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Abstract. While the theory of labelled well-quasi-order has received significant attention in
the graph setting, it has not yet been considered in the context of permutation patterns. We
initiate this study here, and show how labelled well quasi order provides a lens through which
to view and extend previous well-quasi-order results in the permutation patterns literature.
Connections to the graph setting are emphasised throughout. In particular, we establish that
a permutation class is labelled well-quasi-ordered if and only if its corresponding graph
class is also labelled well-quasi-ordered.
Keywords. Labelled well-quasi-order, permutation patterns, well-quasi-order
Mathematics Subject Classifications. 05A05, 06A07

1. Introduction

A prominent theme of the past 85 years1 of combinatorics research has been the study of well-
quasi-order (although as Kruskal laments in [Kru72], the property goes by a mishmash of
names). Suppose we have a universe of finite combinatorial objects and a notion of embed-
ding one object into another that is at least reflexive and transitive, that is, the notion of em-
bedding forms a quasi-order (in this paper the order is also generally antisymmetric, so it in
fact forms a partial order2). Assuming that this notion of embedding does not permit infinite

∗Supported by Simons Foundation award number 636113.
1Our figure of 85 years dates the study of well-quasi-order to Wagner [Wag37].
2A well-quasi-ordered partial order is sometimes called a partially-well-ordered or well-partially-ordered set,

or it is simply called a partial well order. In particular, these terms are used in some of the early work on well-
quasi-order in the permutation patterns context. We tend to agree with Kruskal’s sentiment from [Kru72, p. 298],
where he wrote that “at the casual level it is easier to work with [partial orders] than [quasi-orders], but in advanced
work the reverse is true.”

https://www.combinatorial-theory.org
mailto:robert.brignall@open.ac.uk
mailto:vatter@ufl.edu
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Figure 1.1: The set of all double ended-forks, three of which are shown here, forms an infinite
antichain in the induced subgraph order.

strictly descending chains (as is usually the case for orders on finite combinatorial objects), it is
well-quasi-ordered (abbreviated wqo, and written belordonné in French) if it does not contain
an infinite antichain—that is, there is no infinite subset of pairwise incomparable objects. (This
is but one of several ways to define wqo; others are presented in Section 1.2.)

Three of the most celebrated results in combinatorics—Higman’s lemma [Hig52], Kruskal’s
tree theorem [Kru60], and Robertson and Seymour’s graph minor theorem [RS04]—establish
that certain notions of embedding constitute well-quasi-orders. For further background on well-
quasi-order in general we refer the reader to the excellent panoramas provided by the recent
surveys of Cherlin [Che11] and Huczynska and Ruškuc [HR15]. It should be noted that well-
quasi-order also has significant applications to algorithmic questions, in particular questions
about fixed-parameter tractability, for which the reader is referred to the book of Downey and
Fellows [DF13, Part IV].

While the graph minor theorem establishes that the set of (finite) graphs is wqo under the
minor order, it is clearly not wqo under the induced subgraph order. For example, the set of
chordless cycles ••• , •••• , ••••• , . . . forms an infinite antichain, as does the set of double-ended
forks3, examples of which are shown in Figure 1.1. Another order that is not wqo is the contain-
ment order on permutations, as described shortly.

Even when the ultimate goal is to show that a given notion of embedding is wqo, experience
suggests that it is often helpful to employ stronger properties than wqo. One much-studied
example of such a stronger property is that of better-quasi-order, introduced in 1965 by Nash–
Williams [NW65] and notably applied by Laver [Lav71] to prove a conjecture of Fraı̈ssé [Fra48]
(see also Marcone [Mar94]).

We explore the applications of a different strengthening of wqo—labelled well-quasi-order,
lwqo for short, or héréditairement belordonné in French—in the context of the containment order
on permutations, the study of which is often called permutation patterns. While the notion of
lwqo is implicit in the work of Higman [Hig52] and Kruskal [Kru60], it was not until the work of
Pouzet in the 1970s (in particular, his 1972 paper [Pou72]) that this notion was made explicit4.

The study of lwqo has recently received renewed attention in the induced subgraph context5,
but the present work constitutes the first consideration of lwqo in the permutation context. The
specific highlights of this work are as follows.

3The graphs we call double-ended forks are also called H-graphs and split-end paths in some works.
4Another valuable reference for the early history of lwqo is Pouzet’s 1985 survey paper [Pou85, Section 3], while

Ding’s 1992 paper [Din92] includes another rediscovery of the concept, in the not-necessarily-induced subgraph
context.

5We refer to Daligault, Rao, and Thomassé [DRT10], Korpelainen and Lozin [KL11b], Atminas and
Lozin [AL15], and Brignall, Engen, and Vatter [BEV18] for investigations of lwqo in the induced subgraph context.
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• Theorem 3.2. If a set of permutations is lwqo, then its downward closure is also lwqo.

• Theorem 4.5. If a permutation class is lwqo, then so is the class of its one-point exten-
sions.

• Theorem 6.2. If a permutation class is lwqo, then so are its sum closure and skew closure.

• Theorem 7.4. If a permutation class is lwqo, then so is its substitution closure.

• Theorem 7.17. A permutation class is lwqo if and only if the corresponding graph class
is lwqo.

• Theorem 8.5. Every geometric grid class is lwqo.

For the remainder of this introduction we review the various pieces of notation required for the
later sections.

1.1. Permutation containment and permutation classes

In the course of this work, we view permutations in several slightly different ways, the most
common being one-line, or list, notation. In this viewpoint, a permutation of length n is simply
an arrangement of the numbers 1 through n in a sequence. As done in Figure 1.2, we also often
identify a permutation π with its plot: the set of points {(i, π(i))} in the plane. When we talk
about an entry being to the left or right of, or above or below, another entry, we are referring to
their relative positions in the plot of the permutation.

Every sequence of distinct real numbers is order-isomorphic, or reduces, to a unique per-
mutation, namely the permutation whose entries are in the same relative order as the terms
of the sequence. We call this permutation the reduction of the sequence. For example, the
sequence 3,−1, 22/7, e is order-isomorphic to the permutation 3, 1, 4, 2, which we abbreviate
to 3142. Given permutations σ = σ(1) · · ·σ(k) and π = π(1) · · · π(n), we say that σ is con-
tained in π if π contains a subsequence that reduces to σ. If π does not contain σ, then we
say that it avoids it. For example, π = 432679185 contains σ = 32514, as witnessed by the
subsequence 32918, but avoids 54321 because it has no decreasing subsequence of length five.

A class of permutations is a set of permutation closed downward under this containment
order6. It is common to specify permutation classes by the permutations they avoid. Thus given
any set B of permutations, we define the class

Av(B) = {π : π avoids all β ∈ B}.

We may always insist that the set B in the above construction is an antichain; in that case B is
the set of minimal permutations not in the class, B uniquely describes the class, and we call B
the basis of the class. For a comprehensive survey of permutation classes, we refer the reader to
Vatter [Vat15].

6In particular, this implies that every nonempty permutation class contains the empty permutation, that we
denote by ε.
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Figure 1.2: Plots of typical members of three families of infinite antichains of permutations.
It should be noted that the edges in these drawings are not formally defined and are intended
only to demonstrate that these permutations are “path-like” in some sense, that shall also not be
formally defined.

It is frequently of interest whether classes given by certain structural definitions are finitely
based, that is, whether their bases are finite sets. Because the set of all permutations is not a wqo
under the containment order, there are infinite antichains of permutations, and thus infinitely-
based permutation classes. The generally-held intuition about the construction of these an-
tichains is that their members consist of a “body” together with some irregularities at the “begin-
ning” and “end” that form “anchors”. For example, Figure 1.2 shows members of three infinite
antichains of permutations with their anchors enclosed in ellipses; these are the three antichains
defined in the early work of Atkinson, Murphy, and Ruškuc [AMR02, Section 3]. The typical
approach to the construction of bodies is to establish that a smaller body can embed into a larger
one only in some contiguous sense (a sense that varies with the form of the bodies in the partic-
ular construction but is always similar to how one path can embed as an induced subgraph into
another).

Note that if a class is finitely based, then the membership problem for that class (“is the
permutation π of length n a member of C?”) can be answered in polynomial time (in n). For
obvious cardinality reasons, the same cannot be said about the membership problem of a general
permutation class (as there are uncountably many permutation classes but only countably many
algorithms, there exist permutation classes for which the membership problem is undecidable).

1.2. Well-quasi-order in general

We begin with the formal definition. A quasi-ordering ⩽ on a set X is well-quasi-ordered or is
a well-quasi-ordering (both abbreviated wqo) if every infinite sequence x1, x2, . . . of elements
from X contains a good pair, that is defined as a pair (xi, xj) with i < j and xi ⩽ xj . As a trivial
observation, note that finite quasi-orderings are always wqo, as any infinite sequence from such a
quasi-ordering must contain two occurrences of the same element, which then form a good pair.
The following two alternative characterisations follow easily from Ramsey-type arguments, and
are essentially folklore7.

7It is also not unreasonable to date these equivalent definitions to Higman’s 1952 paper [Hig52], where they
comprise three of the six parts of his Theorem 2.1—the definition of wqo we have given in terms of good pairs is
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Proposition 1.1. A quasi-ordering ⩽ on the set X is wqo if and only if X contains neither an
infinite antichain nor an infinite strictly decreasing sequence x1 > x2 > · · · .

Proof. If (X,⩽) were to contain an infinite antichain or an infinite strictly decreasing sequence
then it would not be wqo. Now suppose that (X,⩽) contains neither an infinite antichain nor an
infinite strictly decreasing sequence and let x1, x2, . . . be any infinite sequence of elements ofX .
Let G denote the complete graph on the vertices {1, 2, . . . }. For i < j, colour the edge ij of G
one of three colours: red if xi ⩽ xj , blue if xi > xj , or green if xi and xj are incomparable. By
Ramsey’s theorem, G must contain an infinite induced subgraph all of whose edges are the same
colour. Because (X,⩽) contains neither an infinite antichain nor an infinite strictly decreasing
subsequence, the edges of this induced subgraph cannot all be blue or green, so they must all
be red. It follows that the sequence x1, x2, . . . contains a good pair; in fact, it contains infinitely
many.

We say that a quasi-order without infinite strictly decreasing sequences is well founded. Thus
Proposition 1.1 implies that a well-founded quasi-order is wqo if and only if it does not contain
an infinite antichain. In fact, our proof of Proposition 1.1 yields something seemingly much
stronger.

Proposition 1.2. A quasi-ordering ⩽ on the set X is wqo if and only if every infinite sequence
x1, x2, . . . of elements from X contains an infinite increasing subsequence, that is, there are
indices 1 ⩽ i1 < i2 < · · · such that xi1 ⩽ xi2 ⩽ · · · .

From the result above we obtain the well-quasi-order of products quite easily.

Proposition 1.3. If the quasi-orders (X,⩽X) and (Y,⩽Y ) are both wqo, then the quasi-order
X × Y is wqo under the product order in which (x1, y1) ⩽ (x2, y2) if and only if x1 ⩽X x2

and y1 ⩽Y y2.

Proof. Consider an infinite sequence (x1, y1), (x2, y2), . . . from X×Y . By Proposition 1.2, the
sequence x1, x2, . . . contains an infinite increasing subsequence xi1 ⩽X xi2 ⩽X · · · . Apply-
ing Proposition 1.2 to the subsequence yi1 , yi2 , . . . shows that it also has an infinite increasing
subsequence yij1 ⩽Y yij2 ⩽Y · · · , so the subsequence (xij1

, yij1 ) ⩽ (xij2
, yij2 ) ⩽ · · · is an

infinite increasing subsequence of our original sequence, and thus (X ×Y,⩽) is wqo by Propo-
sition 1.2.

As an immediate consequence of Proposition 1.3 we obtain the following result, that is often
called Dickson’s lemma because Dickson employed a special case of it in a 1913 paper [Dic13].

Higman’s condition (v), our Proposition 1.1 is his condition (vi), and our Proposition 1.2 is his condition (iv). For
what it is worth, Higman does not himself give the proof of Proposition 1.2 (in his presentation, the equivalence
of conditions (iv) and (v) of his Theorem 2.1), instead citing an unpublished manuscript of Erdős and Rado for
this result. Precisely which then-unpublished manuscript of Erdős and Rado this refers to is in a bit of doubt; in
1972, Kruskal [Kru72, p. 300] wrote “incidentally, Higman refers to an unpublished manuscript of Erdős and Rado
that was probably an early version of [Rad54] or [ER52]”. Curiously, [Rad54] is a single-authored paper by Rado,
while [ER52] is a solution to a Monthly problem posed by Erdős in 1949 [Erd49]. Another possibility is that the
manuscript Higman refers to became [ER59].
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Proposition 1.4. For any well-quasi-order (X,⩽), the set of n-tuples over X is wqo under the
product order, in which (x1, . . . , xn) ⩽ (x′

1, . . . , x
′
n) if and only if xi ⩽ x′

i for all indices i.

We denote the quasi-order of n-tuples appearing in Proposition 1.4 by (Xn,⩽).

1.3. Well-quasi-order for permutation classes

Well-quasi-ordered permutation classes possess many favourable properties. Below we state
two of these and give short proofs of them. A few notes are in order before that, however. First,
note that we could have stated this result in much more generality, but we have instead chosen to
specialise our treatment to the context of permutation classes. Second, this result is essentially
folklore, and our reference to the work of Atkinson, Murphy, and Ruškuc is simply the first place
where a result such as this appeared in the literature on permutation classes.

Proposition 1.5 (Cf. Atkinson, Murphy, and Ruškuc [AMR02, Proposition 1.1]). The following
conditions on a permutation class C are equivalent:

(a) C is wqo,

(b) C contains at most countably many subclasses,

(c) C satisfies the descending chain condition, that is, there does not exist an infinite sequence

C = C(0) ⊋ C(1) ⊋ C(2) ⊋ · · ·

of subclasses of C.

Proof. We first show that (a) and (b) are equivalent. Note that all subclasses of C are of the
form C ∩Av(B) for an antichain B ⊆ C. Thus if (a) holds, then all such antichains B are finite,
and since C is itself at most countable, it has at most countably many finite subsets. On the other
hand, if C were to contain an infinite antichain A, then

{C ∩ Av(B) : B ⊆ A}

would be an uncountable family of distinct subclasses of C.
Next we show that (a) and (c) are equivalent. Suppose to the contrary that the wqo class C

contains an infinite strictly decreasing sequence of subclasses C = C(0) ⊋ C(1) ⊋ C(2) ⊋ · · · .
For each i ⩾ 1, choose βi ∈ C(i−1) \ C(i). The set of minimal elements of {β1, β2 . . .} is
an antichain and therefore finite, so there is an integer m such that {β1, β2 . . . , βm} contains
these minimal elements. In particular, βm+1 ⩾ βi for some 1 ⩽ i ⩽ m. However, we chose
βm+1 ∈ C(m) \ C(m+1), and because βm+1 contains βi, it does not lie in C(i) and thus cannot lie
in C(m), a contradiction. To establish the other direction, suppose that C is not wqo, so it contains
an infinite antichain A = {α1, α2, . . . }. Then

C ⊋ C ∩ Av({α1}) ⊋ C ∩ Av({α1, α2}) ⊋ · · ·

would be an infinite sequence of subclasses of C.
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Figure 1.3: The containment order on permutations and their corresponding inversion graphs.

1.4. Induced subgraphs and classes of graphs

As demonstrated throughout this paper, studies of the permutation containment order and of the
induced subgraph order are intimately linked. LetG = (V,E) be a graph. Given a subsetX ⊆ V
of vertices, G[X] denotes the subgraph of G induced by X , which is the graph with vertex set X
and an edge between two vertices u, v ∈ X if and only if G contains an edge between u and v.
Alternatively, G[X] can be formed from G by deleting all of the vertices in V \ X and their
incident edges.

A hereditary property or (throughout this paper) class of graphs is a set of finite graphs that
is closed downward under the induced subgraph ordering and under isomorphism. Thus if C is a
class, G ∈ C, and H is an induced subgraph of G, then H ∈ C. Many natural sets of graphs form
classes, such as the set of perfect graphs or the set of comparability graphs. For an extensive
survey we refer to the encyclopaedic text of Brandstädt, Le, and Spinrad [BLS99]. A common
way to describe a graph class is via its antichain of minimal forbidden induced subgraphs, that
is, the minimal (under the induced subgraph order) graphs that do not lie in the class. This is
analogous to how a permutation class can be described by its basis.

