
UC Irvine
ICS Technical Reports

Title
A preliminary philosophy for ARCTURUS : an advanced highly-integrated programming
environment

Permalink
https://escholarship.org/uc/item/8596j1qh

Author
Standish, Thomas A.

Publication Date
1980-04-23

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8596j1qh
https://escholarship.org
http://www.cdlib.org/

I

I

I

I

I

I . An Advanced Highly-Integrated

A Preliminary Philosophy for

ARCTURUS

I

I

I

I

I

I

I

I

I

I

I

I

I

Programming Environment

Thomas A. Standish

Irvine

Programming Environment Research Center

Computer Science Department

University of California

Irvine, California 92727

April 23, 1980

Technical Report 150

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Arcturus

Abstract

Abstract

At Irvine, we are currently in the initial stages of
designing a programming environment, called Arcturus. This
paper is a report of work in progress giving our preliminary
philosophy and expressing preliminary thoughts on an initial
Arcturus design.

Arcturus is an advanced, highly-integrated programming
environment intended for use in the late 1980s. We assume
that programmers will each be equipped with large
flat-screen displays driven by powerful desk-top computers
linked into local networks by high band-width channels, and
that shared central resources such as archival databases and
multifont printing systems will be available,

Arcturus is aimed at "programming in the large", that
is, programming by many people, on large programs, with
maintenance lifetimes of many years. In such a user
setting, problems of management, documentation, training,
testing, version control, diagnosis, and debugging must be
solved effectively by people who, for the most part, are not
authors or designers of the original system.

Some preliminary design concepts that Arcturus supports
are as follows:

(1) Arcturus supports a "rapid prototyping" language
a very high level, strongly extensible language useful

for rapid construction of working prototypes of systems
(emphasizing cheap, rapid construction at the expense of
running efficiency and polish).

(2) Arcturus supports refinement of these prototype
programs, or protoprog rams, for short, into programs written
in program design languages (or PDLs) , which express
designs. PDL programs are ultimately refined into concrete,
detailed, optimized programs expressed in an implementation
language.

(3) Arcturus supports a computer-based form of program
documentation in which program forms at various levels of
abstraction can have attribute/value pairs attached to any
of their granules (granules being well-formed program units
of any size such as constants, variables, operators,
expressions, statements, blocks, and modules) and in which
the attributes may be selectively viewed and queried to suit
the needs of different audiences.

(4) The notion of attribute/value attachment to
granules of program forms also supplies the principal
mechanism for promoting a high degree of environment
integration. By attaching to program granules such

I

I
Arcturus

Abstract

attributes as clocks, counters, units of prograrnmer and
system resources spent, version descriptions, access
controls, descriptions of tests passed, task schedule data,
computer sizing estimates, and so on, smooth integration
between the activities of designers, managers, testers,
maintainers, programmers, and documenters can be achieved,
and environment tools can cooperate with each other
conveniently.

(5) Arcturus supports an advanced programmer's
workstation, an interactive programmer's notebook, and
extensive software management support tools.

In the framework of the Arcturus effort, we have
attempted to rethink afresh issues of epistemology related
to the programming process that impact documentation, fault
diagnosis, maintenance, training, and software upgrade,so
that the design of Arcturus will reflect the relationships
between the different kinds of expertise that are required
in the programming process. We are also attempting to
formulate theories of documentation, debugging,_ and
maintenance "To guTde the development of computer-based
support capabilities that assist in the performance of these
activities.

In this context, this paper contains preliminary,
tentative expositions of background philosophy and rationale
that guide our present thinking about Arcturus.

Arcturus Page 1
Contents

Table of Contents

Section 0 Introduction 2

Section 1 The Purpose of Arcturus 11

Section 2 Shells, Granules, Attributes, Values, RPLs,

and PDLs 19

Section 3 The Arcturus Personal Workstation 28

Section 4 The Interactive Programmer's Notebook 33

Section 5 Software Management 36

Section 6 Documentation 40

"One person's comments are another person's clutter"

Section 7 Interim Arcturus Environments 47

References 48

I

I

I

I

I

I

I

1

I

I

I

I

I

I

I

I

I

I

Arcturus Page 2
Introduction

SECTION 0

Introduction

This paper is a report on preliminary philosophizing in

progress at Irvine. We are currently in the process of

dreaming up a "far out" programming environment, called

Arcturus.

We think the time is ripe to exercise fresh imagination

and to dream about novel future programming environments.

In the absence of such dreaming, it is quite possible that

H the new generation of cheap, powerful computers will arrive
on our desktops, and we will have only worn out ideas for

what to do with them. The dreaming and philosophizing in

this paper is intended to portray possible new ways of

taking advantage of this equipment, once it becomes

ava ilable.

We have tried to free ourselves from the restrictive

mentality of contemporary time-shared computers. For

example, programming in Interlisp can rapidly sink a

contemporary PDP-10 because of large core loads and high

swapping demand. On the other hand, if one has a million

word desktop computer with a fifty nanosecond cycle time on

one's desktop, Interlisp resides in less than fifteen

percent of the memory and not only is the machine ten times

Arcturus Page 3
introduction

faster than a PDP-10, but Interlisp is resident and need not

be paged or swapped. Thus, while one can view users of

Interlisp as having a "Rolls Royce" mentality on current

time-shared machines, perhaps one should view them as having

only a "Volkswagen" mentality on the coming generation of

desktop machines. We believe, for instance, that in the new

generation of desktop machines, it will often be profitable

to exchange processing power for ease of expression, as in

the "rapid prototyping languages" we introduce and discuss

later.

Our dreams are also driven by strongly pragmatic

considerations derived from a knowledge of activities in the

software lifecycle.

We also feel the time is ripe to rethink deeply the

programming epistemology that lies at the root of the

programming process. So we have been tackling questions

such as the following;

What types of knowledge are used in the construction of

application programs? How does application domain knowledge

differ from the knowledge used in the concrete

implementation domain, in modelling domains, and in

collateral reasoning domains?

How should these various types of knowledge be

reflected in program documentation, and how can they be used

effectively; (a) during training to learn about how a

Arcturus Page 4
Introduction

program works, (b) in diagnosis to detect a program error,

and (c) during program upgrade when the program is being

altered to do something more ambitious?

