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Abstract Familial combined hyperlipidemia (FCHL) is a
common lipid disorder characterized by the presence of
multiple lipoprotein phenotypes that increase the risk of
premature coronary heart disease. In a previous study, we
identified an intragenic microsatellite marker within the
protocadherin 15 (PCDHI5) gene to be associated with
high triglycerides (TGs) in Finnish dyslipidemic families.
In this study we analyzed all four known nonsynonymous
SNPs within PCDH15 in 1,268 individuals from Finnish
and Dutch multigenerational families with FCHL. Associa-
tion analyses of quantitative traits for SNPs were performed
using the QTDT test. The nonsynonymous SNP
rs10825269 resulted in a P = 0.0006 for the quantitative TG
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trait. Additional evidence for association was observed with
the same SNP for apolipoprotein B levels (apo-B)
(P =0.0001) and total cholesterol (TC) levels (P = 0.001).
None of the other three SNPs tested showed a significant
association with any lipid-related trait. We investigated the
expression of PCDHI5 in different human tissues and
observed that PCDHI5 is expressed in several tissues
including liver and pancreas. In addition, we measured the
plasma lipid levels in mice with loss-of-function mutations
in Pcdh15 (Pcdh15%T¢ and Pcdh15%-%) to investigate pos-
sible abnormalities in their lipid profile. We observed a sig-
nificant difference in plasma TG and TC concentrations for
the Pcdh15™¥ carriers when compared with the wild type
(P =0.013 and P = 0.044, respectively). Our study suggests
that PCDH15 is associated with lipid abnormalities.

Introduction

Familial combined hyperlipidemia (FCHL) is a complex
disease characterized by hypertriglyceridemia, hypercho-
lesterolemia or both (Goldstein et al. 1973). In addition,
high serum levels of apolipoprotein-B (apo-B) are often
observed in FCHL affected individuals (Brunzell et al.
1983; Ayyobi etal. 2003). Several genome-wide scans
have been performed to detect susceptibility loci for FCHL
(Pajukanta et al. 1999; Aouizerat et al. 1999; Allayee et al.
2002). In a previous study, we identified an intragenic
microsatellite marker (D10S546) within the protocadherin
15 (PCDH15) to be associated with high serum triglycer-
ides (TGs) in Finnish dyslipidemic families (Lilja et al.
2004). Furthermore, PCDH15 resides in a region on chro-
mosome 10q11 that has been linked to lipid abnormalities
in several studies (Pajukanta et al. 1999; Lilja et al. 2004;
Huertas-Vazquez et al. 2005). PCDH15 is a member of the
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cadherin superfamily and encodes an integral membrane
protein that mediates calcium-dependent cell—cell adhesion.
Mutations in PCDHI15 have been associated with hearing-
loss and visual-loss due to retinitis pigmentosa (Ahmed
et al. 2001; Alagramam et al. 2001a). Several previous epi-
demiological studies have demonstrated a relationship
between hearing loss and hyperlipidemia (Rosen et al.
1964; Rosen and Olin 1965; Evans et al. 2006; Chang et al.
2007). In this study, we investigated all known nonsynony-
mous SNPs within PCDHI15, rs11004439, rs10825269,
rs4935502 rs2135720, for association with the FCHL com-
ponent traits, TGs, total cholesterol (TC) and apo-B in mul-
tigenerational Finnish and Dutch families with FCHL as
well as the PCDH 15 expression pattern in different human
tissues. In addition, we investigated the lipid profile in mice
with two different loss-of-function mutations in Pcdhl5.

Subjects and methods
Finnish FCHL families

A total of 60 Finnish FCHL families comprising 719 indi-
viduals were included in this study. The families were
recruited in the Helsinki and Turku University Central Hos-
pitals. The inclusion and exclusion criteria for FCHL have
been described in detail previously (Pajukanta et al. 1999;
Soro et al. 2002). All subjects gave their informed consent.
The study design was approved by the ethics committees of
the participating centers.

Dutch FCHL families

A total of 32 Dutch FCHL families comprising 549 individuals
were included in this study. The families were recruited at
the Lipid Clinic of the Utrecht Academic University Hospital,
the Netherlands. The inclusion and exclusion criteria for
FCHL have been described in detail previously (Allayee
et al. 2002). All subjects provided written informed consent.
The study design was approved by the ethics committee of
the participating center.

