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ABSTRACT OF THE THESIS

Theoretical Bounds and Constructions of Codes

in the Generalized Cayley Metric

by

Siyi Yang

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Lara Dolecek, Chair

Permutation codes have recently garnered substantial research interest due to their poten-

tial in various applications including cloud storage systems, genome resequencing and flash

memories. In this paper, we study the theoretical bounds and constructions of permutation

codes in the generalized Cayley metric. The generalized Cayley metric captures the num-

ber of generalized transposition errors in a permutation, and subsumes previously studied

error types, including transpositions and translocations, without imposing restrictions on

the lengths and positions of the translocated segments. Relying on the breakpoint analysis

proposed by Chee and Vu, we first propose a coding scheme that is order-optimal albeit not

constructive based on this method. We then develop another construction of permutation

codes in the generalized Cayley distance. This scheme is both explicit and systematic. We

also prove the existence of order- optimal systematic codes and offer a concrete construction

based on this method. For the generalized Cayley metric, we prove that our coding schemes

have less redundancy than the existing codes based on interleaving when the codelength is

sufficiently large and the number of errors is relatively small.
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CHAPTER 1

Introduction

This thesis is concerned with theoretical analysis and constructions of permutation codes in

the generalized Cayley metric. We open with a brief introduction on the background and

applications of permutation codes.

1.1 Background of Permutation Codes

Permutation codes have recently garnered substantial interest due to their potential in flash

memories. In recent years, a novel scheme called rank modulation has been popular in flash

memories. In flash memories, there are two typical types of problems: the overshoot problem,

in which a cell receives higher than normal charge, and the memory endurance problem, in

which a defective cell loses its charge more quickly than normal. Aiming at eliminating the

overshooting problem in programming cells and the memory endurance problem in aging

devices, rank modulation was first proposed by Jiang et al. in [JMSB09]. In the rank

modulation scheme, a set of n consecutive cells stores the information in the permutation

induced by the relative ranks of the charge levels of the cells. Then the above charge leakage

problems between cells all correspond to rearrangements of the stored permutations.

Research on permutation codes has been focused on constructions that proved to be ro-

bust to different kinds of errors, thus resulting in different metrics of distance for permutation

codes. In recent years, permutation codes in the Kendall-τ metric [BYEB16, BE15, ZG16]

and Ulam metric [FM14, FSM13, GLRS15], along with codes in the Levenshtein metric
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[GYF+16, CVZ15] have been intensely studied. The Kendall-τ metric captures the number

of transpositions required to transform a permutation into the other one, where a transposi-

tion refers to exchanging the positions of two adjacent symbols. The Ulam metric captures

the number of translocations that is necessary for obtaining a permutation from the other

one, where a translocation is equivalent to exchanging a substring and one of its neighboring

symbols. In this thesis, however, we pave our way to a more general type of metric, the

so-called generalized Cayley metric that captures the generalized transposition errors. Gen-

eralized transposition errors subsume transpositions and translocations that the Kendall-τ

metric and Ulam metric describe, when no restrictions are imposed on the positions and

lengths of the translocated segments [CV14].

Generalized transposition errors are also encountered in various applications including

cloud storage systems and genome resequencing. Cloud storage applications such as Drop-

box, OneDrive, iTunes, Google play, etc., are becoming increasingly popular, since they help

to manage and synchronize the folders stored in different devices (PC) [DW15]. The items

in the folders undergo rearrangements between two rounds of synchronizations. These op-

erations, when the items are uniquely labeled and ordered, correspond to transpositions in

permutations. In DNA resequencing, released genomes consist of collections of unassembled

contigs and their organizations evolve over time by undergoing rearrangement operations.

Gene order in a chromosome is subject to rearrangements including reversals, transpositions,

translocations, block-interchanges, etc. [ZS17, CLCL16]. Errors encountered in the applica-

tions described above can be appropriately modeled by the generalized Cayley metric for

permutation codes, introduced by Chee and Vu [CV14], capturing the number of generalized

transpositions between two permutations.

Codes in the generalized Cayley metric were first studied in [CV14] using breakpoint

analysis, wherein a coding scheme is constructed based on permutation codes, previously

introduced in [FSM13], in the Ulam metric. Let N be the length of the codewords, and t be

the maximum number of errors in the generalized Cayley metric. While the coding scheme
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proposed in [CV14] is explicitly constructive and implementable, the interleaving technique

used inevitably incurs a noticeable rate penalty of O
(

1
logN

)
, without even considering the

number of errors the codes are able to correct. As we show later, the best possible rate of a

length-N code that corrects t generalized transposition errors is 1−O( t
N

). When t is small

compared to O( N
logN

), the gap between the rate of existing codes based on interleaving and

the optimal rate increases with N , thus motivating the need to introduce other techniques

that are not based on interleaving.

1.2 Outline of Contributions

The content of this thesis is organized as follows. In Section 2.1, we present the basic notation

and properties for the generalized Cayley metric and the so-called block permutation metric,

which is introduced for metric embedding. In Section 2.2, we define the notion of error-

correcting codes in these two metrics and derive useful upper and lower bounds on their

optimal rates. We prove the optimal rate to be 1−O
(
t
N

)
and use these results to guide the

construction of order-optimal codes in Chapter 3.

In Chapter 3, we propose constructions of order-optimal permutation codes in the gen-

eralized Cayley metric. The main idea of our coding schemes is to map each permutation

on [1 : N ] to an unique characteristic set on the Galois field Fq, where q is a prime number

such that N2 − N < q < 2N2 − 2N and N is the codelength. We prove that knowledge of

the boundaries of the unaltered segments is sufficient for recovering the permutation from

its modified version, obtained through generalized transpositions. We exploit the fact that

the symmetric difference of the characteristic sets of two distinct permutations corresponds

to these boundaries. Given that the number of such boundaries is linearly upper bounded

by the number of generalized transpositions, it is sufficient to find permutations with corre-

sponding sets on Fq that have large enough set differences to ensure the error correction code

property. Our proposed method provides a sufficient condition for ensuring the lower bound

on the cardinality of these set differences, which in turn ensures a large enough minimum
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distance of the resulting order-optimal code.

We present a method for constructing permutation codes in the generalized Cayley metric.

We assign to each permutation of length N a parity check sum with elements chosen from a

Galois field Fq, where q is a prime number such that N2 − N < q < 2(N2 − N). We prove

that the permutations with the same parity check sums constitute a codebook, and we prove

that the largest one is order-optimal.

Based on this method, in Chapter 4, we extend our research to the existence of system-

atic codes. In systematic codes, each codeword contains the information bits as a substring.

Systematic codes have the advantages of easy implementation and low decoding complexity.

We present an explicitly constructive coding scheme for order-optimal systematic permuta-

tion codes in the generalized Cayley metric. We then compare our work to existing schemes

and prove that the rates of our proposed codes are higher than those of existing codes based

on interleaving. We prove that our coding schemes are more rate efficient when N is large

enough and t is relatively small.

Lastly, we conclude and summarize our main contributions in Chapter 5, and discuss

future extensions.
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CHAPTER 2

Analysis

2.1 Measure of Distance

In this thesis, we denote by [N ] the set {1, 2, · · · , N}. We let SN represent the set of all

permutations on [N ], where each permutation σ : [N ]→ [N ] is a bijection between [N ] and

itself. The symbol ◦ denotes the composition of functions. Specifically, σ ◦ π denotes the

composition of two permutations σ, π ∈ SN , i.e., (σ ◦ π) (i) = σ (π (i)), ∀ i ∈ [N ]. We assign

a vector (σ(1), σ(2), · · · , σ(N)) to each permutation σ ∈ SN . Under this notation, we call

e = (1, 2, · · · , N) the identity permutation. Additionally, σ−1 is the inverse permutation of

σ. The subsequence of σ from position i to j is written as σ [i; j] , (σ(i), σ(i+ 1), · · · , σ(j)).

The symbol ∆ refers to the symmetric difference. Let GCD (·) and LCM (·) be the great-

est common divisor and the least common multiple, respectively. The symbol ≡ denotes

‘congruent modulo’.

2.1.1 Generalized Cayley Distance

A generalized transposition φ (i1, j1, i2, j2) ∈ SN , where i1 ≤ j1 < i2 ≤ j2 ∈ [N ], refers

to a permutation that is obtained from swapping two segments of the identity permutation
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[CV14], i.e., e [i1, j1] and e [i2, j2], namely,

φ (i1, j1, i2, j2) , {1, · · · , i1 − 1, i2, · · · , j2,

j1 + 1, · · · , i2 − 1, i1, · · · , j1, j2 + 1, · · · , N}.
(2.1)

Denote the set of all transformations of a single generalized transposition on a permuta-

tion of length N as TN . For each π ∈ SN and φ (i1, j1, i2, j2) ∈ TN , the permutation obtained

from swapping the segments π [i1; j1] and π [i2; j2] is exactly π ◦ φ, i.e., the permutation

(π(1), · · · , π(i1 − 1), π(i2), · · · , π(j2), π(j1 + 1),

· · · , π(i2 − 1), π(i1), · · · , π(j1), π(j2 + 1), · · · , π(N)).

(2.2)

Example 1. Let π = (3, 5, 6, 7, 9, 8, 1, 2, 10, 4) ∈ S10. Let the underlines mark the subse-

quences that are swapped by φ. Then we have,

π =
(
3, 5, 6, 7, 9, 8, 1, 2, 10, 4

)
,

φ(2, 5, 7, 8) =
(
1, 7, 8, 6, 2, 3, 4, 5, 9, 10

)
,

(π ◦ φ) (2, 5, 7, 8) =
(
3, 1, 2, 8, 5, 6, 7, 9, 10, 4

)
.

Definition 1. (Generalized Cayley Distance, cf. [CV14]) The generalized Cayley dis-

tance dG(π1, π2) is defined as the minimum number of generalized transpositions that is

needed to obtain the permutation π2 from π1, i.e.,

dG(π1, π2) ,min
d
{∃ φ1, φ2, · · · , φd ∈ TN ,

s.t., π2 = π1 ◦ φ1 ◦ φ2 · · · ◦ φd}.
(2.3)

Remark 1. (cf. [CV14]). For all π1, π2, π3 ∈ SN , the generalized Cayley distance dG satisfies

the following properties:

1. (Symmetry) dG(π2, π1) = dG(π1, π2).
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2. (Left-invariance) dG(π3 ◦ π1, π3 ◦ π2) = dG(π1, π2).

3. (Triangle Inequality) dG(π1, π3) ≤ dG(π1, π2) + dG(π2, π3).

Notice that the generalized Cayley distance dG between two permutations is hard to

compute, which makes it difficult to construct codes in the generalized Cayley metric. The

common method to address the difficulty of specifying the distances between permutations

is metric embedding, where we find another metric that is computable and is of the same

order as dG. Then we are able to transform the construction of codes in dG into that in the

new metric. This new metric is the block permutation distance we introduce next.

2.1.2 Block Permutation Distance

We say a permutation π ∈ SN is minimal 1 if and only if no consecutive elements in π are

also consecutive elements in the identity permutation e, i.e.,

∀ 1 ≤ i < N, π(i+ 1) 6= π(i) + 1. (2.4)

Denote the set of all minimal permutations of length N as DN . We then define the block

permutation distance as follows.

Definition 2. The block permutation distance dB (π1, π2) between two permutations

π1, π2 ∈ SN is equal to d if

π1 = (ψ1, ψ2, · · · , ψd+1) ,

π2 =
(
ψσ(1), ψσ(2), · · · , ψσ(d+1)

)
,

(2.5)

where σ ∈ Dd+1, ψk = π1 [ik−1 + 1 : ik] for some 0 = i0 < i1 · · · < id < id+1 = N , and

1 ≤ k ≤ d+ 1.

Note that the block permutation distance is d if and only if (d+1) is the minimum number

of blocks the permutation π1 needs to be divided into in order to obtain π2 through block

1We note that this is different from the notion of minimal permutation specified in group theory.
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level permutation. Here by block level permutation we refer to dividing the permutation

into multiple segments and making a permutation of those segments.

Remark 2. The block permutation distance dB also satisfies the properties of symmetry and

left-invariance, which are defined in Remark 1.