Is paper a bad medium to use to hold all the different

kinds of knowledge representations that are needed in

adequate program documentation, and could we do better by

using objects of unbounded extent attached to program

granules in a database and made selectively visible via

computed "views"?

In thinking about Arcturus, we have made the (probably

conservative) assumption that in the very near future we

will have powerful, cheap, desk-top computers available to

each manager and programmer which are linked into networks

that provide communication to others and to shared, central

resources, such as archival databases, libraries, and

peripheral devices. Our dreams for the "Arcturus Personal

Workstation" and for "Programmer's Interactive Notebooks"

are sketched briefly in what follows.

One of our most important pursuits in the design of

Arcturus is to provide a means for rapid prototyping of

systems. Requirements analysis is an iterative learning

process one that can be effectively accelerated by

exposure to the behavior of working prototypes which have

been built rapidly and cheaply.

I

I

I

Arcturus Page 5
Introduction

For example, in some branches of industry and

government, it is not uncommon that three to five years are

spent building a system that may be subsequently determined

to be non-responsive to user needs, and the system

requirements analysis is iterated in succeeding procurement

cycles. This pattern is especially evident in systems we

are attempting to construct for the first time that are

expected to have novel capabilities.

In addition, requirements change rapidly. We may have

a working system in the field that we are happy with, and in

a matter of hours, the requirements may, change (as in the

example of the ECM boxes in recent Middle Eastern

conf1icts).

Thus, rapid prototyping has to do with quick response

to changing requirements as well as rapid development in the

first place.

Why do we think rapid prototyping systems are a useful

pursuit, and why do we think we can be successful

implementing them? First, if we relax optimization

constraints, we can build models at less construction

expense. Second, mock-ups can often yield samples of system

behavior adequate, to determine responsiveness to user needs

at a fraction of the cost of real systems. Third, in

building a prototype, often one need not model everything.

Instead, one need model only things relevant to the

Arcturus Page 6
Introduction

functionality of the system as viewed by the user. Finally,

experience with extensible languages provides initial

confidence that rapid prototyping systems can be built

effectively. We can cite experience demonstrating that we

are already successful in this endeavor, and we can build

upon these successes to develop a practical, effective

capability in our future programming environments.

In a subsequent section, we give a brief view of how we

believe a rapid prototyping language can be incorporated in

Arcturus.

Arcturus supports Program Design Languages, or PDLs,

for short. Given an implementation language in which we are

to write eventual programs, such as Ada or Pascal, we create

a variant of the Arcturus family supporting each such

implementation language. This yields, for example, Arcturus

for Ada or Arcturus for Pascal.

Let L be an implementation language, and consider the

PDLs in Arcturus for L. Suppose that we take programs in L

and we replace actual constants, variables, and operators in

these programs with abstract, uninterpreted letters and

operator symbols. These uninterpreted symbols then become

substitution points for which we can substitute new

constants, variables and operators in new semantic domains.

We use the term shell programs, or L-Shells to refer to the

L-programs containing uninterpreted symbols as substitution

Arcturus Page 7
Introduction

po i n t s „

PDL programs result from taking shell programs and

substituting objects and operations in higher level design

domains. As a result, the PDL programs have the same shell

syntax for their control structures and have the same

general appearance as programs in L. Furthermore, they can

be processed by many of the tools that process concrete

programs in L (such as parsers, pretty-printers, and

documentation processors). Additionally, programmers

trained to read programs in L can instantly read and write

programs in the PDLs for L. Finally, PDL programs at

several levels of abstraction can be used in system

documentation to relate programs written at different levels

of abstraction spanning the gap from the application domain

down to the implementation language domain.

A rapid prototyping language can be devised by starting

with a variant of PDL, which consists of extending the

shell-substituted PDLs by another transformation —— that of

replacement of program granules of any size (e.g.

constants, variables, operators, procedure calls,

expressions, statements, blocks, modules, or any other

well-formed program unit) by bracketed descriptions of

operations, activities, relationships, and properties that

may later be refined into concrete implementations. An

example of such a bracketed description is {Compute

Incremental Coriolis Force Using Input (Cl) and Update

Arcturus Page 8
Introduction

Display(G3)}. The bracketed descriptions are intended to be

f-'^ocumenting at the design level, and can possess

implementations that turn them into self-replacing macros

which expand into lower-level PDL text (including,

ultirnately, text in L) .

Attribute/value pairs can be attached to granules of

each of these three levels of language: The top-level rapid

prototyping language, the intermediate-level PDLs, and the

low-level concrete implementation language L. Arbitrary

attribute/value attachment provides the basis for topi

integration in Arcturus, and is the principal data form used

by many of the sophisticated tools.

An important observation to make at this point is that

different programming environments are appropriate for

different user settings. If one asks the question, "What

characterizes a good programming environment?", one tends to

be misled into thinking there are absolute answers to this

question. In fact, the question itself is a poor question,

since whether an environment is good or not should properly

be characterized relative to particular circumstances of its

use .

We are familiar with the notion that different

engineered artifacts are built to suit different purposes.

For instance, some airplanes are built to carry 300 people

plus baggage on 10,000 mile flights in any kind of weather.

I

I
Arcturus Page 9
Introduction

and other kinds of airplanes are built to dust crops. We do

not expect crop-dusters to be good for carrying 300 people

plus baggage on 10,000 miles trips, nor do we expect Boeing

747s to be good at dusting crops cost-effectively. Thus, it

is a bad question to ask, "What is a good airplane?"

Likewise with programming environments, some

environments are good for programming in the small i.e.

building programs with short useful lifetimes by small

numbers of people with little or no personnel turnover,

wherein the maintainers are the same as the implementers and

where there is little need for extensive documentation,

careful management, training aids, independent validation,

resource monitoring, careful version control, and a host of

other activities. Yet other environments have been built

and extended to deal with programming in the large, where

some of the latter activities are of key importance.

We call the characteristics of the user organization in

which an environment will be used a "setting". Given the

characteristics of a user setting it becomes meaningful to

ask whether a given environment design is good for that

setting.