Despite the fact that the set of chordless cycles forms an infinite antichain in this order, some
important classes of graphs are nevertheless wqo under the induced subgraph ordering. Perhaps
the most fundamental result of this type is that the class of cographs (short for complement-
reducible graphs) is wqo in the induced subgraph order, as first observed by Damaschke [Dam90,
Theorem 4]. This class is quite easily defined by its sole minimal forbidden induced subgraph,
the path on four vertices P4.

To give a more constructive definition of this class, recall that the join, denoted by G ∗ H ,
of the vertex-disjoint graphs G and H is formed from the disjoint union G ⊎ H by adding all
possible edges with one endpoint in G and the other in H . (In this context, G and H are referred
to as the join components of the resulting graph.) Then a graph is a cograph if and only if,
starting with the one-vertex graph K1, it can be built by repeatedly taking the disjoint union or
join of two cographs8.

8The term complement-reducible graph is due to a different version of this structural result: the one-vertex
graph K1 is a cograph, and a graph on two or more vertices is a cograph if and only if it or its complement can be
expressed as the disjoint union of two smaller cographs.
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πr
π−1

πc

(
(πr)−1

)r

(πr)−1

πrc

(π−1)r

Figure 1.4: The symmetries of the square, labelled by their effect on a permutation π.

1.5. Inversion graphs of permutations

The connection between the permutation containment order and the induced subgraph order
on graphs comes via what we call inversion graphs (but which are more commonly called
permutation graphs in the graph theory literature). The inversion graph of the permutation
π = π(1) · · · π(n) is the graph Gπ on the vertices {1, . . . , n} in which i is adjacent to j if
and only if π(i) and π(j) form an inversion, meaning that i < j and π(i) > π(j). In the graph
context, we typically only care about isomorphism classes, and so this mapping is many-to-one
as witnessed by the fact that G2413

∼= G3142
∼= P4.

As shown on the right of Figure 1.3, to obtain the inversion graph of a permutation from its
plot we simply add all edges between pairs of entries in which one lies northwest of the other.
Figure 1.3 should also convince the reader that if σ is contained in π then Gσ is an induced
subgraph of Gπ. However, the converse does not hold generally (returning to our example from
above, G2413 is an induced subgraph of G3142 because the two graphs are isomorphic, but of
course the permutation 2413 is not contained in the permutation 3142). The most one can say
in general is the following.

Proposition 1.6. If Gσ is an induced subgraph of Gπ, then there is a permutation τ ⩽ π such
that Gτ

∼= Gσ.

Proof. A witness to the embedding of Gσ in Gπ is a set of vertices of Gπ that forms an induced
subgraph isomorphic to Gσ. Thus, we may take τ to be the permutation that is order isomorphic
to the corresponding set of entries in π.

When identifying permutations with their plots, it is clear that the permutation containment
order respects all eight symmetries of the square shown in Figure 1.4. Of these symmetries, three
are particularly important to this work: the group-theoretic inverse, π−1, obtained by reflecting
the plot of π about the line y = x; the reverse complement, πrc, obtained by reflecting the plot
of π about the line y = −x (and then shifting); and the symmetry obtained by composing these
two, (πrc)−1. Note these symmetries do not affect the corresponding inversion graphs: for all
permutations π, we have

Gπ
∼= Gπ−1

∼= Gπrc ∼= G(πrc)−1 .
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Figure 1.5: Inversion graphs do not contain induced cycles on five or more vertices.

Complete graphs are inversion graphs because Kk
∼= Gk···21. Indeed, k · · · 21 is the only

permutation whose inversion graph is (isomorphic to) Kk, so every clique in Gπ arises from a
decreasing subsequence of π. By symmetry, 12 · · · ℓ is the only permutation whose inversion
graph has no edges, so every independent set in Gπ arises from an increasing subsequence of π.
Of course, not every graph is the inversion graph of a permutation. For example, induced cycles
of length five or more never appear in inversion graphs.

Proposition 1.7. For all k ⩾ 5, the cycle Ck is not an induced subgraph of any inversion graph.

Proof. Suppose to the contrary that some cycle Ck for k ⩾ 5 were contained as an induced
subgraph in the inversion graph Gπ. Let π(i1) denote the leftmost entry of π that corresponds
to a vertex in this copy of Ck. Let the indices of π that correspond to the other vertices of this
cycle be i2, . . . , ik, so that i1 ∼ i2 ∼ · · · ∼ ik ∼ i1 in Gπ.

We may assume that π(i2) lies to the left of π(ik) because otherwise we could consider the
cycle in the reverse order. The vertices i2 and ik are not adjacent because k ⩾ 4, so they must cor-
respond to a noninversion in π, and since π(i1) lies to the left of all other entries corresponding
to vertices of this cycle, π(i2) and π(ik) must lie to the southeast of π(i1), as shown in Fig-
ure 1.5. In this figure, the shaded regions cannot contain any other entries of π that correspond
to vertices of the cycle for various reasons: (i) π(i1) is the leftmost such entry; (ii) only π(i2)
and π(ik) may lie southeast of π(i1) since no other vertex on the cycle is adjacent to i1; and (iii)
since k ⩾ 5, there is no vertex adjacent to both i2 and ik other than i1. However, this implies
that we cannot finish the cycle—there is no way that there could be a vertex adjacent to i2 but
not to i1 or ik—completing the proof.

Inversion graphs can contain induced cycles of lengths 3 and 4, because G321
∼= K3

∼= C3

and G3412
∼= C4, but it follows from Proposition 1.7 and an investigation of permutations of

lengths 3 and 4 that 321 and 3412 are the only permutations whose inversion graphs are iso-
morphic to cycles. Thus we immediately obtain characterisations of the bipartite and acyclic
inversion graphs.

Proposition 1.8. The bipartite inversion graphs are precisely the inversion graphs of permuta-
tions in the class Av(321).

Proposition 1.9. The acyclic inversion graphs are precisely the inversion graphs of permutations
in the class Av(321, 3412).
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There has been extensive study of both the 321-avoiding permutations [Ric88, BW01, MS03,
SW04, GV09, AAB+10, AV13, ABRV19] and their graphical analogues, the bipartite inver-
sion graphs [SBS87, LW97, BL03, LR07, UV07, KL11a, LM11, KSU12, HvtHMV15, KO16,
LC17]. The acyclic inversion graphs and the corresponding permutation class Av(321, 3412)
have not received nearly as much attention, although Tenner [Ten07] and Petersen and Ten-
ner [PT15] have considered them from the Bruhat order perspective.

1.6. Order-preserving and reflecting mappings

The mapping π 7→ Gπ from permutations to their inversion graphs is order-preserving be-
cause Gσ is an induced subgraph of Gπ whenever σ is contained in π. Such mappings arise
frequently in our proofs; in general, a mapping Φ : (X,⩽X) → (Y,⩽Y ) from one poset to
another is order-preserving if

x1 ⩽X x2 =⇒ Φ(x1) ⩽Y Φ(x2)

for all x1, x2 ∈ X . In addition to the mapping π 7→ Gπ, we note that every mapping from an
antichain to a poset is order-preserving. We frequently employ the following elementary fact.

Proposition 1.10. Suppose that (X,⩽X) and (Y,⩽Y ) are quasi-orders and that the mapping

Φ : (X,⩽X) →→ (Y,⩽Y )

is an order-preserving surjection. If (X,⩽X) is wqo, then (Y,⩽Y ) is also wqo.

Proof. Let y1, y2, . . . be an infinite sequence of elements from Y . Because Φ is surjective, for
each yi we can choose some xi ∈ X such that Φ(xi) = yi. Because (X,⩽X) is wqo, the
sequence x1, x2, . . . has a good pair, that is, there are indices i < j so that xi ⩽X xj . It follows
that yi = Φ(xi) ⩽ Φ(xj) = yj , so the sequence y1, y2, . . . also has a good pair.

Applying Proposition 1.10 in this context immediately yields the following result relating
wqo permutation classes and wqo classes of graphs. Here and in what follows, if X is a set
(or class) of permutations, then we denote by GX the set (or class) of inversion graphs of its
members.

Proposition 1.11. Let C be a permutation class and GC the corresponding graph class.

(a) If C is wqo in the permutation containment order, then GC is wqo in the induced subgraph
order.

(b) Contrapositively, if GC is not wqo in the induced subgraph order, then C is not wqo in the
permutation containment order.

Intriguingly, the converse of Proposition 1.11 is not known to hold. (Although see Proposi-
tion 7.14 for a partial answer.)

Question 1.12. Let C be a permutation class and GC the corresponding graph class. If GC is
wqo in the induced subgraph order, must C be wqo in the permutation containment order?
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Figure 1.6: An example of a direct sum: 45312 ‘ 2341 = 45312 7896.

Recall from Section 1.5 that Gπ
∼= Gπ−1

∼= Gπrc ∼= G(πrc)−1 for all permutations π. Thus

GX = GX ∪X−1 ∪Xrc ∪ (Xrc)−1

for all sets X of permutations. These considerations show that an affirmative answer to Ques-
tion 1.12 cannot follow from the same argument as used to prove Proposition 1.11—given an
antichain A of permutations, it is certainly not always the case that the corresponding set of
inversion graphs GA is also an antichain.

It is frequently more convenient to work backward; the mapping Ψ : (X,⩽X) → (Y,⩽Y ) is
order-reflecting9 if

x1 ⩽X x2 ⇐= Ψ(x1) ⩽Y Ψ(x2)

for all x1, x2 ∈ X . Note that if (X,⩽X) is a poset (as when we restrict our attention to permuta-
tion classes) andΨ is an order-reflecting mapping with domain (X,⩽), thenΨmust be injective:
if Ψ(x1) = Ψ(x2), then we have both x1 ⩽X x2 and x2 ⩽X x1, which implies that x1 = x2.
This fact tends to motivate constructions of order-reflecting mappings—we must be able to “re-
construct” x from Ψ(x)—although this is not a sufficient condition for Ψ to be order-reflecting.

The analogue of Proposition 1.10 for order-reflecting mappings follows easily.

Proposition 1.13. Suppose that (X,⩽X) and (Y,⩽Y ) are quasi-orders and that the mapping

Ψ : (X,⩽X) → (Y,⩽Y )

is order-reflecting. If (Y,⩽Y ) is wqo then (X,⩽X) is also wqo.

Proof. Let x1, x2, . . . be any infinite sequence of elements from X . Because (Y,⩽Y ) is wqo,
the sequence Ψ(x1),Ψ(x2), . . . has a good pair, meaning that there are indices i < j such
that Ψ(xi) ⩽Y Ψ(xj). It follows that xi ⩽X xj , so the sequence x1, x2, . . . also has a good
pair.

1.7. Sums and increasing oscillations

The (direct) sum of the permutations σ of length m and τ of length n is the permutation σ ‘ τ
defined by

(σ ‘ τ)(i) =

{
σ(i) for 1 ⩽ i ⩽ m,
τ(i−m) +m for m+ 1 ⩽ i ⩽ m+ n.

9Note that what is “reflected” in the definition of order-reflecting is the implication arrow.
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The plot of σ ‘ τ consists of the plot of τ above and to the right of the plot of σ, as shown in
Figure 1.6. Analogously, given permutations σ of length m and τ of length n, their skew sum is
the permutation σ a τ defined by

(σ a τ)(i) =

{
σ(i) + n for 1 ⩽ i ⩽ m,
τ(i−m) for m+ 1 ⩽ i ⩽ m+ n.

A permutation is sum indecomposable (or connected) if it cannot be expressed as the direct sum
of two shorter permutations and skew sum indecomposable (or simply skew indecomposable) if
it cannot be expressed as the skew sum of two shorter permutations. We leave the routine proof
of the following result to the reader.

Proposition 1.14. The permutation π is sum indecomposable if and only if Gπ is connected.

A permutation is separable if it can be built from the permutation 1 using only sums and
skew sums. For example, the permutation 453127896 of Figure 1.6 is separable:

453127896 = 45312 ‘ 2341

= (12 a 1 a 12) ‘ (123 a 1)

= ((1 ‘ 1) a 1 a (1 ‘ 1)) ‘ ((1 ‘ 1 ‘ 1) a 1).

The term “separable” is due to Bose, Buss, and Lubiw [BBL98], who proved that the separable
permutations are Av(2413, 3142), although these permutations first appeared in the much earlier
work of Avis and Newborn [AN81]. The graphical analogues of separable permutations are
the cographs defined in Section 1.4. More precisely, an inductive argument quickly yields the
following.

Proposition 1.15. The cographs are precisely the inversion graphs of separable permutations.

We conclude our discussion of inversion graphs by considering those permutations whose
inversion graphs are paths. Proposition 1.16, below, shows that these permutations are precisely
the sum indecomposable permutations that are order isomorphic to subsequences of the increas-
ing oscillating sequence,

2, 4, 1, 6, 3, 8, 5, . . . , 2k, 2k − 3, . . . .

We call such permutations increasing oscillations10. Thus the set of increasing oscillations is

{1, 21, 231, 312, 2413, 3142, 24153, 31524, 241635, 315264, 2416375, 3152746, . . . }.

As promised, we show that these permutations have the property we seek.

Proposition 1.16. The inversion graph Gπ is a path if and only if π is an increasing oscillation.
10The term increasing oscillation dates to Murphy’s thesis [Mur02], although we note that under our definition

the permutations 1, 21, 231, and 312 are increasing oscillations while in his thesis and some other works they are
not.
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Figure 1.7: The inversion graphs of typical members of three different infinite antichains of
permutations based on the increasing oscillating sequence.

Proof. It is evident that the inversion graphs of increasing oscillations are paths. To establish
the other direction, suppose that Gπ is a path on k ⩾ 2 vertices, and denote the indices of π
as i1, . . . , ik so that

i1 ∼ i2 ∼ · · · ∼ ik

in Gπ. Without loss of generality, we may assume that π(i1) lies to the left of π(ik). Since i1
is adjacent only to i2 in Gπ, π(i1) is either the bottommost or the leftmost entry of π, and we
assume it is the leftmost (the other argument being a symmetry of this).

The placement of π(i2) is now determined: it must lie southeast of π(i1). The entry π(i3)—
if it exists—cannot lie southeast of π(i1), and thus must lie above π(i1) and horizontally be-
tween π(i1) and π(i2). Continuing iteratively in this manner, we see that for ℓ > 1, π(i2ℓ) must
lie to the right of π(i2ℓ−2) and vertically between π(i2ℓ−2) and π(i2ℓ−1), while π(i2ℓ+1) must lie
above π(i2ℓ−1) and horizontally between π(i2ℓ−1) and π(i2ℓ). The resulting permutation is the
increasing oscillation of length n whose first entry is 2.

Increasing oscillations can be used to build several infinite antichains. One such antichain is
pictured on the left of Figure 1.2, another member of which is shown on the left of Figure 1.7.
This is essentially the same as the antichain constructed in 2000 by Spielman and Bóna [SB00].
However, infinite antichains of permutations date back at least to the early 1970s, if not the late
1960s. In his 1972 paper [Tar72, Lemma 6], Tarjan presented the antichain shown in the centre
of Figure 1.7. A year later, Pratt [Pra73, Figure 3] presented the antichain shown on the right
of Figure 1.7. However, Tarjan’s construction may have been preceded by a construction of
Laver [Lav76, pg. 9]; while Laver’s paper was not published until 1976, his antichain is men-
tioned in Kruskal’s 1972 paper [Kru72, pg. 304], and Laver writes that this antichain is derived
from a construction presented in the penultimate paragraph of Jenkyns and Nash–Williams’s
1968 paper [JNW69]. (The Jenkyns–Nash–Williams construction is not an infinite antichain
of permutations, but it nevertheless bears a striking resemblance to the antichains based on the
increasing oscillating sequence.)

A linear forest is a disjoint union of paths. Let OI denote the class of permutations whose
graphs are linear forests. It follows immediately from Proposition 1.16 that the class OI consists
precisely of all permutations that are order isomorphic to subsequences of the increasing oscil-
lating sequence. Viewed from this angle, the result below gives the basis of this permutation
class. This result was first stated without proof in Murphy’s thesis [Mur02, Proposition 36] and
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Figure 1.8: The set of all paths labelled by a two-element antichain forms an infinite antichain
in the labelled induced subgraph order.

a proof was later given by Brignall, Ruškuc, and Vatter [BRV08, Proposition 14], but the proof
below using inversion graphs is much more straight-forward.

