometer (Bruker BioSpin Corp., Billerica, MA, USA)
equipped with a 5 mm TCI cryogenically cooled probe
and autosampler at 30 °C. Following acquisition, spectra
were processed using NMRlab and MetaboLab [16]. Me-
tabolite assignment and quantification was performed
using several databases [16]. Metabolite assignment and
quantification was performed using Chenomx NMR Suite
(Chenomx Inc., Edmonton, AB, Canada), the Birmingham
Metabolite Library [17], and the Human Metabolome
Database [18]. The NMR results were recently published
[19] and are summarized in Additional file 1: Table S3 for
the 19 patients analyzed in this study.

Data analysis
The data, consisting of 19 patient samples measured
across 18 synovial markers and 49 metabolites, were
processed using Python. Hierarchically clustered heat-
maps were generated for correlation between synovial
markers and metabolites separately. Hierarchical cluster-
ing and visualization was performed using the scientific
computing package SciPy, and the visualization package
Seaborn (https://seaborn.pydata.org/). Dendrograms were
divided into flat clusters using a cophenetic distance
metric. Linear regression was performed between each
cytokine-metabolite pair, controlling for patient age and
gender using the ordinary least squares (OLS) method
from the Python package StatsModels. Normally dis-
tributed independent variables were standardized so
they had a mean of zero and a standard deviation of
one. Discriminant analyses were performed to deter-
mine coefficients for linear combinations of variables
that assigned cluster membership to individual cases.
Basic descriptive statistics used to describe the patient
population and discriminant analysis were performed
using the SPSS software version 15.0.

Results
Synovial marker and blood metabolite clustering
We first analyzed whether synovial markers clustered
into different groups (Fig. 1). IL-6, MMP1, and MMP3
are strongly correlated among themselves but are in-
versely correlated with TNF-α, which interestingly, is
strongly correlated with CD3E. MMP1 and MMP3 are
also inversely correlated with another cluster that in-
cludes IL-1β and IL-8. In addition, there was a big

cluster comprising B and plasma cell markers, and
growth factors, including SDF1, APRIL, CD138, CD19,
CD79A, IgG and IgM heavy chains, and IgKappa.
We also characterized the blood metabolites. As shown

in Additional file 1: Table S3 and Fig. 2a, most of the me-
tabolites were downregulated compared to reference
values, suggesting that these metabolites might be con-
sumed by the inflamed synovium due to an increase in its
metabolic demand. A few metabolites were upregulated
compared to reference values, including glycolytic metab-
olites such as lactate and pyruvate. This likely reflects the
increased bioenergetic and biosynthetic demands of sus-
tained inflammation. Choline metabolism has recently
been strongly related to inflammation [20]. Dietary intake
of choline, through two circulating metabolites, trimethy-
lamine (TMA) and trimethylamine N-oxide (TMAO), are
mechanistically linked to cardiovascular inflammation
[20]. Interestingly TMA was also elevated in our patients
with RA. In addition, 3-hydroxybutyrate, a ketone body,
and select amino acids, such as leucine, threonine,
tyrosine, and aspartate were upregulated in patients with
active RA. We also analyzed whether blood metabolites
could be clustered in groups. Metabolites primarily clus-
tered into groups according to their biological function or
chemical classification (Fig. 2b). As expected, the group of
metabolites that were elevated in patients, namely lactate,
methylmalonate, xanthine, and 3-hydroxybutyrate, were
inversely correlated with the most of metabolites.

Linear regression analysis between grouped synovial
markers and metabolites
Linear regression was analyzed between each synovial
marker-metabolite pair; age and gender were controlled
for by including these factors as covariates in the model.
The regression coefficients for each cytokine-metabolite
pair were used to form a clustered heatmap to lend
insight into which groups of synovial markers were cor-
related with which groups of metabolites. We observed
significant clustering structures in the data (Fig. 3a). The
color bar along the top of Fig. 3 preserves the synovial
marker clusters from Fig. 1. Interestingly the clusters of
synovial markers almost correspond to the clusters ob-
served within synovial markers (Fig. 1), suggesting that
cytokine clusters in the synovial tissue have a similar
metabolite signature in blood. The most striking differ-
ence is seen in the cluster comprising SDF1, APRIL,
CD138, CD19, CD79A, and IgG and IgM heavy chain,
and IgKappa in Fig. 1, which is seen split into two
groups in Fig. 3. One metabolite signature correlates
with CD19, CD79A and IgG heavy chain, markers of B
cells; and the other metabolite signature correlates with
SDF1, APRIL, CD138 and IgM heavy chain, markers re-
lated to plasma cell biology. Of interest BLyS, had a dif-
ferent metabolite profile than the rest of plasma cell
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biomarkers. Metabolite regression p values are displayed
in Fig. 3b, where the row and column order are pre-
served from Fig. 3a and Additional file 2: Figure S1.
As observed in Fig. 3, metabolites can be grouped into