Proof. We suppose π1, π2 ∈ SN such that dB(π1, π2) = d. According to the definition of the

block permutation distance, π1, π2 satisfies (2.5) for some σ ∈ Sd+1 and some ψ1, ψ2, · · · , ψd+1.

To prove the symmetry, we define ψ′i = ψσ(i) for 1 ≤ i ≤ d + 1, and σ′ = σ−1. Then we

will have

π2 =
(
ψ′1, ψ

′
2, · · · , ψ′d+1

)
,

π1 =
(
ψ′σ′(1), ψ

′
σ′(2), · · · , ψ′σ′(d+1)

)
,

thus, dB(π2, π1) = d = dB(π1, π2).

To prove the left-invariance, suppose the length of ψi is li and ψi = (ψi(1), ψi(2), · · · , ψi(li))

for all 1 ≤ i ≤ d+1. For any π3 ∈ SN , we define ψ̃i = (π3 (ψi(1)) , π3 (ψi(2)) , · · · , π3 (ψi(li))),

for 1 ≤ i ≤ d+ 1. Then we have

π3 ◦ π1 =
(
ψ̃1, ψ̃2, · · · , ψ̃d+1

)
,

π3 ◦ π2 =
(
ψ̃σ(1), ψ̃σ(2), · · · , ψ̃σ(d+1)

)
.

Therefore dB(π3 ◦ π1, π3 ◦ π2) = d = dB(π1, π2).

Note that Definition 2 is an implicit representation of dB. We next find other ways to

characterize dB explicitly.

Definition 3. The characteristic set A(π) for any π ∈ SN is defined as set of all consec-

utive pairs in π, i.e.,

A(π) , {(π(i), π(i+ 1)) |1 ≤ i < N}. (2.6)
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Definition 4. The block permutation weight wB (π) is defined as the number of consecu-

tive pairs in π that does not belong to A(e) (wB is exactly the number of so-called breakpoints

in [CV14]), i.e.,

wB (π) , |A(π) \ A(e)|. (2.7)

Here e refers to the identity permutation.

The next two lemmas state explicit representations of the block permutation distance dB

by the characteristic set and the block permutation weight, respectively. We apply Lemma 1

to construct the coding scheme later in Chapter 3, and Lemma 2 to derive the forthcoming

relation between the generalized Cayley distance dG and the block permutation distance dB.

Lemma 1. For all π1, π2 ∈ SN ,

dB(π1, π2) = |A(π2) \ A(π1)| = |A(π1) \ A(π2)|. (2.8)

Proof. The proof is in Appendix A.

Remark 3. From Lemma 1 and Definition 4, it is obvious that

wB (π) = dB(e, π) = dB(π, e). (2.9)

For all π1, π2 ∈ SN , it follows immediately from the left-invariance property of dB and

(2.9) that

dB (π1, π2) = wB
(
π−11 ◦ π2

)
. (2.10)

In Example 2, we show how to compute the block permutation distance of two permuta-

tions from their characteristic sets, as is indicated in Lemma 1.

Example 2. Let π1 = (3, 5, 6, 7, 9, 8, 1, 2, 10, 4), π2 = (3, 1, 2, 8, 5, 6, 7, 9, 10, 4). Denote

9



ψi, 1 ≤ i ≤ 4 and σ as below,

ψ1 = (3),

ψ2 = (5, 6, 7, 9),

ψ3 = (8),

ψ4 = (1, 2),

ψ5 = (10, 4),

σ = (1, 4, 3, 2, 5).

Then we have

π1 = (ψ1, ψ2, ψ3, ψ4, ψ5) ,

π2 =
(
ψσ(1), ψσ(2), ψσ(3), ψσ(4), ψσ(5)

)
,

(2.11)

thus, dB(π1, π2) = 4.

Using the characteristic sets,

A(π1) = {(3, 5), (5, 6), (6, 7), (7, 9),

(9, 8), (8, 1), (1, 2), (2, 10), (10, 4)},

A(π2) = {(3, 1), (1, 2), (2, 8), (8, 5),

(5, 6), (6, 7), (7, 9), (9, 10), (10, 4)},

we have that

|A(π2) \ A(π1)| = |{(3, 5), (9, 8), (8, 1), (2, 10)}| = 4.

This example is in accordance with Lemma 1.

10



2.1.3 Metric Embedding

In general, the generalized Cayley distance is difficult to compute, whereas the block per-

mutation distance is easier to derive. In the next section, we apply metric embedding to

transform the problem of code design in dG into that in dB, which is easier to deal with,

using the following results.

Lemma 2. For all π1, π2 ∈ SN , we have:

wB (π1 ◦ π2) ≤ wB (π1) + wB (π2) . (2.12)

Proof. The proof is in Appendix B.

Remark 4. It follows immediately from equation (2.10) and Lemma 2 that the block per-

mutation distance satisfies the triangle inequality, i.e., ∀ π1, π2, π3 ∈ SN ,

dB(π1, π3) ≤ dB(π1, π2) + dB(π2, π3). (2.13)

From Lemma 2 and the definitions of the generalized Cayley metric and the block per-

mutation metric, we derive the following relation between dB and dG. This result is used

later in Chapter 3.

Lemma 3. For all π1, π2 ∈ SN , we have:

dG (π1, π2) ≤ dB (π1, π2) ≤ 4dG (π1, π2) . (2.14)

Proof. To prove the upper bound, we consider two arbitrary permutations π1, π2, and let

k = dG(π1, π2). We know from the definition of block permutation weight and generalized

transpositions that for any generalized transposition φ ∈ TN (TN is defined before as the set
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of all generalized transposition with length N), we have:

wB (φ) ≤ 4. (2.15)

From the definition of generalized Cayley metric, we know that ∃ {φi}ki=1, such that

π2 = π1 ◦ φ1 ◦ φ2 · · · ◦ φk.

Then from Lemma 2 and (2.15), we know that:

dB (π1, π2) =wB
(
π−11 ◦ π2

)
=wB (φ1 ◦ φ2 ◦ · · · ◦ φk)

≤
k∑
i=1

wB (φi)

≤4k = 4dG (π1, π2) .

The upper bound is proved.

To prove the lower bound, we consider distinct permutations π1 and π2 such that dB(π1, π2) =

d > 0. Then, from the definition of the block permutation weight we know that there exists

a minimal permutation σ (minimal permutation is defined in Section 2.1.2 and a partition

{ψi}d+1
i=1 of π1 such that π1 = (ψ1, ψ2, · · · , ψd+1) and

π2 =
(
ψσ(1), ψσ(2), · · · , ψσ(d+1)

)
.

Next, suppose l0 is the smallest index l such that σ(l) 6= l, 1 ≤ l ≤ N . Let k0 =

σ−1(l0), we have k0 > l0. Let φ1 be the generalized transposition that swaps the sub-

sequences
(
ψσ(l0), ψσ(l0+1), · · · , ψσ(k0−1)

)
and ψσ(k0) = ψl0 in π2. Let π

(1)
1 = π2 ◦ φ1 and
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σ(1) = (1, 2, · · · , l0, σ(l0), σ(l0 + 1), · · · , σ(k0 − 1), σ(k0 + 1), · · · , σ(d+ 1). Then,

π
(1)
2 =

(
ψσ(1)(1), ψσ(1)(2), · · · , ψσ(1)(d+1)

)
.

Here π
(1)
2 = π2 ◦ φ1. If π

(1)
2 = π1, then π1 = π2 ◦ φ1. Otherwise we let l1 be the smallest

index l such that σ(1)(l) 6= l, 1 ≤ l ≤ N , and we know that l1 > l0.

We can find a series of generalized transpositions φ1, φ2, · · · , φm, 1 ≤ m ≤ d sequentially,

by the following procedure, such that π2 ◦ φ1 ◦ φ2 ◦ · · · ◦ φm = π1. Suppose φ1, φ2, · · · , φi

are found. Let π
(i)
2 = φ1 ◦ φ2 ◦ · · · ◦ φi =

(
ψσ(i)(1), ψσ(i)(2), · · · , ψσ(i)(d+1)

)
. If π

(i)
2 = π1, then

π1 = π2 ◦ φ1 ◦ φ2 ◦ · · · ◦ φi. Otherwise we let li be the smallest index such that σ(i)(li) 6= li.

Suppose ki =
(
σ(i)
)−1

(li), and we have ki > li.

Denote the generalized transposition that swaps the subsequences
(
ψσ(i)(1), ψσ(i)(2), · · · , ψσ(i)(ki−1)

)
and ψσ(i)(ki) = ψli in π

(i)
2 by φi+1. Let πi+1

2 = π
(i)
2 ◦ φi+1, σ

(i+1) = (1, 2, · · · , li, σ(i)(li), σ
(i)(li +

1), · · · , σ(i)(ki − 1), σ(i)(ki + 1), · · · , σ(i)(d+ 1). Then,

π
(i+1)
2 =

(
ψσ(i+1)(1), ψσ(i+1)(2), · · · , ψσ(i+1)(d+1)

)
.

Follow this procedure, and suppose m is the smallest integer such that π
(m)
2 = π1. In

this procedure, we find l0, · · · , lm−1 sequentially, where 1 < l0 < l1 < · · · < lm−1. We

also know that lm−1 ≤ d, otherwise we must have σ(m−1)(i) = i for all 1 ≤ i ≤ d, and

σ(m−1)(d + 1) 6= d + 1, which leads to a contradiction. Therefore d ≥ lm−1 > · · · > l0 ≥ 1,

which indicates that m ≤ d. Note that π1 = π2 ◦ φ1 ◦ · · · ◦ φm, from which we know that

dG(π1, π2) ≤ m ≤ d = dB(π1, π2).

The lemma is proved.

2.2 Theoretical Bounds
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A subset CG (N, t) of SN is called a t-generalized Cayley code if it can correct t gener-

alized transposition errors. Any t-generalized Cayley code has minimum generalized Cayley

distance dG,min ≥ 2t + 1. Similarly, a subset CB (N, t) of SN is a t-block permutation

code if its minimum block permutation distance dB,min ≥ 2t + 1. Denote the code rate of

CG (N, t), CB (N, t) as RG (N, t) and RB (N, t), respectively. Let CG,opt (N, t) and CB,opt (N, t)

be t-generalized Cayley codes and t-block permutation codes with optimal rate, denoted as

RG,opt (N, t) and RB,opt (N, t), respectively. We derive lower bounds and the upper bounds

of RG,opt (N, t) and RB,opt (N, t).

For each π ∈ SN , we define the generalized Cayley ball BG(N, t, π) of radius t cen-

tered at π to be the set of all permutations in SN that have a generalized Cayley distance

from π not exceeding t. We know from the left-invariance property of dG that the cardinality

of BG(N, t, π) is independent of π; we denote |BG(N, t, π)| as bG(N, t). The block permu-

tation ball BB(N, t, π) and the corresponding ball-size bB(N, t) are similarly defined.

We derive the lower and upper bounds of bB(N, t) and bG(N, t) in the following two

lemmas, respectively. We build on these results and Lemma 6 to compute the bounds of the

rate of optimal codes in dG and dB, proving that their redundancy is O( t
N

).

Lemma 4. For all N ∈ N∗, t ≤ N−
√
N−1, bB(N, t) is bounded by the following inequality:

t∏
k=1

(N − k) ≤ bB(N, t) ≤
t∏

k=0

(N − k). (2.16)

Proof. The proof is in Appendix C.

Lemma 5. For all N ∈ N∗, t ≤ min{N −
√
N − 1, N−1

4
}, bG(N, t) is bounded as follows:

(
N − 1

4t

)
(2t)!

2tt!
≤ bG(N, t) ≤

4t∏
k=0

(N − k). (2.17)

Proof. The proof is in Appendix D.

As the metric dB and dG both satisfy the triangle inequality, it follows that a subset
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C ⊆ SN is a t-generalized Cayley code if dG(x, y) > 2t for all x, y ∈ C, x 6= y. Similarly, C is

a t-block permutation code if dB(x, y) > 2t for all x, y ∈ C, x 6= y. The cardinalities of the

optimal codes CB,opt(N, t) and CG,opt(N, t) are bounded by the inequalities below.