So that we will be clear as to the setting for which

Arcturus is being designed, we spell out in the next

section, the purposes for which Arcturus is intended to be

used, and we comment on characteristics of Arcturus that are

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Arcturus Page 10
Introduction

aimed at dealing with the activities and problems of that

setting. This portrayal of the setting and the purposes of

Arcturus will set the context for the discussion of

mechanisms and features treated in the subsequent sections

and will provide the context for discussing the rationale

for facets of the design of Arcturus.

I

I

I

I

I

I

I

I

I

Arcturus Page 11
Purpose

SECTION 1

The Purpose of Arcturus

1.1 What is Arcturus?

Arcturus is a programming environment. It is intended to

provide support for the activities that take place during

the software lifecycle using a computerized medium.

1.2 Software Quality Goals

I The goal of Arcturus is to help teams of people produce
I quality software. Software quality has many dimensions.

1.2.a For instance, there are general dimensions, such as

I reliability, correctness, efficiency, maintainability,
responsiveness to user needs, timeliness of delivery, unit

cost, and transferrahility.
I

I

I

I

I

1.2.b In addition, some software application settings

involve special dimensions of software quality , such as

quality in parallel processing, fault-tolerance,

I self-diagnosis, meeting real-time constraints, commercial
marketability, and mod ifiability in the face of rapidly

I changing system requirements.
1.2.C While different software applications may share the

Arcturus Page 12
Purpose

same general software quality dimensions, different

applications may have differing sets of special software

quality dimensions.

1.2.d In general, when considering software quality goals,

no single goal is to be pursued at the expense of the others

and no single optimization criterion can be established.

There is no point in maximizing one dimension of quality at

great expense when so doing reduces some other dimension of

quality below a required threshold level.

1.2.e Thus, in Arcturus, software quality goals are viewed

as simultaneous constraints to be satisfied rather than as

measures to optimize independently of one another. In a

sense, then, Arcturus is a constraint satisfaction system.

1.3 Programming in the Large

Arcturus is designed to deal with "programming in the

large", that is, programming by large numbers of people, on

large programs, with maintenance lifetimes of many years.

By contrast, "programming in the small," is programming by a

few people, on a small program, with a short useful

1i fetime .

1.3.a In any large programming project that extends over

many years, there is likely to be personnel turnover. This

implies that new project personnel will have to read and

understand programs written by others. In such a context.

I

Arcturus Page 13
Purpose

training and documentation play key roles in the

effectiveness of a programming organization. Arcturus is

designed to support effective training and documentation.

1.4 Support of Software Management

According to Barry Boehm [Boehm, 4th Int. Softw. Engr.

Conf., Munich 1979], good management disciplines may be the

single most important factor in assuring the success of

software projects of substantial size. Boehm reports that a

major percentage of failures in software projects are

attributable to management failures, as opposed to technical

failures [Boehm 1979, £p c i t.].

1.4.a Effective Management Support Accordingly, Arcturus

is oriented toward providing effective management support

both to software managers and to individual programmers and

programmer teams.

1.4,b For Programmers Arcturus has Interactive

Programmer's Notebooks to assist programmers in being

thorough in carrying out programming chores.

1.4.C For Managers Arcturus has earned value reporting

systems and tools for resource estimation, measurement, and

management by exception. It has interactive letter systems

together with reply summary and status reporting systems for

managers to use to keep track of project activities, and it

has facilities for planning and adjusting resources to fit

Arcturus Page 14
Purpose

changing task situations. Also, it has an Interactive

Management Interview to assist managers in throughness of

project planning, monitoring, and scheduling, and to

encourage adherence to software project practices of proven

effectiveness.

1.5 High Pegree of Integration

Arcturus is a highly integrated programming environment in a

number of respects.

1.5.a Program Design Languages are available for use by

designers, programmers, and managers.

1.5«a.l Managers can use designs written in PDLs to do

project cost estimation, computer sizing estimates, critical

path scheduling, project performance monitoring, and design

of task schedules for independent validation, testing, and

i nteg ration.

1.5.a.2 Programmers can use PDL representations to drive

implementation schedules and to organize the structure of

their personal programming tasks using their Interactive

Programmer's Notebooks.

1.5.a.3 Designers can design in PDL and can follow

mechanically derived design walkthrough schedules to catch

errors early in the software lifecycle.

1.5.a.4 Maintainers can use PDL representations to get an

Arcturus Page 15
Purpose

idea of what modules do at concise, lucid, abstract levels

of description,

1.5.a.5 Documenters can use PDLs to assist in the

description of what actual implemented modules do.

1.5.a.6 New Programmers undergoing training can read PDL

programs to develop an understanding of the modules they

will be working on,

l,5.b Integration of Tools and User Inter faces Another

form of integration in Arcturus is in the user interface

conventions.

1.5.b.l Certain user functions such as the Help System, the

Mail System, and the Calendar and Reminder System are

pervasive and can be called in a nested fashion anytime,

during any activity. The interrupted activity sits in a

background mode during the interruption of the intervening

pervasive foreground activity, and the interrupted activity

can be resumed after the pervasive activity is terminated.

1.5.b.2 Arcturus Tools are designed to be nestable in this

fashion and to permit a range of granularities of

interaction.

l,5.b.3 The Arcturus tool set is thus highly integrated, and

follows careful integration conventions,

1.5.b,4 The user interface is designed to be simple.

Arcturus Page 16
Purpose

pervasive, and highly integrated.

1.5.b.5 Prefabricated user-inter face extension procedures

for extending On-Line Manuals, Help Systems, Error Reports,

Command Completion, Command Syntax, Windowing, and Menuing

are available to programmers who wish to add new tools to an

Arcturus Environment.

1.5.b.6 Thus, Arcturus supports uniform extension of its

command interface language and it encourages users to add

new tools that are consistent with the Arcturus tool

interface conventions. These conventions ensure that tools

obey common, simple, uniform interface rules. Incentives

are provided in the form of ease of extension and

prefabricated tool-building packages.

