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Abstract

It is the usual case in cognitive modeling that a model's
output is compared to the average of a number of
subjects, in which case the enterprise of modeling is
apparently to capture the behavior of the typical
individual. Our approach is to administer two simple
tasks to each subject, using performance on those tasks
as measures of individual ability. Those measures are
then used as the values for parameters in an ACT-R
model of a more complex task, so that the model can
predict individual performance on that task.

Introduction
Work in cognitive modeling, when it seeks validation
in the performance of human subjects, is almost
unanimously concerned with the average performance
of many subjects. For many purposes, however, it is
desirable to be able to model or predict individual
performance. We present here the first work to use a
fine-grained cognitive model to predict individual
performance in a complex task.

The ACT-R architecture, the basis of a great deal of
work in cognitive modeling, has a detailed, well-
developed theory of cognition – perception, learning,
performance, and so on (Anderson and Lebiere,
1998). The architecture by necessity contains a
number of parameters that can be used to fix levels of
performance in, e.g., memory, to realistic levels. The
ACT-R community has by custom sought universal
values for these parameters wherever possible, finding
values work across tasks, optimizing how well the
model fits the data of the average subject. These
parameters are each meaningful, each parameter
determining the model's behavior in one specific way.
For example, there is a parameter called W that
determines the sum of the activations of all the pieces
of information that may be retrieved at any point in
time. It therefore controls the model's working
memory capacity. Extensive empirical work in ACT-
R modeling (again, of the kind where the model was
meant to predict the average subject) found that a W
value of 1.0 produces very good fits with subject data.

It was later postulated, however, that the W
parameter could be meaningfully varied in order to

model individual differences in working memory
capacity (Lovett, Reder, & Lebiere, 1999). This was
later demonstrated empirically by using individual
performance in one simple memory task to measure
the W value that best fit the individual's performance.
The diagnostic memory task is called MODS, or the
modified digit span task. In each MODS trial, subjects
are presented strings of digits to be read aloud in
synchrony with a metronome beat and are required to
remember the final digit from each string for later
recall. After a certain number of digit strings are thus
presented, a recall prompt cues the subject to report
the memory digits in the order they were presented.
Each subject's MODS score was used to estimate their
individual W value, which was then plugged into an
ACT-R model of a separate working memory task,
and the model output was used to predict individual
data on that second task (Daily, Lovett, & Reder,
2001).

Previous and concurrent work by other groups
suggested a number of positive characteristics that
might be combined into a single, more powerful
methodology. ACT-R parameters had been
manipulated (Taatgen, 2001) in a model of individual
differences in learning, although the “individuals” in
that work were simulated, and corresponded to types
of individuals, not to actual subjects. In that work,
performance in a complex task was related to
individual difference parameters across the simulated
individuals. Earlier work in modeling also accounted
for relationships between ability in one task and
ability in another, but making assessments on the
group, not individual, level (Just, Carpenter, and
Shell, 1990). A complementary approach measures
individual performance on complex tasks, and utilizes
statistical methods such as intercorrelation matrices,
allowing predictions of individual performance on
one task based upon measurements of performance on
other tasks in the matrices, making no use of any
particular theory of cognition (for example, Ackerman
and Kanfer, 1993).

All of this previous work, we felt, pointed towards
a methodology that combined a number of positive
features from these complementary approaches into a
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single, more comprehensive modeling paradigm. In
the methodology we envisioned, one or more simple
tasks could be administered to an individual, allowing
us to estimate their individual parameters; then, by
plugging the individual's parameter values into the
ACT-R architecture, we could predict the individual's
performance on any task for which an ACT-R model
exists. Because ACT-R models produce predictions
with a grain size of tens to hundreds of milliseconds,
this provides us with a detailed model of individual
performance, offering the potential for predictions on
the trial level, or predictions of novel measures of
performance that emerge from lower-level detail –
potentially allowing predictions of almost any
measure that can be made of subjects. Because our
approach builds atop the platform of the rich ACT-R
theory, it is realistic to expect that these
individualized model runs will be somewhat
meaningful in their details, not just a way to arrive at
a final, aggregate performance metric of some kind.

In order to take the next step beyond the Daily,
Lovett, & Reder study that involved only two simple
memory tasks, we decided to pick a more complex,
interactive task. In order to capture a broader
spectrum of individual differences, we chose to
measure two parameters per subject: the W parameter
as well as a measure of perceptual and motor ability,
henceforth referred to as P/M. This is not a part of the
standard ACT-R architecture, but seemed to be an
important kind of individual variation. Thus far, we
have used only one parameter, which represents as
though they were one individual perception and motor
speed. We allow that those may covary freely among
individuals, but we have so far had success using the
one parameter alone for this.