N !

bB(N, 2t)
≤ |CB,opt (N, t)| ≤ N !

bB(N, t)
,

N !

bG(N, 2t)
≤ |CG,opt (N, t)| ≤ N !

bG(N, t)
.

(2.18)

We formulate the optimal code rate as follows

RB,opt(N, t) =
log|CB,opt (N, t)|

logN !
,

RG,opt(N, t) =
log|CG,opt (N, t)|

logN !
.

(2.19)

From [Rob55, (1)-(2)], we know that for all N ∈ N∗,

N ! =
√

2πNN+1/2e−N · erN , (2.20)

where

1

12N + 1
< rn <

1

12N
. (2.21)

From (2.20) and (2.21), Lemma 6 follows.

Lemma 6. For all N ∈ N∗, it follows that

(N +
1

2
) logN − (log e)N <

N∑
n=1

log n < (N + 1) logN −N + 2.

Theorem 1. For fixed t and sufficiently large N , the optimal rates satisfy the following

inequalities,

1− c1 ·
2t+ 1

N
≤RB,opt (N, t) ≤ 1− t

N
,

1− c1 ·
8t+ 1

N
≤RG,opt (N, t) ≤ 1− c2 ·

4t

N
,

(2.22)

15



where c1 = 1 + 2 log e
logN

, c2 = 1− 3(log t+1)
4(logN−1) .

Proof. From (2.18) and (2.19), it follows that

1− log bB(N, 2t)

logN !
≤ RB,opt(N, t) ≤ 1− log bB(N, t)

logN !
,

1− log bG(N, 2t)

logN !
≤ RG,opt(N, t) ≤ 1− log bG(N, t)

logN !
.

(2.23)

By applying Lemma 5 and Lemma 6 to (2.23), for fixed t and sufficiently large N , we

have

RG,opt(N, t) ≥ 1−
log

[
8t∏
k=0

(N − k)

]
logN !

> 1− (8t+ 1) logN

(N + 1
2
) logN − (log e)N

> 1− 8t+ 1

N

(
1 +

2 log e

logN

)
.

RG,opt(N, t) ≤ 1−
log
[(

N−1
4t

) (2t)!
2tt!

]
logN !

= 1−
log

[
4t∏
k=1

(N − k)

]
+ log

[
(2t)!

(4t)!2tt!

]
logN !

< 1−
4t(logN − 1

8
)− 3t log(4t)

(N + 1) logN −N + 2

= 1− 4t

N

(
logN − 1

8
− 3

2
− 3

4
log t

logN − 1 + 2+logN
N

)

= 1− 4t

N

(
1−

5
8

+ 2+logN
N

+ 3
4

log t

logN − 1 + 2+logN
N

)

< 1− 4t

N

(
1−

3
4

(log t+ 1)

logN − 1

)
= 1− 4t

N

(
1− 3(log t+ 1)

4(logN − 1)

)
.
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Similarly, by applying Lemma 4 and Lemma 6 to (2.23), we have

RB,opt(N, t) ≥ 1−
log

[
2t∏
k=0

(N − k)

]
logN !

> 1− (2t+ 1) logN

(N + 1
2
) logN − (log e)N

> 1− (2t+ 1) logN

N(logN − log e)

> 1− 2t+ 1

N

(
1 +

2 log e

logN

)
.

RB,opt(N, t) ≤ 1−
log

[
t∏

k=1

(N − k)

]
logN !

< 1−
t(logN − 1

2
)

(N + 1) logN −N + 2

< 1−
t(logN − 1

2
)

N logN − 1
2
N

= 1− t

N
.

The theorem is proved.

The above two inequalities in Theorem 1 indicate that the rate R = 1−O
(
t
N

)
is order-

optimal for both the t-generalized Cayley codes and the t-block permutation codes.
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CHAPTER 3

Order-optimal Codes in the Generalized Cayley Metric

We discussed the optimal rate of t-generalized Cayley Codes and t-block permutation codes

in the previous chapter. We now focus on the corresponding constructions of codes with the

order-optimal rates. We know from Lemma 3 that any 4t-block permutation code is also a

t-generalized Cayley code. In the sequel, we thus focus on the construction of order-optimal

t-block permutation codes. In Section 3.1, we develop a construction of order-optimal t-block

permutation codes (Theorem 2). We then provide the corresponding decoding scheme of the

proposed codes in Section 3.2.

3.1 Encoding Scheme

Denote the set of all ordered pairs of non-identical elements from [N ] as P , then |P | = N2−N .

Suppose q is a prime number such that q ≥ |P |. From Bertrand’s postulate, we can always

find a q such that |P | ≤ q ≤ 2|P |.

Let υ : P → Fq be an arbitrary injection from P to Fq, where Fq is the Galois field of

order q. Let P(Fq) represent the power set of Fq. We define an injection ν : SN → P(Fq) as

follows:

ν(π) , {υ(p)|p ∈ A(π)}. (3.1)

Then ν is invertible, namely, we are able to compute a unique π from ν(π).
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We then define a class of surjections α(q,d) : SN → F2d−1
q as follows:

α(q,d)(π) , (α1, α2, · · · , α2d−1) , (3.2)

where 

α1 ≡
∑

b∈ν(π)
b mod q,

α2 ≡
∑

b∈ν(π)
b2 mod q,

...

α2d−1 ≡
∑

b∈ν(π)
b2d−1 mod q.

(3.3)

The following Lemma 7 states that the cardinality of the symmetric difference of ν(π1), ν(π2)

for any two permutation π1, π2 ∈ SN , π1 6= π2 is greater than 2d if their parity check sums

α(q,d)(π1) and α(q,d)(π2) are identical. Therefore their block permutation distance is greater

than d based on Lemma 1. This lemma is applied throughout this paper in the construction

of order-optimal permutation codes in both the generalized Cayley metric and the block

permutation distance.

Lemma 7. For all π1, π2 ∈ SN , π1 6= π2, if α(q,d)(π1) = α(q,d)(π2), then

|ν(π1)∆ν(π2)| > 2d. (3.4)

Proof. The proof is in Appendix E.

Note that the function α(q,2t) induces a surjection from SN to F4t−1
q and divides SN into

q4t−1 subsets based on their parity check sums α = (α1, α2, · · · , α4t−1). We next prove that

each such subset is a t-block permutation code, which is stated as the following theorem.
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Theorem 2. For all α ∈ F4t−1
q , suppose:

Cα(N, t) = {π|π ∈ SN , α(q,2t)(π) = α}, (3.5)

where α(q,2t) is defined in (4.2). Then ∀ π1, π2 ∈ Cα(N, t), π1 6= π2, we have

dB(π1, π2) ≥ 2t+ 1. (3.6)

Proof. Let d = 2t in Lemma 1, then (3.1) implies that

dB(π1, π2) =
1

2
|A(π1)∆A(π2)|

=
1

2
|ν(π1)∆ν(π2)|

>
1

2
(2 · 2t) = 2t,

(3.7)

where ∆ refers to the symmetric difference of sets.

Theorem 2 implies that {Cα(N, t) : α ∈ F4t−1
q } is a partition of SN , where each component

Cα(N, t) is a t-block permutation code indexed by α. Suppose Cαmax(N, t) is the one with

maximal cardinality and has parity check sum αmax. It follows from Pigeonhole Principle

that:

|Cαmax(N, t)| ≥ N !

|F4t−1
q |

=
N !

q4t−1
. (3.8)

Denote the rate of Cαmax(N, t) by RB(N, t). Given that N2 − N = |P | ≤ q < 2|P | =
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2N2 − 2N < 2N2, it follows from Lemma 6 that for sufficiently large N ,

RB(N, t) ≥ 1− 4t log q

logN !
> 1− 8t logN + 4t

logN !

> 1−
8t(logN + 1

2
)

(N + 1
2
) logN − (log e)N

> 1− 8t

N

(
logN + 1

2

logN − log e

)
> 1− 8t

N

(
1 +

1

2 logN

)(
1 +

2 log e

logN

)
> 1− 8t

N

(
1 +

2 log e+ 1

logN

)
.

(3.9)

Then Cαmax(N, t) is an order-optimal t-block permutation code.

3.2 Decoding Scheme

In previous discussion, we map each permutation π ∈ SN to a unique set ν(π) ∈ P(Fq)

as defined in equation (3.1), where N2 − N ≤ q ≤ 2N2 − 2N and P(Fq) represents the

power set of Fq. In the decoding scheme, our objective is to compute ν(π) from a previously

specified parity check sum α and the received permutation π′. The strategy is, for every set

B ∈ P(Fq), map B to a polynomial f(X;B) defined as follows:

f(X;B) ,
∏
b∈B

(X + b) = XN−1 +
N−1∑
i=1

eBi X
N−1−i. (3.10)

We call f(X;B) the characteristic function of the set B. All the polynomials as well

as the polynomial operations are defined in Fq.

Given the a priori agreement on the codebook, i.e., the choice of α, the value of the first

4t coefficients of f(X;B) and f(X;B′) can be computed, where B = ν(π) and B′ = ν(π′).

We then use these coefficients to derive ν(π) = B. Note that this coding strategy bares

resemblance to that proposed in [DA10], the key difference being that the coefficients of

the polynomials we discussed are partially known, which making our decoding scheme more
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complicated, whereas those in [DA10] are fully known.

Note that eBi , 1 ≤ i ≤ N − 1 in (3.10) is the i-th elementary symmetric polynomial of

the elements in B. Also note that the i-th component αi, 1 ≤ i ≤ 4t − 1, of the value

α = α(q,2t)(π) is exactly the i-th power sum of the elements in B = ν(π). We know from

Newton’s identities that there exists a bijection between the 4t− 1 power sums and the first

4t− 1 elementary symmetric polynomials of elements in B, described below:



eB0 = 1,

eB1 = α1,

eB2 = 2−1(eB1 α1 − α2),

eB3 = 3−1(eB2 α1 − eB1 α2 + α3),

...

eB4t−1 = (4t− 1)−1(eB4t−2α1 − eB4t−3α2 + · · ·+ α4t−1).

(3.11)

Denote the coefficient of XN−i−1 in f(X;B) and f(X;B′) by ai, a
′
i, respectively. Let

r(B) = (a1, a2, · · · , a4t−1), r(B′) = (a′1, a
′
2, · · · , a′4t−1). Suppose the transmitter sends π ∈ SN

and the receiver receives π′, where dG(π, π′) ≤ t. The receiver uses the knowledge of α to

compute r(B) and to derive r(B′) from B′, where B = ν(π) and B′ = ν(π′). Note that π can

be computed from B = ν(π) since ν is an injection from SN to P(Fq). Thus the objective is

to compute B from r(B), r(B′) and B′.

Denote f1 = f(X;B), f2 = f(X;B′), where f(X;B) is specified in (3.10). Our objective
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is to compute B from f1, f2. Suppose D2 = B \B′, D1 = B′ \B, D3 = B ∩B′. Let

g1(X) =
f1

GCD(f1, f2)
=
∏
b∈D2

(X + b),

g2(X) =
f2

GCD(f1, f2)
=
∏
b∈D1

(X + b),

g3(X) = GCD(f1, f2) =
∏
b∈D3

(X + b).

(3.12)

Notice that g1, g2, g3 uniquely determine f1, f2, which indicates that they are sufficient

for computing π. We next seek to compute g1, g2, g3 from r(B) and f2 = g2 · g3, from which

f1 = g1 ·g3 can be determined. Let (h1, h2) = (X t−kg2, X
t−kg1), where k = deg g1 = deg g2 =

|D1| = |D2| ≤ t. Then (h1, h2) satisfy h1 · f1 = h2 · f2. We will also prove later in Theorem 3

that g1, g2, g3 can be computed from an arbitrary solution (h1, h2) of h1·f1 = h2·f2. Therefore

any solution to h1 · f1 = h2 · f2 is sufficient for computing π. Also notice that the first 4t− 1

coefficients of h1 · f1 and h2 · f2 uniquely determine r(B) and r(B′), respectively, if h1, h2 are

known. In order to compute g1, g2, g3, it is sufficient to find (h1, h2) of degree t such that the

first 4t − 1 coefficients of h1 · f1 and that of h2 · f2 are equal, i.e., the following inequality

holds,

deg(h1 · f1 − h2 · f2) < N − 3t. (3.13)

For each c ∈ F2t
q , where

c =

(
c1, · · · , ct,−c′1, · · · ,−c′t

)T
, (3.14)

define the polynomials h1(c), h2(c) of degree t as follows,

h1(c) , X t + c1X
t−1 + c2X

t−2 + · · ·+ ct,

h2(c) , X t + c′1X
t−1 + c′2X

t−2 + · · ·+ c′t.