1,6 Rapid Prototyping

Arcturus contains a rapid prototyping language enabling

rapid, cheap construction of working system prototypes. The

rapid prototyping language is strongly extensible and

operates at a very high level. Exposure to the behavior of

programs written in it is intended to help users learn

whether meeting the stated requirements will satisfy true

user needs, and to help learn whether the stated

requirements are complete, accurate, and fully articulated.

User exposure to working prototypes is intended to

accelerate the learning process involved in finding out

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Arcturus Page 17
Purpose

whether the requirements are adequately stated, leading to

improved accuracy of the requirements statements at early

stages in the system lifecycle and to consequent elimination

of wasted effort downstream.

1.7 Arcturus Designed for Future Hardware

Arcturus is designed in anticipation of a coming generation

of hardware. Conservative estimates allow us to predict

that desktop computers a few years in the future will have

memories of on the order of a million words and

sub-microsecond/32-bit wide central processors for on the

order of a few thousand dollars.

1.7.1 Personal Workstation Arcturus is designed to take

advantage of a mode of computing in which each programmer

and manager is equipped with a personal workstation of this

sort which is linked into a network that accesses a central

database, and shared high-speed, hard-copy devices, and

which connects to the outside world over external computer

networks if desired.

1,8 Arcturus Emphasi zes Maintenance and Upgrade

Maintenance and upgrade are major cost elements in

long-lived software systems. Arcturus is oriented toward

providing effective support of maintenance and upgrade

activities through careful version control, tools for

I

I

I

I

I

I

I

I

Arcturus Page 18
Purpose

control of releases of families of programs, and automation

techniques for handling trouble reports, pending errors and

desired upgrades, and enforcement of current documentation

pr actices.

1,9 Validation of Arcturus

A goal of Arcturus R&D is to find a realistic testbed in

which it may be convincingly validated that Arcturus is of

low risk and proven effectiveness. Convincing validation is

envisaged to involve measurement of software project

personnel performance indicators, measurement of software

development and maintenance costs, and demonstration that

use of Arcturus significantly decreases measures of

resources spent to attain comparable ends when compared to

the use of predecessor programming environments.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

1

I

I

I

r, c t u,r^u s ^ Page 19
Shells and Granules

SECTION 2

Shells, Granules,

Attributes, Values,

RPLs, and PDLs

In addition to supporting a concrete implementation

language L, which provides executable representations of

programs (that can be interpreted or compiled), Arcturus

supports:

1. A rapid prototyping language (or RPL) , and

2. A system of prog ram design languages (or PDLs) at

levels of abstraction above L.

The philosophy of program design languages follows that

of Caine and Gordon [1975].

We take L and consider its shell. The shel1 of L

consists of L with concrete data and operators replaced by

function letters and constant letters which are

uninterpreted, and thus have no assigned meaning. Shell

programs are reinstantiated by substituting data and

operations in new domains of interpretation, producing

program designs at levels of abstraction above that of L.

Such substituted shells provide possibly executable

representations in other domains of operators and objects

while retaining the control structures and syntax of L.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Arcturus Page 20
Shells and Granules

Consider now the program forms written in L and in the

PDLs resulting from shell substitutions. The granules of

these program forms consist of any of the syntactically

well-formed units of the program forms such as constants,

variables, operators, expressions, statements, blocks,

modules, and so forth. (In short, the granules are the

phrases of the program form with respect to the context-free

grammar that defines the language in which they are

wr itten.)

Attribute/value pairs can be attached to arbitrary

granules of program forms. [Many possible background

representations are possible for this process, and different

representations may be appropriate for different purposes.

For example, an explicit list of dotted pairs may be

attached to a granule, a hash link leading to a table of

pairs may be used, a parallel file of pairs may be used, and

so on.]

This general mechanism has many roles to play in the

Arcturus environment:

1. Comments may be attached to granules using different

attribute names, and these comments may be made

selectively visible by different viewing "lenses", so

to speak. What the application domain "expert" lens

displays in its computed view may differ markedly

from what the "programmer's" lens displays.

I

I

I

I

I

I

I

I

I

I

Arcturus Page 21
Shells and Granules

2. Given a design program in PDL, computer sizing

estimates for time and memory consumption may be

attached to granules of the program form by an

interactive tool that develops a computer sizing

estimate using a PDL design as its input,

3. Clocks and counters may be attached as attributes to

granules during program interpretation to measure

resource consumption of running programs. Display

tools, such as histogram drawing programs, may access

these attributes to compute pictures of the execution

time profile of a program.

4. Release and version control attributes may be

attached to program modules to designate which

version is current and which version has been used to

assemble the current system.

5. Status attributes may be attached to modules to

portray their implementation condition. E.g. a

module may be; designed but not coded, coded but not

debugged, debugged but not independently tested,

independently tested but not released, released but

not integrated, or integrated into the running

system. Management progress monitoring tools may

check such status attributes to determine whether a

sub-project is on schedule, and perhaps to perform

exception reporting if anomalies are detected.

Arcturus Page 22
Shells and Granules

Programmer's Notebooks may assist individual

programmers by computing task lists from such status

attributes portraying what remains to be accomplished

on a project.

6. Attributes may be attached to program granules and to

files in the system database to record what system

resources have been spent for use in cost accounting

procedures.

Arcturus contains a rapid prototyping language (or RPL)

which is a very high level, strongly extensible language

useful for cheap, rapid construction of working prototypes.

The RPL is a PDL in which it is possible to use statements

and expressions in extensions of L.

In addition to the features of classical extensible

languages, the RPL has several features that follow models

established in LISP.

For example, in classical extensible languages it is

possible to; (a) add a new declared data type, (b)

introduce operations on the new data type and on its
interactions with known types, including special appropriate

syntax, (c) introduce notation to describe data constants of

the new type, (d) print values of the new type in a

user-defined format, (e) pass values of the new type to and

from procedures, (f) assign values of the new type in

I Arcturus Page 23
Shells and Granules

assignment statements, (g) introduce nomenclature boundaries

sealing off the internal names used in the definition of the

type so they are not visible from outside, and so they do

not interfere with identical nomenclature used elsewhere,

and, in general, (h) endow the new type with all privileges

accorded to built-in types originally defined in L.

