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ABSTRACT OF THE DISSERTATION 

 

Understanding the Spatial Variations of Pollutant Concentrations  

in Near-Road Environments 

 

by 

 

Dilhara Roshini Ranasinghe 

Doctor of Philosophy in Atmospheric & Oceanic Sciences 

University of California, Los Angeles, 2018 

Professor Suzanne E. Paulson, Chair 

 

Many epidemiological studies have associated elevated concentrations of air pollutants 

found on and near roadways with a variety of adverse health outcomes. Concentrations of freshly 

emitted pollutants in urban areas exhibit a high degree of spatial variability, which makes pollutant 

exposures, and potentially their resulting health effects both very location dependent and difficult 

to estimate. Mobile air pollution monitoring offers an opportunity to map pollutants with much 

higher spatial resolution than sparse stationary monitors. In the first study, we developed a 

framework to address the challenges and constraints to developing higher spatial resolution maps 

from mobile data. For 1 s time resolution data collected at normal city driving speeds, we showed 

that concentration maps of 5 m spatial resolution can be obtained, by including up to 21% 

interpolated values. We estimated the minimum number of sampling runs needed to make a 

representative concentration map with a specific spatial resolution, and found that generally 
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between 15 to 21 repeats of a particular route under similar traffic and meteorological conditions 

is sufficient. The concentration maps can afford insights into factors influencing pollutant 

concentrations at the city block and sub block scale; information that is useful in urban planning 

strategies to reduce pollution exposure. Methodical analysis of mobile monitoring data facilitate 

meaningful comparison of concentration maps of different routes/studies.  

Solid sound walls and vegetation barriers are commonly used to mitigate noise but they 

also help to reduce near-road air pollution. In the second study, we assessed the effectiveness of 

adding vegetation to sound walls (combination barriers) and vegetation-only barriers in reducing 

pollution concentrations downwind of roads. Using field measurements collected with a mobile 

monitoring platform, we developed concentration decay profiles of ultrafine particles, fine 

particles, oxides of nitrogen (NO and NO2) and carbon monoxide downwind of two roads in 

California with different solid barrier-vegetation barrier configurations and meteorological 

conditions. Generally, when winds were blowing approximately perpendicular to the road, both 

vegetation and combination barriers were effective in reducing near road air pollution. Under 

calm and stable atmospheric conditions (wind speed < 0.6 m/s); a taller and denser vegetation-

only barrier was more effective than a combination barrier. For ultrafine particles and gas 

pollutants, the additional reduction by vegetation-only barrier ranged from 10-24 %, in the first 

160 m from the barrier. Under light winds (wind speed< 3 m/s), in both unstable and stable 

atmospheric conditions, combination barriers with moderately dense vegetation that is taller than 

the solid barrier were more effective relative to the sound wall or the taller and higher and denser 

vegetation barrier alone. The additional reduction by combination barriers ranged 6-33% in the 

first 160 m from the barrier.  Our results are consistent with the notion that at low wind speeds 

vegetation act as effective barriers, and mean particle size data suggests a strong contribution of 
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deposition in reducing ultrafine particles downwind of vegetation barriers. At higher wind 

speeds, the importance of the barrier effect diminishes and their windbreak effect becomes more 

important. Overall, adding vegetation alone or to an existing solid barrier resulted in lower 

downwind pollution concentrations, especially under low wind speeds when concentrations are 

higher. 

In the third study, we used a modified dispersion model "Quick Urban & Industrial 

Complex" (QUIC) together with field measurements to assess factors controlling the effectiveness 

of vegetation and combination barriers in reducing near-road pollution concentrations. Two study 

sites with different building morphologies and configurations of barriers were modeled using 

QUIC. QUIC simulations in general captured the effect of barriers on pollution dispersion and the 

complex flow in near-road urban environments. Improvements to handle characteristics of 

vegetation are needed to capture the wind speed dependent effects of vegetation barriers. The 

QUIC model showed promise as a useful tool to optimize the characteristics of barriers to mitigate 

near-road air pollution exposure.  
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1. Introduction 

Roadway combustion emits a suite of air pollutants including coarse (PM10-2.5; particle 

diameter between 10-2.5 µm), fine (PM2.5; particle diameter less than 2.5 µm) and ultrafine 

(PM0.1, UFP; particle diameter less than 0.1 µm) particles; carbon monoxide (CO); nitrogen 

oxides (NOx); black carbon (BC); polycyclic aromatic hydrocarbons (PAHs) and volatile organic 

compounds (VOC). Numerous air quality studies show that compared to urban background levels 

concentrations of these pollutants are elevated, and in some cases highly elevated, on and near 

heavily trafficked roadways. An estimated 30-45% of people in large North American cities live 

within zones highly impacted by traffic emissions, covering up to 300-500 m from a highway or a 

major road (Health Effects Institute Panel on the Health Effects of Traffic-Related Air Pollution, 

2010). 