(3.15)
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Define

A =

1 0 · · · 0 1 0 · · · 0

a1 1
. . .

... a′1 1
. . .

...

...
...

. . . 0
...

...
. . . 0

at−1 at−2 · · · 1 a′t−1 a′t−2 · · · 1

...
...

. . .
...

...
...

. . .
...

a4t−2 a4t−3 · · · a3t−1 a′4t−2 a′4t−3 · · · a′3t−1


,

(3.16)

and

b =

(
a′1, · · · , a′4t−1

)T
−
(
a1, · · · , a4t−1

)T
. (3.17)

The following Lemma 8 provides an equivalent linear equation to find a solution that

satisfies (3.13), and Theorem 3 shows how to compute π from this intermediate value.

Lemma 8. Consider the following equation:

Ac = b. (3.18)

For any vector c ∈ F2t
q , c is a solution to (3.18) iff (h1(c), h2(c)) satisfies (3.13).

Proof. The proof is in Appendix F.

Theorem 3. Let c be an arbitrary solution to (3.18), and h1 = h1(c), h2 = h2(c). Denote

h, v1, v2 as follows.

h = GCD(h1, h2), v1 =
h1
h
, v2 =

h2
h
. (3.19)

Suppose V1, V2 are the sets of the additive inverses of roots of v1, v2, respectively. Then

π can be computed from the following equation:

π = ν−1 (V2 ∪ (B′ \ V1)) .
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Proof. Note that B = ν(π) and g is an injection, we only need to prove that B = V2 ∪

(B′ \ V1). From (3.12) it follows that

h1 · f1 − h2 · f2 = (h1 · g1 − h2 · g2) · g3,

where deg g3 = |B ∩B′| ≥ N − 1− t. From Lemma 8 we know that (3.13) is true, therefore

h1 · f1 = h2 · f2.

We know from (3.19) that

v1 · f1 = v2 · f2,

where GCD(v1, v2) = 1. Then we have

v1|f2, v2|f1,
f1
v2

=
f2
v1

= f.

Suppose V3 is the set of the additive inverses of roots of f . Then V2∪V3 = B, V1∪V3 = B′,

thus B = V2 ∪ V3 = V2 ∪ (B′ \ V1).

Note that V1, V2 computed in Theorem 3 are exactly identical to D2, D1 described before

(3.12), respectively.

Example 3. Suppose the sender transmits the permutation π1 = (2, 4, 7, 3, 5, 1, 8, 6, 9, 10) ∈

Cα(10, 2), where α = (16, 0, 86, 44, 61, 9, 49), and the receiver recives π′ = (8, 6, 9, 10, 5, 1, 2, 4, 7, 3) ∈

S10. In the encoding scheme, q = 97 > 102 − 10, and for all i 6= j ∈ [10],

υ(i, j) = 10(i− 1) + j − 1.

The receiver can apply Newton’s Identities to compute r(B) = (16, 31, 0, 42, 54, 94, 59)

from α, and derive r(B′) = (80, 64, 83, 10, 72, 22, 26) from B′ = ν(π′) = {75, 58, 89, 94, 40, 1, 13, 36, 62}.
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Then

A =



1 16 31 0 42 54 94

0 1 16 31 0 42 54

1 80 64 83 10 72 22

0 1 80 64 83 10 72



T

,

b =

(
64 33 83 65 18 25 64

)T
.

(3.20)

Notice that c =

(
95, 94, 66, 26

)
is a solution to Ac = b. Therefore h1 = X2+95X+94 =

(X+1)(X+94), h2 = X2+31X+71 = (X+24)(X+7). The receiver then knows that D1 =

{1, 94}, D2 = {24, 7}. Therefore ν(π) = B = D2∪(B′\D1) = {13, 36, 62, 24, 40, 7, 75, 58, 89}.

Then it follows that A(π) = {(2, 4), (4, 7), (7, 3), (3, 5), (5, 1), (1, 8), (8, 6), (6, 9), (9, 10)}. From

the definition of f , the receiver is able to decode π from A(π) as π = (2, 4, 7, 3, 5, 1, 8, 6, 9, 10).
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CHAPTER 4

Systematic Permutation Codes in the Generalized

Cayley Metric

We presented a coding scheme for an order-optimal t-block permutation code in Chapter

3. However, we observe that it is difficult to identify a bijection between the transmitted

messages and the codewords in the non-systematic codes in this configuration. We now

develop order-optimal t-block permutation codes in the systematic form. We first provide

in Section 4.1 a general construction of a systematic t-block permutation code that is not

necessarily order-optimal. Then in Section 4.2, we provide the decoding scheme of this

construction. We next prove the existence of an order-optimal version of this code and

provide a specific construction of the systematic order-optimal code in Section 4.3. Finally,

we compare the rate of our schemes with the existing constructions and prove that our codes

have higher rates.

4.1 Encoding Scheme

Let messages be permutations in SN . In systematic codes, the codewords are permutations

of length N +M . In our configuration, we derive each codeword σ ∈ SN+M from a message

π ∈ SN by sequentially inserting values N + 1, N + 2, · · · , N + M into π in the positions

specified by a sequence S = (s1, s2, · · · , sM). We then prove in Lemma 9 that the block

permutation distance between the resulting codewords cannot be smaller than that of their
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original permutations. It follows from Theorem 2 that permutations with the same parity

check sum α(q,2t) defined in equation (4.2) have a block permutation distance of at least

2t+ 1. Therefore, it suffices to show that the permutations with different parity check sums

map to codewords that are sufficiently far apart under the block permutation distance.

In this section, we present an explicitly constructed encoding method in Theorem 2 based

on a so-called t-auxiliary set we introduce in Definition 9. We start by presenting a collection

of lemmas and definitions to support our results.

Definition 5. For any permutation π ∈ SN and the integer i ∈ N, where 1 ≤ s ≤ N , let

E(π, s) be a permutation in SN+1 derived by inserting the element N + 1 after the element

s in π, i.e.,

E(π, s) , (π1, π2, · · · , πk, N + 1, πk+1, · · · , πN) ,

where k = π−1(s). We call E(π, s) the extension of π on the extension point s.

Consider a sequence S = (s1, s2, · · · , sM), where sm ∈ [N ] for all 1 ≤ m ≤ M . The

extension E(π, S) of π on the extension sequence S is a permutation in SN+M derived

from inserting the elements N + 1, · · · , N +M sequentially after the elements s1, · · · , sM in

π, i.e.,

E(π, S) , E(E(· · · , E(E(π, s1), s2), · · · , sM−1), sM).

Note that in Definition 5, the elements s1, · · · , sM in the extension sequence S are not

necessarily distinct. If different symbols are sequentially inserted after the same element,

then they are all placed right after this element in descending order, as is shown in the

following example.

Example 4. Suppose π = (1, 4, 5, 7, 6, 2, 3), I = {4, 1, 2, 2}, then

E(π, I) = (1, 9, 4, 8, 5, 7, 6, 2, 11, 10, 3) .

The next Definition 6 presents the notion of the jump points of the extensions of two
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permutations. Then Lemma 9states that the block permutation distance between two ex-

tensions is strictly larger than that of the original permutations when the extension point

of one of them is a jump point. Based on this result, we further introduce the notion of

jump index and jump set in Definition 7. We know that the block permutation distance of

two permutations from SN is lower bounded by the sum of that of their extensions and the

cardinality of the jump set.

Definition 6. Suppose E(π1, s1), E(π2, s2) are two arbitrary extensions of π1 and π2, re-

spectively, where π1, π2 ∈ SN , π1,k1 = s1 and π2,k2 = s2. Then s1 is called a jump point of

E(π1, s1) with respect to E(π2, s2), if s1 6= s2 and at least one of the following conditions is

satisfied:

1. k1 = N or k2 = N ;

2. k1, k2 < N , and π1,k1+1 6= π2,k2+1.

Lemma 9. For any two extensions E(π1, s1) and E(π2, s2), if s1 is a jump point, then

dB(E(π1, s1), E(π2, s2)) > dB(π1, π2), (4.1)

else

dB(E(π1, s1), E(π2, s2)) = dB(π1, π2). (4.2)

Proof. The proof is in Appendix G.

In the following Example 5, we provide examples of jump points that satisfy the two

conditions indicated in the previous Definition 6. We also provide an example of an extension

point that is not a jump point.

Example 5. Suppose π = (1, 5, 7, 2, 3, 6, 4), π′ = (2, 3, 1, 5, 7, 6, 4), s1 = 4, s′1 = 5, s2 = 5,
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s′2 = 6, s3 = 3, s′3 = 7. Then

σ1 = E(π, s1) = (1, 5, 7, 2, 3, 6, 4, 8) ,

σ′1 = E(π′, s′1) = (2, 3, 1, 5, 8, 7, 6, 4) ,

σ2 = E(π, s2) = (1, 5, 8, 7, 2, 3, 6, 4) ,

σ′2 = E(π′, s′2) = (2, 3, 1, 5, 7, 6, 8, 4) ,

σ3 = E(π, s3) = (1, 5, 7, 2, 3, 8, 6, 4) ,

σ′3 = E(π′, s′3) = (2, 3, 1, 5, 7, 8, 6, 4) .

Given that dB(π, π′) = 2, we observe by inspection that

dB(σ1, σ
′
1) = 4 > dB(π, π′), s1 is a jump point;

dB(σ2, σ
′
2) = 5 > dB(π, π′), s2 is a jump point;

dB(σ3, σ
′
3) = 2 = dB(π, π′), s3 is not a jump point.

Notice that s1 is a jump point that satisfies the first condition in Definition 6 and s2

satisfies the second condition. This example is consistent with Lemma 9.

Definition 7. Suppose E(π1, S1) and E(π2, S2) are extensions of π1 and π2 on extension

sequences S1 and S2, respectively, where π1, π2 ∈ SN , S1 = (s1,1, s1,2, · · · , s1,M) and S2 =

(s2,1, s2,2, · · · , s2,M). Then, for any m ∈ [M ], m is called a jump index of E(π1, S1) and

E(π2, S2) if s1,m is a jump point of E(E(π1, J1,m), s1,m) with respect to E(E(π2, J2,m), s2,m),

where J1,m = (s1,1, s1,2, · · · , s1,m−1), J2,m = (s2,1, s2,2, · · · , s2,m−1). Define the jump set

F (π1, π2, S1, S2) as the set of all jump indices of E(π1, S1) and E(π2, S2).

Remark 5. For any extensions E(π1, S1), E(π2, S2) of π1, π2 on extension sequences S1,

S2, respectively, it is obvious from the above Definition 7 and Lemma 9 that

dB(E(π1, S1), E(π2, S2)) ≥ dB(π1, π2) + |F (π1, π2, S1, S2)|. (4.3)

30



In the following Example 6, we provide an example of how to identify the jump indices

and compute the jump set. This example satisfies inequality (4.3).

Example 6. Continuing with the values of π, π′ specified in Example 5, let S = (4, 6, 7),

S ′ = (5, 6, 5). Then

σ0 = π = (1, 5, 7, 2, 3, 6, 4) ,

σ′0 = π′ = (2, 3, 1, 5, 7, 6, 4) ,

σ1 = E(σ0, s1) = (1, 5, 7, 2, 3, 6, 4, 8) ,

σ′1 = E(σ′0, s
′
1) = (2, 3, 1, 5, 8, 7, 6, 4) ,

σ2 = E(σ1, s2) = (1, 5, 7, 2, 3, 6, 9, 4, 8) ,

σ′2 = E(σ′1, s
′
2) = (2, 3, 1, 5, 8, 7, 6, 9, 4) ,

σ3 = E(σ2, s3) = (1, 5, 7, 10, 2, 3, 6, 9, 4, 8) ,

σ′3 = E(σ′2, s
′
3) = (2, 3, 1, 5, 10, 8, 7, 6, 9, 4) .