Biochemical analysis and SNP genotyping

Serum lipid parameters were measured as described earlier
(Pajukanta et al. 1999; Soro et al. 2002; Allayee et al. 2002).
We selected all nonsynonymous SNPs within the PCDH15
gene, 1511004439, rs10825269, rs4935502 and rs2135720,
for genotyping. The SNP primers were designed for PCR
using the Primer3 program, and for detection, using the SNP
Primer Design software (Pyrosequencing). Genotyping of
the 1,268 Finnish and Dutch FCHL family members was
performed with the Pyrosequencing technique on the
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automated PSQ HS96A platform. All SNPs had at least 92%
genotype call rate. For quality control, we replicated 3.5% of
the genotyped samples. The percentage agreement between
samples was >99%. All SNPs were tested for a possible vio-
lation of Hardy—Weinberg equilibrium (HWE).

Statistical analysis

All of the association analyses were performed using
quantitative lipid traits. The quantitative transmission
disequilibrium test (QTDT) (Abecasis et al. 2000) imple-
mented in the genetic analysis package SOLAR. QTDT
was performed for each analyzed trait in the Finnish and
Dutch families, both separately and in the combined data-
set. We analyzed the quantitative TG, TC, and apo-B, traits,
as they are the key component traits of FCHL. The residuals
for these traits were adjusted by age and sex in the total
sample, using the SPSS 12.0 program. The PedCheck pro-
gram was used to assess the genotype data for pedigree
inconsistencies (O’Connell and Weeks 1998). P values of
less than <0.05 after Bonferroni correction for multiple
testing were considered statistically significant. However, it
is worth noting that the Bonferroni correction for the proba-
bility values obtained in these analyses can be considered
conservative, because we investigated highly correlated
lipid traits. Apo-Al and HDL-C traits were analyzed as
secondary traits for rs10825269 after establishing the sig-
nificant associations with TGs and apo-B.

To analyze whether rs10825269 affects a combined trait
of HDL-C and TGs, we utilized option 19 of Mendel soft-
ware (Lange et al. 1976, 2001; Lange and Boehnke 1983).
Mendel option 19 performs QTL association using a vari-
ance components model. We used a bivariate model con-
sisting of an additive polygenic effect, a random
environmental effect, and an additive SNP regression
coefficient. Standardized residuals for HDL and Log(TG)
were age and sex corrected, and proband ascertainment was
corrected for within Mendel. A likelihood ratio test was
performed using the formula: LRT = 2[In(Ly;) — In(Lyy,)],
where Ly, = maximum likelihood of the bivariate model,
and Ly, = maximum likelihood of the bivariate model with-
out the additive SNP regression coefficient.

Simulation for functional change in coding nsSNPs

The PolyPhen software was used to investigate a possible
impact of all nonsynonymous changes on the structure and
function of the PCDH15 in silico.

Cross species comparisons

The cross species conservation of the nonsynonymous
SNPs was evaluated using the UCSC genome browser.
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RT-PCR analysis of PCDHI15 mRNA expression

The expression of PCDH15 mRNA was analyzed using the
human multiple tissue cDNA panel 1 (Clontech). Specific
primers for the PCR amplification of PCDHI5 were
5'CCAGGACAAGCTATG TACTTCGAGTCCAAG-3'
(forward) and 5'-GACGAGTACATCGGCTTTGCCG
CTCAGTC-3' (reverse), amplifying a 396 bp fragment
(Rouget-Quermalet et al. 2006). Amplification of specific
DNA fragments was performed by adding 3 pul of cDNA
from the Human Tissue panel I to a PCR mixture contain-
ing 0.2 mM dNTPs, 0.4 pM of each primer, 2 pl of 10x
reaction buffer, 1.5 pM MgCl, and 0.2 ul of Taq DNA
polymerase. PCR conditions were as follows: After initial
denaturation for 10 min at 94°C, the reaction was subjected
to 35 cycles of denaturation (30 s, 94°C), annealing (30 s,
61°C) and extension (1 min, 72°C). The amplified products
were separated on a 1% agarose gel electrophoresis.
G3PDH was used as a reference gene.

