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kidney transplant pathology reports and
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1Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada
2Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, United
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ABSTRACT
Background. Pathology reports contain key information about the patient’s diagnosis
as well as important gross and microscopic findings. These information-rich clinical
reports offer an invaluable resource for clinical studies, but data extraction and analysis
from such unstructured texts is often manual and tedious. While neural information
retrieval systems (typically implemented as deep learning methods for natural language
processing) are automatic and flexible, they typically require a large domain-specific
text corpus for training, making them infeasible for many medical subdomains. Thus,
an automated data extraction method for pathology reports that does not require a
large training corpus would be of significant value and utility.
Objective. To develop a language model-based neural information retrieval system
that can be trained on small datasets and validate it by training it on renal transplant-
pathology reports to extract relevant information for two predefined questions: (1)
‘‘What kind of rejection does the patient show?’’; (2) ‘‘What is the grade of interstitial
fibrosis and tubular atrophy (IFTA)?’’
Methods. Kidney BERT was developed by pre-training Clinical BERT on 3.4K renal
transplant pathology reports and 1.5M words. Then, exKidneyBERT was developed
by extending Clinical BERT’s tokenizer with six technical keywords and repeating the
pre-training procedure. This extended the model’s vocabulary. All three models were
fine-tuned with information retrieval heads.
Results. The model with extended vocabulary, exKidneyBERT, outperformed Clinical
BERT and Kidney BERT in both questions. For rejection, exKidneyBERT achieved an
83.3% overlap ratio for antibody-mediated rejection (ABMR) and 79.2% for T-cell
mediated rejection (TCMR). For IFTA, exKidneyBERT had a 95.8% exact match rate.
Conclusion. ExKidneyBERT is a high-performing model for extracting information
from renal pathology reports. Additional pre-training of BERT language models on
specialized small domains does not necessarily improve performance. Extending the
BERT tokenizer’s vocabulary library is essential for specialized domains to improve
performance, especially when pre-training on small corpora.

Subjects Artificial Intelligence, Computational Linguistics, Natural Language and Speech, Text
Mining, Neural Networks
Keywords Natural language processing, NLP, Transformer, BERT, Kidney, Renal, Pathology,
Transplant, Language model
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INTRODUCTION
Pathology reports contain crucial diagnostic information, and so do renal pathology reports.
Collaborating with the pathology laboratory at the University of California, Davis, we were
interested in the diagnostic information presented in their electronic renal pathology
records. However, pathology reports are often in an unstructured text format. It is difficult
to directly inquire and retrieve information from such unstructured texts. To address this
issue and to process unstructured kidney transplantation data, Zubke, Katzensteiner & Bott
(2020) created an integration tool based on Microsoft SSIS to transform the data into a
structured format. However, converting unstructured language data into a structured,
queryable format is labor-intensive and requires pre-determining what set of features will
be queried. In recent years, pre-trained language models such as Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2019) have provided a far more
flexible and robust system for searching and querying unstructured language data. Such
language models based on transformers (Vaswani et al., 2017) have been successfully
applied to numerous subject-matter domains (Ahne et al., 2022; Wu et al., 2021; Binsfeld
Gonçalves et al., 2022), but typically require a large amount of domain-specific text data for
training. Our goal was to develop a pre-trained language model for automatic extraction
of information from clinical reports of kidney transplants. To be more specific, we were
most interested in two questions: ‘‘What kind of rejection does the patient show?’’ and
‘‘What is the grade of interstitial fibrosis and tubular atrophy (IFTA)?’’ We tested our
model on two tasks, classification and information retrieval (IR), to query the reports
provided by the pathology laboratory at the University of California, Davis. The reports
contained diagnostic information as well as descriptive information regarding the light,
immunofluorescence, and electron microscopy findings. In some cases, a comment section
that summarizes and interprets the findings was also present.