It follows immediately that

dB(σ0, σ
′
0) = 2,

dB(σ1, σ
′
1) = 4 > dB(σ0, σ

′
0), 1 is a jump index;

dB(σ2, σ
′
2) = 4 = dB(σ1, σ

′
1), 2 is not a jump index;

dB(σ3, σ
′
3) = 5 > dB(σ2, σ

′
2), 3 is a jump index.

According to Definition 7, F (π, π′, S, S ′) = {1, 3}. Moreover, dB(σ, σ′) = dB(σ3, σ
′
3) =

5 > 4 = dB(π, π′) + |F (π, π′, S, S ′)|, which is in accordance with equation (4.3).

Next we prove in Lemma 10 that the right hand expression of equation (4.3) can be lower

bounded by the cardinality of so-called Hamming set defined in the following Definition 8.

Based on this result, we present a construction of systematic t-block permutation codes in

Theorem 4 with the help of a so-called t-auxiliary set.
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Definition 8. For any sequences v1, v2 of integers, with length M , where v1 = (v1,1, v1,2, · · · , v1,M)

and v2 = (v2,1, v2,2, · · · , v2,M), define the Hamming set of v1 with respect to v2 as follows,

H(v1,v2) , {v1,m|v1,m 6= v2,m,m ∈ [M ]}. (4.4)

Remark 6. It is obvious that dH(v1,v2) ≥ |H(v1,v2)|. Additionally, for any three sequences

v1,v2,v3 of integers, the following triangle inequality holds true:

|H(v1,v3)| ≤ |H(v1,v2)|+ |H(v2,v3)|. (4.5)

Lemma 10. For any extensions E(π1, S1), E(π2, S2) of π1, π2 on extension sequences S1,

S2, respectively, it follows that

dB(E(π1, S1), E(π2, S2)) ≥ |H(S1, S2)|. (4.6)

Proof. The proof is in Appendix H.

Example 7. Continuing on with the numerical values of π, π′, S, S ′ as in Example 6, we

conclude that, H(S, S ′) = {4, 7}, m(4) = 1, m(7) = 3. Then it follows that dB(σ, σ′) = 5 >

2 = |H(S, S ′)|, which is in accordance with the above Lemma 10.

Definition 9. Consider a set A(N,K, t) ⊂ [N ]K. We call A(N,K, t) a t-auxiliary set of

length K in range [N ] if for any c1 6= c2 ∈ A(N,K, t), |H(c1, c2)| ≥ 2t+ 1 holds.

Theorem 4. For any t-auxiliary set A(N,K, t) with cardinality that is no less than q4t−1,

suppose ϕ : α(q,2t)(SN) → A(N,K, t) is an arbitrary injection, where q is a prime number

such that N2 − N < q < 2(N2 − N) and the parity check sum α(q,2t) is defined in equation

(4.2). Then, the set CsysB (N,K, t) = {E(π, ϕ ◦ α(q,2t)(π))|π ∈ SN} is a systematic t-block

permutation code.

Proof. It is clear by choice of E(π, S) that CsysB (N,K, t) is systematic. For any arbitrary two
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messages π1, π2 ∈ SN , denote their corresponding codeword by σ1 = E(π1, ϕ ◦ α
(q,2t)(π1))

and σ2 = E(π2, ϕ ◦ α(q,2t)(π2)), respectively. Suppose α1 = α(q,2t)(π1), α2 = α(q,2t)(π2),

S1 = ϕ(α1) and S2 = ϕ(α2). Then σ1 = E(π1, S1), σ2 = E(π2, S2). Consider the following

two cases:

1. α1 = α2. In this case, from Theorem 2 we know that dB(π1, π2) > 2t. Then Lemma 9

implies that dB(σ1, σ2) ≥ dB(π1, π2) ≥ 2t+ 1.

2. α1 6= α2. In this case, S1 6= S2 ∈ A(N,K, t). Then from Definition 9, |H(S1, S2)| ≥

2t+ 1. Therefore from Lemma 10, dB(σ1, σ2) ≥ |H(S1, S2)| ≥ 2t+ 1.

From the above discussion, dB(σ1, σ2) ≥ 2t+ 1 is aways true, which means that CsysB (N,K, t)

is indeed a systematic t-block permutation code.

4.2 Decoding Scheme

Based on the construction and the notation in Theorem 4, suppose the sender sends a

codeword σ = E(π, ϕ ◦ α(q,2t)(π)) through the channel and the receiver receives a noisy

version σ′, where dB(σ, σ′) ≤ t.

In this section, we prove in the forthcoming Lemma 11 that the extension sequence S

of the codeword E(π, S) is decodable given that dB(σ, σ′) ≤ t, from which the parity check

sum defined in (4.2) of the transmitted information π can be derived.

For convenience, we introduce the following definition of truncation and will use it

throughout this section.

Definition 10. For any permutation σ ∈ SN+1 and an integer u ∈ [N + 1], denote T (σ, u)

to be the sequence derived by removing the element u from σ, i.e.,

T (σ, u) , (σ1, σ2, · · · , σk−1, σk+1, · · · , σN) , (4.7)

where k = π−1(u).
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Then, for any permutation σ ∈ SN+M and a set U ⊂ [N +M ], denote the truncation

T (σ, U) of σ on set U to be the sequence derived by removing the elements contained in

U = {u1, u2, · · · , uM} from σ, i.e.,

T (σ, U) , T (T (· · · , T (T (σ, u1), u2), · · · , u|U |−1), u|U |). (4.8)

Note that in this Definition 10, the ordering of u1, · · · , u|U | has no impact on the value

of T (σ, U). The following is the example of the truncation of a permutation.

Example 8. Suppose σ = (1, 4, 5, 2, 3, 9, 8, 6, 7), U = {4, 5, 9}, then

T (σ, U) = (1, 2, 3, 8, 6, 7) .

Our decoding scheme has two major steps. Recall that α(q,2t) is defined in as the parity

check sum of π. The first is to compute the parity check sum α = α(q,2t)(π) of π = T (σ, {N+

1, · · · , N + M}) from σ′. The second step is to apply the decoding algorithm proposed in

Theorem 3 to the subsequence π′ = T (σ′, {N + 1, · · · , N +M}) and compute π.

The following Lemma 11 proves the decodability of the sequence S from S ′, where S

is the extension sequence of π in σ, by showing that the cardinality of the Hamming set

H(S, S ′) does not exceed t. Therefore from equation (4.5) and Definition 9, we are able to

compute S from S ′ since each t-auxiliary set A(N,K, t) has the property that cardinalities

of Hamming sets constructed from its pairwise distinct elements are at least 2t + 1. The

parity check sum α is then uniquely derived from S.

Lemma 11. Consider an arbitrary σ ∈ C = {E(π, ϕ ◦ α(q,2t)(π))|π ∈ SN}, for C defined in

Theorem 2 (then σ ∈ SN+k). Suppose there is a σ′ such that dB(σ, σ′) ≤ t. Let S = ϕ ◦

α(q,2t)(π) and π′ = T (σ′, [N + 1 : N +M ]). Suppose σ′ is the extension of π′ on the extension
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sequence S ′, i.e., σ′ = E(π′, S ′), then

H(S, S ′) ≤ t. (4.9)

Proof. Suppose S = (s1, s2, · · · , sk), S ′ = (s′1, s
′
2, · · · , s′k). From Theorem 4, we know that

S ∈ A(N, k, t). Denote M = {m|sm 6= s′m, 1 ≤ m ≤ k}. Then for all m ∈ M, sm 6=

s′m, and there exists k(m), k′(m) ∈ [k], integers n1, n2, · · · , nk(m), and n′1, n
′
2, · · · , n′k(m)′ ∈

[N + 1 : N +M ] such that the sequences pm = (sm, nk(m), nk(m)−1, · · · , n1, N+m) and p′m =

(s′m, n
′
k(m)′ , n

′
k(m)′−1, · · · , n′1, N + m) are subsequences of σ, σ′, respectively. Note that sm 6=

s′m, which means that (sm, nk(m), nk(m)−1, · · · , n1) 6= (s′m, n
′
k(m)′ , n

′
k(m)′−1, · · · , n′1). Let

i(m) = min
1≤i≤min{k(m),k(m)′}

ni 6=n′i

i.

Then ni(m) 6= n′i(m) and ni(m)−1 = n′i(m)−1, where we let n0 = n′0 = N +m if i(m) = 1.

Recall the notion of characteristic set in Definition 3. We know that (ni(m), ni(m)−1) ∈

A(σ), (n′i(m), n
′
i(m)−1) ∈ A(σ′). These two conditions ni(m) 6= n′i(m) and ni(m)−1 = n′i(m)−1

imply that (ni(m), ni(m)−1) ∈ (A(σ) \ A(σ′)) for all m ∈ M. Notice that for all sm ∈ {sm :

m ∈M} = H(S, S ′), the associated subsequences pm start with different sm and thus they do

not overlap, which indicates that the pairs (ni(m), ni(m)−1) are distinct. Then |A(σ)\A(σ′)| ≥

|H(S, S ′)|, which is equivalent to H(S, S ′) ≤ dB(σ, σ′) ≤ t.

From Lemma 11, the receiver first computes π′ = T (σ′, {N + 1, · · · , N + k}) and derives

the extension sequence S ′ such that σ′ = E(π′, S ′). Then, the receiver decodes Ŝ = ϕ ◦

α(q,2t)(π) ∈ A(N,K, t) from S ′ such that |H(S, Ŝ)| ≤ t and derives α from S. From Lemma 9,

we know that dB(π, π′) ≤ dB(σ, σ′) ≤ t. Then, the receiver can apply the decoding algorithm

described in Section 3.1 to compute π from π′ and α reliably. The decoding scheme for the

systematic t-block permutation code C constructed in Theorem 4 is then complete.
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4.3 Order-optimal Systematic t-Block Permutation Codes

Theorem 4 presents the construction of systematic t-block permutation codes with K re-

dundant symbols based on a t-auxiliary set A(N,K, t). When N is sufficiently large and

K is relatively small compared to N , the code rate is 1 − O(K
N

), which is not necessarily

order-optimal. In the forthcoming Theorem 5, we prove the existence of an order-optimal

systematic t-block permutation code. Theorem 5 is based on Lemma 12 and Lemma 13,

where we prove the existence of a t-auxiliary set A(N,K, t) with length K = O(t) when

t is sufficiently small compared to N . We further provide a construction of A(N, 56t, t) in

Theorem 7 based on Lemma 14 and Theorem 6. Then the permutation codes generated from

this set in Theorem 4 are order-optimal.

Lemma 12. (cf. [Vad12, Problem 3.2]) For any integers N, l, a,m ∈ N∗, where l ≤ N , a ≤ l,

if m ≤ (N
a)

( l
a)

2 , then there exists a set L(N, l, a) = {L1, L2, · · · , Lm} of m subsets of [N ] such

that for all 1 ≤ i ≤M ,

1. |Li| = l.

2. ∀j 6= i and j ∈ [M ], |Li ∩ Lj| < a.

We call L(N, l, a) that satisfies the above two conditions a (N, l, a)-set with cardinality m.

Proof. The proof is in Appendix I.

Lemma 13. For all t, k,N ∈ N∗, if N > 2k and 14+2c
1−c t ≤ k < N c for some constant c ∈ R,

0 < c < 1, there exists a t-auxiliary set A(N, k, t) with cardinality no less than q4t−1, where

q is a prime number such that N2 −N < q < 2(N2 −N).

Proof. Let l = k, a = k − 2t, m = q4t−1 in Lemma 12, we know that if q4t−1 <
( N
k−2t)

( k
k−2t)

2 , we

can always find an (N, l, a)-set L(N, l, a) with cardinality m.
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Notice that for all integers k, t such that 14+2c
1−c t ≤ k < N c for some constant 0 < c < 1,

(
N

k − 2t

)
/

(
k

k − 2t

)2

=
N(N − 1) · · · (N − k + 2t+ 1)/(k − 2t)!