Animals

All the mice serum samples were collected at the Depart-
ment of Otolaryngology-Head and Neck Surgery, Case
Western Reserve University, University Hospitals-Case
Medical Center. All mice used in this study were main-
tained on regular mouse diet (6% fat IsoPro 3000 from
Purina that contains 6% fat).The mice were fasted for
12 h, beginning one hour after the start of their light
cycle. At the conclusion of the fast, the blood was col-
lected from each mouse using a retro-orbital bleed. A
total of 41 mice serums were collected for the FVB/N
genetic background Pcdh15*"T¢ (n = 13 mutants: 3 males
and 10 females; and n =8 controls: 4 males and 4
females), and for the C57BL/6J genetic background
Pcdh15%3 (n = 9 mutants: 5 males, 4 females; and n = 11
controls: 4 males, 7 females). Mutant mice were generated
as described previously (Alagramam et al. 2001b). All
animal experimental protocols were approved by Institu-
tional Animal Care and Use Committee, Case Western
Reserve University.

Mice serum lipid measurement

All mice were fed a normal diet for 100 days and lipid con-
centrations were determined. TC and TGs were determined
as described previously (Castellani et al. 2004). Each lipid
determination was measured in triplicate. The statistical
analysis to evaluate differences in the mice lipid measure-
ments was determined by using the unpaired, two tailed
Student’s ¢ test. Sex was included as a covariate in these
analyses. Values of P <0.05 were considered to be
significant.

Results

The mean lipid values of the 92 Dutch and Finnish FCHL
families included in this study are shown in Table 1. All
nonsynonymous SNPs within PCDH15 were genotyped in
these 92 Finnish and Dutch FCHL families. Genotype
distributions for the four investigated SNPs in both
populations were consistent with the Hardy—Weinberg
equilibrium in nonrelated groups of family members
(P > 0.05). Of the four nonsynonymous SNPs investigated,
SNP rs10825269 showed significant evidence for associa-
tion for the different quantitative lipid traits, TGs
(P =0.001), apo-B (P =0.002) and TC (P =0.04) in the
Finns, and for the quantitative apo-B trait in the Dutch
(P =0.04) for the same allele (C). No significant associa-
tion signals were observed with the other three SNPs
rs11004439, rs4935502 and rs2135720 (P > 0.05). None of
the investigated SNPs were in linkage disequilibrium with
each other. Next we performed a combined data analysis of
both the Finnish and Dutch families with FCHL, and
observed a significant increase of statistical significance for
all investigated quantitative lipid traits (uncorrected
P =0.001-0.0001, Bonferroni corrected P = 0.02-0.002).
Association results for the combined study sample for SNP
rs10825269 are presented in Table 2. We also investigated
the nonsynonymous SNP rs10825269 within PCDH15 for
associations with quantitative Apo-A1l and HDL-C levels in
the Finnish and Dutch FCHL families. No evidence for
association was observed for these traits (P > 0.05). The
frequency of the minor allele of the SNP rs10825269 in
both populations was 10%, which is in a good agreement
with the allele frequency reported by the International
HapMap project in the CEPH samples (http://www.
hapmap.org).

The chromosomal region on 10ql1, where PCDH1S5 is
located, was also implicated for a combined trait of HDL-C
and TGs in our previous study (Lilja et al. 2004). There-
fore, we investigated whether rs10825269 affects the com-
bined trait of HDL-C and TGs in the Dutch and Finnish
families with FCHL. For this analysis, we utilized option

Table 1 Mean lipid values of the 92 FCHL families included in the
study

Finnish FCHL Dutch FCHL
No. of families 60 32
No. of subjects (M/F) 719 (356/363) 549 (273/276)
TG, mg/dl (mean £ SD) 316.4 £ 151.0 315.0 £201.7
TC, mg/dl (mean £+ SD) 298.8 £41.3 301.7 £ 61.2
Apo-B, mg/dl (mean £ SD) 146.7 £ 31.1 141.8 +24.6
HDL-C, mg/dl (mean £ SD) 409 £ 13.1 39044+ 128

M/F male/female, TG triglycerides, TC total cholesterol, Apo-B apoli-
poprotein-B, HDL-C HDL cholesterol
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Table 2 Quantitative family-based association analysis of lipid phe-
notypes with SNP rs10825269 in the Finnish and Dutch FCHL families
using the QTDT program