 Many epidemiological studies have associated elevated concentrations of air pollutants 

found on and near roadways with a variety of adverse health outcomes including asthma and other 

respiratory diseases (Rice et al., 2014), birth and developmental defects (Stingone et al., 2014), 

premature mortality (Caiazzo et al., 2013), cardiovascular diseases (Chen et al., 2013) and 

childhood cancers, such as leukemia (Boothe et al., 2014). Children appear to be particularly 

vulnerable to these adverse effects of air pollution (Health Effects Institute Panel on the Health 

Effects of Traffic-Related Air Pollution, 2010).  

In order to estimate the exposure of a population to air pollutants and to develop strategies 

to mitigate pollution exposure in near-road environments, we require a thorough understanding of 

the factors contributing to the spatial variation of pollution concentrations in those environments. 

The spatial and temporal variability of pollutant sources (primarily vehicles), microscale 
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meteorology and characteristics of natural and built environments are some of the important factors 

controlling the spatial variation of pollution.  

Measurements of traffic-related pollutant concentrations in urban areas have shown large 

inter- and intra-community variations. Choi et al. (2013) reported that difference in UFP number 

concentrations could be as high as 260 % between urban neighborhoods just 4 km apart. In near-

road environments, the distance for elevated pollutant concentration levels near roadways to return 

to the background levels show large variabilities associated with local meteorology (Finn et al., 

2010), pollutant type (Karner et al., 2010) and roadway configurations (Heist et al., 2009). In the  

daytime unstable atmospheric conditions, the elevated pollution levels can extent up to 115-570 m 

on the downwind side of the freeways (Karner et al., 2010). In the night and early morning stable 

atmospheric conditions, the elevated pollution levels can extend much further,  up to 2 km on the 

downwind side of the freeway (Choi et al., 2012).  

Turbulent diffusion is one of the main mechanisms responsible for the rapid decrease of 

pollution concentration with increasing distance from the roadways. Air parcels with high 

pollution concentrations are mixed with background air, and the resulting concentration reduction 

pattern depends on the magnitude of the increase of pollutant concentration above its background 

level. A meta-analysis by Karner et al. (2010) revealed that pollutants can be generally put into 

two categories based on their concentration reduction patterns downwind of the road; ones that 

show a rapid decrease (>50% in 150 m) and the ones that show a gradual or less rapid decrease of 

the elevated concentrations. UFP number concentration, CO and BC concentration fall into the 

first category, showing a rapid decay and the relative concentrations of these three species track 

each other well (Zhu et al., 2002), while benzene, NO2, PM2.5 fall into the second category, 

showing a gradual decrees in concentrations. 
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Coagulation, deposition, evaporation and condensation of semi-volatile species also 

contribute to the reduction of pollution concentrations (Zhang et al., 2004). For particles, these 

mechanisms are size dependent and more pronounced with decreasing particle size, as smaller 

particles have a higher molecular diffusion coefficients and dynamics of their evaporation are more 

pronounced due to the Kelvin effect (Hinds, 1999).  

In urban areas, built environments can form complex airflow patterns, such as street canyon 

flows, channeling flows and corner vortexes that can contribute to large spatial variability in 

pollution concentrations (Buonanno et al., 2011; Pirjola et al., 2012; Choi et al., 2016). These 

studies emphasize the importance of considering pollutant concentration variations at fine spatial 

scales, and the potential to reduce exposures to roadway emissions via adjustments to the built 

environment.   

Recognizing the negative impacts from near-road pollution exposure, new laws and 

mitigation strategies have been implemented to reduce the exposure of near-road communities. 

Some of the widely considered mitigation strategies for exposure reduction are limitations on 

placing sensitive land uses such as residences, schools, day care centers, playgrounds and medical 

facilities at close proximity to freeways, dynamic traffic management using air quality forecasts, 

optimization of noise barriers, roadside vegetation and road vegetation together with catalytic 

coatings, road surface cleaning and dust binders. 