(k(k − 1) · · · (k − 2t+ 1))2 /((2t)!)2

=
N(N − 1) · · · (N − k + 2t+ 1)((2t)!)2

(k(k − 1) · · · (k − 2t+ 1))2 (k − 2t)!

>
N(N − 1) · · · (N − k + 6t+ 1)

(k − 2t)!

>
N(N − 1) · · · (N − k + 6t+ 1)

2(k−2t+1) log (k−2t)−k+2t+2

>
N(N − 1) · · · (N − k + 6t+ 1)2k−2t

(k − 2t)(k−2t)

>
Nk−6t24t

N c(k−2t)

=N (1−c)k−(6+2c)t24t

>N8t24t = (2N2)4t > q4t−1.

From the above equation and Lemma 12, such an (N, k, k − 2t)-set L(N, k, k − 2t) with

cardinality m exists. In this set, for all i 6= j ≤ q4t−1, |Li ∩ Lj| < k − 2t. For each

Li ∈ L(N, k, k − 2t) = (L1, · · · , Lm), 1 ≤ i ≤ q4t−1 ≤ m, let ci be an arbitrary permutation

of elements in Li. Let A(N, k, t) = {ci|1 ≤ i ≤ q4t−1}. Then |H(ci, cj)| = dH(ci, cj) ≥

k−|Li∩Lj| > k− (k−2t) = 2t for all 1 ≤ i < j ≤ q4t−1. Therefore A(N, k, t) is a t-auxiliary

set. The lemma is proved.

Theorem 5. There exists a systematic t-block permutation code with 30t redundant symbols

when t < 1
30

√
N .

Proof. Let c = 1
2

in Lemma 13, then there exists a t-auxiliary set A(N, 30t, t) with at least

q4t−1 elements. From Theorem 4, the code CsysB (N, t) = {E(π, ϕ ◦ α(q,2t)(π))|π ∈ SN} based

onA(N, 30t, t) is a systematic t-block permutation code with k = 30t redundant symbols.

Remark 7. A code that satisfies Theorem 5 is order-optimal when N is sufficiently large.
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Based on the upcoming Lemma 14 and Theorem 6, we provide an explicit construction

of a t-auxiliary set of length 56t in Theorem 7, from which we are able to explicitly construct

an order-optimal permutation code by Theorem 4.

Lemma 14. For all k,N ∈ N∗, k > 3, N > k2, consider an arbitrary subset Y ⊂ [k], where

|Y | = M < k, Y = {i1, i2, · · · , iM}, then

LCM (N + i1, N + i2, · · · , N + iM) > NM− k
2 . (4.10)

Proof. The proof is in Appendix J.

Theorem 6. For all N, k, d ∈ N∗, N > k2, k > 3, define a function β(q,d,k) : [q]d →

[N + 1]× [N + 2]× · · · × [N + k] as below:

β(q,d,k)(x) =
(
β
(q,d,k)
1 (x), β

(q,d,k)
2 (x), · · · , β(q,d,k)

d (x)
)

,(γ(x) mod (N + 1), γ(x) mod (N + 2),

· · · , γ(x) mod (N + k)).

(4.11)

where x = (x1, x2, · · · , xd) ∈ [q]d, γ(x) ,
d∑
i=1

xiq
i−1. Then ∀ x1,x2 ∈ [q]d, x1 6= x2,

dH(β(q,d,k)(x1), β
(q,d,k)(x2)) >

k

2
− d(2 + logN 2). (4.12)

Proof. For arbitrary x1,x2 ∈ [q]d, x1 6= x2, let β1 = β(q,d,k)(x1), β2 = β(q,d,k)(x2). Let

Z = {i : β1,i = β2,i, 1 ≤ i ≤ d}, then dH(β(q,d,k)(x1), β
(q,d,k)(x2)) = k − |Z| = k −M , where

M = |Z|.

Suppose Z = {i1, i2, · · · , iM}. Let γ1 = γ(x1), γ2 = γ(x2). From the definition of β(q,d,k),
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we know that 

γ1 ≡ γ2 mod (N + i1)

γ1 ≡ γ2 mod (N + i2)

...

γ1 ≡ γ2 mod (N + iM).

Then,

γ1 ≡ γ2 mod LCM (N + i1, N + i2, · · · , N + iM) .

Given that x1,x2 ∈ [q]d, x1 6= x2, then γ1 6= γ2. From Lemma 14 we know that

|γ1 − γ2| ≥ LCM (N + i1, N + i2, · · · , N + iM) > NM− k
2 .

Moreover, we know from x1,x2 ∈ [q]d, x1 6= x2, that 0 ≤ γ1, γ2 < qd and γ1 6= γ2. Therefore,

|γ1 − γ2| < qd.

According to the above two inequalities, NM− k
2 < |γ1 − γ2| < qd < (2N2)d is true, which

means that M − k
2
< d(2 + logN 2). Therefore M < k

2
+ d(2 + logN 2), and then

dH(β1,β2) = k −M > k − (
k

2
+ d(2 + logN 2))

=
k

2
− d(2 + logN 2).

The theorem is proved.

Example 9. Let k = 7, N = 50, d = 1, q = 2503, x1 = (280), x2 = (1008), then γ1 = 280,

39



γ2 = 1008, and

β1 =(280 mod 51, 280 mod 52, · · · , 280 mod 57)

=(25, 20, 15, 10, 5, 0, 52).

β2 =(1008 mod 51, 1008 mod 52, · · · , 1008 mod 57)

=(39, 20, 1, 36, 18, 0, 39).

Then dH(β1,β2) = 5 > k
2
− d(2 + logN 2), which is in accordance with Theorem 6.

Based on Theorem 6, we provide an explicit construction of a t-auxiliary set A(N, 56t, t)

in the following Theorem 7.

Theorem 7. For all N, k, t ∈ N∗, k ≥ 28t, k < b
√
N−1

2
c. Suppose [q]4t−1 = {x1,x2, · · · ,xq4t−1},

where q is a prime number such that N2 − N < q < 2N2 − 2N . For any s ∈ [q4t−1], sup-

pose xs = (x1, x2, · · · , x4t−1), let cs = (c1, c2, · · · , c2k), β(q,4t−1,k)(x) = (β1, β2, · · · , βk) for all

1 ≤ i ≤ k, where cs is defined as follows:


c2i = (i− 1)bN

k
c+ 1 +

(
βi mod bN

k
c
)
,

c2i−1 = (i− 1)bN
k
c+ 1 + b βi

bN
k
cc.

(4.13)

Then A(N, 2k, t) = {cs : s ∈ [q4t−1]} is a t-auxiliary set with cardinality q4t−1.

Proof. For any x1,x2 ∈ [q]4t−1, x1 6= x2, let β1 = β(q,4t−1,k)(x1), β2 = β(q,4t−1,k)(x2). Then

from Theorem 6, we know that

dH(β1,β2) >
k

2
− (4t− 1)(2 + logN 2)

>
k

2
− (12t− 3) >

28t

2
− 12t = 2t.

In equation (4.13), let mi = (i−1)bN
k
c+1. Notice that (c2i−1−mi)bNk c+(c2i−mi) = βi.
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Given βi < N + k for all 1 ≤ i < k, and k < b
√
N − 1

2
c, then

bN
k
c2 >

(
N

k
− 1

)2

≥

(
N√
N − 3

2

− 1

)2

>

(√
N +

3

2
− 1

)2

=

(√
N +

1

2

)2

> N +
√
N > N + k > βi.

Therefore (c2i−1 −mi, c2i −mi) is exactly the bN
k
c-ary representation of βi, for all 1 ≤ i ≤ k.

Suppose β1 = (β1,1, β1,2, · · · , β1,k) and β2 = (β2,1, β2,2, · · · , β2,k). Let Y = {i : β1,i 6=

β2,i, 1 ≤ i ≤ k}, then |Y | = dH(β1,β2). Notice that for all i ∈ Y , β1,i 6= β2,i, then either

c1,2i−1 −mi 6= c2,2i−1 −mi or c1,2i −mi 6= c2,2i −mi, which means that

|H(c1, c2) ∩ {c1,2i−1, c1,2i}| ≥ 1, i ∈ Y. (4.14)

Notice that (i− 1)bN
k
c < c1,2i−1, c1,2i ≤ ibN

k
c, therefore

{c1,2i−1, c1,2i} ∩ {c1,2i′−1, c1,2i′} = ∅, ∀ 1 ≤ i < i′ ≤ k. (4.15)

From (4.14) and (4.15),

|H(c1, c2)| =
k∑
i=1

|H(c1, c2) ∩ {c1,2i−1, c1,2i}|

≥
∑
i∈Y

|H(c1, c2) ∩ {c1,2i−1, c1,2i}|

≥
∑
i∈Y

1 = |Y | = dH(β1,β2) > 2t.

From Definition 9, A(N, k, t) is indeed a t-auxiliary set.

Remark 8. Let k = 28t in the above Theorem 7 to construct a t-auxiliary set A(N, 56t, t).

Then the code CsysB (N, 56t, t) constructed in Theorem 4 based on A(N, 56t, t) is an order-
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optimal systematic t-block permutation codes.

4.4 Rate Analysis

In Chapter 3, we can construct a t-generalized Cayley code CG(N, t) = Cα(N, 4t) with

rate RG(N, t). In [CV14], a t-generalized Cayley code AρgC(N, t) with rate RρgC(N, t) was

constructed.

We next compare the rates of these two codes in Lemma 15.

Lemma 15. RG(N, t) > RρgC(N, t) when t < N
(16 logN+8)

for sufficiently large N .

Proof. We know from [GYF+16, Appendix A] that:

log|AρgC(N, t)| ≤ N logN − (2 + log e)N +O
(
(logN)2

)
. (4.16)

Therefore for sufficiently large N , it follows from Lemma 6 that

RρgC(N, t) =
log|AρgC(N, t)|

logN !

<
N logN − (2 + log e)N +O ((logN)2)

N logN − (log e)N + 1
2

logN

= 1−
2N + 1

2
logN +O ((logN)2)

N logN − (log e)N + 1
2

logN

= 1− 2N +O ((logN)2)

N logN − (log e)N + 1
2

logN
.

(4.17)

And we know from Lemma 6 that:

RG(N, t) = RB(N, 4t) > 1− 16t(2 logN + 1)

logN !

> 1− 32t logN + 16t

N logN − (log e)N + 1
2

logN
.

(4.18)
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Then it follows that

RG(N, t)−RρgC(N, t)

>
2N − (32t logN + 16t) +O ((logN)2)

N logN − (log e)N + 1
2

logN
> 0,

(4.19)

for sufficiently large N and t < N
(16 logN+8)

.

From the above discussion, our proposed code in Section 3.1 indeed has a higher rate

than the interleaving-based code for sufficiently small t.

Based on Remark 8 in Section 4.3, we presented a construction of systematic t-generalized

Cayley code C ′G(N, t) = CsysB (N, 56 · 4t, 4t) = CsysB (N, 224t, 4t) with rate R′G(N, t).

In the next Lemma 16, we compare the rate of C ′G(N, t) with that of AρgC(N, t).

Lemma 16. R′G(N, t) > RρgC(N, t) when t < min{ N
112 logN

, 1
112
b
√
N − 1

2
c} for sufficiently

large N .

Proof. For sufficiently large N , it follows from Lemma 15 and Lemma 6 that

RρgC(N, t) < 1− 2N +O ((logN)2)

N logN − (log e)N + 1
2

logN
. (4.20)

And we know from Lemma 6 that:

R′G(N, t) > 1− 224t logN

logN !

> 1− 224t logN

N logN − (log e)N + 1
2

logN
.

(4.21)

Then it follows that

R′G(N, t)−RρgC(N, t)

>
2N − 224t logN +O ((logN)2)

N logN − (log e)N + 1
2

logN
> 0,

(4.22)

for sufficiently large N and t < min{ N
112 logN

, 1
112
b
√
N − 1

2
c}.
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From the above discussion, our proposed systematic code indeed has a higher rate than

the interleaving-based code for sufficiently small t in the generalized Cayley distance.
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CHAPTER 5

Conclusion

5.1 Summary of Main Contributions

The generalized Cayley metric is a distance measure that generalizes the Kendall-τ metric

and the Ulam metric. Interleaving was previously shown to be efficient in constructions of

permutation codes in the generalized Cayley metric. However, interleaving incurs a notice-

able rate penalty such that the constructed permutation codes cannot be order-optimal.