Trait Major/minor Minor allele QTDT* QTDT
allele frequency

TG C/T 0.10 0.0006 0.01

Apo-B C/T 0.10 0.0001 0.002

TC C/T 0.10 0.001 0.02

The risk allele is indicated in bold
TG triglycerides, TC total cholesterol, apo-B apolipoprotein-B

# Uncorrected P values (The Bonferroni correction for the probability
values obtained in these analyses can be considered conservative,
because we investigate highly correlated lipid traits)

b P values obtained after Bonferroni correction for 24 test (4 SNPs, 3
traits, 2 different populations)

19 of Mendel software (Lange et al. 1976, 2001; Lange and
Boehnke 1983) (see Subjects and methods section). We
observed that rs10825269 does not significantly alter this
combined trait (P = 0.08).

The nonsynonymous changes of rs10825269,
rs11004439 and rs2135720 were predicted to be benign by
the PolyPhen software (PSIC score difference: 0.057, 1.023
and 1.034, respectively). The SNP rs4935720, 166 bp away
from SNP rs10825269, was predicted to be possibly dam-
aging (PSIC score 1.7). We also examined the sequence
conservation across species of the nonsynonymous variants
within PCDH15. The cross-species conservations of these
nonsynonymous SNPs are shown in Fig. 1.

Next, we investigated the tissue distribution of PCDH15
in different human tissues using a commercial human

A

multiple tissue cDNA panel of eight different tissues. We
observed that PCDH15 was expressed in brain, heart, kid-
ney, liver, lung and pancreas. Figure 2 shows the expres-
sion patterns of PCDH15 in eight human adult tissues.

To investigate possible alterations in the lipid profiles of
the Pcdh15 mouse mutants, we measured the lipid levels of
two mouse mutants homozygous for different loss of func-
tion mutation in Pcdhl5 (Pcdh15™¢ and Pcdhl15*-¥)
(Fig. 3a). We observed a significant decrease in plasma TG
and TC concentrations between the Pcdh15%-*' homozy-
gotes and age-match wild type siblings (P =0.013 and
P =0.044, respectively) (Fig. 3b). No statistically signifi-
cant differences were observed between the Pcdhl15*T¢
homozygotes and controls for any lipid trait (data not
shown).

Discussion

Results from our study suggest that the common allele of
SNP 1510825269 within PCDH]15 is associated with TG,
apo-B and TC levels in FCHL. This SNP resides in the
same exon as the microsatellite D10S546 that was previ-
ously associated with high TGs in the Finnish families with
FCHL (Lilja et al. 2004). The functional role of the amino
acid substitution G380S in the lipid metabolism is
unknown. This amino acid substitution is located in the
extracellular domain and resides in a highly conserved resi-
due. Although the amino acid change was predicted to be
benign using the Polyphen software (Ramensky and Bork
2002), nonsynonymous SNPs in the coding region of a
gene could affect the structure and function of the protein. It

rs10825269
G380S
rs2135720
rs11004439 a2 R929Q

S19A

l/ \ Il,f' . / I./ L /’_\{, , l( N II;,' ™, J/ , 'f N '/ \\
C1|c2|c3 ca) cs|ce|c7|ce|co 010)011 [ ESC-ter]
/ / / !
sk \-.H/ \h./ \\.,./ \\“ \\_' \-../' \m/) \\._/ \w,/}
B

Variant hs pt rm mm rt cf dn la ec
rs11004439 S S S S S A S N S
rs10825269 G S S S S S S S S
rs4935502 D D D D D D D D D
rs2135720 R R R R R R R R R

Fig.1 Nonsynonymous sequence variants in PCDH15. a All nonsyn-
onymous sequence variants within PCDH15. N-ter N-terminus of the
amino acid sequence, C/ cadherin domain 1, C2 cadherin domain 2,
etc.; C-ter C-terminus of the amino acid sequence. b Sequence conser-
vation across species of nonsynonymous variants in PCDHI15. The
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alignment includes Human (/s), chimpanzee (pt), rhesus monkey (rm),
mouse (mm), rat (rt), dog (cf), armadillo (dn), elephant (la), horse (ec).
S serine, A alanine, G glycine, D aspartic acid, R Arginine, Q Gluta-
mine, N aligning has one or more unalignable bases in the gap region
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Fig. 2 Expression patterns of g 3 °
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Fig. 3 a Mouse loss-of function mutations in Pcdhl15 investigated in
this study. The solid rectangle indicates protein truncation due to pre-
mature stop mutations in the mutant mouse. N-fer N-terminus of the
amino acid sequence, C/ cadherin domain 1, C2 cadherin domain 2,
etc.; C-ter C-terminus of the amino acid sequence. b Levels of TGs and

also remains possible that SNP rs10825269 is in linkage
disequilibrium with another functional DNA variant at this
locus.