The work presented here has three main objectives: 1) to develop a methodology to produce 

high spatial resolution concentration maps using mobile air quality measurements and estimate 

number of repetitions of mobile measurement runs needed to make representative UFP concentration 

maps with high spatial resolution (chapter 2); 2) to assess the effectiveness of vegetation and 

combination barriers in reducing near-road pollution concentrations (chapter 3) and 3) to use the  
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QUIC dispersion model to probe factors controlling the effectiveness of vegetation combination 

barriers as a pollution mitigation strategy. 
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2. Developing High Spatial Resolution Concentration Maps Using Mobile Air 

Quality Measurements 

2.1 Introduction 

An increasing number of air quality studies use mobile air pollution monitoring. Mobile 

measurements have several advantages over conventional stationary measurements, including the 

opportunity for better data coverage, efficient collection of data in close proximity to sources and 

logistical efficiency (Hagler et al., 2010; Hagler et al., 2012; Hu et al., 2012; Birmili et al., 2013; 

Choi et al., 2013;Peters et al., 2013; Van Poppel et al., 2013; Brantley et al., 2014; Lähde et al., 

2014). Although mobile measurement data can be highly spatially resolved, they are not always 

presented as high spatial resolution concentration maps. Many studies have presented either data 

statistics or aggregated data for streets or route segments (Hagler et al., 2010; Hagler et al., 2012; 

Hu et al., 2012; Choi et al., 2013; Peters et al., 2013; Van Poppel et al., 2013). Taking advantage 

of the high spatial resolution of the data offers potential to identify spatial variations and local air 

pollution hot spots at sub-block scale resolution, which in turn can provide exposure estimates for 

near-road communities, pedestrians and transit users to elevated levels of pollution near roadways. 

A detailed understanding of exposure risks could influence urban planning strategies such as 

placing transit stops and businesses with outdoor seating away from local pollution hot-spots, as well 

as behavioral changes such as choosing walking routes with minimal pollution exposure. 

Recently several studies have presented concentration maps of mobile measurement data 

(Pirjola et al., 2012; Padró-Martínez et al., 2012; Brimili et al., 2013; Brantley et al., 2014; Lähde 

et al., 2014; Pattinson et al., 2014; Peters et al., 2014). Pirjola et al. (2012), Lähde et al. (2014) and 

Padró-Martínez et al. (2012) do not state the spatial resolution of their maps, and provide little 
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description of how the maps were developed; Padró-Martínez et al. (2012) utilized ArcGIS 9.3.1 to 

develop concentration maps for individual runs. Brantley et al. (2014) and Pattinson et al. (2014) 

used 1 s time resolution data together with ArcGIS (ESRI) to map the median values of sets of runs 

and produced 50 m spatial resolution maps. The data along the measurement routes were binned 

into segments of 50 m and circles of 50 m diameter by Brantley et al. (2014) and Pattinson et al. 

(2014), respectively. Birmili et al. (2013) took an important step towards preserving the high spatial 

resolution of the 10 s time resolution mobile monitoring data collected by walking, a configuration 

that produced data with one measurement roughly each 8 m. They found systematic divergence of 

global positioning system (GPS) coordinate data from the walking path, and after correcting for 

this divergence, allocated data into ± 5 m horizontal segments. Their resulting UFP number 

concentration measurements were presented as maps with 10 m spatial resolution, where each data 

point was the geometric average of the data from 38 runs. Peters et al. (2014) used a large set of 1 

s time resolution data collected using a bicycle as a mobile monitoring platform (MMP), a 

configuration that produced data with roughly one measurement each 3.2 m. The GPS data were 

corrected using linear interpolation for short time periods when the GPS data were missing. Data 

were then projected on to the street based on shortest distance between the data point and the 

cycling route. The measured particle concentrations were spatially aggregated based on a Gaussian 

weighting function to produce concentration maps with 10 m spatial resolution.  