The AMBR Task
Given the preceding considerations, we chose as our
more-complex task the AMBR simulation, an air
traffic control task that already had a foundation as a
test bed for cognitive models in a project organized by
the Air Force Research Laboratory (Gluck and Pew,
2001). This task already had an ACT-R model
implemented (Lebiere, Anderson, and Bothell, 2001),
which not only facilitated our project, but also
provided a gauge of the modularity of our approach;
ideally, we would be able to plug parameters into this
off-the-shelf model and obtain good results without
modifying it in any other way.

The task places the subject in the role of an air
traffic controller whose job is to process aircraft (AC)
as they enter and leave the airspace zone, central in
the simulated radar display, for which he or she is
responsible. This primarily consists of issuing, via a
graphical interface, two commands to an AC as it
enters one’s zone from a neighboring zone of

airspace, and issuing two commands to an AC as it
departs for another zone. The same AC must thereby
be issued a total of four commands if it passes into
and subsequently out of the central zone during a
scenario. In some cases, the AC will only enter the
central zone, or only depart the central zone, during
the duration of a scenario, in which case that AC will
require only a total of two commands. In addition, a
fifth type of command is required if an AC requests a
speed change, which requires the subject to make a
trivial judgment as to whether or not the AC is on
course to catch, from behind, any other AC; if so, the
speed change request should be denied, and
otherwise, it should be accepted. AC arrivals can be
detected both from the radar display and from text
messages appearing in windows to the side of the
display. Speed change requests can be cued only via
text messages. The departure of an AC from the
central zone can be detected only via the radar
display. Under the assumption that AC are at different
altitudes, however, collisions cannot take place in this
simulation, nor do AC land or take off in the
simulation. The subject is scored based on issuing all
commands in a timely fashion that permits AC to
move freely without ever reaching the border of the
central zone while still awaiting one of the required
commands. If an AC does reach the zone border
without having received all necessary commands, it
will go into a hold, thereby turning the AC red in the
display, halting the AC’s motion, and penalizing the
subject 1 point. The score at the end of the run is the
sum of the errors the subject makes, lower score
thereby signifying better performance. Subjects were
also penalized for making interface errors of the sort
that the model never made. Subject and model
performance levels can thereby be compared on the
basis of hold errors. A static image of the display is
visible in Figure 1.

We were required to modify one aspect of the
AMBR task in order to eliminate uncontrolled
strategic variation among the subjects. AMBR’s
original implementation has a more baroque scoring
system where some errors lead to penalties of 1 point
and other errors up to 50 points. In response to that
scoring system, some subjects tried to avoid all errors
while other subjects opportunistically allowed low-
penalty errors when that helped them avoid any
occurrences of high-penalty errors. That strategic
variation was noticed only when some data had been
collected; this is an indication of the subtle difficulties
that can arise when modeling tasks at the level of
complexity of AMBR. The difficulty of producing a
suitably correct Cognitive Task Analysis was roundly
reported by the four cognitive modeling groups
involved in the AFRL’s AMBR modeling project.
Unconstrained by the need to need to coordinate with
other groups, we changed the task.
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Figure 1: The AMBR Display

Sources of individual difference
Having introduced AMBR as our complex task, we

acknowledge that the term "complex" is a relative
one, and in seeking a complex task for our work, we
were actually seeking an appropriate kind of
complexity. We distinguish between distinct kinds of
individual difference factors, postulating that
architectural differences are those differences that
pertain to relatively permanent characteristics of the
individual, not shaped by particular episodes in the
individual’s experience. (We make no claims about
how development shapes architectural differences
throughout an individual’s life.) Knowledge-based
differences, on the other hand, can arise through
specific instances of learning declarative information;
the state of an individual’s knowledge can only be
described (or tested) in a very expansive manner, and
this is not our enterprise. A third type of individual
difference, strategic differences, could be broken
down into either of the two previously mentioned
types. It is not our goal to measure the encyclopedic
total of an individual’s knowledge, but we do
anticipate that certain differences in how an individual
chooses a strategy for a given task will depend upon
and emerge from architectural differences. Cases
where we can predict strategic differences based upon
architectural differences will serve to validate our
approach. We recognized that we would have trouble,
however, with any task that invited strategic variation
between subjects that could not be predicted from
architectural differences. In such a case, our
individual-difference approach would risk the same
pitfalls that a non-individual-approach can lead to

when subject strategies vary (Newell, 1973; Siegler,
1987).