PCDHI15 is a member of the cadherin superfamily of
calcium-dependent cell-cell adhesion molecules. PCDHI15
plays an essential role in the maintenance of normal retinal
and cochlear function, and mutations in PCDHI5 have
been associated with nonsyndromic (DFNB23) (Ahmed
etal. 2003) and syndromic hearing loss (the Usher syn-
drome type 1F, USHI1F) (Ahmed et al. 2001; Alagramam
etal. 2001a). Although PCDHI5 has not been directly

total cholesterol in the Pcdh15 mouse mutant in the loss-of-function
allele Pcdh15®-¥, when compared to sibling controls. Groups of mice
were as follows: 9 mutant and 11 control mice (C57BL/6J genetic
background). TG and total cholesterol levels are expressed in mg/dl

related with lipid abnormalities, previous biochemical
analysis suggested that USHIF patients have decreased
levels of long-chain polyunsaturated fatty acids in plasma
(Maude et al. 1998). In addition, previous epidemiological
studies have linked hearing loss to lipid abnormalities,
showing that hyperlipidemia and atherosclerosis can induce
alteration in cochlear function (Rosen et al. 1964; Rosen
and Olin 1965; Evans et al. 2006; Chang et al. 2007). The
biological role of protocadherins in lipid abnormalities is
unclear. The large size and diversity of members of the
protocadherin family suggest the participation of these
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proteins in a wide variety of biological processes. Previous
studies of the Usher syndrome and visual abnormalities
have shown that PCDHI5 is expressed in several tissues
including retina, brain, cerebellum, kidney, cochlea and
liver (Alagramam etal. 2001a; Rouget-Quermalet et al.
2006). In this study, the expression pattern of PCDHI5 in
human was consistent with the pattern previously observed
in mice (Alagramam et al. 2001b; Rouget-Quermalet et al.
2006). Importantly, we also demonstrate that PCDH15
is expressed in human pancreas. Further investigation
is necessary to confirm the role of PCDHI1S5 in lipid abnor-
malities.

To the best of our knowledge, this is the first time that
lipid traits have been investigated in the Pcdhl5 mouse
mutant. Although additional studies are necessary to con-
firm our findings, these observations suggest a possible
alteration in the lipid profile of the Pcdh15 mouse mutant
due to the Pcdh15% 3! loss-of-function mutation. No statis-
tically significant differences were observed in the
Pcdh15%"T¢ Joss-of-function mutation. The observed results
suggest differences in the genetic background between the
FVB/N and C57BL/6J strains. This suggestion is indirectly
supported by a previous study demonstrating that the FVB/
N strain is susceptible to diet induce-atherosclerosis
whereas the C57BL/6J strain is resistant (Hoover-Plow
et al. 2006). A given phenotype could be obvious in one
inbred genetic background but it could be suppressed in
another genetic background (potential genetic modifier
effect; Nadeau 2001).

Genome-wide association analyses in unrelated
individuals have identified several loci associated with
lipid abnormalities. However, the variants identified so far
explain a small fraction of the disease risk, suggesting that
many genes implicated in the lipid metabolism still remain
undiscovered. We have previously identified several genes
associated with FCHL using family-based studies and
replicated our results in different cohorts (Pajukanta et al.
2004; Huertas-Vazquez et al. 2005, 2008; Weissglas-Volkov
et al. 2006; Lee et al. 2008; Plaisier et al. 2009). Family-
based studies are more robust to population stratification
and families ascertained for the disease of interest provide a
powerful tool for association studies.

In conclusion, we have identified a nonsynonymous var-
iant in PCDH15 associated with TG, apo-B and TC levels
in multigenerational Caucasian FCHL families. Replication
in additional FCHL study samples and sequencing of
PCDH]I5 are warranted to further explore the effects of
PCDHI5 in FCHL.
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