Proposition 1.17. The linear forests are precisely the inversion graphs of permutations in the
class OI = Av(321, 2341, 3412, 4123).

Proof. The inversion graphs G321 and G3412 are cycles, and the inversion graphs G2341 and
G4123 are both isomorphic to the claw K1,3. Thus if Gπ is a disjoint union of paths, π must avoid
321, 3412, 2341, and 4123. In the other direction, Proposition 1.9 shows us that Gπ is acyclic
if π ∈ Av(321, 3412), and if π further avoids 2341 and 4123, then Gπ cannot have a vertex of
degree 3 or greater, so Gπ is indeed a disjoint union of paths.

We establish in Proposition 6.3 that the permutation class OI is wqo. It follows from part (a)
of Proposition 1.11 that the graph class of linear forests is wqo, although there are a multitude
of ways to see this latter fact.

At this point we know that paths are inversion graphs, while cycles of length five or more
are not. It follows that the minimal forbidden induced subgraph characterisation of the class of
inversion graphs contains {Ck : k ⩾ 5} and thus is infinite. We remark that the entire infinite
minimal forbidden induced subgraph characterisation of the class of inversion graphs was found
in the seminal work of Gallai [Gal67].

1.8. Labelled well-quasi-order

We first define labelled well-quasi-order in the graph context. Let (L,⩽L) be any quasi-order
(although we soon require that it be a wqo). An L-labeling of the graph G is a mapping ℓG from
the vertices of G to L, and the pair (G, ℓG) is called an L-labelled graph. The L-labelled graph
(H, ℓH) is a labelled induced subgraph of the L-labelled graph (G, ℓG) if H is isomorphic to an
induced subgraph of G and this isomorphism maps each vertex v ∈ H to a vertex w ∈ G such
that ℓH(v) ⩽L ℓG(w).

Given a class C of graphs and a quasi-order (L,⩽L), we denote by C ≀L the set of L-labelled
graphs from C. We say that C is labelled well-quasi-ordered (lwqo) if C ≀ L is wqo under the
labelled induced subgraph order for every wqo set (L,⩽L). Note that this is equivalent to saying
that the set of graphs in C labelled by (L,⩽L) does not contain an infinite antichain. It is worth
emphasising that the definition of lwqo ranges over every wqo set of labels (L,⩽L), and not
merely finite sets of labels.

The lwqo property is much stronger than wqo. For one example, the set of all chordless
paths, which is trivially wqo, is not lwqo, as indicated in Figure 1.8. This shows that the class
of linear forests is not lwqo, despite being wqo. On the other hand, as noted by Atminas and
Lozin [AL15], the class of cographs is lwqo.
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In the permutation context, we view an L-labeling of the permutation π of length n as a map-
ping ℓπ from the indices of π to elements of L, that is, ℓπ : {1, 2, . . . , n} → L. We think of ℓπ(i)
as being the label attached to the entry π(i), and we call the pair (π, ℓπ) an L-labelled permu-
tation. Given two L-labelled permutations (π, ℓπ) and (σ, ℓσ) where π and σ have lengths n
and k, respectively, we say that (σ, ℓσ) is contained in (π, ℓπ) if there is an increasing sequence
of k indices 1 ⩽ i1 < i2 < · · · < ik ⩽ n such that the subsequence π(i1)π(i2) · · · π(ik) is order
isomorphic to σ and ℓσ(j) ⩽L ℓπ(ij) for all 1 ⩽ j ⩽ k.

As in the graph context, we let C ≀ L denote the set of L-labelled permutations of C and say
that the permutation class C is labelled well-quasi-ordered (lwqo) if C ≀ L is wqo (under the
labelled containment order defined above) for every wqo (L,⩽L).

Just as we associated inversion graphs to permutations in Section 1.5, we can associate la-
belled inversion graphs to labelled permutations. Given an L-labelled permutation (π, ℓπ), we
define its L-labelled inversion graph to be the pair (Gπ, ℓπ). Thus in the labelled graph (Gπ, ℓπ),
the vertex i receives the same label as the entry π(i) in the labelled permutation (π, ℓπ). Applying
Proposition 1.10 in this context gives us the following analogue of Proposition 1.11.

Proposition 1.18. Let C be a permutation class and GC the corresponding graph class.

(a) If C is lwqo in the permutation containment order, thenGC is lwqo in the induced subgraph
order.

(b) Contrapositively, if GC is not lwqo in the induced subgraph order, then C is not lwqo in
the permutation containment order.

Proof. Suppose the permutation class C is lwqo and take (L,⩽L) to be an arbitrary wqo set.
Because C is lwqo, the set of L-labelled members of C is wqo. The mapping (π, ℓπ) 7→ (Gπ, ℓπ)
is easily seen to be order-preserving, and maps the L-labelled members of C surjectively onto
the L-labelled members of GC . Therefore Proposition 1.10 shows that the L-labelled members
of GC are wqo, and since (L,⩽L) was an arbitrary wqo set, this shows that GC is lwqo.

Analogous to Question 1.12, it is natural to ask: if GC is lwqo in the induced subgraph order,
is it necessarily true that C is lwqo in the permutation containment order? We prove that the
answer to this question is “yes” with Theorem 7.17.

There are a variety of notions of structure that interpolate between wqo and lwqo. Special-
ising his notion to our context, Pouzet [Pou72] defined the class C to be n-well-quasi-ordered
(n-wqo) if the set of all permutations in C labelled by an n-element antichain is wqo. The fol-
lowing result is trivial, but it arises in several of our discussions related to n-wqo, so we make
it explicit here.

Proposition 1.19. If the permutation class C is n-wqo and (L,⩽L) is any n-element poset,
then C ≀ L is wqo.

Proof. Let (A,⩽A) be an n-element antichain. By the hypotheses, we know that C ≀ A is wqo.
Let ϕ : A → L denote any bijection between A and L, so ϕ is an order-preserving surjection. It
follows that the mapping (π, ℓπ) 7→ (π, ϕ ◦ ℓπ) from C ≀ A to C ≀ L is also an order-preserving
surjection, so C ≀ L is wqo by Proposition 1.10.
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Figure 1.9: Typical members of the antichains of Figure 1.2, shown as labelled permutations.
Note that, except in the leftmost picture, the lines between entries do not coincide with the edges
of their inversion graphs.

In his 1972 paper, Pouzet made the following still-open11 conjecture, that we have specialised
to our context.

Conjecture 1.20 (Cf. Pouzet [Pou72]). A permutation class is 2-wqo if and only if it is n-wqo
for all n ⩾ 1.

Since finite antichains are trivially wqo, it follows that an lwqo class is n-wqo for every n. In
fact, we are not aware of a class that is 2-wqo that is not also known to be lwqo. The following
question was raised in the graph context [BEV18], but we see no reason not to also ask it in the
permutation context.

Question 1.21 (Cf. Brignall, Engen, and Vatter [BEV18]). Is every 2-wqo permutation class
also lwqo?

While the n-wqo property has received scant attention in the permutation context, the la-
belled permutations that arise in its definition have been studied fairly extensively. Permutations
whose entries are labelled by members of a finite antichain are precisely the same as the coloured
permutations that were considered by Mansour in a 2001 paper [Man02] and also in numerous
subsequent articles by Mansour and other authors. In the special case of n = 2, the labelled per-
mutations are typically identified with signed permutations (or from the algebraic perspective,
members of the hyperoctahedral group). The study of pattern avoidance in this context dates
back a bit further, to the 2000 work of Simion [Sim00].

Finally, we remark that the lwqo property—and in fact also the notion of 2-wqo—simplifies
the intuition behind constructing infinite antichains as it allows us to replace “anchors” by la-
belled entries and focus instead on the more important task of constructing bodies, as shown

11It should also be noted that Conjecture 1.20 has an interpretation in category theory, as detailed by Křı́ž
and Thomas [KT90], and in this more general context, the conjecture was shown to be false by Křı́ž and
Sgall [KS91]. In addition, a possible approach to proving Conjecture 1.20 has been outlined by Daligault, Rao,
and Thomassé [DRT10], who conjectured that every 2-wqo class of graphs has bounded clique-width (a term we
do not discuss further here), and further asked if the same conclusion held for every wqo class of graphs. Lozin,
Razgon, and Zamaraev [LRZ18], however, answered the question negatively by constructing a wqo class of graphs
with unbounded clique-width, although the original conjecture about 2-wqo classes remains open.
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in Figure 1.9. Putting this intuition in the context of our comments above, practice seems to
indicate that infinite antichains of signed permutations are in some sense more “natural” than
infinite antichains of unsigned permutations.

2. Finite Bases

In their seminal study of wqo permutation classes, Atkinson, Murphy, and Ruškuc [AMR02]
define a permutation class to be strongly finitely based if it and all of its subclasses are finitely
based. Proposition 2.3 shows that all lwqo permutation classes are strongly finitely based. Before
that, we give a characterisation of strongly-finitely-based classes.

Proposition 2.1 (Cf. Atkinson, Murphy, and Ruškuc [AMR02, Proposition 1.1]). The permuta-
tion class C is strongly finitely based if and only if it is both finitely based and wqo.

Proof. First assume that the class C is finitely based and wqo and let B denote its (finite) basis.
The basis of any subclass D ⊆ C consists of a subset of B together with an antichain belonging
to C. As B is finite and C is wqo, this basis must be finite.

Now suppose that the class C and all of its subclasses are finitely based, letB denote the basis
of C, and suppose to the contrary that C contains the infinite antichainA. DefineD = Av(A∪B).
Obviously, D is a subclass of C, and it is tempting to conclude that it is infinitely based, but we
must be a bit careful. Indeed, the basis of D must be a subset of A ∪ B, but it need not be all
of A ∪ B because members of A could be contained in members of B. Nevertheless, because
A ⊆ C = Av(B), it follows that no member of A contains a member of B, and thus that every
member of A is contained in the basis of D. Therefore D is in fact an infinitely-based subclass
of C, and this contradiction completes our proof.

Few general results have been established about strongly-finitely-based classes, but the result
above allows us to show that the union of two strongly-finitely-based classes is itself strongly
finitely based12. There are two ingredients to this proof: first, the fact that the union of two wqo
classes is wqo, which is self-evident, and second, that the union of two-finitely-based classes is
finitely based, which was first observed by Atkinson.

Proposition 2.2 (Atkinson [Atk99, Theorem 2.1]). A finite union of finitely-based permutation
classes is itself finitely based.

Proof. It suffices to prove that the union of two finitely-based classes, say C and D, is finitely
based. Consider a basis element β of C ∪ D. Since β /∈ C,D, it must contain basis elements
of both C and D; say these basis elements are γ and δ, respectively. By the minimality property
of basis elements, no proper subpermutation of β may contain both γ and δ, so β must in fact
be comprised entirely of a copy of γ together with a copy of δ, perhaps sharing some entries.
Since C and D are finitely based, there is a bound on the length of their basis elements, so there
is a bound on the length of the basis elements of C ∪D. This implies that C ∪D is finitely based,
as desired.

12The intersection of two strongly-finitely-based classes is also strongly finitely based, but this fact is a trivial
consequence of the definition.
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Figure 2.1: The entry removal process described in the proof of Proposition 2.3, applied to the
potential basis element 287369154.

Returning to the context of wqo, we show below that 2-wqo permutation classes are finitely
based, which implies that they are strongly finitely based. While this is the first appearance
of the permutation version of this result, we note that this version is a special case of a 1972
result of Pouzet [Pou72] (in French; see [Pou85, Theorem 3.1] for an English description of this
result), who established the finite basis property for lwqo classes in the more general context
of relational structures (multirelations, in French). A proof similar to that below has also been
given in the context of graphs by Daligault, Rao, and Thomassé [DRT10, Proposition 3]. For
lwqo classes, we strengthen this result later with Theorem 4.5.

Proposition 2.3 (Cf. Pouzet [Pou72]). Every 2-wqo (and thus in particular, every lwqo) permu-
tation class is finitely based.

Proof. Suppose that the class C with basis B is 2-wqo and let L = {◦, •} be a 2-element an-
tichain, so that C ≀ L is wqo.

For every basis element β ∈ B we denote by β− the permutation obtained from β by remov-
ing its rightmost entry. Label each entry of β− by ◦ if the corresponding entry of β lies below
the rightmost entry of β, or • otherwise. Let Ψ(β) denote the resulting labelled permutation, as
depicted in Figure 2.1. Since β− ∈ C for all β ∈ B by the definition of basis elements, we have
that Ψ(β) ∈ C ≀ L, that is, Ψ : B → C ≀ L.

If we can show that Ψ is order-reflecting, then, since C ≀L is wqo, Proposition 1.13 will imply
that B is wqo. Because B is an antichain by definition, this will imply that B is finite and thus
complete the proof. To this end, suppose that Ψ(β) ⩽ Ψ(γ) for β, γ ∈ B.

Let k + 1 and n + 1 denote the lengths of β and γ, respectively, so there is an increasing
sequence 1 ⩽ i1 < i2 < · · · < ik ⩽ n of indices such that the subsequence γ(i1) · · · γ(ik) of γ−

is order isomorphic to β− and such that for all 1 ⩽ j ⩽ k, the label of γ(ij) is the same as the
label of β(j). This condition ensures that the relative position of β(k + 1) amongst the entries
of β− is the same as the relative position of γ(n + 1) amongst the entries of the subsequence
γ(i1) · · · γ(ik), and thus the subsequence γ(i1) · · · γ(ik)γ(n+1) is order isomorphic to β, so we
conclude that β ⩽ γ (and in fact β = γ, since both are basis elements), Ψ is order-reflecting,
and the proof is completed.

Having established that lwqo classes are strongly finitely based, one might wonder what,
if anything, differentiates these two properties. In fact, we have also observed that the family
of strongly-finitely-based classes is closed under union (a consequence of Proposition 2.2) and
intersection (see Footnote 12). That the family of lwqo classes is closed under union and inter-
section follows trivially from the definition. Thus the reader could be forgiven for thinking that
these properties might coincide, but this is not the case.
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Figure 2.2: Two additional depictions of a widdershins spiral, first shown on the right of Fig-
ure 1.9.

Proposition 2.4. There is a permutation class that is both finitely based and wqo, but not lwqo.

Indeed, the proof of Proposition 2.4 has mostly been completed in the previous section.
Recall that the downward closure of the set of increasing oscillations is the class OI , and that
this class is finitely based by Proposition 1.17. Moreover, it is not hard to see that OI is also
wqo, a fact we formally establish with Proposition 6.3. But OI is not lwqo, as one may label
the increasing oscillations as indicated on the left of Figure 1.9, which shows that OI is not
even 2-wqo.

Thus lwqo is strictly stronger than the property of being strongly finitely based in the per-
mutation context, but we could still wonder if the two properties might coincide in the graph
context. In this direction, note that the proofs of Propositions 2.1 and 2.3 can readily be adapted
to show that a graph class is strongly finitely based if and only if it is finitely based and wqo, and
that every 2-wqo graph class is strongly finitely based.

Korpelainen, Lozin, and Razgon [KLR13] conjectured13 that, contrary to Proposition 2.4 for
permutations, the converse of Proposition 2.3 holds for graphs. The counterexample we have
given for permutations does not translate to a counterexample for graphs because the analogous
class of graphs (the linear forests) is not finitely based (its basis contains all cycles). However,
there is another permutational counterexample that does translate to a graphical counterexample.

Proposition 2.5 (Brignall, Engen, and Vatter [BEV18]). There is a permutation class C such
that the corresponding graph class GC is wqo and defined by finitely many forbidden induced
subgraphs, but is not lwqo.

The construction used in [BEV18] to establish Proposition 2.5 is based on a set of permuta-
tions named widdershins spirals14 by Murphy in his thesis [Mur02, Section 3.2]. The clockwise
symmetries of Widdershins spirals have already appeared in Figures 1.2 and 1.9, and two ad-
ditional drawings are shown in Figure 2.2. As with the class OI , it can readily be shown—by
labeling the widdershins spirals as on the right of Figure 2.2—that the downward closure of this

13This conjecture was later restated by Atminas and Lozin [AL15] in their work on lwqo.
14Widdershins is a Lower Scots word meaning “to go anti-clockwise”.
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set of permutations is not 2-wqo (and thus is not lwqo). A bit more analysis shows that the same
holds for the corresponding graph class. Further analysis given in [BEV18] then establishes that
the downward closure of this permutation class is wqo and finitely based15. The final step to
establish Proposition 2.5 is to show that the corresponding class of graphs is finitely based.