Initial results
In two distinct experiments, with two sets of subjects,
we applied the methodology of administering initial
tests to measure the W and P/M parameters. The P/M
parameter was actually calculated based upon the
speed of mouse clicks in the AMBR training. Our
procedures for calculating the parameters produce
values of W and P/M which both have population
means of about 1.0 and standard deviations of about
0.2 (for Carnegie Mellon undergraduates). High W
means better working memory capacity, while high
P/M means slower perceptual and motor responses –
it is a multiplier, so that P/M = 1.2 means responses
20% slower than average). Therefore, where we find
significant effects, W correlates negatively with error
counts and P/M positively.

Subjects were trained on the AMBR task until they
understood it quite thoroughly, and then participated
in a number of AMBR scenarios, the data from which
we compared to individualized model runs for each
subject. Experiment 1 featured 10 AMBR scenarios,
each 9 minutes long, and alternating between very
easy and very difficult. Experiment 2 had 9 scenarios,
each 4.5 minutes long, varying evenly along a
continuum in terms of difficulty from easy to difficult.
As an informal measure of difficulty, we have taken
the number of AC per scenario times the average
speed of those AC, divided by the scenario length.
Using the idiosyncratic units of our simulations,
Experiment 1 scenarios had difficulty ratings of 26
(easy) and about 180 (hard). Experiment 2 scenarios
ranged in difficulty from 40 to 200.
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It is instructive to note the analysis that would be
performed if this were not an individual difference
study. Aggregate group performance, measured in
hold errors, as a function of scenarios was predicted
well by the aggregate model runs (Experiment 1: r =
0.975; Experiment 2: 0.929). This was almost the
same analysis, from the very same ACT-R model,
presented in Lebiere, Anderson, and Bothell (2001),
and used to argue for a good fit between subjects and
model.

The model correctly predicted that the AMBR task,
as originally conceived, is more sensitive to variation
in P/M than in W. This is seen clearly in the
correlations of subject holds with P/M (r = 0.658) and
W (r = -0.266). Not only can the model be used to
generate predictions for specific subjects, but it can
also be used to probe the effects of one parameter by
varying that parameter while holding the other one
neutral (at the population mean of 1.0). (Note that
holding one parameter fixed while varying another
among the subjects is a very difficult practical
matter.) This use of the model shows a strikingly
greater effect upon holds from P/M than W. This is in
agreement with data on the actual air traffic controller
task (which, it should be noted, has several distinct
differences from the AMBR task, not the least of
which being that it involves voice communication, not
a graphical user interface alone), which documents
that only a small number of errors are due to memory
failures (Billings and Cheaney, 1981).

Studies of AMBR traces reveal that the reason for
this is that hold errors are primarily an outgrowth of
time pressure when the time demands on a subject
exceed the time that is available. For 3 of the 5 types
of command in AMBR, the subject is shown the name
of an AC in the text cue, and must click on the AC as
part of the subsequent action sequence. Memory
becomes a factor in AMBR performance primarily in
that if a subject cannot remember the location of an
AC based upon its name, then the display must be
searched for the AC. This turns out to be a small
factor because visual search is fast – slower than
memory, perhaps, but the difference is on the order of
a fraction of a second, while clicking in a command
sequence takes several seconds whether the AC
location is remembered or not. W, then, is logically a
small factor in the original AMBR task, and for a
small portion of the variance.

Designing for science
In order to improve upon the studies described above,
we designed a follow-up study that modified the
scenario difficulty, the measures of performance that
we used, and even the task itself. It was obviously
necessary to decrease scenario difficulty into the
range for which the model produced a good fit to

subject data. This also allowed us to use one
performance measure that is more sensitive than hold
errors – the reaction time between an action’s cue and
the subject’s response to that cue (we used the time
for an action sequence to end, meaning the third or
fourth click in all). In order to emphasize the W effect
relative to the P/M effect (since cognitive modeling,
and not motor/kinesthetic modeling is our chief
interest), we modified the task so as to create a greater
penalty for failures in recall. We did this by removing
AC names from the display by default, and showed
the name of an AC only when the subject clicked on
the AC. Moreover, only one AC name could be seen
at a time, and this would appear after a delay. This
change meant that the speedy visual searches of the
earlier experiments would be impossible, and any
failure to recall an AC’s location would entail an
excruciatingly slow manual search. This task
modification also had the merit of giving us data on
searches, and let us emphasize a performance measure
that calculated what on what proportion of commands
a subject found the correct AC on the first click. In
other ways, Experiment 3 was similar to Experiments
1 and 2. Each subject was to participate in 5 AMBR
scenarios that were easy – hold errors confound
reaction time, so we needed them to be fairly rare in
order to use RT as a performance measure. In the
units of scenario difficulty mentioned earlier, all
Experiment 3 scenarios gauged 17 or lower.