The experiments conducted pre-training on the given renal pathology reports. Pre-
training involves training a language model on a large amount of text prior to considering
the specific application of interest. Pre-trained language models have had tremendous
success in recent years. In 2019, an attention-based pretrained NLP model, BERT (Devlin
et al., 2019), was released by Google. BERT has achieved state-of-the-art performance
on the General Language Understanding Evaluation (GLUE) benchmark (Wang et al.,
2018), which includes named entity recognition (NER), question and answering (QA) and
sentiment classification tasks. For general-purpose NLP tasks, BERT is considered a leading
choice.

BERT has been widely applied in the medical domain. For example, Lu et al. (2021),
Li et al. (2019) leveraged BERT on unstructured patient-reported records and electronic
health notes; Lee, Kang & Yeo (2021) developed a recommendation chatbot for medical
specialties using BERT.

Researchers could also pre-train BERT on a medical domain-specific corpus to improve
the predictive performance on the task. BioBERT (Lee et al., 2019) is a language model for
biomedical language understanding derived from BERT. It was further pre-trained on the
PubMed abstracts with 18 billion words. BioBERT benefits from the pre-training process
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and beats BERT on multiple bio-NLP tasks such as biomedical NER, biomedical relation
extraction (RE), and biomedical QA. Later, Alsentzer et al. (2019) proposed Clinical BERT,
which is a language model for electronic medical records (EMR). Clinical BERT builds
on BioBERT and is further tuned on the EMR notes of the Medical Information Mart
for Intensive Care (MIMIC-III) dataset (Johnson et al., 2016) which contains about 60,000
data points. It has been shown that Clinical BERT achieves better results on biological NLP
tasks compared to the so called ‘‘vanilla’’ BERT (Alsentzer et al., 2019).

When data are available for a specific clinical subdomain of interest, we can further
pre-train Clinical BERT to adapt to that specific clinical subdomain. For example,
caBERTnet (Mitchell et al., 2022) is a question-and-answer (QA) system based on Clinical
BERT but further pre-trained on theMoffitt (Mitchell et al., 2022) pathology report dataset,
which contains 276K reports with 196M words from Moffitt Cancer Center. The authors
demonstrated that caBERTnet is superior to Clinical BERT on cancer pathology reports.

We followed a similar procedure and further pre-trained Clinical BERT but for the
subdomain of renal pathology reports though, compared to caBERTnet (880M words), we
had a much smaller corpus (1.5M words) available to do so. We call the resulting model
‘Kidney BERT’.

However, BERT uses a vocabulary size of only about 30k words. If documents contain
words that are not part of the BERT vocabulary, so-called ‘out-of-bag’ (OOB) words, they
are tokenized into sub-words pieces. For example, the word ‘‘interstitial’’ will be parsed
into frequent sub-words ‘‘inter’’, ‘‘##st’’, ‘‘##iti’’, and ‘‘##al’’ first, and then tokenized
into vectors. Both BioBERT and Clinical BERT use the same tokenizer as BERT, which
limits their capability to process the OOB complex medical terms. In addition, we noticed
that six of the keywords in our two pre-defined study questions (‘‘interstitial’’, ‘‘fibrosis’’,
‘‘tubular’’, ‘‘atrophy’’, ‘‘T-cell’’, and ‘‘antibody’’) are not contained within the default
tokenizer vocabulary, meaning they would be split into sub-words that are unlikely to
capture their meaning without significant re-training. We extended the Clinical BERT
tokenizer to include these six additional keywords and pre-trained again on our corpus to
obtain a new model we call ‘extended Kidney BERT’ (exKidneyBERT).

METHOD
In this section, we first introduce our dataset (Dataset). Next, we describe how we
developed Kidney BERT by pretraining Clinical BERT (BERT Pre-training and Kidney
BERT). Then we explain how we extended the vocabulary used in Clinical BERT by
six keywords and pre-trained again to obtain exKidneyBERT (Extending Vocabulary
for exKidneyBERT). Finally, we lay out how we fine-tuned our models for information
retrieval and classification tasks (Fine-tuning BERT models for IR and Classification).
The code for this project was open-sourced and can be accessed through this GitHub
repository: https://github.com/TianchengY/exKidneyBERT. Portions of this text were
previously published as part of the author’s thesis (Yang, 2022).
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Ethical consideration
The study has obtained approval from the ethics board at the University of Waterloo,
Canada (#4301). The ethics board is the Canadian equivalent of an IRB. The study data are
anonymous and deidentified. The Institutional Review Board at University of California at
Davis has waived the need for consent from participants of the study (Approval Number:
940174-1).