3. Finite Sets and Downward Closures

We begin with the simplest possible permutation classes, which are rather trivially lwqo.

Proposition 3.1. Every finite set of permutations is lwqo.

Proof. Suppose that C is a finite set of permutations and (L,⩽L) is wqo. If π ∈ C has length m,
then the poset of labelings of π is isomorphic to (Lm,⩽L), which is wqo by Proposition 1.4
(Dickson’s lemma). It follows that C ≀ L can be expressed as the union of finitely many wqo
posets, and thus C ≀ L is itself wqo, as required.

Next we establish that downward closures of lwqo sets (not necessarily classes) of permuta-
tions are also lwqo. As we elaborate on after the proof, this is one of the more striking differences
between wqo and lwqo.

Theorem 3.2. If the set X of permutations is lwqo, then its downward closure,

X⩽ = {σ : σ ⩽ π for some π ∈ X},

is also lwqo.

Proof. Suppose that X is an lwqo set of permutations and take (L,⩽L) to be an arbitrary wqo
set. We want to show that X⩽ ≀ L is wqo. We begin by adjoining to L a new minimum ele-
ment 0 /∈ L to form the poset (L0,⩽0), that is trivially wqo. Because X is lwqo and (L0,⩽0) is
wqo, we know that X ≀L0 is wqo. We prove the proposition by constructing an order-preserving
surjection Φ : X ≀ L0 →→ X⩽ ≀ L and then appealing to Proposition 1.10.

Let (π, ℓπ) ∈ X ≀L0 be arbitrary. We define the L-labelled permutation Φ((π, ℓπ)) ∈ X⩽ ≀L
by deleting all entries of π labelled by 0, keeping the remaining entries together with their labels,
and then reducing these entries to obtain a labelled permutation in X⩽ ≀ L.

We first verify that Φ is surjective. Suppose (σ, ℓσ) ∈ X⩽ ≀ L where σ has length k. Be-
cause σ ∈ X⩽, there is some permutation π ∈ X with σ ⩽ π. Fix such a permutation π, let n
denote its length, and fix an embedding of σ into π. Supposing that this embedding is given by
the indices 1 ⩽ i1 < · · · < ik ⩽ n, we define the L0-labeling ℓπ of π by

ℓπ(i) =

{
ℓσ(j) if i = ij ,
0 otherwise.

Because Φ maps (π, ℓπ) to (σ, ℓσ), we see that Φ is indeed surjective.
15The basis consists of 2143, 2413, 3412, 314562, 412563, 415632, 431562, 512364, 512643, 516432, 541263,

541632, and 543162.
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Next we must verify that Φ is order-preserving. Let (τ, ℓτ ) and (π, ℓπ) be L0-labelled mem-
bers of X of lengths k and n respectively such that (τ, ℓτ ) is contained in (π, ℓπ). Further sup-
pose that this containment is given by the indices 1 ⩽ i1 < · · · < ik ⩽ n. We know that
ℓτ (j) ⩽ ℓπ(ij) for all indices 1 ⩽ j ⩽ k, so since 0 is minimal in L0 we know that ℓτ (j) = 0
whenever ℓπ(ij) = 0. Therefore, wheneverΦ deletes an entry from (π, ℓπ), either that entry does
not participate in this embedding of (τ, ℓτ ) into (π, ℓπ), or Φ also deletes the corresponding entry
from (τ, ℓτ ). As Φ does not change the labels of the remaining entries, we see that Φ((τ, ℓτ )) is
contained in Φ((π, ℓπ)). This verifies that Φ is order-preserving and completes the proof.

The wqo analogue of Theorem 3.2 fails catastrophically: take A = {α1, α2, . . . } to be an
infinite antichain of permutations and setX = {α1‘· · ·‘αk : k ⩾ 1}. ThenX is a chain, so it is
wqo, but its downward closure contains the infinite antichain A. There are also an abundance of
counterexamples in more general settings, for example, if we take X = {0} in the poset (Z,⩽),
then X⩽ = {0,−1,−2, . . . } contains an infinite strictly decreasing sequence and thus is not
wqo.

Thus, that Theorem 3.2 holds is remarkable, and emphasises the strength of the lwqo prop-
erty. Indeed, this result is not peculiar to permutations: for example, in the case of graphs one
simply needs to fix an embedding of a graph H in the downset as an induced subgraph of a
graph G from the set itself, and adopt a “zero label” to mark those vertices of G that are not
included in the embedding of H .

4. One-Point Extensions

If β is a basis element of a permutation class C, then the removal of any entry of β yields a
member of C. Here we consider the inverse operation, where we add entries to members of a
class in all possible ways. As will be demonstrated, this study sheds further light on bases of
permutation classes and allows us to further explore the relationship between wqo and lwqo.

Given a permutation class C and an integer t ⩾ 0, we let C+t denote the set of all permuta-
tions π for which there exists a collection of t or fewer entries such that by removing these entries
from π and taking the reduction we obtain a member of C. Note that C+t is itself a permutation
class. Moreover, since

C+t = C+1+1+···+1,

for most purposes it suffices to consider classes of the form C+1. We call members of C+1 the
one-point extensions of C (although C ⊆ C+1, so some members of C+1 are also members of C).
Thus the nonempty permutation π lies in C+1 if and only if there is an entry π(a) of π such
that π − π(a) ∈ C, where we define π − π(a) to be the result of deleting the entry π(a) from π
and then reducing the remaining entries to obtain a permutation.

Every basis element of the class C is necessarily a one-point extension of C, because the
removal of any entry of a basis element of C yields a permutation in C. Thus if C+1 is wqo,
then C is finitely based. In fact, since C ⊆ C+1, if C+1 is wqo, then C is strongly finitely based,
a conclusion we record below.
Proposition 4.1. If the permutation class C+1 is wqo, then the class C is both finitely based and
wqo (that is, strongly finitely based).
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The converse of Proposition 4.1 is not true, and one counterexample is the class OI . This
class is finitely based by Proposition 1.17 and is wqo by our upcoming Proposition 6.3, butO+1

I is
not wqo, as demonstrated by the infinite antichain depicted in the centre of Figure 1.7. However,
it is true that if the class C is finitely based, then the class C+1 is also finitely based.
Proposition 4.2 (Atkinson and Beals [AB99, Lemma 7]). If the permutation class C is finitely
based then the class C+1 is also finitely based.

Proof. Suppose that the longest basis element of C has length m and suppose that γ ̸∈ C+1.
Because γ ̸∈ C, it contains a subsequence, say γ(i1) · · · γ(im), that is not order isomorphic to
a member of C. Furthermore, since γ ̸∈ C+1, the permutation obtained from γ by removing
the entry γ(ik) for any 1 ⩽ k ⩽ m also contains a basis element of C of length at most m.
By considering the m entries γ(i1) · · · γ(im) together with the at most m2 entries of γ arising
from these additional basis elements of C, we see that γ contains a permutation of length at
most m+m2 that does not lie in C+1, proving that no basis element of C+1 may be longer than
this.

Combining Propositions 4.1 and 4.2, we immediately obtain the following result.
Proposition 4.3. If the permutation class C+1 is wqo, then it is strongly finitely based.

We are not aware of a counterexample to the converse of Proposition 4.2, and so we raise the
following question.
Question 4.4. Is there an infinitely-based permutation (or graph) class C such that C+1 is finitely
based?

Finally, we connect one-point extensions and lwqo, showing that if the class C is lwqo then
the class C+1 is also lwqo. In particular, this implies via Proposition 4.1 that every lwqo class is
finitely based. Thus this result strengthens Proposition 2.3 for lwqo classes.
Theorem 4.5 (Cf. Oudrar [Oud15, Proposition 5.32]). The permutation class C is lwqo if and
only the class C+1 is lwqo.

Proof. One direction is clear, so suppose the class C is lwqo and take (L,⩽L) to be an arbitrary
wqo set. We want to show that C+1 ≀ L is wqo. To this end, let { , , , } denote a 4-element
antichain disjoint from L and define the poset L as the Cartesian product L × L × { , , , }.
Because L is wqo by Proposition 1.3 and C is lwqo by the hypotheses, C ≀ L is wqo. We
prove the proposition by constructing an order-reflecting mapping Ψ : C+1 ≀ L → C ≀ L and
then appealing to Proposition 1.13. In fact, we restrict our domain to the members of C+1 ≀L of
length at least two, since if these labelled permutations are wqo then it follows that C+1 is lwqo.

Take (π, ℓπ) ∈ C+1 ≀ L where π has length n + 1 ⩾ 2, and choose some entry π(a)
such that π − π(a) ∈ C. We define Ψ((π, ℓπ)) to be the permutation (πa, ℓaπ) ∈ C ≀ L
where πa = π − π(a) ∈ C and the labeling ℓaπ : {1, 2, . . . , n} → L is defined by

ℓaπ(i) =


(ℓπ(i), ℓπ(a), ) if i < a and π(i) > π(a),
(ℓπ(i), ℓπ(a), ) if i < a and π(i) < π(a),
(ℓπ(i+ 1), ℓπ(a), ) if i ⩾ a and π(i+ 1) > π(a),
(ℓπ(i+ 1), ℓπ(a), ) if i ⩾ a and π(i+ 1) < π(a).
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Figure 4.1: A depiction of the labeling process described in the proof of Theorem 4.5, applied
to the permutation π = 571834692.

Intuitively, as indicated in Figure 4.1, the labeling ℓaπ retains the labeling of all entries of π—
entries other than π(a) keep their labeling in ℓaπ, while the label of π(a) is recorded in the la-
belings of all remaining entries—while also recording the position of π(a) relative to all of the
remaining entries of π. It follows that Ψ is injective: from Ψ((π, ℓπ)) we can recover π and ℓπ.

In order to show that Ψ is order-reflecting, suppose that there are two members of C+1 ≀ L,
say (π, ℓπ) and (σ, ℓσ), such that Ψ((σ, ℓσ)) = (σa, ℓaσ) is contained in Ψ((π, ℓπ)) = (πb, ℓbπ) in
the order on C ≀ L . Letting k + 1 and n + 1 denote the lengths of σ and π, respectively, this
means that there is an increasing sequence 1 ⩽ i1 < i2 < · · · < ik ⩽ n of indices such that
the subsequence πb(i1)π

b(i2) · · · πb(ik) is order isomorphic to σa and that ℓaσ(j) ⩽L ℓbπ(ij) for
all 1 ⩽ j ⩽ k.

First, note that ℓaσ must have precisely a − 1 labels whose third components are or be-
cause there are precisely a − 1 entries to the left of σ(a) in σ. It follows that precisely a − 1
of the labels ℓbπ(ij) have third component equal to or , so the entry π(b) lies between the
entries of π corresponding to πb(ia−1) and πb(ia) in π, that is, ia−1 < b < ia + 1. In other
words, the horizontal position of π(b) amongst the entries of π corresponding to the subsequence
πb(i1)π

b(i2) · · · πb(ik) is the same as the horizontal position of σ(a) amongst the other entries
of σ. By counting labels whose third component is equal to either or , the same claim holds
for the vertical positions of these two entries. This shows that σ is contained in π in the positions
1 ⩽ i1 < · · · < ia−1 < b < ia + 1 < · · · < ik + 1 ⩽ n + 1. Moreover, the labels of the cor-
responding entries are comparable as desired: ℓσ(a) ⩽ ℓπ(b) because these labels are encoded
in the second components of all the labels of ℓaσ and ℓbπ, and the other labels have the desired
comparisons because of the first components of ℓaσ and ℓbπ. This shows that Ψ is order-reflecting
and completes the proof.

Note that Theorem 4.5 does not hold if lwqo is replaced by wqo, as demonstrated by the
example of OI and O+1

I .
Figure 4.2 displays the inclusions between properties of C and C+1. We have already seen

examples showing that all of the inclusions in this diagram are strict except, possibly, the in-
clusion showing that if C is lwqo (or equivalently, by Theorem 4.5, if C+1 is lwqo) then C+1 is
wqo (and thus by Proposition 4.3, also strongly finitely based). In fact, we are not aware of a
permutation class (or a graph class for that matter) C for which C+1 is wqo but C is not lwqo.

Conjecture 4.6. If the permutation class C+1 is wqo, then C, and thus also C+1, is lwqo.

Theorem 4.5 implies that if C is lwqo then C+t is lwqo for all integers t ⩾ 0. Perhaps
more interestingly, with only minor modifications, the proof given shows that if C is a 4-wqo
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C lwqo
⇕

C+1 lwqo

C+1 wqo ⇔ C+1 sfb

C sfb

C fbC wqo

Figure 4.2: Properties of C and C+1. Finitely and strongly finitely based are abbreviated as fb
and sfb, respectively. Not pictured is the property that C+1 is finitely based.

permutation class, then C+1 is wqo. Conjecture 1.20 would imply that every 2-wqo class is 4-
wqo, and thus in particular would imply the following. (Which would also be implied by the
stronger Conjecture 1.21.)

Conjecture 4.7. If the permutation class C is 2-wqo, then the class C+1 is wqo.

The graphical analogue of Conjecture 4.7 is true, and is essentially equivalent to Proposi-
tion 2.3. Note that a one-vertex extension of an inversion graph need not be an inversion graph—
extending our +1 notation to graph classes, we always have GC+1 ⊆ G+1

C , but this inclusion is
usually strict16. Therefore, this discussion does not relate to the relationship of wqo between
permutations and inversion graphs, as asked in Question 1.12.

Returning to the permutation context, the key difference between the proofs of Proposi-
tion 2.3 and Theorem 4.5 is that in the proof of Proposition 2.3 we are allowed to delete the
last entry of a permutation, while in the proof of Theorem 4.5 we must be prepared to delete any
of its entries.

Continuing in this direction, our proof of Theorem 4.5 shows that if C is 4n2-wqo then C+1

is n-wqo. If Conjecture 1.20 (about the equivalence of 2-wqo and n-wqo for all n ⩾ 1) holds,
then the conjecture below would also be true.

Conjecture 4.8. If the permutation class C is 2-wqo, then the class C+t is 2-wqo for every t ⩾ 0.

5. Minimal Bad Sequences

We need a bit more machinery to prove further results about lwqo in the three sections after this.
In particular, we make significant use of the notion of minimal bad sequences. These were first
introduced in Nash–Williams’s incredibly influential 3-page paper [NW65] in which he used

16The only reason the inclusion GC+1 ⊆ G+1
C is not always strict is because of trivial cases such as C = ∅.
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them to give an elegant proof of Kruskal’s tree theorem [Kru60]17. We also appeal to Higman’s
lemma, which is an easy consequence of the existence of minimal bad sequences. However,
before introducing these tools we must address a technical matter.

Recall that a quasi-order is well founded if every nonempty subset of its elements contains a
minimal element (one that is not greater than any other element). Every wqo set is well founded,
as otherwise it would contain an infinite strictly decreasing sequence. While not wqo, the con-
tainment order on permutations is also well founded. It is also not hard to see that if (X,⩽) is
a well-founded quasi-order, then the product (Xm,⩽) is also well founded (under the product
order defined in Proposition 1.4). Since we need well foundedness in order to guarantee the
existence of minimal bad sequences, we first establish that sets of labelled permutations are well
founded.

Proposition 5.1. For any nonempty set X of permutations and any quasi-order (L,⩽L), X ≀ L
is well founded if and only if L is well founded.

Proof. If L is not well founded, then since X is nonempty, it is easy to see that X ≀ L is also
not well founded. For the other direction, suppose that L is well founded and let S denote a
nonempty subset of X ≀ L. Further let U denote the set of underlying permutations of members
of S, so

U = {π ∈ X : S contains an L-labeling of π}.
Because the containment order on permutations is well founded, U has a minimal element, say π.
Suppose π has length n, so each L-labeling of π lying in S can be identified with an n-tuple
in Ln. The order on L-labelings of π is precisely the product order on Ln, which is well founded
because L is well founded. Therefore this set of labelings has a minimal element, and π with
this minimal labeling is a minimal element of the set S.