In the first part of this thesis, we derived the lower and upper bounds of the optimal rate

of permutation code in the generalized transpositions.

In the second part, we first presented a construction of order-optimal permutation codes,

which is not necessarily systematic, in the generalized Cayley metric, without interleaving.

Based on this method, we then developed an explicit construction of systematic permutation

codes from extensions of permutations. We further proved the existence of order-optimal

systematic codes in this configuration and provided an explicit construction. Later on, we

proved that our proposed codes are more rate efficient than the existing coding schemes

based on interleaving for sufficiently large N when t is relatively small.

Our work on order-optimal permutation codes in the generalized Cayley distance has

been presented in preliminary form at the IEEE Information Theory Workshop in Nov.

2017 [YSD17]. A longer version of this work, with the results regarding systematic codes

added in, has been submitted to IEEE Transactions on Information Theory in 2017.
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5.2 Future Extensions

In future work, we seek to find corresponding results in the binary case, which is expected to

be useful in the synchronization of binary files. A majority of currently existing synchroniza-

tion methods of binary files focus on errors that are i.i.d.. However, they lack the efficiency

in correcting highly-concentrated errors such as the exchange of two paragraphs.

Binary codes that correct generalized transposition errors also have potential in DNA

storage systems. Researchers have been paving the way to next generation DNA stor-

age systems, where digital informations are stored in nucleotides of four nucleobases, ade-

nine (A), cytosine (C), guanine (G) and thymine (T) [CGK12]. However, DNA undergoes

breakages due to DNA aging caused by metabolic and hydrophilic processes, resulting in

structure changes, including block deletions and reversal of adjacent blocks, of the DNA

string [GYM17]. This motivates the extension of this research towards binary generalized

Cayley codes.
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APPENDIX A

Proof of Lemma 1

Proof. We know from the symmetry property of block permutation distance that it is enough

for us to prove that dB(π1, π2) = |A(π1) \ A(π2)|.

Suppose π1, π2 ∈ SN such that dB(π1, π2) = d, then from the definition of block permuta-

tion distance we know that π1, π2 satisfy (2.5) for some σ ∈ Sd+1 and some ψ1, ψ2, · · · , ψd+1.

Suppose ψk = π1 [ik−1 + 1 : ik] for 1 ≤ k ≤ d + 1, where 0 = i0 < i1 · · · < id < id+1 = N .

Then ∀ i ∈ [N − 1] we have

I [(π1(i), π1(i+ 1)) ∈ A(π2)] =


1, i /∈ {i1, · · · , id},

0, i ∈ {i1, · · · , id}.

Therefore |A(π1) \ A(π2)| = |{i1, · · · , id}| = d.

The lemma is proved.
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APPENDIX B

Proof of Lemma 2

Proof. Define B(π) as below,

B(π) , {i|π(i+ 1) 6= π(i) + 1, 1 ≤ i < N}.

Then we know that

B(π) = {i|(π(i), π(i+ 1)) ∈ (A(π) \ A(e)) , 1 ≤ i < N},

which indicates that

|B(π)| = |A(π) \ A(e)| = wB(π). (B.1)

Denote B1 = B(π1), B2 = B(π2), B3 = B(π1 ◦ π2). Then ∀ i ∈ B3, we have:

π1 (π2(i+ 1)) 6= π1 (π2(i)) + 1.

Then i must satisfy at least one of the conditions below:

{π2(i+ 1) 6= π2(i) + 1}, or

{π2(i) = k and π1(k + 1) 6= π1(k) + 1}.
(B.2)
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Equation (B.2) means that either i ∈ B2 or π2(i) ∈ B1 is true. Then we define an

injection f : (B \B2)→ B1 as below.

f(i) , π2(i).

which means that

|B| = |B \B2|+ |B ∩B2| ≤ |B1|+ |B2|. (B.3)

We know from (B.1) that (B.3) is equivalent to

wB (π1 ◦ π2) ≤ wB (π1) + wB (π2) .
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APPENDIX C

Proof of Lemma 4

Proof. Suppose the number of permutations of length N with block permutation weight m

is F (m), then bB(N, t) =
t∑

m=0

F (m).

We know from [Mye02, equation (3)] that F (0) = 1, and for all m > 1,

F (m) =

(
N − 1

m

)
m!

m∑
k=0

(−1)m−k
(k + 1)

(m− k)!
. (C.1)

Let ak = (k+1)
(m−k)! ≤ m + 1, 0 ≤ k ≤ m, then am = m + 1 > am−1 = m > am−2 > · · · > a0

holds. For arbitrary k, we have

a2k − a2k−1 + · · ·+ a0 = a0 +
k∑
i=1

(a2i − a2i−1) > 0,

a2k−1 − a2k−2 + · · · − a0 =
k∑
i=1

(a2i−1 − a2i−2) > 0.

Therefore

A = m+ 1− (am−1 − am−2 + · · ·+ (−1)m−1a0) < m+ 1,

A = m+ 1−m+ (am−2 − am−3 + · · ·+ (−1)ma0) > 1,
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and

1 ≤ A =
m∑
k=0

(−1)m−k
(k + 1)

(m− k)!
≤ m+ 1.

From the above discussion, we know that

(
N − 1

m

)
m! ≤ F (m) ≤

(
N − 1

m

)
(m+ 1)!.

To derive the upper bound of the ballsize bB(N, t), we have

F (m) ≤
(
N − 1

m

)
(m+ 1)! = (m+ 1) ·

m∏
k=1

(N − k).

For t ≤ N −
√
N − 1, we have i ≤ N −

√
N − 1 for all 1 ≤ i ≤ t. Therefore for all 1 ≤ i ≤ t,

(N − i− 1)2 ≥ (N − (N −
√
N))2 = N ≥ i+ 1.
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Then,

bB(N, t)

=
t∑
i=0

F (i)

≤1 +
t∑
i=1

(i+ 1) ·
i∏

k=1

(N − k)

=1 +
t∑
i=1

(N − (N − i− 1)) ·
i∏

k=1

(N − k)

=1 +
t∑
i=1

(
i∏

k=0

(N − k)−
i+1∏
k=1

(N − k)

)

=
t∏

k=0

(N − k)−
t∑
i=1

(
i+1∏
k=1

(N − k)−
i−1∏
k=0

(N − k)

)

=
t∏

k=0

(N − k)−
t∑
i=1

i−1∏
k=1

(N − k) ((N − i)(N − i− 1)−N)

=
t∏

k=0

(N − k)−
t∑
i=1

i−1∏
k=1

(N − k)
(
(N − i− 1)2 − i− 1

)
≤

t∏
k=0

(N − k).

For the lower bound, we know that

bB(N, t) =
t∑
i=0

F (i) ≥ 1 +
t∑
i=1

i∏
k=1

(N − k) ≥
t∏

k=1

(N − k).

The lemma is proved.
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APPENDIX D

Proof of Lemma 5

Proof. The upper bound is derived from (2.16) by replacing t by 4t and applying (2.14). For

every π ∈ BG(N, t, e), we know that dG(π, e) ≤ t. Then from (2.14), we have dB(π, e) ≤

4dG(π, e) ≤ 4t, which means that π ∈ BB(N, 4t, e). Therefore BG(N, t, e) ⊆ BB(N, 4t, e),

which implies that bG(N, t) ≤ bB(N, 4t). From (2.16) we will get the upper bound.

For the lower bound, let DB(N, 4t) be the set of all permutations that have block per-

mutation weight 4t. Let K = |BG(N, t, e) ∩ DB(N, 4t)|, then bG(N, t) > K. For any

π ∈ DB(N, 4t), there exists some σ ∈ D4t+1 (recall D4t+1 is defined in Subsection A Section

II as the set of all minimal permutations with length 4t+ 1) and ψ1, ψ2, · · · , ψ4t+1 such that

e = (ψ1, ψ2, · · · , ψ4t+1) ,

π =
(
ψσ(1), ψσ(2), · · · , ψσ(4t+1)

)
.

Then we have dG(e, π) = dG(e, σ). If π ∈ (BG(N, t, e) ∩DB(N, 4t)) , then dG(e, σ) ≤ t,

which means that σ ∈ BG(4t+1, t, e). We know that there are
(
N−1
4t

)
different partitions of e,

each with the form e (ψ1, ψ2, · · · , ψ4t+1). For each such partition {ψi, 1 ≤ i ≤ 4t+1} and any

permutation σ ∈ (BG(4t+ 1, t, e)∩D4t+1), the permutation π =
(
ψσ(1), ψσ(2), · · · , ψσ(4t+1)

)
∈

(BG(N, t, e)∩DB(N, 4t)). Suppose that there are x = |BG(4t+ 1, t, e)∩D4t+1| different such

σ’s, then K ≥
(
N−1
4t

)
x.

We only need to lower bound x. For any partition that divides {2, 4, · · · , 4t} into t

different subsets with cardinality 2, we can apply t generalized transpositions to the identity
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permutation e to exchange the elements in each subset and get permutation σ. Then all

even numbers in e are not in their original position, and all odd numbers are not changed.

Therefore, no consecutive pairs in e appear in σ, which means σ ∈ (BG(4t+ 1, t, e) ∩ D4t+1).

There are (2t)!
2tt!

such partitions, therefore x ≥ (2t)!
2tt!

. From bG(N, t) ≥
(
N−1
4t

)
x the lower bound

follows.

The lemma is proved.
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APPENDIX E

Proof of Lemma 7

Proof. Let B1 = ν(π1), B2 = ν(π2). We prove the statement by contradiction. If the lemma

is not true, i.e., |B1∆B2| ≤ 2d, then k = |D1| = |D2| ≤ d, where D1 = B1\B2, D2 = B2\B1.

Suppose D1 = {x1, x2, · · · , xk}, D2 = {xk+1, xk+2, · · · , x2k}. Then, α(q,d)(π1) = α(q,d)(π2) is

equivalent to the following equations.



x1 + · · ·+ xk = xk+1 + · · ·+ x2k,

x21 + · · ·+ x2k = x2k+1 + · · ·+ x22k,

...

x2d−11 + · · ·+ x2d−1k = x2d−1k+1 + · · ·+ x2d−12k .

(E.1)

From (E.1), it follows that



1 1 · · · 1

x1 x2 · · · x2k

x21 x22 · · · x22k
...

...
. . .

...

x2d−11 x2d−12 · · · x2d−12k


y = 0,

55



where y = [y1, y2, · · · , y2k]T , and

yi =


1, 1 ≤ i ≤ k,

−1, k < i ≤ 2k.

Given that 2k ≤ 2d, the above equation implies that



1 1 · · · 1

x1 x2 · · · x2k

x21 x22 · · · x22k
...

...
. . .

...

x2k−11 x2k−12 · · · x2k−12k


y = 0. (E.2)

Denote the Vandermonde matrix in equation (E.2) by U. Then y is in the nullspace of

U. Therefore U is singular, and it implies that the determinant of U is equal to 0, i.e.,

0 = det U =
∏

1≤i<j≤2k

(xi − xj) . (E.3)

As q is a divisor of 0, q should also be a divisor of the right hand of equation (E.3),

which implies that ∃ i 6= j ∈ [2k] such that q|(xi − xj). Then xi = xj on Fq, and we must

have xi ∈ D1, xj ∈ D2 or xi ∈ D2, xj ∈ D1, which implies that xi, xj ∈ D1 ∩D2, which is a

contradiction.

The lemma is proved.
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APPENDIX F

Proof of Lemma 8

Proof. Suppose

f1 = XN−1 + a1X
N−2 + · · ·+ a4t−1X

N−4t + g1,

f2 = XN−1 + a′1X
N−2 + · · ·+ a′4t−1X

N−4t + g2.

(F.1)

Additionally, suppose

h1 · f1 = XN+t−1 + βN+t−2X
N+t−2 + · · ·+ β0,

h2 · f2 = XN+t−1 + β′N+t−2X
N+t−2 + · · ·+ β′0.