Dataset
The renal transplant pathology reports used in this study were obtained from the electronic
medical records of the University of California, Davis. The pathology reports for transplant
kidney biopsy cases consisted of unstructured text for the diagnosis as well as light,
immunofluorescence, and electron microscopy results as described by the pathologist.
Each report contains the following sections: Diagnosis, Tissues, Gross Description, and
Microscopic Description.

For the classification task, the ground truth came from the diagnosis section, which was
provided by the pathologist, but it was masked so that the model would not have access
to it. For the information retrieval problem, we went through all reports and recorded the
desired answers manually. The training target was to match the extracted answers.

There are 3,428 pathology reports in total. Among all the information in the reports,
we were interested in the cases with rejection and the cases with interstitial fibrosis and
tubular atrophy (IFTA). There are two major types of rejection for patients after kidney
transplant in our corpus: T-cell-mediated rejection (TCMR) with 107 positive samples, and
antibody-mediated rejection (ABMR) with 123 positive samples (Loupy et al., 2017). The
pathology reports classify IFTA into five classes of severity: severe (112 samples), moderate
(361 samples), mild (1,120 samples), minimal (347 samples), and absent/insignificant
(1,233 samples). We define a sixth class (256 samples) as ‘‘unclassified’’, meaning the
report contains no corresponding information. We used 20% of the data for evaluation.
Our goal is to extract parts of sentences or phrases from the report which best describe the
condition of rejection and IFTA.

For the classification task, we focused on the content in the Microscopic Description
section since it includes the most detailed descriptions of the biopsy. To increase the
difficulty of the classification task, we removed any text explicitly related to the task to
avoid showing the correct answer in the input text (e.g., the model would need to infer that
severe rejection is present and classify accordingly even without seeing the words ‘severe’
or ‘rejection’ anywhere in the text). An example of the input text for the classification task
is shown in Table 1. For the IR task, along with the text in the Microscopic Description
section, we also added the section of the report comments as a part of the input text since
they contain the description of the rejection cases explicitly, and, in this case, we expect
the language model to retrieve the answer from the given text. Table 2 shows an example
of the input text for the IR task.

BERT pre-training and kidney BERT
BERT is a language model consisting of a stack of 12 (BERT-base model) or 24 (BERT-
large model) transformer encoder layers containing bi-directional self-attention heads

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1888 4/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1888


Table 1 An illustrative example of the text used for the classification task. Italicized text was removed
during training.

Microscopic Description: The following findings are based on hematoxylin and eosin (H&E), pe-
riodic acid-Schiff (PAS), and Masson trichrome-stained sections. The specimen submitted for
light microscopic evaluation consists of cortical tissue with at least 35 glomeruli. No segmentally
or globally sclerosed glomeruli are seen. The glomeruli demonstrate focal mild mesangial widen-
ing. The glomerular capillary walls are of normal thickness and contours. Patchy moderate in-
flammation is noted associated with scattered moderate tubulitis. The inflammation consists pre-
dominantly of mononuclear leukocytes with coms plasma cells and only rare eosinophils. The
arteries and arterioles show focal mild hyalinosis. No endotheliitis or peritubular capillaritis is
identified.

Table 2 An illustrative example of the text used for the IR task. Bold texts are the expected answers. Ital-
icized text was removed during training.