In addition, the following ideas are borrowed from and

modeled on capabilities in LISP;

1. Statements in the RPL can be "self-replacing" as well

as value-returning, when evaluated (this being

modeled after LISP FEXPRs and LISP MACROS). In this

capability, arguments are passed to the defining body

unevaluated, and quoted program text can be

constructed, using nesting and "splicing". For

example,

Macro Exchange (X) and (Y)

' declare

temp: !GetType(X,Y);

beg in

temp ;= !X;

!X := !Y;

!Y ;= temp;

end; >'

If we were to evaluate the call "Exchange(A[i]) and

(B[x-2])," the above macro would produce a text

Arcturus Page 24
Shells and Granules

fragment by filling in the template indicated between

the quoted brackets '<...>'0 Inside the quoted

brackets, expressions of the form "!Exp" get

evaluated to produce a fragment of program text which

is substituted in the template in place of IExp. For

example, !GetType(A[i],B[x-2]) is evaluated using

unevaluated arguments A[i] and B[x-21. This looks up

the compile-time type of elements of A and B (which,

let us say, is Integer) , ' and it returns the text

"Integer" to use in the declaration. !X and

evaluate to A[i] and B[x-2] respectively. Thus, the

following text results from calling "Exchange(A[i])

and (B [x-2])" ;

declare

temp: Integer;

beg in

temp : = A [i] ;

A[i] := B [x-2];

B[x-2] ;= temp;

end;

[Note: !X means splice in the value of X and !(X)

means nest the value of X. For instance, if X :=

'<y + 3>' then !X*z ==> y + 3*z and !(X) ==>

(y + 3)*z.]

2. Text fragments can be evaluated, as in Eval(E),

I

I

I

I

I

Arcturus fage

Shells and Granules

Lambda forms can be applied to argument lists, as in

Apply(L,arglist), evaluation may take place in local

contexts supplied by giving local association lists

specifying pairs of formals and actuals, and the

usual control can be exerted over the READ-EVAL-PRINT

loop =

3. The underlying forms of L-programs are rendered as

"keyword" list-structures (as in the representation

of MLISP in UCI Lisp [Meehan 1979] or of CLISP in

Interlisp) on which operations may be performed to

enable program manipulating programs to be written.

The results can be pretty-printed in the surface

syntax of L. For example, powerful mapping

functions, such as "Map (f) onto (A)" can be built up

in the extension language by defining macros which

produce program text in L which applies function _f to

each node of a composite structure A.

Function calling forms are given an extended syntax in

the RPL. In addition to the usual calling forms such as

Place(a ,b,c) , one can have:

Place (a) on square (b) on board (c);

(PQ) is nonempty;

(X) is a member of (M) ;

in which the arguments, usually separated by commas, can be

I

I

I

I

I

I

I

I

I

Arcturus Page 26
Shells and Granules

separated by constructions of the form ")w(" where w is an

identifier sequence separated by spaces, and in which

initial or trailing identifiers can be present or absent.

The system remembers each such calling form that has been

entered and allows "automatic completion" in the following

sense. Whenever a disambiguating prefix of a calling form

is typed and the "escape" key is struck, the rest of the

calling form is printed out up to the next parameter

position or up to the next point of ambiguity. This feature

is useful in typing long names of self-documenting code in

PDh and RPL programs.

Using self-replacing calls of this nature, it is

possible to write program transformations that extend the

language in interesting ways, such as using objects of

conceptually unbounded extent (such as iota infinity, for

APL cognoscenti), as in:

Sum up (Map (Lambda (n) in (x**n/factor ial (n)))

onto (iota (infinity))) ;

i f (W) is member of (N[i] un ion Vt)Star

then N[i+1] := N[i] un ion W end i f

Finally, RPL programs may contain bracketed

descriptions of operations, computations, relationships, and

properties specifying what programs will do when they are

later elaborated into concrete executable code in L. For

ex am pi e ,

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Arcturus Page 27
Shells and Granules

{Let (PQ) be a Priority Queue;}

{Let (T) be a collection of input elements;}

{Let (Q) be an Output Queue, initially empty;}

beg in

{Rearrange (T) into a Priority Queue (PQ)};

I while {(PQ) is nonempty} loop
{Remove the Largest Element in (PQ)};

{Insert (it) on the Rear of the Output Queue (Q)};

{Restore the Priority Queue Property in (PQ)}

end loop;

Return Q;

end

Arcturus Page 28
Personal Workstation

SECTION 3

The Personal Workstation

The Personal Workstation of our current dreams consists

of a system based on a powerful, cheap desktop computer and

cheap flatscreen displays. We hope large, cheap flatscreen

displays will soon make their appearance and that they will

come in large rolls. Given this assumption, we would like

to unroll some and cover a large desktop, and then unroll

more and fasten it to a large area of a wall, say, the size

of a blackboard. An independent portable keyboard and a

portable stylus would connect (say, via radio) to the

system.

I

I

I

I

I

I

I

I

I

I
We would like the flatscreen display to have the

H quality of liquid crystal that is, we want printed text,
drawings, and figures to appear in it as if a black printed

transparency had appeared inside a sheet of plastic or a

pane of glass. We want the •resolution to be sufficiently

fine-grained to support high-quality pictures,

I line-drawings, and type-fonts of many sizes and styles. We
want the flatscreen display to have independently switchable

(x,y) coordinates so that subpictures and contents of

windows can be incrementally changed, and we want the

switching speed to be sufficiently fast that a page of text

or picture can appear in a few hundred milliseconds.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Arcturus Page 29
Personal Workstation

The technology for driving such flatscreen displays has

been known for some time, and involves windowing, clipping,

inking, menuing, latching, and computation of simultaneous

views in "panes" of a window. This technology has been

developed progressively on the Lincoln Labs TX-2, on the

H Harvard PDP-1, on many Evans & Sutherland systems, and
recently on the Xerox PARC Altos used in, e.g. Smalltalk

and Interlisp. Cut-and-paste text editors, animation

sequences (producing dynamic books) , and a uniform command

language using menuing, windowing, and simultaneous contexts

I (one of which is usually active and the others suspended),
are well-known techniques of proven effectiveness for using

such a medium.