Before the study began, we ran the model, which
was revised to allow for the task modification
involving name-hiding, on the Experiment 3
scenarios, and it seemed not to work correctly. Instead
of performing manual searches for AC names, it
would guess which AC it was looking for and click
through the entire action sequence without bothering
to verify that it had clicked the right AC. While work
on the model, to fix this “problem” was underway, the
first subjects ran in the experiment. They behaved the
same way. We had set the delay that one must wait,
after clicking on an AC, for its name to appear, too
long, and subjects preferred to hope that they had
guessed right correctly rather than perform the
laborious verification process. ACT-R came to the
same conclusion based upon the undesirably large
cost associated with clicks that required several
seconds before the desired consequence took place.
We modified the task again, shortening the delay
before the name appeared, and both the model and the
subjects performed manual search in the way we had
hoped. This demonstrates one possible application of
our approach – tasks (experimental or otherwise) can
be designed with the model’s predictions taken as a
serious indicator of subject performance, individual or
otherwise.

Experiment 3 produced the subject characteristics
we had sought. Our three measures of individual
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performance correlated significantly with W (Holds: r
= -0.444; RT: r = -0.314; First-clicks: r = 0.314). P/M
had about as large an impact on performance (Holds: r
= 0.508; RT: r = 0.485; First-clicks: r = -0.172), but,
as we desired, it did not dominate as in the first two
experiments.

The result most central to our intent was the
prediction of individual performance with model
output (Holds: r = 0.461; RT: r = 0.436; First-clicks: r
= 0.406). These correlations are distinctly less than
what is often possible when averaging multiple model
runs against the average of many subjects, but are
very much in line with the kinds of correlations found
in task intercorrelation matrix approaches (Ackerman
and Kanfer, 1993; Joslyn and Hunt, 1998).

To demonstrate the possibility of precise, instance-
level predictions, we looked at model predictions
across all three experiments, as to whether or not, for
each scenario, an individual subject would commit at
least one hold error. The model predicted correctly
91.7% of the time, as detailed below in Table 1.

Subject scenarios
with errors

Subject scenarios
with no errors

Model
scenarios
with
errors

205 4

Model
scenarios
without
errors

21 70

Table 1: Prediction of Error Situations

Future directions
For a variety of goals, both applied and scientific, it is
and will be desirable to be able to predict individual
performance on a fine-grained level. It seems certain
that the methodology we are exploring will be
expanded upon and utilized for such applications in
the future. At present, it is possible to point to the
range and extent of our successes and note the
particular difficulties that individual difference
modeling entails.

One avenue to explore is to involve a larger number
of individual difference factors. ACT-R has many
parameters built into it, and future work may be able
to predict individual performance more accurately by
making use of pre-tests besides the two we now use.

Because our model is fine-grained, it permits many
measures of performance, on the subject, scenario,
command, or click level. Ways in which the model
fits, or alternately does not fit, subject data highlights
many areas where future work is required. For
example, we have observed in the subject data from
Experiment 3 some phenomena of interest that the

model does not predict. These include a correlation
between higher W and the frequency with which a
subject completes a sequence of command clicks
without waiting for the AC name to appear. We
believe that we can capture this with additional
refinements to the model, taking advantage of ACT-
R's utility-learning mechanisms. A second
discrepancy between the subject data and the model
predictions are that the model does not recall AC
locations as well as the subjects do, and we believe
that this stipulates that the model should include
rehearsals of AC location between the time that
information is learned and when it is needed. A third
difference is that subjects often respond to Welcome
commands, which are always the second of a pair of
commands regarding a given AC, much faster than
the model does. In fact, some subjects respond much
faster than other subjects in this regard, and it is clear
that strategic variation has intruded into our study –
something that is difficult to prevent absolutely with a
task of AMBR's complexity. In upcoming
experiments, we will try to instruct all subjects to
anticipate Welcome commands when they can, and
will change the model so that it does so as well.

Subject phenomena that are not captured by the
model, we believe, stem from the problem of deriving
a valid Cognitive Task Analysis, which is known to
be difficult for a novel, complex task. It is striking
how much simpler AMBR is than many tasks (for
example, real  air traffic control), and yet how
challenging it is to model it precisely. It has not only
been a challenging task to which to extend the
individual difference methodology from memory to
more complex tasks; it is also at the right level of
complexity for the next stages of work as we try to
model it still more accurately and over a variety of
task modifications.
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