Comments: The biopsy shows interstitial inflammation (i2) consisting of mostly mononuclear
leukocytes. Tubulitis (t2) is readily identified in the areas with infiltrating inflammatory cells.
These findings support the diagnosis of acute T-cell mediated rejection (IA).
Microscopic Description: The following findings are based on hematoxylin and eosin (H&E), pe-
riodic acid-Schiff (PAS), and Masson trichrome-stained sections. The specimen submitted for
light microscopic evaluation consists of cortical tissue with at least 35 glomeruli. No segmentally
or globally sclerosed glomeruli are seen. The glomeruli demonstrate focal mild mesangial widen-
ing. The glomerular capillary walls are of normal thickness and contours. Patchy moderate in-
flammation is noted associated with scattered moderate tubulitis. The inflammation consists pre-
dominantly of mononuclear leukocytes with coms plasma cells and only rare eosinophils. Mild
interstitial fibrosis and tubular atrophy are present (∼10%). The arteries and arterioles show fo-
cal mild hyalinosis. No endotheliitis or peritubular capillaritis is identified.

(Wu et al., 2016). BERT is pre-trained via two unsupervised tasks, masked language
modeling and next sentence prediction, on the BooksCorpus (Zhu et al., 2015) and English
Wikipedia data. In the masked language modeling stage, 15% of the words in the text
were replaced by a special token ‘‘[MASK]’’ to let the model learn and predict the masked
word based on the context. More specifically, among the words selected for masking, only
80% of them were replaced by the special mask token. 10% of them are replaced with
a random token and the remaining 10% remain the same. Originally, to let the model
learn the relationship of sentences, BERT also leveraged a next sentence prediction task.
Two sentences are concatenated together by a special token ‘‘[SEP]’’. 50% of the time, the
second sentence is the actual next sentence, and the rest of the time it is chosen randomly.
However, in the latest research (Liu et al., 2019), next sentence prediction was found not
to be important for improving BERT’s performance.

The prevailing belief (Bear Don’t Walk IV et al., 2021; Tamborrino et al., 2020) suggests
that further pre-training on task-specific domains will help improve BERT’s performance
on tasks within those domains, and both BioBERT and Clinical BERT took advantage
of this sequential pre-training process (Lee et al., 2019; Alsentzer et al., 2019). CaBERT
further pre-trained Clinical BERT with Moffitt pathology reports. They simply masked
15% of the words in the Moffitt dataset to a special token ‘‘[MASK]’’, and then trained
the language model to predict these words (Mitchell et al., 2022). While the performance
of pre-trained caBERT on the specific downstream tasks of interest was better than when
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just fine-tuning Clinical BERT, the performance on other tasks with more general corpora
such as SQuAD (Rajpurkar et al., 2016) and BioASQ (Balikas et al., 2015) decreased.

We suspect that there are tradeoffs in the pre-training process that depend on the size of
the available dataset and choice of downstream task (Sorscher et al., 2022; Wang, Panda &
Wang, 2023; Kaplan et al., 2020). Our dataset is much smaller than that used for caBERT:
our data contain 3.4K reports with approximately 1.5M words; caBERT is based on 276K
reports with 196M words (Mitchell et al., 2022). As a result, we still use the pre-training
process suggested by the caBERT authors on our renal pathology reports but conduct an
ablation study to determine whether the additional pre-training step adds value.

Extending vocabulary for exKidneyBERT
Both BioBERT and Clinical BERT use WordPiece tokenization (Wu et al., 2016). In our
two pre-defined questions for the IR tasks, we found six keywords that are not contained in
the original BERT vocabulary and would therefore be parsed into sub-words: ‘‘interstitial’’,
‘‘fibrosis’’, ‘‘tubular’’, ‘‘atrophy’’, ‘‘T-cell’’, and ‘‘antibody’’. We extended the tokenizer to
include these six keywords. Also, we needed to extend the embedding layer’s dimensionality
from 28,996 to 29,002 to match the newly added words. We extended the tokenizer with
additional words found in the two questions. We did not extend the tokenizer with
additional words in the reports because (1) these six words contain the most important
information needed for the model to locate the answers; (2) extending a lot of words
to the tokenizer may affect the pre-trained representations for the existing vocabulary.
Since the model does not have any knowledge of the newly added six words, we again
applied the same pre-training procedure as above to Clinical BERT (but now using the
extended tokenizer) and obtained a new language model we call ‘extended Kidney BERT’
(exKidneyBERT).