We may now define minimal bad sequences. Suppose that the quasi-order (X,⩽) is not
wqo. We define a bad sequence from X to be an infinite sequence x1, x2, . . . of elements of X
that does not contain a good pair, meaning that for all indices i < j we have xi ̸⩽ xj . A bad
sequence x1, x2, . . . from X is minimal if, for all indices i, there does not exist a bad sequence
x1, x2, . . . , xi−1, yi, yi+1, . . . with yi < xi.

Proposition 5.2 (Nash–Williams [NW63, Proof of Lemma 2]). A well-founded quasi-order
(X,⩽) is wqo if and only if it does not contain a minimal bad sequence.

Proof. It follows from the definition that wqo is equivalent to the absence of bad sequences.
Thus it suffices to prove that if (X,⩽) contains a bad sequence, then it also contains a mini-
mal bad sequence. Because (X,⩽) is well founded we may choose an element x1 ∈ X to be
minimal such that it begins a bad sequence. We may then choose an element x2 ∈ X to be
minimal such that x1, x2 begins a bad sequence. Proceeding by induction18, if we assume that

17While it is well outside the scope of this paper, it is nevertheless an interesting fact that the existence of minimal
bad sequences is, in the sense of reverse mathematics, stronger than Kruskal’s tree theorem. See Rathjen and
Weiermann [RW93].

18Note that this inductive construction of a bad sequence requires, at a minimum, the axiom of dependent choice
in order to make the countably infinite number of choices of entries xi. Nash–Williams [NW63] assumed the axiom
of choice in constructing his bad sequence.
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x1, x2, . . . , xi begins a bad sequence, we may choose an element xi+1 ∈ X to be minimal such
that x1, x2, . . . , xi, xi+1 begins a bad sequence. The result is a minimal bad sequence.

Given any subset S of a quasi-order (X,⩽), we define its proper closure to be the set

S< = {y : y < x for some x ∈ S}.

All we require about minimal bad sequences, other than their existence, is the following result of
Nash–Williams stating that their proper closures are wqo. A strengthening of this result has been
given by Gustedt [Gus99, Theorem 6]; indeed, [Gus99] contains a more thorough treatment of
all of the material in this section.

Proposition 5.3 (Nash–Williams [NW63, Proof of Lemma 2]). IfS = {x1, x2, . . . } is a minimal
bad sequence in a quasi-order (X,⩽), then its proper closure S< is wqo19.

Proof. Suppose to the contrary that S< is not wqo, so it contains a bad sequence y1, y2, . . . . By
the definition of S<, there is a function f such that yn < xf(n) for all n ⩾ 1. Choose m such that

f(m) = min{f(n) : n = 1, 2, . . . }.

We claim that
x1, x2, . . . , xf(m)−1, ym, ym+1, . . .

is a bad sequence. Note that since this claim contradicts the minimality of x1, x2, . . . , its proof
will complete the proof of the proposition. Because the elements xi and the elements yj belong to
bad sequences, it suffices to show that xi ̸⩽ yj for 1 ⩽ i < f(m) and j ⩾ m. For each such i we
have i < f(m) ⩽ f(j) by our choice of m, so xi ̸⩽ xf(j). On the other hand, we have yj < xf(j),
implying that xi ̸⩽ yj and completing the proof of the claim and the proposition.

For the final result of this section we present a special case of Higman’s lemma and its short
derivation using minimal bad sequences. It should be noted both that Higman’s lemma applies
in more general settings than we encounter here and that Higman’s original proof predates the
one below by over a decade20.

Given a poset (X,⩽), we denote by X∗ the set (also called a language or free monoid)
of all words with letters from X (equivalently, finite sequences with elements from X). The
generalised subword order on X∗ is defined by stipulating that v = v1 · · · vk is contained in
w = w1 · · ·wn if and only if w has a subsequence wi1wi2 · · ·wik such that vj ⩽ wij for all j.

19One might wonder if S< is ever lwqo under these hypotheses. For us to be able to define lwqo, (X,⩽) must
consist of objects with ground sets that can be labelled. WhenX is a permutation class (or graph class), S< cannot
be lwqo. This is because S< is a class itself and has an infinite basis (the minimal elements of S, of which there
must be infinitely many), but lwqo permutation classes must have finite bases by Proposition 2.3 (and as already
remarked, the analogous result holds for graph classes).

20Higman’s result is stated in the general context of abstract algebras with a wqo set of finitary operations. The
version presented here and in most of the literature is the specialisation of his result to the case of the single binary
operation of concatenation of words. Higman’s proof proceeds by induction on the arity of the operations, at each
step arguing by “descent”: any counterexample must give rise to a smaller one, but this process cannot continue
indefinitely.
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Higman’s Lemma [Hig52]. If (X,⩽) is wqo, then X∗ is also wqo, under the generalised sub-
word order.

Proof. Suppose to the contrary that there was a minimal bad sequence S = {w1, w2, . . . }
from X∗. Express each word wi as wi = ℓiui where ℓi ∈ X is the first letter of wi and ui ∈ S<

is the rest of the word, and define Ψ : S → X × S< by Ψ(wi) = (ℓi, ui). It follows that Ψ is
order-reflecting: if

Ψ(wi) = (ℓi, ui) ⩽ (ℓj, uj) = Ψ(wj),

then wi ⩽ wj . However, X is wqo by our hypotheses and S< is wqo by Proposition 5.3, so
Proposition 1.13 implies that S is wqo, and this contradiction completes the proof.

6. Sums and Skew Sums

Our first application of the tools of the previous section is to sums and skew sums of permutation
classes. It should be noted that sums and skew sums are but a small part of the substitution
decomposition, which we cover in depth in the next section. However, we are able to establish
stronger results in this context than in the more general context of the substitution decomposition.

The sum and skew sum of two permutations was defined in Section 1.7. Given permutation
classes C and D, we now define their sum by

C ‘ D = {σ ‘ τ : σ ∈ C and τ ∈ D}.

This set is always a permutation class itself, due to our convention that every nonempty permu-
tation class must contain the empty permutation. The skew sum of the classes C and D, denoted
by C a D, is defined analogously.

If both C and D are wqo, then Proposition 1.3 shows that their Cartesian product C × D
is wqo. We can then conclude by Proposition 1.10 that C ‘ D is wqo because the surjective
mapping Φ : C × D → C ‘ D given by

Φ((σ, τ)) = σ ‘ τ

is order-preserving. Obviously the same holds for their skew sum, C a D.
This fact seems to have first been observed by Atkinson, Murphy, and Ruškuc [AMR02,

Lemma 2.4]. It is possible to replace “wqo” in this result by “lwqo”, although to do so we need
to define sums of label functions. Note that if (σ, ℓσ), (τ, ℓτ ) ∈ C ≀L are L-labelled permutations
of lengths m and n, respectively, then the natural way to L-label their sum, (σ, ℓσ) ‘ (τ, ℓτ ),
is to attach the labels of ℓσ to the first m entries of σ ‘ τ and to attach the labels of ℓτ to the
last n entries of σ ‘ τ . With this in mind, let (L,⩽L) be any quasi-order. Given two label
functions ℓ1 : {1, 2, . . . ,m} → L and ℓ2 : {1, 2, . . . , n} → L, we define the label function
ℓ1 ‘ ℓ2 : {1, 2, . . . ,m+ n} → L by

(ℓ1 ‘ ℓ2)(i) =

{
ℓ1(i) for 1 ⩽ i ⩽ m,
ℓ2(i−m) for m+ 1 ⩽ i ⩽ m+ n.
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For (σ, ℓσ), (τ, ℓτ ) ∈ C ≀ L, the definition of (σ, ℓσ) ‘ (τ, ℓτ ) is then

(σ, ℓσ) ‘ (τ, ℓτ ) = (σ ‘ τ, ℓσ ‘ ℓτ ).

Our argument that the sum C ‘ D is wqo whenever both C and D are wqo now extends to show
that C ‘ D is lwqo whenever both C and D are lwqo. We simply need to take (L,⩽L) to be an
arbitrary wqo set and consider the surjective order-preserving mapping Φ : (C ≀L)× (D ≀L) →
(C ‘ D) ≀ L defined by

Φ((σ, ℓσ), (τ, ℓτ )) = (σ, ℓσ) ‘ (τ, ℓτ ) = (σ ‘ τ, ℓσ ‘ ℓτ ).

We record this fact below.

Proposition 6.1. If the classes C and D are both wqo (resp., lwqo), then C ‘ D and C a D are
also wqo (resp., lwqo).

The class C is sum closed if C ‘C ⊆ C. Given any class C, its sum closure, denoted by
À

C,
is defined to be the smallest (in terms of set containment) sum closed permutation class contain-
ing C. Equivalently,

à

C = {α1 ‘ α2 ‘ · · · ‘ αm : α1, . . . , αm ∈ C}.

We define the terms skew closed and skew closure analogously. For enumeration, it is important
to observe that every permutation π ∈

À

C can be expressed uniquely as a sum of sum indecom-
posable permutations (resp., a skew sum of skew indecomposable permutations). However, wqo
and lwqo arguments do not require such fine control over the structure of these classes. The wqo
content of the following result was first observed by Atkinson, Murphy, and Ruškuc [AMR02,
Theorem 2.5].

Theorem 6.2. If the class C is wqo (resp., lwqo), then its sum closure
À

C and skew closure
Á

C
are also wqo (resp., lwqo).

Proof. The skew versions of the result follow by symmetry from the sum versions, so we con-
sider only the latter. First suppose that C is wqo. Higman’s lemma shows that C∗ is wqo under
the generalised subword order. It follows by inspection that the mapping Φ : C∗ →

À

C defined
by

Φ(α1α2 · · ·αm) = α1 ‘ α2 ‘ · · · ‘ αm

is order-preserving. Therefore Proposition 1.10 implies that
À

C is wqo.
Now suppose that C is lwqo and take (L,⩽L) to be an arbitrary wqo set. Thus C ≀ L is wqo,

and so (C ≀ L)∗ is wqo by Higman’s lemma. Define the mapping Φ : (C ≀ L)∗ → (
À

C) ≀ L by

Φ((α1, ℓ1)(α2, ℓ2) · · · (αm, ℓm)) = (α1 ‘ α2 ‘ · · · ‘ αm, ℓ1 ‘ ℓ2 ‘ · · · ‘ ℓm).

Again, Φ is order-preserving, so (
À

C) ≀ L is wqo by Proposition 1.10, proving that
À

C is
lwqo.
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1

21

231 312

2413 3142

24153 31524

...
...

Figure 6.1: The Hasse diagram of increasing oscillations under the permutation containment
order.

We conclude with a result referenced several times already, that the downward closure of
the increasing oscillations, OI , is wqo. While OI is a sum closed class, every permutation
from OI is contained in a sum indecomposable permutation from OI , and this implies that OI

is not contained in the sum closure of a smaller class. Thus the fact that OI is wqo is not a
consequence of Theorem 6.2.

Instead, to establish that OI is wqo, we note that every member of OI can be expressed
as a sum of increasing oscillations. Recall that the set of increasing oscillations (under our
conventions) is

{1, 21, 231, 312, 2413, 3142, 24153, 31524, 241635, 315264, 2416375, 3152746, . . . }.

It is not difficult to see that there are two increasing oscillations of each length n ⩾ 3. Viewing
the increasing oscillations themselves as a poset under the permutation containment order—as
in Figure 6.1—we see that these two increasing oscillations of each length are partitioned into
two chains, and that both increasing oscillations of length n ⩾ 3 are contained in both increasing
oscillations of length n + 1. The poset of increasing oscillations is therefore trivially wqo. It
then follows from Higman’s lemma and Proposition 1.10 that the class OI is wqo. Note that we
have already observed (for instance, with Figure 1.9) that OI is not lwqo (it is not even 2-wqo).
This gives us the following.

Proposition 6.3. The downward closure of the increasing oscillations, OI , is wqo but not lwqo.

Another example of a class that is wqo but not lwqo (or even 2-wqo) is given by the downward
closure of the widdershins spirals; see Brignall, Engen, and Vatter [BEV18, Proposition 3.3] for
a proof.

There is a naturally defined class containing both
À

C and
Á

C: the separable closure of C is
defined to be the smallest permutation class containing C that is both sum and skew closed. (The
separable closure of C has also been called the strong completion of C by some authors, includ-
ing Murphy [Mur02, Section 2.2.5].) Atkinson, Murphy, and Ruškuc [AMR02, Theorem 2.5]
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2413

1
À

1
Á

1 1

Á

1 1 1

À

1 1

Figure 7.1: The plot of the permutation 479832156 (left) and its substitution decomposition tree
(right).

showed that the separable closure of a wqo class is itself wqo by appealing to a more general
version of Higman’s lemma than we have presented. We derive and generalise this result later,
in Corollary 7.8, as a consequence of more general results on the substitution decomposition.

7. The Substitution Decomposition

Having considered in detail the relationship between sums and skew sums and labelled well-
quasi-order, we now consider the more general context provided by the substitution decompo-
sition. This notion, introduced in the context of permutations momentarily, is common to all
relational structures and has appeared in a wide variety of settings under numerous names, such
as modular decomposition, X-join, and lexicographic sum. As well as furthering our story about
lwqo in permutations, the parallel notion for graphs is sufficiently strongly related to the permu-
tation version to establish a partial answer to Question 1.12, as well as a complete answer to the
lwqo analogue (at the end of this section).

We begin with the definitions in the permutation context. An interval in the permutation π is
a set of contiguous indices I = {a, a+1, . . . , b} such that the set of values π(I) = {π(i) : i ∈ I}
is also contiguous. Given a permutation σ of length m and nonempty permutations α1, . . . , αm,
the inflation of σ by α1, . . . , αm, denoted by σ[α1, . . . , αm], is the unique permutation of length
|α1|+ · · ·+ |αm| obtained by replacing each entry σ(i) by an interval that is order isomorphic
to αi in such a way that the intervals are themselves order isomorphic to σ. For example,

2413[1, 132, 321, 12] = 4 798 321 56,

the permutation plotted on the left of Figure 7.1.
Every permutation of length n ⩾ 1 has trivial intervals of lengths 0, 1, and n; all other

intervals are termed proper. We further say that the empty permutation and the permutation 1
are trivial. A nontrivial permutation is simple if it has no proper intervals. The shortest simple
permutations are thus 12 and 21, there are no simple permutations of length three, and the simple
permutations of length four are 2413 and 3142. We have seen many simple permutations in the
preceding pages—the permutation 36285714 plotted in Figure 1.3, the permutations in the centre
and right of Figure 1.7, the underlying permutations of Figure 1.9, and the widdershins spirals
of Figure 2.2 are all simple permutations.

The following result follows immediately from the definitions.
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Proposition 7.1. Every nontrivial permutation can be expressed as an inflation of a nontrivial
simple permutation.

This process of expressing a permutation as the inflation of a simple permutation is what
we call the substitution decomposition. By repeatedly applying Proposition 7.1 to decompose a
permutation, and then to decompose its nontrivial intervals, and so on, one obtains a substitution
decomposition tree. An example of a substitution decomposition tree is shown on the right of
Figure 7.1.

We are also interested in the inflation of one class by another. Given two classes C and U ,
the inflation of C by U is defined as

C[U ] = {σ[α1, . . . , αm] : σ ∈ Cm and α1, . . . , αm ∈ U}.

For enumeration, it is essential to associate each permutation to a unique substitution decom-
position. The standard uniqueness result here is Albert and Atkinson [AA05, Proposition 2],
while Brignall [Bri07, Lemma 3.1] gives a version for classes of the form C[U ]. However, all
we need to establish our lwqo results is Proposition 7.1. We begin by considering classes of the
form C[U ].
Theorem 7.2. If the permutation class C is lwqo and the class U is wqo, then the class C[U ] is
wqo.