Then from (F.1) and (3.15) it follows that the first 4t coefficients of h1 ·f1 can be represented

by {ai}, {ci} as below:



sN+t−2 = a1 + c1,

sN+t−3 = a2 + c1a1 + c2,

...

sN−1 = at + c1at−1 + · · ·+ ct,

...

sN−3t = a4t−1 + c1a4t−2 + c2a4t−3 + · · ·+ cta3t−1.
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Similarly, we also have



s′N+t−2 = a′1 + c′1,

s′N+t−3 = a′2 + c′1a
′
1 + c′2,

...

s′N−1 = a′t + c′1a
′
t−1 + · · ·+ c′t,

...

s′N−3t = a′4t−1 + c′1a
′
4t−2 + c′2a

′
4t−3 + · · ·+ c′ta

′
3t−1.

Then (3.13) is true iff si = s′i for all N − 3t ≤ i ≤ N + t− 2, which is equivalent to the

following equation:



1

a1 1

...
...

. . .

at−1 at−2 · · · 1

...
...

. . .
...

a4t−2 a4t−3 · · · a3t−1





c1

c2
...

ct


+



a1

a2
...

a4t−1


=



1

a′1 1

...
...

. . .

a′t−1 a′t−2 · · · 1

...
...

. . .
...

a′4t−2 a′4t−3 · · · a′3t−1





c′1

c′2
...

c′t


+



a′1

a′2
...

a′4t−1


.

(F.2)

We note that (F.2) is equivalent to (3.18).
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APPENDIX G

Proof of Lemma 9

Proof. Let σ1 = E(π1, s1), σ2 = E(π2, s2). Recall the notion of characteristic sets in Def-

inition 3. Suppose A(π1), A(π2), A(σ1), A(σ2) are the characteristic sets of π1, π2, σ1, σ2,

respectively. According to Lemma 1,

dB(π1, π2) = |A(π1) \ A(π2)|,

dB(σ1, σ2) = |A(σ1) \ A(σ2)|.
(G.1)

Let k1 = π−11 (s1), k2 = π−12 (s2), then π1,k1 = s1 and π2,k2 = s2. If 1 ≤ k1, k2 < N , let

π1,k1+1 = j1 and π2,k2+1 = j2.

Suppose first s1 is a jump point, then consider the following cases.

1. s1 6= s2 and either k1 = N or k2 = N .

(a) k1 = k2 = N . In this case, A(σ1) = A(π1) ∪ {(s1, N + 1)}, A(σ2) = A(π2) ∪

{(s2, N + 1)}. Therefore, A(σ1) \ A(σ2) = (A(π1) \ A(π2)) ∪ {(s1, N + 1)}. From

(G.1) we know that dB(σ1, σ2) = dB(π1, π2) + 1.

(b) k1 = N 6= k2. In this case, A(σ1) = A(π1)∪{(i1, N+1)}, A(σ2) = (A(π2) \ {(s2, j2)})∪

{(s2, N+1), (N+1, j2)}. Therefore, A(σ1)\A(σ2) = (A(π1) \ (A(π2) \ {(s2, j2)}))∪

{(s1, N+1)}, which means (A(π1) \ A(π2))∪{(s1, N+1)} ⊆ A(σ1)\A(σ2). From

(G.1) we know that dB(σ1, σ2) ≥ dB(π1, π2) + 1.

(c) k2 = N 6= k1. Following the same logic in the previous case, we know that
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dB(σ1, σ2) ≥ dB(π1, π2) + 1.

2. s1 6= s2, k1, k2 6= N . Since s1 is a jump point, j1 6= j2.

(a) In this case, A(σ1) = (A(π1) \ {(s1, j1)}) ∪ {(s1, N + 1), (N + 1, j1)}, A(σ2) =

(A(π2) \ {(s2, j2)})∪{(s2, N+1), (N+1, j2)}. Therefore, ((A(π1) \ A(π2)) \ {(s1, j1)})∪

{(s1, N + 1), (N + 1, j1)} ⊆ A(σ1) \A(σ2). From (G.1) we know that dB(σ1, σ2) ≥

dB(π1, π2) + 1.

If i1 is not a jump point, then consider the following cases.

1. s1 = s2 and either k1 = N or k2 = N

(a) k1 = k2 = N . In this case, A(σ1) = A(π1) ∪ {(s1, N + 1)}, A(σ2) = A(π2) ∪

{(s1, N + 1)}. Therefore, A(σ1) \ A(σ2) = (A(π1) \ A(π2)). From (G.1) we know

that dB(σ1, σ2) = dB(π1, π2).

(b) k1 = N 6= k2. In this case, A(σ1) = A(π1)∪{(s1, N+1)}, A(σ2) = (A(π2) \ {(s1, j2)})∪

{(s1, N+1), (N+1, j2)}. Therefore, A(σ1)\A(σ2) = (A(π1) \ (A(π2) \ {(s1, j2)})) =

(A(π1) \ A(π2)). From (G.1) we know that dB(σ1, σ2) = dB(π1, π2).

(c) k2 = N 6= k1. Follow the same logic in the previous case, we know that

dB(σ1, σ2) = dB(π1, π2).

2. k1, k2 6= N . Since s1 is not a jump point, either s1 = s2 or j1 = j2 must be satisfied.

(a) s1 = s2 and j1 = j2. In this case, A(σ1) = (A(π1) \ {(s1, j1)}) ∪ {(s1, N +

1), (N+1, j1)}, A(σ2) = (A(π2) \ {(s1, j1)})∪{(s1, N+1), (N+1, j1)}. Therefore,

A(σ1)\A(σ2) = A(π1)\A(π2). From (G.1) we know that dB(σ1, σ2) = dB(π1, π2).

(b) s1 = s2 and j1 6= j2. In this case, A(σ1) = (A(π1) \ {(s1, j1)}) ∪ {(s1, N +

1), (N+1, j1)}, A(σ2) = (A(π2) \ {(s1, j2)})∪{(s1, N+1), (N+1, j2)}. Therefore,

A(σ1)\A(σ2) = ((A(π1) \ A(π2)) \ {(s1, j1)})∪{(N+1, j1)}. From (G.1) we know

that dB(σ1, σ2) = dB(π1, π2).
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(c) s1 6= s2 and j1 = j2. Follow the same logic as indicated in the previous case, we

know that dB(σ1, σ2) = dB(π1, π2).

The lemma is proved.
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APPENDIX H

Proof of Lemma 10

Proof. For all i ∈ H(S1, S2), let

m(i) = min{m : s1,m = i, s2,m 6= i}. (H.1)

Suppose J1,m(i) =
(
s1,1, s1,2, · · · , s1,m(i)−1

)
, J2,m(i) =

(
s2,1, s2,2, · · · , s2,m(i)−1

)
. Let σ

m(i)
1 =

E(π1, J1,m(i)) and σ
m(i)
2 = E(π2, J2,m(i)). Recall the definition of the jump set F (π1, π2, S1, S2)

in Definition 7. Consider the following two cases:

1. If m(i) ∈ F (π1, π2, S1, S2), then s1,m(i) = i is a jump point of E(σ
m(i)
1 , s1,m(i)) with

respect to E(σ
m(i)
2 , s2,m(i)).

2. If m(i) /∈ F (π1, π2, I1, I2), then i is not a jump point of E(σ
m(s)
1 , s1,m(i)) with respect to

E(σ
m(s)
2 , s2,m(i)). Let k′1 = (σ

m(i)
1 )−1(s1,m(i)), k1 = π−11 (s1,m(i)), k

′
2 = (σ

m(i)
2 )−1(s2,m(i)),

k2 = π−12 (s2,m(i)), then σ
m(i)

1,k′1
= π1,k1 = s1,m(i) and σ

m(i)

2,k′2
= π2,k2 = s2,m(i). Given that

s1,m(i) is not a jump point and s1,m(i) = s 6= s2,m(i), we know from Definition 6 that

k1, k2 6= N + m(i) − 1 and σ
m(i)

1,k′1+1 = σ
m(i)

2,k′2+1 must be true. Let j = σ
m(i)

1,k′1+1 = σ
m(i)

2,k′2+1.

We know from equation (H.1) that π1,k1+1 = π2,k2+1 = j ∈ [N ], otherwise N < j <

N+m(i) is inserted after i in π1 and is not inserted after i in π2, a contradiction. Then

(i, j) ∈ A(π1), (s2,m(i), j) ∈ A(π2) and s2,m(i) 6= i. Therefore (i, j) ∈ (A(π1) \ A(π2)).
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Suppose J = {i|m(i) /∈ F (π1, π2, S1, S2), i ∈ H(S1, S2)}, then from the above discussion:

|F (π1, π2, S1, S2)| ≥ |H(S1, S2) \ J |,

dB(π1, π2) = |A(π1) \ A(π2)| ≥ |J |.

And from Lemma 9 we know that

dB(E(π1, S1), E(π2, S2)) ≥dB(π1, π2) + |F (π1, π2, S1, S2)|

≥|H(S1, S2) \ J |+ |J |

≥|H(S1, S2)|.

The lemma is proved.
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APPENDIX I

Proof of Lemma 12

Proof. Denote the set of all subsets of [N ] with cardinality l by B. Let Lmax be the largest

(N, l, a)-set. Suppose that k = |Lmax| < m. Otherwise if k < m, and for each set Li ∈ Lmax,

there are at most
(
l
a

)(
n−a
l−a

)
sets Lj ∈ B that satisfy |Li ∩ Lj| ≥ a for j 6= i. Then there

will be at most k
(
l
a

)(
n−a
l−a

)
< m

(
l
a

)(
N−a
l−a

)
= m

(
l
a

) (N−a)!
(N−l)!(l−a)! =

m( l
a)

2

(N
a)

(
N
l

)
<
(
N
l

)
= |B| sets

Lj ∈ B such that each such set has an intersection with cardinality no less than a with at

least one of the sets in Lmax. Then there exists a set Lk+1 ∈ B such that for all Li ∈ Lmax,

|Li ∩Lk+1| < a. Then {Lk+1} ∪Lmax is an (N, l, a)-set that satisfies the two conditions with

cardinality k + 1. The cardinality of this newly constructed (N, l, a)-set is larger than that

of Lmax. Contradiction! Therefore k ≥ m must be true, the lemma is proved.
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APPENDIX J

Proof of Lemma 14

Proof. From [Far07, equation (13)], we know that for all r, n ∈ N∗

gr(n) = GCD(r!, (n+ r)gk−1(n)), (J.1)

where for all r ∈ N, n ∈ N∗,

gr(n) =
n(n+ 1) · · · (n+ r)

LCM(n, n+ 1, · · · , n+ r)
. (J.2)

From (J.1) and (J.2), we know that

gr(n)|r!, ∀r, n ∈ N∗, (J.3)

which implies that

n(n+ 1) · · · (n+ r)

LCM(n, n+ 1, · · · , n+ r)
≤ r!. (J.4)

Let n = N + 1, r = k − 1 in (J.4), we know that for all N, k ∈ N∗,

LCM (N + 1, N + 2, · · · , N + k)

≥(N + 1)(N + 2) · · · (N + k)

(k − 1)!
.

(J.5)
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Let [K] \ Y = {j1, j2, · · · , jk−M}. Notice that

LCM (N + 1, N + 2, · · · , N + k)

=LCM(LCM (N + i1, N + i2, · · · , N + iM) ,

LCM (N + j1, N + j2, · · · , N + jk−M))

≤

[
k−M∏
s=1

(N + js)

]
LCM (N + i1, N + i2, · · · , N + iM) .

(J.6)

From equation (J.5) and (J.6),

LCM (N + 1, N + 2, · · · , N + iM)

≥LCM(N + 1, N + 2, · · · , N + k)
k−M∏
s=1

(N + js)

≥(N + 1)(N + 2) · · · (N + k)

(k − 1)!
k−M∏
s=1

(N + js)

=

M∏
s=1

(N + is)

(k − 1)!
>
NM

k!
.

From Lemma 6, for all k > 3 and N > k2,

NM

k!
>

NM

2(k+1) log k−k+2
=
NM2k−2

kk+1
≥ NM

kk
> NM− k

2 .

The lemma is proved.
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