Fine-tuning BERT models for IR and classification
Figure 1 shows the architecture we exploited for information retrieval (IR) by using BERT
models. For each input, we concatenated ‘‘What kind of rejection does the patient show?’’
or ‘‘What is the grade of interstitial fibrosis and tubular atrophy?’’ to the microscopic
description section of the reports together with the special token ‘‘[SEP]’’. We also added
the special token ‘‘[CLS]’’ to the beginning of the concatenated text to follow the BERT
usage convention. On top of each BERT model, we added a linear layer as an IR span
classifier on the output embedding of BERT. The linear classifier layer is fine-tuned
simultaneously with BERT. During fine-tuning, the model predicts a start vector S and
an end vector E. The probabilities of each word to be the start and end of the answer are
the outputs of vectors S and E after softmax (Bridle, 1989) is applied using the formulas
pSi =

eSi∑
je

Sj
and pEi =

eEi∑
je

Ej
. Next, we applied cross-entropy loss (Cox, 1958) to calculate

the gradients:

−

∑
∀ŷ

1
(
X ,ŷ

)
log
(
P
(
ŷ|X

))
where 1

(
X ,ŷ

)
is the binary indicator for whether the predicted label ŷ matches the ground

truth label for input X, andP
(
ŷ|X

)
are the probabilities of the outputs from the softmax.We
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Figure 1 Architecture of kidney BERT for the IR task.
Full-size DOI: 10.7717/peerjcs.1888/fig-1

then updated the parameters of BERT and the classification layer through backpropagation.
The words with the maximum probability are chosen as the start and end of the answer text
span. If the position of the end word is before that of the start word, then ‘‘no information’’
will be predicted as the output.

In addition to IR, we also tried to use BERT models on the classification task for
questions with multiple categories as expected answers. Figure 2 describes the architecture
for these tasks. Similar to the IR model, the classification model also exploits a linear
classifier layer on top of the BERT models. However, this time we only use the output
embedding corresponding to the special token ‘‘[CLS]’’ as the input of the classifier, and
then the outputs of the classifier are converted into probabilities through a softmax. The
category with the maximum probability is chosen as the final output. Cross-entropy loss
is once again used as the loss function. We used HuggingFace transformers (Wolf et al.,
2020) as the BERT framework.

RESULTS
After introducing the metrics used for evaluating model performance (Metrics), we report
on three results. First, we trained the models on rejection cases only (Training on a portion
of reports—rejection cases). Second, we trained the BERT models on all renal pathology
reports for the classification tasks (Training on all reports—Classification). Third, we
trained the BERT models on all the reports for the IR tasks (Training on all reports—IR).
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Figure 2 Architecture of kidney BERT for the classification task.
Full-size DOI: 10.7717/peerjcs.1888/fig-2

Metrics
For the first question, ‘‘What kind of rejection does the patient show?’’, we labelled the
text span manually from the reports. A typical answer to the question is ‘‘No evidence of
acute antibody-mediated rejection’’. Since the answers are quite long, we measured the
overlap between the predicted text span and the ground truth answer. We calculated the
overlap ratio of how much the two text spans overlap on a character-level and word-level,
respectively. Measuring character-level overlap ratio could accommodate minor spelling
changes and misspellings. If two strings have high character-level overlap, it indicates a
strong similarity, even if there are minor differences in spelling. For the second question,
‘‘What is the grade of interstitial fibrosis and tubular atrophy?’’, since the answers are
one-word or two-word phrases, we only counted the prediction results which exactly
matched the ground truth phrases. In this case the F1-score was used as the performance
metric.