Proof. Suppose the class C is lwqo and the class U is wqo. Thus the set of U-labelled permuta-
tions of C, C ≀ U , is wqo. We define the mapping Φ : C ≀ U →→ C[U ] by

Φ((π, ℓπ)) = π[ℓπ(1), . . . , ℓπ(n)],

where n denotes the length of π. Note that Φ is surjective by the definition of C[U ].
Suppose that (σ, ℓσ) ⩽ (π, ℓπ) ∈ C ≀ U , where σ and π have lengths k and n, respec-

tively. As witness to this containment, there must exist indices 1 ⩽ i1 < · · · < ik ⩽ n so
that π(i1) · · · π(ik) is order isomorphic to σ and ℓσ(j) ⩽ ℓπ(ij) for all indices 1 ⩽ j ⩽ k.
Using this witness, we see that the permutation σ[ℓπ(i1), . . . , ℓπ(ik)] contains the permutation
σ[ℓσ(1), . . . , ℓσ(k)], and is contained in the permutation π[ℓπ(1), . . . , ℓπ(n)]. Therefore,

Φ((σ, ℓσ)) ⩽ σ[ℓπ(i1), . . . , ℓπ(ik)] ⩽ Φ((π, ℓπ)),

establishing that Φ is order-preserving. The result now follows from Proposition 1.10.

The four possible variations on the hypotheses of Theorem 7.2 are considered in Table 7.1.
To justify the first two rows of this table, take C to be the downward closure of the increasing
oscillations, OI , which is wqo by Proposition 6.3, and take U = {1, 12}, which is lwqo be-
cause it is finite (Proposition 3.1). Then C[U ] contains the infinite antichain shown on the left of
Figure 1.2, and thus is not wqo. Beyond Theorem 7.2, the third row of Table 7.1 says that the
inflation of an lwqo class by a wqo class is not necessarily lwqo; for example, consider C = {1}
and U = OI . The fourth line of Table 7.1 is settled by Corollary 7.7, which follows from our
result on substitution closures below.

The class C is said to be substitution closed if C[C] ⊆ C. The substitution closure ⟨C⟩ of a
class C is defined as the smallest substitution closed class containing C. A standard argument
shows that ⟨C⟩ exists, and the following result also follows readily.
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C U C[U ]
wqo wqo not necessarily wqo
wqo lwqo not necessarily wqo
lwqo wqo wqo by Theorem 7.2 but not necessarily lwqo
lwqo lwqo lwqo by Corollary 7.7

Table 7.1: The wqo/lwqo status of various inflations of permutation classes.

Proposition 7.3. The substitution closure ⟨C⟩ of the class C is the largest class of permutations
that contains precisely the same simple permutations as C.

We have observed that the inflation of a wqo class by another wqo class is not necessarily
wqo, so the substitution closure of a wqo class need not be wqo; a concrete example is ⟨OI⟩.
However, as we show below, the substitution closure of an lwqo class is always lwqo. In order
to establish this result, we must extend our notion of substitution decomposition to labelled
permutations. We do this exactly like we extended the notion of sums to labelled permutations
in Section 6. Thus we define the inflation of an unlabelled permutation σ of length m by a
sequence of m labelled permutations (α1, ℓ1), . . . , (αm, ℓm) as the permutation σ[α1, . . . , αm] in
which the first |α1| entries are labelled by ℓ1(1), . . . , ℓ1(|α1|), the next |α2| entries are labelled
by ℓ2(1), . . . , ℓ2(|α2|), and so on. Thus we formally have, using the definition of sums of label
functions from Section 6, that

σ[(α1, ℓ1), . . . , (αm, ℓm)] = (σ[α1, . . . , αm], ℓ1 ‘ · · · ‘ ℓm).

It follows immediately from Proposition 7.1 that every nontrivial labelled permutation can be
expressed as an inflation of a nontrivial (unlabelled) simple permutation by labelled permuta-
tions.

Theorem 7.4. If the permutation class C is lwqo, then its substitution closure ⟨C⟩ is also lwqo.

Proof. Let C be an lwqo class and take (L,⩽L) to be an arbitrary wqo set. Suppose to the
contrary that ⟨C⟩ ≀ L is not wqo and take a minimal bad sequence S = {(π1, ℓ1), (π2, ℓ2), . . . }
from ⟨C⟩ ≀ L. Thus S< is wqo by Proposition 5.3. Some members of S may be labelings of the
trivial permutation 1, that is, members of {1} ≀ L. However, {1} is trivially lwqo (by Proposi-
tion 3.1, for example), and thus only finitely many members of S may lie in {1} ≀ L. For all of
the other members of S, Proposition 7.1 implies that there is a simple permutation σi ∈ C of
length mi ⩾ 2 and labelled permutations (αi,1, ℓi,1), . . . , (αi,mi

, ℓi,mi
) ∈ S< such that

(πi, ℓi) = σi[(αi,1, ℓi,1), . . . , (αi,mi
, ℓi,mi

)].

We define the mapping Φ : C ≀ S< → ⟨C⟩ ≀ L by

Φ((σ, ℓσ)) = σ[ℓσ(1), . . . , ℓσ(m)],

where m denotes the length of σ; note here that each label ℓσ(i) ∈ S< is itself a labelled permu-
tation since S< ⊆ ⟨C⟩ ≀ L. The mapping Φ is order-preserving, as can be seen by an argument
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analogous to that used in the proof of Theorem 7.2. We know thatS< is wqo and thus our hypoth-
esis implies that C ≀S< is wqo, so the range of Φ is wqo by Proposition 1.10. By our observations
above, this range contains all but finitely many members of S, but this is a contradiction because
a wqo set cannot contain a bad sequence.

Let S denote the set of simple permutations in the class C. It follows from Proposition 7.1
that ⟨C⟩ = ⟨S⩽⟩. Moreover, if the set S of simple permutations is lwqo then Theorem 3.2 shows
that S⩽ is lwqo, so we have the following.

Corollary 7.5. If the set of simple permutations contained in the permutation class C is lwqo,
then ⟨C⟩ is also lwqo. In particular, if the set of simple permutations of the permutation class C
is lwqo, then C itself is lwqo.

We observed with Proposition 3.1 that finite sets of permutations are always lwqo. Thus we
can further specialise Corollary 7.5 to obtain an lwqo strengthening of a result of Albert and
Atkinson.

Corollary 7.6 (Cf. Albert and Atkinson [AA05, Corollary 8]). Every permutation class con-
taining only finitely many simple permutations is lwqo.

To complete the discussion of Table 7.1, we observe that the inflation of an lwqo class by
another lwqo class is also lwqo.

Corollary 7.7. If the permutation classes C and U are both lwqo, then the class C[U ] is also
lwqo.

Proof. If both C and U are lwqo then their union is trivially lwqo, so ⟨C ∪ U⟩ is lwqo by Theo-
rem 7.4, and since C[U ] ⊆ ⟨C ∪ U⟩, we see that C[U ] is lwqo, as desired.

Another way to define the separable permutations (first defined in Section 1.7) is as the
substitution closure ⟨{1, 12, 21}⟩. Thus Corollary 7.6 immediately implies that the class of sep-
arable permutations is lwqo. Moreover, the separable closure of the class C (defined at the end
of Section 6) is equal to ⟨{1, 12, 21}⟩[C], and thus we have the following.

Corollary 7.8 (Cf. Atkinson, Murphy, and Ruškuc [AMR02, Theorem 2.5]). If the class C is
wqo (resp., lwqo), then its separable closure is also wqo (resp., lwqo).

Corollary 7.6 and Proposition 2.3 imply that every permutation class with only finitely many
simple permutations is finitely based. This fact was first proved by Albert and Atkinson via a
result about substructures of simple relational structures due to Schmerl and Trotter [ST93]21.

Corollary 7.9 (Cf. Albert and Atkinson [AA05, Theorem 9]). Every permutation class con-
taining only finitely many simple permutations is finitely based.

21See Brignall and Vatter [BV15] for a proof of Schmerl and Trotter’s theorem in the special case of permutations.
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We mention Corollary 7.9 here only for historical interest; it is a much, much weaker result
than what Theorem 7.4 and Proposition 2.3 imply, which is that the substitution closure of any
lwqo class is finitely based. The bases of substitution closures in general have particularly nice
forms22, as shown below. This result is another ingredient in Albert and Atkinson’s proof of
Corollary 7.9 and follows readily from Proposition 7.3.

Proposition 7.10 (Albert and Atkinson [AA05]). The basis of the substitution closure of a
class C consists of the minimal simple permutations not contained in C.

The result below follows from Schmerl and Trotter’s theorem and Proposition 7.10. We
mention this result because it relates to many of the ideas discussed here, though it is not implied
by our lwqo results unless Conjecture 4.6 holds.

Proposition 7.11 (Albert, Ruškuc, and Vatter [ARV15, Proposition 2.9]). If the class C+1 is
wqo, then the class ⟨C⟩ is finitely based.

Conjecture 4.6 has a natural analogue to substitution closures, stated below.

Conjecture 7.12. If the permutation class ⟨C⟩ is wqo, then C, and thus also ⟨C⟩, is lwqo.

We conclude this section by briefly discussing analogues in the graph context, and then estab-
lishing links between wqo/lwqo for permutation classes and their corresponding graph classes.

In the context of graphs, the substitution decomposition is generally called the modular de-
composition, and the analogues of simple permutations are most commonly called prime graphs.
The analogue of our Theorem 7.4 was established by Atminas and Lozin [AL15, Theorem 2].

The notion of modular decomposition of graphs dates back to Gallai’s ground-breaking paper
on transitive orientations [Gal67]23, and indeed this paper also provides the first connection
between these concepts for permutations and inversion graphs. It is easy to establish that the
inversion graph of a simple permutation is prime, but indeed more is true.

Lemma 7.13 (Gallai [Gal67]). If Gσ is a prime inversion graph, then σ is simple, and the only
permutations whose inversion graphs are isomorphic to Gσ are {σ, σ−1, σrc, (σrc)−1}.

When combined with Proposition 1.6, Lemma 7.13 tells us that if σ is a simple permutation
and π is any permutation, then Gσ ⩽ Gπ implies that one of σ, σ−1, σrc, or (σrc)−1 is contained
in π. This puts us in a position to provide the following partial answer to Question 1.12 (if GC
is wqo, is C necessarily wqo?).

Proposition 7.14. Let C be a permutation class such that GC is wqo in the induced subgraph
order. Then the simple permutations in C are wqo.

Proof. Suppose that GC is wqo, and consider an arbitrary sequence σ1, σ2, . . . of simple permu-
tations in C. Since we are assuming thatGC is wqo, Proposition 1.2 shows that the corresponding

22However, in practice it can be difficult to establish precisely what the members of the basis are, and there are
frequently infinitely many of them—see Atkinson, Ruškuc, and Smith [ARS11] for one such example.

23See [MP01] for an English translation of Gallai’s paper.
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(G321, ℓ) ∼= (G321, ℓ
′)

Figure 7.2: Two labelings of 321 (on the left) by the antichain L = {◦, •} that are not related by
any symmetry, but whose inversion graphs (on the right) are isomorphic.

sequence of inversion graphsGσ1 ,Gσ2 , . . . contains an infinite increasing subsequence, although
all we need is an increasing subsequence of length five, say

Gσi1
⩽ Gσi2

⩽ Gσi3
⩽ Gσi4

⩽ Gσi5

for 1 ⩽ i1 < i2 < i3 < i4 < i5. By Proposition 1.6 and Lemma 7.13, each of these inclusions
must be witnessed by a symmetry of the shorter simple permutation embedding in the longer.
Thus

σs1
i1

⩽ σs2
i2

⩽ σs3
i3

⩽ σs4
i4

⩽ σi5 ,

where s1, s2, s3, and s4 are each one of the four graph-preserving symmetries. If none of these
four symmetries is the identity, then two of them are the same (by the pigeonhole principle), and
in either case we can find indices j and k with 1 ⩽ j < k ⩽ 5 such that σij ⩽ σik . This implies
that every infinite sequence of simple permutations of C contains a good pair (a pair of elements
in increasing order), proving the result.

For the remainder of this section, we answer the lwqo analogue of Question 1.12 in the
affirmative, proving that a permutation class C is lwqo if and only if the corresponding graph
class GC is lwqo. In some sense, this proof consists merely of “adding labels” to the proof of
Proposition 7.14 and then appealing to Corollary 7.5.

One issue that we must handle more carefully when “adding labels” concerns automorphisms
of inversion graphs. The four graph-preserving symmetries of permutations necessarily induce
automorphisms of their inversion graphs (indeed, this is why they are called graph-preserving),
but the converse is not generally true; simply consider Gn···21 = Kn, which has all n! possible
automorphisms. The significance of this is that automorphisms of inversion graphs can be used
to rearrange the labels assigned to vertices in a way that is not represented by any symmetry of
the underlying permutation—see Figure 7.2 for an example.

However, the situation is much nicer when the permutation is simple.

Proposition 7.15 (Klavı́k and Zeman [KZ15, Lemma 6.6 and its geometric interpretation]).
If Gσ is a prime inversion graph, then every automorphism of Gσ corresponds to a symmetry
of σ, in particular, one of σ, σ−1, σrc, or (σrc)−1.

Equipped with the restrictions imposed by Proposition 7.15, we now show that given two
labelings of the same simple permutation, the corresponding inversion graphs are isomorphic
if and only if the two labelings are related by a symmetry. To state this result formally, we first
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Figure 7.3: The first four diagrams show the symmetries of the permutation σ = 2314 with the
labeling ℓσ : 1 7→ a, 2 7→ b, 3 7→ c, 4 7→ d. All of these correspond to the same labelled
inversion graph, shown on the far right.

need some notation. Given anL-labelled permutation (σ, ℓσ), we denote by (σ−1, ℓ−1
σ ), (σrc, ℓrcσ ),

and ((σrc)−1, (ℓrcσ )
−1) the L-labelled permutations obtained by applying each of the three graph-

preserving symmetries to σ, whilst preserving the label of each entry, as illustrated in Figure 7.3.
If σ has length n then the resulting label functions can be described by

ℓ−1
σ (i) = ℓσ(σ

−1(i)),

ℓrcσ (i) = ℓσ(n+ 1− i),

(ℓrcσ )
−1(i) = ℓσ(σ

−1(n+ 1− i)).

Proposition 7.16. Let (σ, ℓσ) and (τ, ℓτ ) be two L-labelled simple permutations such
that (Gσ, ℓσ) and (Gτ , ℓτ ) are isomorphic. Then

(τ, ℓτ ) ∈ {(σ, ℓσ), (σ−1, ℓ−1
σ ), (σrc, ℓrcσ ), ((σ

rc)−1, (ℓrcσ )
−1)}.

Proof. Since σ and τ are simple permutations with the property that Gσ
∼= Gτ , Lemma 7.13

shows that τ is one of σ, σ−1,σrc, or (σrc)−1.
Suppose that σ (and hence also τ ) has length n. Let ϕ : {1, 2, . . . , n} → {1, 2, . . . , n} induce

an isomorphism from (Gσ, ℓσ) to (Gτ , ℓτ ), so i ∼ j in Gσ if and only if ϕ(i) ∼ ϕ(j) in Gτ . Thus
ℓσ(i) = ℓτ (ϕ(i)) for each vertex i of Gσ. By Proposition 7.15, ϕ must correspond to a symmetry
of σ. This correspondence shows both which symmetry relates τ and σ and also that ℓτ must
equal the corresponding labeling (for example, if τ = σrc then we must have ℓτ = ℓrcσ ). The
result follows.

We are now ready to establish the promised relationship between lwqo in permutations and
lwqo in inversion graphs.

Theorem 7.17. The permutation class C is lwqo if and only if the corresponding class GC of
inversion graphs is lwqo.

Proof. Part (a) of Proposition 1.18 states that GC is lwqo whenever C is lwqo, giving us half of
the result. Now suppose that C is a permutation class for which GC is lwqo.

By Corollary 7.5, it suffices to prove that the set S of simple permutations in C is lwqo,
and we show this by adapting the proof of Proposition 7.14. Take (L,⩽L) to be an arbitrary
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Figure 8.1: Members of a generalised grid class (left) and of a monotone grid class (right).

wqo set and let (σ1, ℓ1), (σ2, ℓ2), . . . be any sequence of labelled simple permutations. Consider
the sequence (Gσ1 , ℓ1), (Gσ2 , ℓ2), . . . of images of these labelled simple permutations under the
mapping to labelled inversion graphs.