five clusters (Fig. 4) that were further analyzed using the
MetaboAnalyst [21, 22] web tool for functional enrich-
ment of these groups of metabolites. Both pathway
significance and pathway impact were assessed using this
tool (Additional file 3: Figure S2).
We then determined the most strongly correlated or

anti-correlated serum metabolites for each synovial
marker, using linear regression, and controlling for both
age and gender. We also included Benjamini-Hochberg
false discovery rate (FDR)-adjusted p values to correct
for multiple testing. As shown in Fig. 5, the synovial
markers TNF-α and CD3E were negatively correlated
with several metabolites in serum. The significant polar
metabolites were mapped to known metabolic pathways
using MetaboAnalyst 3.0 [22, 23]. and ranked by their
overall p values (Fig. 5c). Additional file 4: Figure S3,
Additional file 5: Figure S4, Additional file 6: Figure S5,
and Additional file 7: Figure S6 show correlation be-
tween metabolites and the remaining synovial marker
clusters.

Discriminant analysis
We then explored whether or not one or more metabo-
lites in serum could discriminate between high or low
levels of synovial marker gene expression. At present, no
factors have been identified that fully explain or predict
response to RA therapy [24], but pre-treatment differ-
ences at baseline between patient groups have been
identified, including synovial tissue TNF expression and
an increased number of synovial macrophages and T
cells in patients who subsequently exhibited clinical im-
provement after initiation of anti-TNF therapy [25].
Therefore, we used stepwise discriminant function ana-
lyses to discriminate TNF-α or CD3E levels. Multivariate
and cross-validation classification using the “leave-one--
out” classification method was used for these calcula-
tions. We defined high or low marker levels according
to their synovial marker gene expression mean. This
stepwise discriminant analysis is presented in Fig. 6. For
TNF-α discriminant analysis, three metabolites namely
glutamine, TMA, and dimethylsulfone were sufficient to
correctly classify 94.7% of TNF-α levels. There was ca-
nonical correlation of 0.821 and Wilks’ lambda of 0.326
when these three variables were used, with high signifi-
cance (p < 0.001; Fig. 6a). For CD3E discriminant

Fig. 1 Synovial markers clustering. Heat map and hierarchical cluster analysis indicates positive relationships between cytokines identified by
quantitative PCR in synovial tissue from patients with rheumatoid arthritis. Pearson’s correlation coefficients for each metabolite and hierarchical
clustering with Euclidean distance metric are included. The color bar along the top indicates cytokine grouping based on hierarchical clustering.
APRIL, a proliferation-inducing ligand; BLyS, lymphocyte stimulator; MMP, matrix metalloproteinase; SDF1, S cell-derived factor 1

Narasimhan et al. Arthritis Research & Therapy  (2018) 20:164 Page 4 of 11



Fig. 2 Blood metabolite clustering. a Overview of the metabolites identified by 1H-nuclear magnetic resonance (NMR) organized by metabolic
pathway. Metabolites that were elevated by at least 20% compared to reference values are in green and metabolites that were decreased by more
than 20% compared to reference values are in red.. Metabolites not identified by NMR are in gray. Abbreviations: TMA, trimethylamine; TMAO,
trimethylamine N-oxide; DMA, NN-dimethylamine; THF, tetrahydrofolate; IMP, inosine monophosphate. b Heat map and hierarchical cluster analysis
indicate positive relationships between polar metabolites identified by 1H-NMR in serum from patients with rheumatoid arthritis before treatment with
rituximab. Pearson’s correlation coefficients for each metabolite and hierarchical clustering with Euclidean distance metric are shown

Fig. 3 Correlation of synovial markers with serum metabolites. a Linear regression was performed between each synovial marker–serum
metabolite pair, controlling for age and gender. The regression coefficients for each pair were used to form a clustered heatmap, to lend insight into
which groups of synovial markers were correlated with which groups of metabolites. The color bar along the top is preserved from Fig. 1, and
indicates groups of similar cytokines. Row clusters have been identified by cophenetic cutting of the row dendrogram. b Metabolite regression p
values are displayed in Fig. 3b, where the row and column order are preserved from Fig. 3a. APRIL, a proliferation-inducing ligand; BLyS, lymphocyte
stimulator; MMP, matrix metalloproteinase; SDF1, S cell-derived factor 1
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analysis, two metabolites namely carnitine and methio-
nine were sufficient to correctly classify 89.6% of CD3E
levels. There was canonical correlation of 0.765 and
Wilks’ lambda of 0.414 when these three variables were
used, with high significance (p < 0.001; Fig. 6b).