Training on a portion of reports—rejection cases
At the beginning, we focused only on the 242 reports with the rejection cases. Of these, 87
contain positive examples for TCMR. For simplicity, we converted the IR problem into
a binary classification task (rather than predicting a text answer). The task is to predict
whether the patient’s biopsy shows TCMR based on the report. For the two baseline
models, we froze the parameters of Clinical BERT and used (separately) logistic regression
and a linear neural network as a classifier with the embedding of the output sentence of
BERT as their input. Finally, we fine-tuned a third version of Clinical BERT, this time with
the weights unfrozen and a single-layer dense neural network as the classification head.
Table 3 shows the results of the three models. We can see that by fine-tuning the classifier
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Table 3 Classification results for freezing Clinical BERT vs. fine-tuning Clinical BERT on the small
TCMR sample. Acc refers to accuracy. Log.Reg. refers to logistic regression. DNN stands for dense neural
network.

Model Overall
Acc

Positive
precision

Positive
recall

Positive
F1-score

Frozen clinical BERT+Log.Reg. 0.78 0.75 0.23 0.35
Frozen clinical BERT+DNN 0.88 0.77 0.77 0.77
Fine-tuned clinical BERT+DNN 0.92 0.87 0.83 0.85

Figure 3 BERTmodels’ results of the IR task for ABMR.
Full-size DOI: 10.7717/peerjcs.1888/fig-3

and Clinical BERT together, both overall accuracy and F1-score of the positive samples
increased substantially.

Training on all reports–classification
In further experiments, we extended the dataset to all 3.4K reports. Analogous to the
transfer learning process used for caBERT (Mitchell et al., 2022), we randomly selected and
masked 15% of the words in all the reports and trained the Clinical BERT to predict those
replaced words. From this pre-training process, we obtained Kidney BERT, our first, novel
language model for renal pathology reports. We then extended the tokenizer of Clinical
BERT by the six keywords listed above and redid the same pre-training procedure as for
Kidney BERT on the 3.4K reports to obtain our second novel model, exKidneyBERT. We
fine-tuned all the BERTmodels in the pre-training chain (see theX-axis in Fig. 3) including
the vanilla-cased base BERT, BioBERT, Clinical BERT, Kidney BERT, and exKidneyBERT
on the rejection classification tasks. We also added IFTA grade classification as a second
task to further compare the performance of these models. The results are shown in Table 4.
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Table 4 Classification results for fine-tuning BERTmodels on the full dataset. CLS means classification
task.

Model Task Overall
Acc.

Positive
precision

Positive
recall

Positive
F1-score

BERT Rej. CLS 0.945 0.000 0.000 0.000
BioBERT Rej. CLS 0.953 0.697 0.447 0.515
Clinical BERT Rej. CLS 0.977 0.923 0.632 0.750
Kidney BERT Rej. CLS 0.977 0.867 0.684 0.765
exKidneyBERT Rej. CLS 0.978 0.811 0.789 0.800
Model Task Overall

Acc.
Weighted
precision

Weighted
recall

Weighted
F1-score

BERT IFTA CLS 0.702 0.690 0.697 0.679
BioBERT IFTA CLS 0.731 0.729 0.731 0.726
Clinical BERT IFTA CLS 0.733 0.734 0.732 0.729
Kidney BERT IFTA CLS 0.730 0.731 0.722 0.724
exKidneyBERT IFTA CLS 0.714 0.710 0.712 0.708

Figure 4 BERTmodels’ results of the IR task for TCMR.
Full-size DOI: 10.7717/peerjcs.1888/fig-4

Training on all reports–IR
In addition to classification tasks, we also considered information retrieval (IR) tasks. We
manually tagged the desired answer phrases corresponding to ABMR and TCMR rejection
in each report for the question ‘‘What kind of rejection does the patient show?’’. For the
question related to IFTA, ‘‘What is the grade of interstitial fibrosis and tubular atrophy?’’,
we tagged any mention of the six outcome classes as expected answers. We fine-tuned all
the BERT models again, each with an IR head attached. For the IR tasks, the question and
text are concatenated as the model input. Table 5 and Figs. 3–5 show the results.
We also found that exKidneyBERT overcomes some of the common failure modes other
models have. For example, in the IR task of ABMR, exKidneyBERT performed better on
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Table 5 IR results for fine-tuning BERTmodels on the full dataset.Overlap Ratio char and Overlap Ra-
tio word refer to the average overlap length between the predicted answers and the expected answers di-
vided by the length of the expected answers, at character-level and word-level, respectively. Exact match
rate refers to the proportion of perfect matches between the predicted answers and the expected answers.