Since GC ≀L is wqo, Proposition 1.2 implies that this sequence contains an infinite increasing
chain. In particular, we can find a chain of length five, say

(Gσi1
, ℓi1) ⩽ (Gσi2

, ℓi2) ⩽ (Gσi3
, ℓi3) ⩽ (Gσi4

, ℓi4) ⩽ (Gσi5
, ℓi5)

for 1 ⩽ i1 < i2 < i3 < i4 < i5. By Proposition 7.16, each of the inclusions in this chain must be
witnessed by a symmetry of the shorter labelled simple permutation embedding in the longer.
Thus

(σs1
i1
, ℓs1i1 ) ⩽ (σs2

i2
, ℓs2i2 ) ⩽ (σs3

i3
, ℓs3i3 ) ⩽ (σs4

i4
, ℓs4i4 ) ⩽ (σi5 , ℓi5),

where s1, s2, s3, and s4 are each one of the four graph-preserving symmetries. If none of these
four symmetries is the identity, then two of them are the same (by the pigeonhole principle), and
in either case we can find indices j and k with 1 ⩽ j < k ⩽ 5 such that (σij , ℓij) ⩽ (σik , ℓik).
This shows that every infinite sequence in S ≀ L contains a good pair, and thus S ≀ L is wqo.
As (L,⩽L) was an arbitrary wqo set, this shows that S is lwqo. Corollary 7.5 then implies
that C is lwqo, completing the proof.

8. Grid Classes

A grid class consists of those permutations whose plots can be subdivided into rectangles by a
finite number of vertical and horizontal lines so that the subpermutations lying in the resulting
rectangles satisfy conditions specified by a matrix. Three flavours of grid classes have been
studied. Ordered by increasing specificity, these are generalised grid classes, monotone grid
classes, and geometric grid classes. While the main result of this section applies to geometric
grid classes, we briefly describe the other two types of grid classes to put this result in context.

A generalised grid class is defined by a matrix M of permutation classes. If the matrix M
is of size t × u, then the permutation π lies in the grid class of M if its plot can be divided by
vertical and horizontal lines into a t × u arrangement of rectangles so that the subpermutation
in each rectangle lies in the class specified by the corresponding entry of M. An example is
shown on the left of Figure 8.1. This example displays two common conventions: first, we do
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not write entries of M that consist of the empty class ∅, and second, we index M in Cartesian
coordinates so that its indices correspond to coordinates in the plots of our permutations.

Generalised grid classes were first defined in, and have continued to be essential to, the
determination of the set of all growth rates of permutation classes; see Vatter [Vat11, Vat19].
The wqo (let alone lwqo) properties of generalised grid classes received little attention to-date.
The most general result in this direction is due to Brignall [Bri12, Theorem 3.1]. Note that
the generalised grid class shown on the left of Figure 8.1 is not wqo, as it contains the infinite
antichain shown on the right of Figure 1.7.

In a monotone grid class, the entries of the defining matrix M are restricted to the empty
class ∅, the class of increasing permutations Av(21), and the class of decreasing permuta-
tions Av(12). We specify monotone grid classes with 0/±1 matrices in which the classes ∅,
Av(21), and Av(12) are denoted by the symbols 0, 1, and −1, respectively, although again we
typically do not write zeros. For example, under this convention,

Grid
(
−1 1
1 −1

)
= Grid

(
Av(12) Av(21)
Av(21) Av(12)

)
.

A member of this monotone grid class is shown on the right of Figure 8.1. The elements of this
particular grid class are called skew-merged permutations because they can be expressed as the
union of an increasing subsequence and a decreasing subsequence. Their study dates to a 1994
result of Stankova [Sta94, Theorem 2.9] that states (in our language) that

Grid
(
−1 1
1 −1

)
= Av(2143, 3412).

Experience suggests that the skew-merged permutations exhibit similar behaviour to the 321-
avoiding permutations24; in particular, the class of skew-merged permutations is not wqo, as it
contains the infinite antichain shown on the right of Figure 1.2.

Monotone grid classes were first considered in full generality in a 2003 paper of Murphy
and Vatter [MV03]25. Their main result gives a characterisation of the 0/±1 matrices M for
which Grid(M) is wqo, in terms of the cell graph26 of M . This is the graph on the vertices
{(i, j) : M(i, j) ̸= 0} in which (i, j) and (k, ℓ) are adjacent if the corresponding cells of M
share a row or a column and there are no nonzero entries between them in this row or column.

24For specific examples of these similarities, we refer to the work of Albert and Vatter [AV13], who exploit them
to enumerate the skew-merged permutations (reproving a result originally due to Atkinson [Atk98]), and to the
work of Albert, Lackner, Lackner, and Vatter [ALLV16].

25Note that Murphy and Vatter [MV03] referred to monotone grid classes as “profile classes”. This is because
monotone grid classes can be viewed as generalisations of the profile classes defined by Atkinson in his seminal
1999 paper [Atk99, Section 2.2]. In terms of grid classes, Atkinson’s profile classes are the monotone grid classes
of permutation matrices (thus all of their cells are empty or increasing, and no two non-empty cells share a row or
column).

26We state Theorem 8.1 in terms of the cell graph ofM because this form has proved easier to work with, although
Murphy and Vatter [MV03] actually considered a different graph—the row-column graph of the 0/±1 matrix M
is the bipartite graph whose (bipartite) adjacency matrix is the absolute value of M . In other words, if M is a
t × u matrix, its row-column graph has vertices x1, . . . , xt, y1, . . . , yu where there is an edge between xi and yj
if and only if M(i, j) ̸= 0. It is not difficult to show that the cell graph of a matrix is a forest if and only if its
row-column graph is also a forest (a formal proof is given in Vatter and Waton [VW11, Proposition 1.2]), and thus
our formulation of Theorem 8.1 is equivalent to what Murphy and Vatter proved.
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Theorem 8.1 (Murphy and Vatter [MV03, Theorem 2.2]). The monotone grid class Grid(M)
is wqo if and only if the cell graph of M is a forest.

The infinite antichains used to prove one direction of Theorem 8.1 are variants of widdershins
spirals, although the construction in Murphy and Vatter [MV03, Section 4] is fairly technical.
A stream-lined construction follows from the work of Brignall [Bri12], which generalises that
direction of the result. The proof of the other half of Theorem 8.1 has also been improved upon,
in the work of Vatter and Waton [VW11]. That direction also follows, via Theorem 8.3, from
our upcoming Theorem 8.4, and is generalised by Theorem 8.5 after that.

The last result about monotone grid classes that we mention, below, shows how to deter-
mine whether a permutation class is contained in some monotone grid class27; classes that are
contained in a monotone grid class are called monotone griddable.

Theorem 8.2 (Huczynska and Vatter [HV06, Theorem 2.5]). A permutation class is contained
in some monotone grid class if and only if it does not contain

À

{1, 21} or
Á

{1, 12}.

From our lwqo-centric perspective, geometric grid classes are the most important of the three
types of grid classes. To define these we must first adopt a geometric viewpoint of permutations
and the containment order. In this view, the notion of relative order can be extended to point sets
in the plane: two sets S and T of points in the plane are of the same relative order (or, are order
isomorphic) if the x- and y-axes can be stretched and shrunk in some manner to transform one
set into the other. A point set (such as the plot of a permutation) in which no two points lie on a
common horizontal or vertical line is called independent.

Every finite independent point set in the plane is in the same relative order as the plot of
a unique permutation, and we call such a point set a drawing of the permutation. If S is an
independent point set with n points, then we can determine the permutation it is a drawing of by
labeling its points 1 to n from bottom to top and then recording these labels reading left to right.
It is evident that for any drawing S of a permutation π, there is some quantity ϵ > 0 (depending
on S) such that by perturbing the points of S each by at most ϵ, the resulting point set is still a
drawing of π.

Given a 0/±1 matrix M , we denote by ΛM the standard figure of M , which we define to be
the set of points in the plane consisting of

• the increasing line segment from (k − 1, ℓ− 1) to (k, ℓ) if M(k, ℓ) = 1 and

• the decreasing line segment from (k − 1, ℓ) to (k, ℓ− 1) if M(k, ℓ) = −1.

We then define the geometric grid class of M , denoted by Geom(M), to be the set of all per-
mutations that are in the same relative order as some finite independent subset of ΛM . One can
equivalently define Geom(M) to consist of all permutations that have a drawing on ΛM .

The best-studied geometric grid class is the class

X = Geom
(
−1 1
1 −1

)
,

27An extension of Theorem 8.2 to generalised grid classes is given by Vatter [Vat11, Theorem 3.1].
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/∈ Geom
(
−1 1
1 −1

)

Figure 8.2: The permutation 7136452 (left) can be drawn on an X, while the permutation 3142
(right) cannot be.

consisting of those permutations that can be drawn on an . An example of a member of this class
is shown on the left of Figure 8.2. The class X has been studied by Waton [Wat07, Section 5.6]
and Elizalde [Eli11]. Every permutation in X lies in the monotone grid class of the same matrix
(that is, it is skew-merged), but the converse does not hold:

Grid
(
−1 1
1 −1

)
⊈ Geom

(
−1 1
1 −1

)
In particular, the permutation 3142 cannot be drawn on an because, as is hinted at on the
right of Figure 8.2, once the 3, 1, and 4 are placed on the , there is no point on the that lies
simultaneously above the 1 and to the right of the 4.

In the the case of permutations drawn on an , a simpler argument is that there must be some
point that is farthest from the centre of the . For this reason, every permutation in X must be
of the form 1‘σ, σ ‘ 1, 1aσ, or σ a 1 for another permutation σ ∈ X . From this observation,
it follows readily that a permutation can be drawn on an if and only if it is skew-merged and
separable.

Despite this example, geometric grid classes and monotone grid classes coincide in many
cases of interest. By combining Murphy and Vatter’s Theorem 8.1 with results of Albert, Atkin-
son, Bouvel, Ruškuc, and Vatter [AAB+13, Theorems 3.2 and 6.1], one can establish the fol-
lowing characterisation of these classes.

Theorem 8.3. For a 0/±1 matrix M , we have

Grid(M) = Geom(M)

if and only if the cell graph of M is a forest.

The fact that Grid(M) = Geom(M) whenever the cell graph of M is a forest is explicitly
proved in [AAB+13, Theorem 3.2], and the proof given there essentially consists of “straighten-
ing out” the plot of an arbitrary permutation in Grid(M), although one could alternatively adapt
the proof of Vatter and Waton [VW11, Proposition 3.3] to give an order-theoretical proof. For
the other direction of Theorem 8.3, it is easiest to notice the discrepancies in their wqo proper-
ties, since Theorem 8.1 shows that Grid(M) is not wqo when the cell graph of M contains a
cycle, while geometric grid classes are always wqo:

Theorem 8.4 (Albert, Atkinson, Bouvel, Ruškuc, and Vatter [AAB+13, Theorem 6.1]). For
every 0/±1 matrix M , the geometric grid class Geom(M) is wqo.
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The conclusion of Theorem 8.4 extends to subclasses of geometric grid classes, of course.
Analogous to the case with monotone grid classes, we say that a permutation class C is geomet-
rically griddable if C ⊆ Geom(M) for some 0/±1 matrix M . However, unlike the case with
monotone and generalised griddability, there is no known analogue of Theorem 8.2 characteris-
ing the obstructions to geometric griddability.

Our aim in this section is to strengthen the conclusion of Theorem 8.4 from wqo to lwqo,
but to do this we need a few more definitions. Given a drawing S of the permutation π on
the standard figure ΛM , by our comments about perturbations above, we may assume that none
of the points of S lies on the integer lattice Z2 (or equivalently, that none of the points is an
endpoint of one of the line segments of ΛM ). Thus every point of S belongs to precisely one
line segment of ΛM , and so we can associate to it a single cell of the matrix M . In this way, we
obtain a gridded permutation π♯, and we denote the set of all gridded members of Geom(M)
by Geom♯(M).

Given the viewpoint of this paper, it is natural for us to view this association of entries of
a gridded permutation π♯ ∈ Geom♯(M) to cells of M as a labeling of the entries of π. To
this end, let ΣM denote a finite antichain consisting of the cells of M . (In other treatments
of geometric grid classes, ΣM is referred to as a cell alphabet, for reasons touched on below.)
The gridded permutations of Geom♯(M) therefore correspond to certain members of the poset
Geom(M) ≀ ΣM of ΣM -labelled members of Geom(M).

The proof of Theorem 8.4 given in [AAB+13] relies upon a length- and order-preserving
surjection φ♯ : Σ∗

M →→ Geom♯(M). Having established that such a mapping exists, it fol-
lows immediately from Higman’s lemma and Proposition 1.10 that Geom♯(M) is wqo. Let-
ting δ : Geom♯(M) →→ Geom(M) denote the order-preserving surjection that removes grid-
dings, it follows that Geom(M) is wqo, proving Theorem 8.4.

This approach could be adapted to prove the strengthening of Theorem 8.4 we desire, but
we employ minimal bad sequences instead. We do this for several reasons. First, our approach
does not require us to define φ♯, a definition that is fairly involved28. Second, as Albert, Ruškuc,
and Vatter [ARV15] put it, the mapping φ♯ “jumbles” entries29, and thus attaching labels (as we
must do to establish lwqo) would be cumbersome. Third, we hope that this alternative approach
may prove useful for other purposes.

Theorem 8.5. For every 0/±1 matrix M , the geometric grid class Geom(M) is lwqo.

Proof. Let M be a 0/±1 matrix and take (L,⩽L) to be an arbitrary wqo set. We begin by
extending the definition of the mapping δ mentioned above to our context, defining

δ : Geom♯(M) ≀ L →→ Geom(M) ≀ L

by
δ((π♯, ℓπ)) = (π, ℓπ).

This mapping, which in effect simply “forgets” the gridding of a permutation, is an order-
preserving surjection. Consequently, it suffices to establish that Geom♯(M) ≀L is wqo. Suppose

28In particular, the definition ofφ♯ requires the choice of a consistent orientation of the cells ofΛM , a process that
may require a further subdivision of this figure (this is the role partial multiplication matrices play in [AAB+13]).

29It is for this reason that an index correspondence ψ must be introduced in [ARV15, Section 3].
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to the contrary that this set is not wqo and consider a minimal bad sequence S ⊆ Geom♯(M) ≀L,
which must exist by Proposition 5.2.

Suppose that (π♯, ℓπ) ∈ S and that π♯ has length n, so ℓπ : {1, 2, . . . , n} → L. As discussed
earlier, π♯ corresponds to a particular member of Geom(M) ≀ΣM . Let cπ : {1, 2, . . . , n} → ΣM

denote the function that records the cells of the entries of π in π♯, so π(i) lies in cell cπ(i) in π♯.
Choose a drawing of π on the standard figure ΛM that witnesses this gridding, so for every
index i, the point corresponding to π(i) lies in the cell cπ(i). In this drawing of π, there must be
one point that lies at least as close to a lattice point as any other point; in fact, by perturbing this
point by a minuscule amount, we may assume that it lies closer to a lattice point than any other
point of the drawing. We fix such a drawing for every (π♯, ℓπ) ∈ S, and for the remainder of the
proof these are the only drawings we consider.

For each (π♯, ℓπ) ∈ S, let jπ denote the index corresponding to the point in the fixed drawing
of π that lies closest to a lattice point. We remove the entry π(jπ) from π to obtain the permu-
tation π = π − π(jπ). By simultaneously removing the point corresponding to this entry in the
drawing of π, we obtain a drawing of π. This drawing naturally induces a gridding π♯, and we
define cπ : {1, 2, . . . , n− 1} −→ ΣM to be the corresponding cell labeling. Finally, we remove
the label of π(jπ) from ℓπ to obtain the mapping

ℓπ : {1, 2, . . . , n− 1} −→ L.

Thus for every index i, the point corresponding to π(i) lies in the cell cπ(i) and has label ℓπ(i).
With π, cπ, and ℓπ defined as above, we see that for every L-labelled gridded permutation

(π♯, ℓπ) ∈ S, we have an L-labelled gridded permutation (π♯, ℓπ) ∈ S<. When passing from
(π♯, ℓπ) to (π♯, ℓπ), certain information is lost—the values of cπ(jπ) and ℓπ(jπ), of course, but
also, which lattice point in the drawing of π was closest to the point corresponding to π(jπ).
Since we know that this point lies on the line segment ofΣM in the cell cπ(jπ), there are precisely
two possibilities: either it lies closest to the lattice point at the lefthand end of the line segment,
or it lies closest to the lattice point at the righthand end. We encode these possibilities by an
element sπ of the two-element antichain {L,R}.