Discussion
Our increasing understanding of the pathogenesis of RA
has transformed the therapeutic options available for
people with this disease. The introduction of newer agents
and novel treatment strategies has resulted in improved
outcomes for patients. However, these successes have
raised the bar for the goals of therapy. At present, disease
remission, or low disease activity at the very least, has be-
come the new goal of treatment for all patients. Therefore,
there is still an unmet need in RA. Biomarkers employed

in “personalized” medicine might be useful in an attempt
to match a patient with the most appropriate biologic
therapy, and thereby optimize outcomes. The accessibility
of a biological biomarker is an important factor in this ap-
proach [8]. Although sampling inflamed synovial tissue
from joints might be critical to gain a better understand-
ing of the pathogenic events of inflammatory arthritis, a
biomarker that can be obtained in a minimally invasive
manner is more attractive, particularly for patients in early
stages of the disease, where mostly small joints are in-
volved [8]. In this study, we attempt, for the first time, to
find serum metabolomics profiles that correlate with syn-
ovial marker gene expression.
Recent studies have indicated that metabolic regula-

tion and cell signaling are tightly and ubiquitously linked
with immune responses. Metabolomics studies that aim

Fig. 4 Identified metabolites clusters. Overview of the metabolites identified by 1H-nuclear magnetic resonance organized by metabolic pathway
and colored by cluster. Abbreviations: TMA, trimethylamine; TMAO, trimethylamine N-oxide; DMA, NN-dimethylamine; THF, tetrahydrofolate; IMP,
inosine monophosphate

Narasimhan et al. Arthritis Research & Therapy  (2018) 20:164 Page 6 of 11



to improve biological understanding through the analysis
of metabolite profiles of the underlying biological path-
ways are certainly relevant and have been successful in
other fields, especially oncology. Though the application
of metabolomics to RA is still in its infancy, early studies
have yielded promising results [19, 26–33]. A small
number of metabolomics studies have focused on identi-
fying metabolites associated with rheumatic diseases,
primarily in the serum for diagnostic purposes [30–32],
but none have attempted to predict synovial pathology.
We hypothesized that perturbations caused by inflamed

synovial tissue will lead to changes that correlate with the
concentrations of certain metabolites in the synovium that
will be then reflected in blood serum. A recent publication
on a study of metabolic profiling in the synovial tissue re-
ported altered glucose and choline metabolism [34]. Both
pathways have recently been involved in RA pathogenesis
[27, 34, 35]. Choline levels in patients from our cohorts
are decreased in blood compared to the normal range;

this, along with an increased uptake in the joints on cho-
line C-11 PET scanning in inflammatory arthritis [36] and
high expression in fibrocyte-like synoviocytes (FLS) of
choline like transporter (CTL)1 (high-affinity) and CTL2
(low-affinity) [37], suggest increased circulating choline
uptake and consumption by the inflamed synovium. Glu-
cose levels were decreased, and lactate levels increased in
serum from our cohort. Glucose is consumed through up-
regulation of aerobic glycolysis and when metabolized,
gives rise to production of copious amounts of lactate,
which must be extruded from the cell to prevent lactic
acidosis [38]. Several studies have highlighted the increase
in glucose metabolism in the hypoxic joint [27, 35]. Thus,
our results in serum seem to agree well with recently de-
scribed synovial studies [34]. Of interest, both choline and
glucose levels in the blood negatively correlated with
TNF-α and CD3E gene expression in the synovium.
Literature in the field of oncology can help us to inter-