I We feel that the current technology, which uses a small
display, is a disadvantage, causing users to operate as if

they were manipulating many small slips of paper in stacks

inside a shoe-box. Large flatscreen displays on desktops

and walls should cure this ailment, making it possible to

j| use normal size pieces of "electronic paper" and to have
many of them displayed simultaneously on a desktop or wall,

more like the properties of real paper.

I

I

I

I

I

I

I

I

In our dream workstation, we would like to see a

graceful marriage of the worlds of paper and electronics. A

very high resolution TV camera could shoot pictures of

printed text, drawings, (or anything, for that matter) ,

yielding images that could be shipped electronically. In

I

I

I

I

I

Arcturus Page 30
Personal Workstation

addition, we envisage character recognizers that could

process such TV images of text, producing descriptions of

the characters and their fonts in "pre-runoff" form,

suitable for text editing. We also could cut and paste

pieces of electronic images resulting from TV capture of

real paper images for inclusion in electronic documents. We

would be able to use inking to include handwritten remarks

in electronic documents to be shipped over computer

networks. To go from the world of electronics back to the

world of paper, we envisage good-quality, two-sided

Xerographic printers (such as the Penguin variety of

pr inter) .

Given electronic books and manuals, we envisage

programming the workstation not only to search via normal

text editor search, but also to simulate browsing, via

analog controls, starting at interpolated search points (as

in searching for the name "Vickers" in a telephone book

starting "somewhere near the end") .

When we latch onto a piece of electronic paper lying

inside our desktop and drag it along with a stylus, we

envisage drawing a blinking frame along with the stylus as

the stylus moves. When the stylus is depressed to unlatch

and deposit the paper, the paper would get redrawn at the

point of deposit as an overlay on top of whatever else was

there below it.

I

I

I

Arcturus Page 31
Personal Workstation

It may be possible to program the workstation to do

fancy things such as placing the text of a book on an

imaginary football field somewhere to the left of the Moon,

and flying out to view it at Warp 6, applying a spelling

corrector to the football field, and having lights turn on

everyv;here there is an error (to get some portrayal of the

error density, viewed from afar), and then zooming on

selected areas for further text manipulation by normal

means. However, we are not convinced that rapid, real-time,

color displays (as in the E&S flight simulators) are

necessary for our task. Real-time, color, simulated motion

with peripheral detail, is probably unnecessary for our

task. We include this remark in the discussion to

illustrate the idea that we are not being as grandiose as we

could imagine, and that we are not playing the game of,

"whatever you have, I'll imagine something more general."

An important consideration for us, which we do not see

strongly reflected in present work (though perhaps we are in

ignorance), is the availability of prefabricated means for

smoothly extending the user-interface language, using

windowing, menuing, simultaneous computed views in panes of

a window, command completion, and the like. We think it

should be made easy to add a new class of menuing and

display commands in exactly the same style that the original

system supports. This encourages users to add tools whose

command languages obey the same conventions as the original

I

I

I

Arcturus

Personal Workstation

Page 32

tools in the system providing a strong incentive to keep

the user interface uniform in user created tools.

Arcturus Page 33
Programmer's Notebook

SECTION 4

The Interactive

Programmer's Notebook

A computer can help managers and programmers by being

an active agent that can remind, nudge, and report. Because

of its persistence, it can assure thoroughness of adherence

to prescribed disciplines. By this means, a computer can

play a keystone role in assuring software quality in

partnership with teams of people.

In Arcturus, there are envisaged several embodiments of

these quality assurance ideas. Great care is exercised to

engineer the human interfaces smoothly and not to be

heavy-handed. Rather, the envisaged style is one of

gentleness in the delivery of the computer's quality of

persistence.

For example, by means of computerized checklists (the

Arcturus Interactive Management Review Interview) , version

control, schedule management, and exception reporting,

Arcturus uses the computer's capacity for management of

detail to ensure thoroughness and thereby to increase the

chances that effective management disciplines will be

followed in the production of quality software.

I

I

Arcturus Page 34
Programmer's Notebook

Another example of the use of persistence is in feeding

an undocumented program form to a document interview program

which extracts comments interactively from a programmer as

granules of the program form are enumerated at different

control settings. The extracted comments are attached to

program granules and can later be queried or displayed in

computed views from various "vantagepoints" .

In this section, we comment briefly on another of

Arcturus' persistent, quality assurance tools the

Interactive Prog rammer' s> Notebook.

When a programmer is handed a design, say in the form

of a PDL program, he needs to manage a large collection of

subtasks to implement it, optimize it, test it, and release

it.

By feeding the Interactive Progammer's Notebook a PDL

program, the Notebook will extract all the module names and

will compute a status check list for each module, giving as

many status categories as the user supplies. For example,

the status categories may be: (a) designed, (b) coded, (c)

debugged, (d) optimized, (e) tested, (f) independently

validated, (g) released. Each module needs to go though

these stages. When modules are coded so as to call on

unwritten modules, the unwritten module names must be

incrementally added to the task list, and their status must

be monitored. Additionally, tasks and reminders may be

I

I

I

I

I

I

I

I

I

I

I

I

I

Arcturus Page 35
Programmer's Notebook

added to the Notebook at will by the programmer (e.g.,

tasks such as creating test data sets, saving intermediate

results on archive files for protection against crashes,

writing progress reports, etc.) . This is reminiscent of the

personal "calendar" and "reminder" programs in existence on

popular operating systems today. Time-critical reminders

can be scheduled, and background processes that monitor for

the occurrence of changes in the programmer's database can

I be set in motion periodically to report when their
conditions are fulfilled (e.g., "Send me a reminder '90%

spent' when my total user charges exceed 90% of my

allocation in Sub-Project A6") .

An emphasis is placed on automating the acquisition of

status changes, e.g., from file extensions, or particular

attributes attached by various tools. The Interactive

Notebook monitors for the presence of attached attributes,

such as an attribute saying that a module has passed an

independent validation check, and updates its records

automatically. Such automatic data capture avoids the

disaster that would occur if all updates to the status

records had to be made manually by the programmer a

I degree of tediousness that would likely defeat the
^ advantages of using the system.