The above discussion allows us to (finally) define a mapping

Ψ : S → S< × ΣM × L× {L,R}

by
Ψ((π♯, ℓπ)) = ((π♯, ℓπ), cπ(jπ), ℓπ(jπ), sπ).

Proposition 5.3 shows that S< is wqo, and ΣM , L, and {L,R} are wqo either by assumption
or finiteness, so the image of S under Ψ is wqo by Proposition 1.3. To complete the proof it
therefore suffices to show that Ψ is order-reflecting, as this will imply that our assumed minimal
bad sequence S is wqo, a contradiction.

Consider elements (σ♯, ℓσ), (π♯, ℓπ) ∈ S satisfying

Ψ((σ♯, ℓσ)) ⩽ Ψ((π♯, ℓπ)).

This means that σ♯ ⩽ π♯ as gridded permutations (or, equivalently, that (σ, cσ) ⩽ (π, cπ) as
ΣM -labelled permutations). Thus it follows that there is a drawing Pπ ⊆ ΛM of π satisfying the
following two conditions.
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• There is a subset P σ ⊆ Pπ that is in the same relative order as the plot of σ, and in fact,
for each index i, the point of P σ corresponding to σ(i) lies on the line segment in the
cell cσ(i).

• The point of Pπ lying closest to a lattice point, say p, corresponds to π(jπ) in π, and the
lattice point it lies closest to is either the left or right endpoint of the line segment in the
cell cσ(jσ) = cπ(jπ), depending on the value of sσ = sπ.

This ensures that σ♯ ⩽ π♯ as gridded permutations (or equivalently, that (σ, cσ) ⩽ (π, cπ) asΣM -
labelled permutations): by the above, the point set Pσ = P σ ∪ {p} is in the same relative order
as σ, and moreover, for every index i, the point of Pσ corresponding to σ(i) lies in the cell cσ(i).
Furthermore, because (σ♯, ℓσ) ⩽ (π♯, ℓπ) and ℓπ(jπ) ⩽ ℓσ(jσ), we know that this embedding
of σ♯ into π♯ also respects the order of the labels from L. Thus this embedding witnesses that
(σ♯, ℓσ) ⩽ (π♯, ℓπ), verifying that Ψ is order-reflecting, contradicting our choice of the minimal
bad sequence S, and completing the proof of the theorem as already described.

We conclude by discussing finite bases and graphical analogues. An immediate conse-
quence of Theorem 8.5 (via Proposition 2.3) is that every geometric grid class (in fact, every
geometrically griddable class) is finitely based. This is Theorem 6.2 of [AAB+13], and is es-
tablished there by showing that for every 0/±1 matrix M , Geom(M)+1 ⊆ Geom(M ′) for some
larger 0/±1 matrix M ′, and then appealing to Theorem 8.4. Neither the original proof nor our
proof is constructive, and no bounds on the lengths of the basis elements of geometric grid
classes have been established, with the notable exception of one special case30.

The above is all for geometric grid classes. We do not even have a nonconstructive proof that
monotone grid classes are finitely based, although it has been conjectured that this is the case.

Conjecture 8.6 (Huczynska and Vatter [HV06, Conjecture 2.3]). Every monotone grid class is
finitely based.

Conjecture 8.6 holds for monotone grid classes that are also geometric grid classes, namely
(by Theorem 8.3), monotone grid classes of the form Grid(M) where the cell graph of M is a
forest. It also holds for the skew-merged permutations by the result of Stankova [Sta94, Theo-
rem 2.9] mentioned earlier. Beyond this, Waton showed in his thesis [Wat07, Theorem 4.7.5]
that the monotone grid class of the 2× 2 all-one matrix is finitely based while Albert and Brig-
nall [AB16] have shown that every 2×2 monotone grid class is finitely based (in fact their result
covers certain 2× 2 generalised grid classes as well).

30This special case is that of monotone/geometric grid classes of row vectors, which were studied in a 2002 paper
of Atkinson, Murphy, and Ruškuc [AMR02] where they are called “W -classes”, owing to the fact that members
of one such class, Grid(−1 1 −1 1), can be drawn on the figure . Because these classes can be viewed
as juxtapositions, a theorem of Atkinson [Atk99, Theorem 2.2] implies that they have finite bases and gives a
procedure to determine these bases. The enumeration of these classes is also much easier than general geometric
grid classes. Albert, Atkinson, Bouvel, Ruškuc, and Vatter [AAB+13, Theorem 8.1] show that all geometrically
griddable classes have rational generating functions, but the proof is nonconstructive. On the other hand, Albert,
Atkinson, and Ruškuc [AAR03, Section 3] show how to compute the (rational) generating functions of arbitrary
subclasses of monotone grid classes of 0/±1 row vectors.



44 Robert Brignall, Vincent Vatter

We conclude this section by briefly discussing related graph classes. The graphical analogues
of the skew-merged permutations are the split graphs, first studied in a 1977 paper of Földes and
Hammer [FH77a]. These are defined as the graphs whose vertices can be partitioned into a clique
and an independent set. Földes and Hammer showed that the split graphs are characterised by
the forbidden induced subgraphs G2143 = 2K2, G3412 = C4, and C5. Note that not all split
graphs are inversion graphs31.

Outside of the split graphs, the graphical analogues of monotone grid classes have received
very little attention, although Atminas [Atm22, Theorem 1.2] establishes a graphical analogue
of (a generalisation of) Theorem 8.2.

The graphical analogue of the class X of permutations that can be drawn on an is the
class of threshold graphs first defined by Golumbic in 1978 [Gol78]; these are the graphs that
can be built, starting from K1, by repeatedly taking the disjoint union or join with K1. In fact,
Golumbic himself considered the permutation class X in [Gol78, Section 3] and also in his book
Algorithmic Graph Theory and Perfect Graphs [Gol04, Section 10.3]. From our characterisation
above it follows that if Gπ is a threshold graph, then π ∈ X . However, owing to the many-to-one
nature of the mapping π 7→ Gπ, we can obtain the class of threshold graphs by considering
inversion graphs of a much smaller permutation class: every threshold graph is of the form Gπ

for some permutation π ∈ Geom(−1 1). Put geometrically, this means that every threshold
graph is the inversion graph of a permutation that can be drawn on a , or, for that matter, on
a , a , or a .

The graph-theoretic analogues of geometrically griddable classes are the graph classes of
bounded lettericity32. These graph classes were introduced by Petkovšek [Pet02] in 2002, and
the connection to geometric grid classes was first noted in the literature by Alecu, Lozin, de
Werra, and Zamaraev [ALdWZ20]33, who proved that if a permutation class is geometrically
griddable, then the corresponding class of inversion graphs has bounded lettericity. They also
conjectured that the converse statement holds, and this has since been proved.

Theorem 8.7 (Alecu, Ferguson, Kanté, Lozin, Vatter, and Zamaraev [AFK+]). The permutation
class C is geometrically griddable if and only if the corresponding class GC of inversion graphs
has bounded lettericity.

31Foldes and Hammer [FH77b, Theorem 3] characterise the split comparability graphs by forbidden induced
subgraphs. Because the class of inversion graphs is the intersection of the class of comparability graphs with the
class of their complements (the co-comparability graphs), this result implies that the split inversion graphs are
defined by the forbidden induced subgraphs 2K2, C4, C5, net, co-net, rising sun, and co-rising sun, the last four of
which are shown below.
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The class of split inversion graphs has been further studied by Korpelainen, Lozin, and Mayhill [KLM14], who
prove that it is not wqo by establishing that the set of inversion graphs of the infinite antichain of permutations
shown on the right of Figure 1.2 forms an infinite antichain of graphs.

32In particular, all threshold graphs have lettericity 2, as observed in [Pet02, Theorem 3].
33An extended abstract version also appears as Alecu, Lozin, Zamaraev, and de Werra [ALZdW18].
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The proof that graph classes of bounded lettericity are wqo follows immediately from Hig-
man’s lemma by an argument given by Petkovšek [Pet02, Theorem 8]. Atminas and
Lozin [AL15, Theorem 4] later showed that these classes are lwqo. Neither result follows from
our work because graph classes of bounded lettericity may contain graphs that are not inversion
graphs.

9. Concluding Remarks

When studying a permutation class, it is frequently critical to determine whether the class is
wqo because if so, then various finiteness conditions can be brought to bear. As we have
demonstrated, lwqo permutation classes have even nicer properties, such as finite bases (Propo-
sition 2.3) and the fact that their one-point extensions and substitution closures are also lwqo
(Theorems 4.5 and 7.4, respectively). For the permutation patterns practitioner, our work pro-
vides a toolkit to establish lwqo. From this perspective, two corollaries of our work stand out
for their wide applicability.

First, by combining Theorem 8.5 and Corollary 7.5, we obtain the following.

Corollary 9.1. If the simple permutations in a permutation class are geometrically griddable,
then it is lwqo.

One might appeal to Theorem 4.5 in order to strengthen Corollary 9.1 by saying that if the
simple permutations in C are geometrically griddable, then the class C+t is lwqo for every t ⩾ 0.
However, this situation falls under the purview of Corollary 9.1 already, since C+t is geomet-
rically griddable whenever C is (this follows from Albert, Atkinson, Bouvel, Ruškuc, and Vat-
ter [AAB+13, Theorem 6.4]).

As we have demonstrated, Corollary 9.1 generalises most of the wqo results in the permu-
tation patterns literature, and in fact strengthens their conclusions (from wqo to lwqo). Many
of the results in the literature not subsumed by Corollary 9.1 are subsumed by the following
combination of Corollary 9.1 with Theorem 7.2.

Corollary 9.2. If the simple permutations in the permutation class C are geometrically grid-
dable, then the class C[U ] is wqo for every wqo permutation class U .

It should be noted that there is no known systematic method for determining whether the
hypotheses of these two results apply to a given permutation class. Albert, Atminas, and Brig-
nall [AAB18] have shown how to determine whether the simple permutations of a given class
are monotone griddable, but Corollaries 9.1 and 9.2 apply only to classes whose simple permu-
tations are geometrically griddable.

One might also wonder about the converses to these results; in particular, if C is an lwqo per-
mutation class, must its simple permutations be geometrically griddable? This is false, and one
example is illustrated by the simple permutation shown in Figure 9.1. It can be argued (either
ad hoc, or by lifting the results of Brignall [Bri12] to the lwqo setting) that the set of all simple
permutations of this form is lwqo. Letting C denote the downward closure of these simple permu-
tations, it then follows by Theorem 3.2 that C is lwqo; indeed, it follows by Theorem 7.4 that ⟨C⟩
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•
•

•
•

•
•

•
•

•
•

•
•
•
•
•

∈ Grid
(

À

Av(12) Av(21)

)

Figure 9.1: A gridded simple permutation.

is lwqo. Moreover, Theorem 7.2 shows that C[U ] is wqo for every wqo permutation class U .
Nevertheless, Theorem 8.2 implies that these simple permutations are not monotone griddable,
let alone geometrically griddable, and this shows that the converses to both Corollary 9.1 and
Corollary 9.2 are false.

We close by collecting the questions and conjectures that were posed throughout. The ques-
tion below remains unanswered, although we provided a partial answer with Proposition 7.14
and established its lwqo analogue with Theorem 7.17.

• Question 1.12. Let C be a permutation class and GC the corresponding graph class. If
GC is wqo in the induced subgraph order, must C be wqo in the permutation containment
order?

We have specialised the following conjecture of Pouzet to permutation classes, but it is also
open for graph classes (as well as for Pouzet’s original setting of general relational structures).

• Conjecture 1.20. (Cf. Pouzet [Pou72]) A permutation class is 2-wqo if and only if it is
n-wqo for all n ⩾ 1.

We have presented several questions and conjectures related to Pouzet’s Conjecture 1.20,
beginning with the following potential strengthening of it, which was asked in the graph context
by Brignall, Engen, and Vatter [BEV18].

• Question 1.21. (Cf. Brignall, Engen, and Vatter [BEV18]) Is every 2-wqo permutation
class also lwqo?

Two other conjectures we presented may be viewed as variants of the above:

• Conjecture 4.6. If the permutation class C+1 is wqo, then C, and thus also C+1, is lwqo.

• Conjecture 7.12. If the permutation class ⟨C⟩ is wqo, then C, and thus also ⟨C⟩, is lwqo.

The following two conjectures would follow from Pouzet’s Conjecture 1.20 or a positive
answer to Question 1.21.

• Conjecture 4.7. If the permutation class C is 2-wqo, then the class C+1 is wqo.
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• Conjecture 4.8. If the permutation class C is 2-wqo, then the class C+t is 2-wqo for every
t ⩾ 0.

Finally, we repeat the following conjecture concerning grid classes, although it does not
directly address lwqo.

• Conjecture 8.6. (Huczynska and Vatter [HV06, Conjecture 2.3]) Every monotone grid
class is finitely based.
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[LR07] Vadim Lozin and Gábor Rudolf. Minimal universal bipartite graphs. Ars Com-

bin., 84:345–356, 2007.
[LRZ18] Vadim Lozin, Igor Razgon, and Viktor Zamaraev. Well-quasi-ordering versus

clique-width. J. Combin. Theory Ser. B, 130:1–18, 2018. doi:10.1016/j.

jctb.2017.09.012.
[LW97] Ten-Hwang Lai and Shu-Shang Wei. Bipartite permutation graphs with appli-

cation to the minimum buffer size problem. Discrete Appl. Math., 74(1):33–55,
1997. doi:10.1016/S0166-218X(96)00014-5.

[Man02] Toufik Mansour. Pattern avoidance in coloured permutations. Sém. Lothar. Com-
bin., 46:Article B46g, 12 pp., 2001/02. URL: https://www.mat.univie.ac.
at/~slc/wpapers/s46mansour.html.

[Mar94] Alberto Marcone. Foundations of BQO theory. Trans. Amer. Math. Soc.,
345(2):641–660, 1994. doi:10.2307/2154991.

[MP01] Frédéric Maffray and Myriam Preissmann. A translation of Gallai’s paper: “Tran-
sitiv orientierbare Graphen”. In Jorge Ramı́rez Alfonsı́n and Bruce Reed, editors,
Perfect Graphs, volume 44 of Wiley Series in Discrete Math. & Optim., pages 25–
66. Wiley, Chichester, England, 2001.

[MS03] Toufik Mansour and Zvezdelina Stankova. 321-polygon-avoiding permutations
and Chebyshev polynomials. Electron. J. Combin., 9(2):Paper 5, 16 pp., 2003.
doi:10.37236/1677.

[Mur02] Maximillian Murphy. Restricted Permutations, Antichains, Atomic Classes, and
Stack Sorting. PhD thesis, University of St Andrews, 2002. URL: http://hdl.
handle.net/10023/11023.

[MV03] Maximillian Murphy and Vincent Vatter. Profile classes and partial well-order
for permutations. Electron. J. Combin., 9(2):Paper 17, 30 pp., 2003. doi:10.

37236/1689.
[NW63] Crispin Nash–Williams. On well-quasi-ordering finite trees. Proc. Cambridge

Philos. Soc., 59:833–835, 1963. doi:10.1017/s0305004100003844.
[NW65] Crispin Nash–Williams. On well-quasi-ordering infinite trees. Proc. Cambridge

Philos. Soc., 61:697–720, 1965. doi:10.1017/s0305004100039062.

https://doi.org/10.1017/S030500410005204X
https://doi.org/10.1017/S030500410005204X
https://doi.org/10.1016/j.ipl.2017.02.002
https://doi.org/10.1007/s11083-010-9188-7
https://doi.org/10.1007/s11083-010-9188-7
https://doi.org/10.1016/j.jctb.2017.09.012
https://doi.org/10.1016/j.jctb.2017.09.012
https://doi.org/10.1016/S0166-218X(96)00014-5
https://www.mat.univie.ac.at/~slc/wpapers/s46mansour.html
https://www.mat.univie.ac.at/~slc/wpapers/s46mansour.html
https://doi.org/10.2307/2154991
https://doi.org/10.37236/1677
http://hdl.handle.net/10023/11023
http://hdl.handle.net/10023/11023
https://doi.org/10.37236/1689
https://doi.org/10.37236/1689
https://doi.org/10.1017/s0305004100003844
https://doi.org/10.1017/s0305004100039062


combinatorial theory 2 (3) (2022), #14 53
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