pret some of our results. For instance, we observed an

Fig. 5 Correlation between serum metabolites and synovial TNF-α and CD3E. a Correlation between serum metabolites and each synovial
marker, using linear regression, controlling for both age and gender. We also included p values adjusted for Benjamini-Hochberg false discovery
rate (fdr_bh) to correct for multiple testing. b Overview of the metabolites identified by 1H-nuclear magnetic resonance organized by metabolic
pathway. Metabolites that were negatively correlated with TNF-α and CD3 are shown in red. Abbreviations: TMA, trimethylamine; TMAO,
trimethylamine N-oxide; DMA, NN-dimethylamine; THF, tetrahydrofolate; IMP, inosine monophosphate. c Pathway analysis of polar compounds by
MetaboAnalyst. Pathway p values were calculated based on metabolites that were correlated with both TNF-α and CD3E. Coef, coefficient
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association of serine/glycine metabolism and aminoacyl-
tRNA biosynthesis with TNF-α/CD3E and B/plasma cell
signatures that suggest that lymphoid cells could be
using these pathways after activation in the rheumatoid
synovium. Although alterations in glucose and glutamine
metabolism are central to metabolic transformation, re-
cent studies have focused on the role of the nonessential
amino acids serine and glycine in supporting tumor
growth [39]. In addition to their role in protein synthe-
sis, serine and glycine contribute to anabolic pathways
important for the generation of glutathione, nucleotides,
phospholipids, and other metabolites [40]. The require-
ment for intracellular serine and glycine for the support
of cell growth and proliferation is clear. Other amino
acids are also critical substrates that fuel mitochondrial
metabolism and the biosynthesis of proteins, lipids, and
other molecules. Of particular interest in cancer are key
mitochondrial enzymes in the metabolism of glutamine,
glutamate, proline, aspartate, and alanine [41]. The
branched chain amino acids (BCAAs) valine, leucine,
and isoleucine are also highly metabolized by transami-
nases. By coordinating cellular bioenergetics and biosyn-
thesis through the tricarboxylic acid (TCA) cycle, amino
acid metabolism could be critical not only in tumor cells
but also in lymphoid cell proliferation and survival as
described recently [42].
Another metabolite that correlates with several of our

cytokine pathways is succinate. Succinate is an inter-
mediate of the TCA cycle and plays a crucial role in ad-
enosine triphosphate (ATP) generation in mitochondria.
Recently, new roles for succinate outside metabolism
have emerged. Succinate promotes expression of the
pro-inflammatory cytokine IL-1β by inhibiting prolyl

hydroxylases and stabilizing the transcription factor
hypoxia-inducible factor-1α (HIF-1α) in activated
macrophages, and stimulates dendritic cells via succinate
receptor 1 [38, 43]. Furthermore, succinate has been
shown to post-translationally modify proteins. Of inter-
est, the succinate level in blood positively associated
with synovial IL-1β gene expression although it did not
reach statistical significance.
The cluster comprising MMP1/MMP3/IL-6, which could

represent a fibroblast-driven phenotype, was negatively
correlated with ketone bodies. Acetoacetate is the common
precursor of the two other circulating ketone bodies, acet-
one and 3-hydroxybutyrate [44]. 3-hydroxybutyrate is the
most abundant circulating ketone body and is less likely to
degrade spontaneously into acetone than acetoacetate. One
can speculate that rheumatoid fibroblasts require intracellu-
lar ketone bodies for the support of their invasive pheno-
type and that the increase in 3-hydroxybutyrate uptake
and/or enzymes in this pathway could explain the negative
correlation. Of note, the positive correlation between
3-hydroxybutyrate and IL-1β and IL-8 is also of interest, as
3-hydroxybutyrate, long viewed as a simple carrier of
energy from the liver to peripheral tissues, also possesses
signaling activities and is also an endogenous inhibitor of
histone deacetylases (HDACs) [45]. Moreover, recent
research has shown that 3-hydroxybutyrate can block the
NOD-like receptor pyrin containing 3 (NLRP3) inflamma-
some [46]. Further studies are needed to understand the
effect of these metabolites in the synovium in RA.
As mentioned above, metabolites can not only be

biomarkers of perturbations caused by inflamed synovial
tissue but also can have a pathogenic effect that would amp-
lify synovial inflammation. Secondary roles have emerged

Fig. 6 Discriminant analysis. Unstandardized and standardized discriminant function coefficients, structure matrix, centroids, and constant for
direct discriminant function for TNF-α (a) and CD3E (b)
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for glucose metabolites, metabolic enzymes, and TCA cycle
intermediates outside of metabolism. Not only succinate
but also other metabolites including α-ketoglutarate, fu-
marate, and acetyl-CoA might be expected to accumulate
in macrophages and FLS under hypoxic conditions, and
are involved in eliciting important epigenetic changes,
with unexplored potential for driving chronic inflamma-
tion [47, 48]. Also, essential glycolytic enzymes have been
shown to translocate to the nucleus or mitochondria
where they function independently of their canonical
metabolic roles in the regulation of cytokines and
anti-apoptotic responses [49, 50]. Thus, metabolomics
studies have also the potential of defining the elements of
synovial metabolic pathobiology.
Although NMR spectroscopy has less sensitivity com-