I

I

I

I

I

Arctur us Page 36
Software Management

SECTION 6

Software Management

In addition to the chronological phases of the software

lifecycle, there are strands of activity that pervade the

entire lifecycle. For instance, there are (1) management

disciplines, (2) communication disciplines (including

documentation), (3) training of new personnel, and (4)

validation and quality assurance.

In a sense, (2), (3), and (4) are subordinate to "(1)

management disciplines," since it is management's

responsibility to assure quality at each stage, to train new

personnel, to impose and monitor communication disciplines,

and so forth.

In fact, much more comes under the heading of

management, including (1) resource estimation, (2) lifecycle

costing and accounting, (3) tasking and critical path

scheduling, (4) early detection of poor performance, (5)

initiation of corrective actions, and many other features of

overall project organization.

Arcturus provides tools to support management of all

these interacting strands of software lifecycle activities.

Arcturus is designed to be a concrete realization of an

entire software lifecycle support environment. Arcturus is

designed so that its constituent disciplines and tools can

Arcturus Page 37
Software Management

interact smoothly, and so that we can validate that the

concepts Arcturus embodies in fact improve programming

pe r fo rmance .

The management tools in Arcturus utilize the computer's

capacity for managing large volumes of detail with

precision, and the interface between people and computerized

detail management media is designed so that the human

capacity to absorb and manage detail is not overwhelmed.

For example, since computers can keep track of large

volumes of detail about such things as (1) What has been

accomplished so far, (2) What remains yet to be

accomplished, (3) What resources (time, people, dollars)

have been used so far, and (4) What resources are estimated

to be needed to accomplish v/hat remains Arcturus tools

construct and manage dynamically computed views about the

status of this body of details which isolate from the huge

volume under computer control views appropriate to

management activities such as: (1) Critical path schedules,

(2) Lifecycle cost reports and estimates, (3) Project task

workbooks and checklists.

These views are periodically computed for human

c onsumption and the body of data from which they ar e

computed is incrementally updated and adjusted, perhaps by a

mixture of manual and automatic means. Accounting data on

cumulative resources spent to date may be automatically

Arcturus Page

Software Management

acquired. On the other hand, resource estimates and task

completion notices may be manually acquired perhaps by

interactive prompting and query of project personnel.

Arcturus can help assure software quality by reliance

on the computer's capacity for enforcing thoroughness. For

instance, consider a management discipline which relies on a

collection of methods for assuring software quality

including, for example:

(1) Early detection of poor programmer performance,

(2) Use of early prototypes.

(3) Effective documentation discipline.

(4) Proper training of new project personnel.

(5) Careful validation of software quality at each

lifecycle stage using, e.g., design walkthroughs,

independent validation of implemented modules (assuring

performance goals are met by the use of independent test and

validation teams) .

(6) Flexible allocation of resources to tasks and

organization of task structure to meet changing demands.

(7) Use of formatted debugging aids.

I

I

I

I

I

I

I

I

I

Arcturus Page 39
Software Management

Poor or inadequate adherence to policy on any of these

stated disciplines may incur expensive penalties in softv^are

quality, leading to well-known problems [Boehm 1973] such as

late delivery, cost overruns, release of unreliable modules,

e tc .

The overall complexity of the task is such that under

the crush of daily business, managers, analysts, and

programmers may let certain details "fall through the

crack," so to speak, witnout their being aware that they

have overlooked (or perhaps thought about but failed to

remember) one of the manifold aspects of proper performance

of their assigned responsibilities. Also, there is a human

tendency to cut corners under pressure such as omitting

the implementation of formatted debugging aids before module

testing (a probable false economy).

The deliberate or accidental omission of steps and

duties falls under our definition of lack of thoroughness in

adherence to selected software quality assurance

disciplines.

By assuring thoroughness of adherence to prescribed

disciplines, Arcturus management tools help assure software

quality in partnership with managers and programmers.

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Arcturus Page 40
Doc umenta tion

SECTION 6

Documentation

When we consider "programming in the large" (by large

numbers of people, on large programs, with long maintenance

lifetimes) versus "programming in the small" (by a few

people, on a small program, with a short useful lifetime) ,

we see that prog ram doc umenta tion plays a critical role. In

any large programming project that extends over many years,

there is likely to be personnel turnover. This implies that

new project personnel will have to read and understand the

programs written by others. Furthermore, when programs get

large, they also tend to get complex, or at the very least

bulky in the sense that even though each microscopic

patch of the program may be structurally simple when

considered alone, there are many such simple patches

packaged into submodules, modules, and larger program units,

and there are many, many such units.

Another kind of complexity that tends to occur in large

programs is that which derives from the inherent refinements

of concepts in the application domain into executable

underpinnings on the naked machine. Usually these

refinements occur by means of one or more intermediate

layers of representational media. For example, in an

airline reservation system, application domain concepts

Arcturus

Doc umenta tion

Page 41

might include flights, seats, dates, and schedules. At the

level of the naked machine we have bits, bytes, and linear

sequences of words. At intermediate representational

levels, we may have files, strings, lists, pushdown stacks,

queues, records, tree-indexes, and the like.

Each application system is a microcosmic example of a

reductionistic system that reduces application domain

objects and operations into executable combinations of

machine primitives, and to understand a program at the level

of the underpinnnings requires that we understand the higher

level operations that are being mimiced by the low level

mechanics. A critical function of documentation is to

reveal the relationships inherent in the imitation of the

highest level application mechanics by the organization of

underlying representational media.