Model Task Overlap Overlap
Ratio char Ratio word

BERT ABMR IR 0.442 0.616
BioBERT ABMR IR 0.519 0.667
Clinical BERT ABMR IR 0.363 0.461
Kidney BERT ABMR IR 0.363 0.461
exKidneyBERT ABMR IR 0.604 0.833
BERT TCMR IR 0.494 0.653
BioBERT TCMR IR 0.494 0.653
Clinical BERT TCMR IR 0.494 0.653
Kidney BERT TCMR IR 0.494 0.653
exKidneyBERT TCMR IR 0.664 0.792
Model Task Exact match rate
BERT IFTA IR 0.942
BioBERT IFTA IR 0.956
Clinical BERT IFTA IR 0.947
Kidney BERT IFTA IR 0.950
exKidneyBERT IFTA IR 0.958

Figure 5 BERTmodels’ results of the IR task for IFTA.
Full-size DOI: 10.7717/peerjcs.1888/fig-5

retrieving the information containing the term ‘‘antibody-mediated’’ correctly while other
models could not. A possible reason is that the tokenizer of exKidneyBERT will parse
the term ‘‘antibody-mediated’’ into ‘‘antibody’’, ‘‘-’’, and ‘‘mediated’’, while others will
parse it into ‘‘anti’’, ‘‘body’’, ‘‘-’’, ‘‘mediated’’. A similar case happened in the IR tasks of

Yang et al. (2024), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1888 11/17

https://peerj.com
https://doi.org/10.7717/peerjcs.1888/fig-5
http://dx.doi.org/10.7717/peerj-cs.1888


TCMR where exKidneyBERT performed better on the term ‘‘T-cell-mediated’’ than other
models.

DISCUSSION
Principal results
Our study shows the importance of extending the vocabulary of languagemodels to include
keywords found in the queries used for IR tasks. In addition, we compared the performance
differences of various BERT models on our kidney transplant pathology report dataset.

First, we found that by extending the tokenizer with the six keywords from the questions
of the IR tasks, exKidneyBERT outperforms the other BERT models. We compared five
BERT models in total. BioBERT was pre-trained with the PubMed corpus on the cased
base BERTmodel. Clinical BERT was pre-trained with theMIMIC-III dataset on BioBERT.
We created Kidney BERT by pre-training with our renal pathology data on Clinical BERT
and we developed exKidneyBERT by extending the tokenizer of Clinical BERT with six
keywords in the two questions in our IR tasks and pre-training with our data on Clinical
BERT.

In the classification task of rejection case, exKidneyBERT performed best on both
overall accuracy and F1-score of positive samples. But for the classification task of IFTA,
exKidneyBERT performs the second worst and the result of BioBERT beats others. This
is not surprising since, as specified in the task design, we removed the sentences that
contained the six keywords from the reports to make the task more difficult. This result
confirms that exKidneyBERT’s improved performance was specifically due to it making
use of its extended vocabulary.

For the IR tasks of ABMR and TCMR, exKidneyBERT outperforms the other four BERT
models on both overlap ratio at character level and word level. Notice that in the TCMR
case, exKidneyBERT achieved substantially better results (0.664 and 0.792 on overlap ratio
at character level and word level, respectively) than the other four BERT models (all had
0.494 on characters’ overlap ratio and 0.653 on words’ overlap ratio). For the IR tasks
with IFTA, exKidneyBERT achieved the best result among all five BERT models. Unlike
the classification tasks, the input text in the IR tasks contains the sentences include the six
keywords, which allows exKidneyBERT to benefit from the extended six keywords.