pared to mass spectrometry instrumentation, NMR re-
quires minimal sample preparation, and is not only
non-destructive, inherently untargeted, highly reprodu-
cible [51, 52], and intrinsically quantitative, but is also
cheaper and more accessible than mass spectrometry
[53–55]. Depending on the biological samples, NMR can
identify and quantify more than 200 metabolites in an
untargeted fashion and more than 100 metabolites are
uniquely identified by NMR [56]. In this work, we also
showed that the combination of only two or three me-
tabolites identified in serum by NMR could discriminate
between high or low levels of synovial TNF-α and CD3E
gene expression. Studies in other cohorts of patients
with active RA are needed to validate these results, yet
the relationship between serum metabolic profiles and
synovial biomarker profiling suggests that NMR may be
a promising tool for predicting specific pathogenic path-
ways in the inflamed synovium in RA.
Although these findings are certainly promising, this

study is not without limitations. Most importantly, we
evaluated a small number of clinical samples. Despite
similar clinical parameters for patient inclusion, large
biological variance is expected in primary samples. In
addition, patients had long-standing disease and were
exposed to various therapies prior to the study, and were
on methotrexate at the time of the study, which is re-
ported to change several metabolic pathways including
adenosine metabolism [57]. Confirmation of our results
in a larger sample size from a cohort of patients with
new onset inflammatory arthritis before treatment initi-
ation, studied prospectively, is necessary to strengthen
our conclusions. Comparison with other arthritides or
other systemic inflammatory diseases to determine if
these changes in metabolite levels come from the joints
or from different sources is also critical to interpret our
results. One other confounder is the microbiome, which
is altered in RA and can potentially cause metabolic
changes in both serum and synovial tissues [58–60]. In
addition, further studies are needed to evaluate the

relationship between circulating metabolites and syn-
ovial pathology. Metabolite profiles in blood, if they cor-
relate with metabolic changes in synovial tissue, will
certainly reveal more about RA etiology. We did not
identify correlation between cytokine serum levels and
cytokine synovial gene expression (Additional file 8:
Figure S7), yet it remains unknown whether or not
metabolic changes will display stronger correlation be-
tween blood and synovium.

Conclusions
The relationship between serum metabolite profiles and
synovial biomarker profiling suggests that NMR may be a
promising tool for predicting specific pathogenic pathways
in the inflamed synovium of patients with RA. Further
studies will help to better test the correlation and under-
stand the metabolic profiles between cytokine and cell sig-
natures, and address whether or not NMR metabolomics
can be used to stratify patients with RA by predicting spe-
cific cellular infiltrates or other synovial biomarkers, and
to identify specific responses to RA therapies.

Additional files

Additional file 1: Table S1. Baseline clinical characteristics of patients
with rheumatoid arthritis. Table S2. Mean and standard deviation (SD) of
synovial biomarker expression. Table S3. Mean and standard deviation (SD)
of serum metabolites detected by 1H-NMR (μM). Reference values are from
the Human Metabolome Database (HMDB) and were collected via NMR,
unless otherwise noted. 1GC/MS; 2HPLC; 3HPLC-fluoroescence; 4ion-
exchange chromatography; 5DFI/MS/MS 6unknown. ND, no data available.
Metabolites that were upregulated by at least 20% compared to reference
values are in green. Metabolites that were downregulated by more than
20% compared to reference values are in red. (DOCX 26 kb)

Additional file 2: Figure S1. Correlation between synovial markers and
serum metabolites. (TIFF 14826 kb)

Additional file 3: Figure S2. Pathway analysis of polar compounds by
MetaboAnalyst. (TIFF 14826 kb)

Additional file 4: Figure S3. Correlation between serum metabolites
and synovial CD19, CD79A, and IgGHC. (TIFF 14826 kb)

Additional file 5: Figure S4. Correlation between serum metabolites
and synovial APRIL, CD138, SDF1, IgKappa, and IgMHC. (TIFF 14826 kb)

Additional file 6: Figure S5. Correlation between serum metabolites
and synovial MMP1, MMP3, and IL-6. (TIFF 14826 kb)

Additional file 7: Figure S6. Correlation between serum metabolites
and synovial IL-1β and IL-8. (TIFF 14826 kb)

Additional file 8: Figure S7. Correlation between serum cytokines and
synovial cytokines and serum metabolites. (TIFF 14826 kb)
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