Another type of knowledge that may be critical to the

understanding of a program is that which comes from

collateral reasoning systems. These reasoning systems are

those which do not participate directly in one of the layers

of the reductionistic refinement system from the application

level down to the naked machine level, but rather are those

used to derive facts about one of the refinement layers or

to understand why something at one of the layers works the

way it does or achieves some desired effect. As an example,

suppose we are computing a Fibonacci number. Three

implementations are: (1) th^ implementation that runs in

Arcturus Page 42
Documentation

exponential time that computes Fib(n) by summing calls on

routines Fib(n-l) and Fib(n-2), (2) the implementation that

runs in linear time that stores an adjacent pair of

Fibonacci numbers, sums them, and shifts the sum into the

position occupied by the larger after shifting the larger

into the position occupied by the smaller, and (3) the

implementation that runs in logarithmic time which uses

differences of powers of quantities derived from the golden

ratio. To understand why this latter implementation works

requires an excursion into the collateral reasoning domain

of mathematics. It is often the function of documentation

to reveal (or at least to point to) the relevant portions of

an explanation for why something works using the agency of a

collateral reasoning system and such a system may

encompass many disciplines outside of computer science, such

as geometry, kinematics, chemistry, optics, and an

indefinite number of others independent of and not

necessarily implied by the phenomena and laws of

cornputa tion .

It is also noteworthy that documentation must play

different roles for different audiences. Depending on the

experience and knowledge of the reader, documentation should

reveal appropriate facts what is appropriate to one

reader may be either boring, obvious, and condescending to

another, or completely beyond the intellectual grasp of yet

another. Only a physicist may be expected to understand an

Arcturus Page 43
Documentation

explanation of why some computation works with regard to

modelling of optical or kinematic phenomena. Only a

programmer might be expected to understand mechanical

details of nomenclature scoping for the dynamic lifetimes of

certain program variables. Only an economist might be

expected to understand a market elasticity computation^ and

so on.

Thus, documentation must deal with an indefinite number

of domains of technical knowledge, with an indefinite number

of classes of readers of varying sophistication and

technical preparation, and with relationships between layers

of different representations spanning the gap from the naked

machine to any of an unbounded range of application domains.

The creation of good documentation to serve these multiple

purposes probably requires a considerable capital

investment, and can probably be justified only for programs

with long maintenance and upgrade lifetimes for which the

savings realized by good documentation at least reimburse

their cost of original development.

While this introductory discussion points to the

importance and complexity of good documentation, computer

science has yet to produce a good theory of documentation

and to give us effective means of organizing it. In fact,

we don't even have a good theory of program comments one

that rises above the level of aphorisms and one for which it-

has been experimentally validated that it, in fact, improves

I Arcturus Page 44
Documentation

measures of programmer performance.

It is partly this state of appalling ignorance, partly

the key importance that a valid theory or method of program

documentation would have, and partly the challenge of

wanting to make strides in this important field that leads

us on the quest we are trying to initiate in our initial

philosophizing about Arcturus.

Some initial ideas we have on documentation are as

follows ;

1. Paper is the wrong container for documentation; One

cannot write down on a printed page all that needs to

be said in adequate documentation without causing a

great deal of clutter. Further, it is difficult for

a given expert to extract the relevant from the

irrelevant in such a medium. What is needed is a

database in which program forms at various levels of

refinement have attributes attached to their granules

leading to comments, whereupon various computed views

can make these comments selectively visible.

2. Dynamic prompting as a method for encouraging ease of

construction and completeness of coverage of

comments: We envisage a tool that would accept an

undocumented program form (or a pair of forms

consisting of a program and its refinement), and

which would ask questions about the program form.

I

I

I

I

I

I

I

I

Arcturus

Documentation

Page 4 5

using a level of granularity and a subset of

I questions determined by setting controls in the tool.
. The answers to the questions would be attached as

® comments to be made selectively visible by computed

views or queries.

3. Computing Translations Using Translation Tables and

Annotation Substitutions; When a program form is

displayed in a pane of a window on the Arcturus

desktop, it is possible to display other computed

I views of the program in other panes of the window
simultaneously. Some of these views can consist of

annotated and/or translated views of the program.

For example, suppose we have a translation table that

maps phrases as follows;

t (X = 0) ==> X is not emptyno 1

H Largest(X) ==> Extract Largest Element in (X)
Enqueue (x,Q) ==> Add Element (x) to the

Rear of Queue (Q)I

I Then, using these transformations to translate the
following piece of code;

while not(PQ = 0) loop

X ;= Largest(PQ); ReHeapify(PQ);

Enqueue (x ,Q) ;

end loop

I

I

A r c t u r u s Page 46
Doc umenta tion

We can derive the following computed view containing

I self—documenting descriptions, with respect to the

I

I

I

I

I

I

I
We can call for a transformation that annotates

I program variables with their declared or attached
descriptions. An annotation might replace the first

instance of a variable PQ with an annotated text such

H as {PQ; a Priority Queue}. This could be used to
remind or inform the user of the properties and

purposes of a variable in a program text.

I

I

I

I

I

I

I

above translation table;

while PQ is not empty loop

X -= Extract Largest Element in (PQ) ;

Reheapi f y (PQ) ;

Add Element (X) to the Rear of Queue (Q) ;

end loop

In addition, when we have performed statements

attaching attributes to variables, as in declarations

or in statements such as;

Let (PQ) be a Priority Queue

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Arcturus Page 4 7
Interim Environments

SECTION 7

Interim Environments

We intend to approach the evolution of Arcturus by

means of a number of interim steps. We envisage the

construction of a number of interim environments that will

become progressively more complete, refined, and efficient.

Our first interim environment will likely be a

prototype implemented on a PDP-10 in UCI LISP [Meehan 1979] ,

with only a modest subset of the capabilities we have

sketched in this paper. Later interim environments may take

advantage of desktop computers and flatscreen displays if

they become available.

The scope of Arcturus is sufficiently broad that it may

take a decade or more to complete the construction of a

production quality Arcturus.

I

I

I

Arcturus Page 48
References

References

I Boehm, B.W. [1979], Software Engineering as it is, 4th
Int. Conf. on Softw. Engr., Munich, Germany.

i
Boehm, B.W, [1973], Software and Its Impact; A

U Quantitative Assesment, Datamation, (May 1973).

I Caine, S.H., and Gordon, E.K., [1975], PDL - A Tool for
Software Design, Proc. NCC, AFIPS Press, Montvale,

I

I Meehan, J.R. [19791, The New UCI Lisp Manual, L. Erlbaum

I

I

I

I

I

I

I

I

I

I

N. J,

Assoc., Hillsdale, N.J,