Second, we performed an ablation study to determine which modeling components
contributed to the performance increase. We found that performing masked language
model pre-training on increasingly small domain-specific text corpuses without extending
the vocabulary did not improve the performance in our domain. The success of previous
language models like Clinical BERT and CancerBERT appeared to suggest that when
adapting BERT to a particular domain, the BERTmodel will benefit from pre-training with
the domain-specific corpus. We found that pre-training on a small domain-specific corpus
for renal pathology reports is ineffective on its own. On the classification task, the results for
Kidney BERT are the same as those for Clinical BERT in overall accuracy, and only 0.015
higher in F1-score of positive samples (see Tables 4 and 5). On the IR tasks, the results for
Clinical BERT and Kidney BERT are the same on the rejection tasks, and the exact match
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rate of IFTA task with Kidney BERT is only 0.003 higher than Clinical BERT. Fine-tuning
the entire model (rather than using frozen parameters with a fine-tuned task-specific
head as is often done in pre-training setups) was beneficial based on the results shown in
Table 3.

Third, we found that for the specific subdomain of our renal pathology reports, BioBERT
performed better than Clinical BERT. We fine-tuned the BERT models on five tasks in
total and, in all tasks except for the rejection case of the classification task, BioBERT
outperformed Clinical BERT. This may be because Clinical BERT was pre-trained on a
different subdomain than our dataset while BioBERT was pre-trained on a more general
domain that may have provided better coverage of our dataset.

Limitations
First, exKidneyBERT was only designed to answer the two pre-defined questions. For
exKidneyBERT, we extended the tokenizer with the six keywords from the two questions
of the IR tasks we wanted to resolve. As always, if we desire to solve other IR tasks, we need
to train new models (with potentially more keywords) for them.

Second, the dataset we used is small compared to the other BERT models. Google BERT
was pre-trained on 3.3 billion words, BioBERTwas pre-trained on 18 billion words, Clinical
BERT was pre-trained on 880 million words, and the dataset we used for pre-training only
contains 1.5 million words. Pre-training on a larger dataset may further increase the
performance of Kidney BERT and exKidneyBERT; however, data availability is limited in
many domains including ours, and in order to investigate pre-training when working with
scarce data, we carry out our evaluations on a small dataset.

Comparison with prior work
We followed a similar unsupervised pre-training procedure as CancerBERT (Mitchell et al.,
2022) when developing Kidney BERT. Following this procedure, we initialized the model
parameters fromClinical BERT and randomly selected 15% of the words and replaced them
with a special token ‘‘[MASK]’’ and then trained the model to predict the masked tokens.
In addition, we added the six keywords from the questions of the IR tasks to the BERT
tokenizer and repeated the same pre-training procedure as CancerBERT on our dataset
to create exKidneyBERT. We found that on our kidney transplant pathology reports,
exKidneyBERT performs better than Kidney BERT, and is therefore an improvement
compared to the procedure of CancerBERT. We also benchmarked our proposed methods
against several other BERT variants as laid out in the results.

CONCLUSIONS
We have made two primary contributions. First, we developed exKidneyBERT, a language
model with an extended vocabulary of six keywords specific to renal pathology reports and
showed that exKidneyBERT outperformed existing models in the IR tasks. Second, while
designing the model, we found that contrary to conventional wisdom (Bear Don’t Walk IV
et al., 2021; Tamborrino et al., 2020), pre-training is not ‘‘all you need’’. In particular, we
found that in our renal pathology dataset, BioBERTperformed better thanClinical BERTon
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some of the tasks, even though Clinical BERT has additional pre-training over BioBERT. In
addition, we conducted an ablation study and found that Kidney BERT (without extended
vocabulary) did not outperform othermodels even though it was further pre-trained on our
renal pathology dataset. Our insights suggest that two factors must be met for pre-training
in similar challenges (e.g., other medical fields) to be successful: (1) the training corpus
needs to be well-aligned with the subdomain the model will be used on, and (2) especially
when pre-training on narrow subdomains with limited data, the model vocabulary needs
to be extended to explicitly include technical terms relevant to that subdomain. These two
findings would be helpful for people applying BERT-based language models, e.g., BioBERT,
Clinical BERT, on narrow medical subdomains with OOB technical terms. Future research
should confirm the importance of out-of-bag words in highly specialized domains.
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