The main issues encountered in developing high spatial resolution concentration maps from 

mobile monitoring data are (i) the non-uniform spatial resolution and distribution of the 

measurements; (ii) that measurements are made at slightly different locations in each measurement 

pass along a specific route (in each “run”) and in some cases; (iii) errors in GPS coordinate data, 

which are common in dense urban areas with tall buildings. Additionally, there is the question of 
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how much data is sufficient to provide reliable profiles. The selection of the spatial scale for data 

aggregation and averaging must be informed by the spatial resolution of the collected data. In 

practice, the spatial resolution of the collected mobile measurement data is a combined result of 

the instantaneous speed of the MMP and the sampling rate/time resolution of the instruments used. 

Unlike for mobile measurements collected by walking or cycling for which the speed of MMP can 

be kept somewhat uniform, for motor vehicle MMPs large irregularities in the travel speed are 

unavoidable, especially in urban traffic. Consequently, even when instruments sample at a constant 

rate, the spatial resolution of data can be non-uniform, making the production of high resolution 

concentration maps challenging.  

When the time resolution of the data set is varied due to the nature of either the instrument 

or the post-data-processing procedures, determining the spatial resolution of collected mobile 

measurement data becomes more complex. An example of introduced spatio-temporal variability 

is the BC measurements made with micro-aethalometers, which can use an optimized noise-

reduction averaging algorithm (ONA) that prescribes a varying averaging time (Van den Bossche 

et al., 2015). However, because variations due to post-data-processing procedures is rare, the spatial 

resolution of mobile measurement data and consequently the highest possible spatial resolution of 

mobile measurement concentration maps are often limited by the combination of the data sampling 

rate and the instantaneous speed of the MMP.  

Here we propose solutions to the above mentioned mobile air quality data processing issues 

using a reference grid to map data points, and a piecewise cubic Hermite spline interpolation between 

measurements to give equal weight to each sampling run at each grid reference point. A background 

correction can be used to facilitate averaging concentration data over different days/times. Finally, 

we address the issue of how many repetitions of mobile measurement runs are needed to make 
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representative UFP concentration maps with high spatial resolution. 

2.2 Measurements 

The data used in this study are from a field campaign conducted in and around Downtown 

Los Angeles (DTLA). This campaign is described in more detail in Choi et al. (2016) and is only 

briefly described here. The site considered here is a 2-by-2 block area centered on the intersection 

of Broadway and 7th Street (BW-7th) (34°2'42.70"N/118°15' 12.23"W). The area consists of 

densely packed commercial buildings and parking structures, and a fairly typical street canyon 

configuration with a building height/street width (aspect ratio) of about 1.7. The block lengths are 

190 m and 100 m and the street widths are 26 m and 22 m for BW and 7th streets, respectively. 

The BW-7th intersection has a tall building at each of the four corners, with median height of 46 

m. The mean building height for the site area is 34 m and the building heights range 3–60 m (Fig. 

1). 

Measurements of several traffic-related air pollutants including UFP number and size 

distribution, PM2.5, black carbon, particle bound poly-aromatic hydrocarbons (PB-PAH), NO, 

CO, and CO2 were collected using fast response instruments fitted inside a MMP, an electric sub-

SUV free from self-pollution (Table 1). The instruments in the MMP have different response times 

due to the characteristics of the instruments and differences in inlet length and flow rates. Air was 

drawn through a 6'' diameter galvanized steel manifold installed through a window of the rear 

passenger space located 1.5 m above ground level. Sampling ports for each instrument were 

located in the middle of the manifold with short (0.5–2 m) sampling tubing (1/4" Teflon for gases, 

1/4" conductive tubing for particles, and 1/2" conductive tubing for FMPS). 
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Fig. 1 The sampling route of the mobile monitoring platform (MMP) in downtown Los Angeles. 

BW denotes Broadway and EB, WB, NB, and SB represent eastbound, westbound, northbound 

and southbound, respectively. Map source: Google Earth. 

 

For each instrument, flow and zero checks were performed before and after each 

measurement session. To account for any slight day-to-day differences in response time, a time-

lag correlation method was used in post-data processing to synchronize the response time of the 

instruments (Choi et al., 2012). Concentration data and MMP position data were recorded at 1 s 

time resolution. A complete description of the MMP calibration procedures is available in Hu et 

al. (2009).  

 

 

 

 



10 

 

Table 1. Monitoring instruments on the mobile monitoring platform. 

Instrument Measurement Parameter 
Response timea 

(Inlet to record) 

TSI Portable CPC, Model 3007 
Sub-micrometer particle number 

count (10 nm–1 µm) 
4 s 

TSI FMPS, Model 3091 
Size-segregated particle count (5.6–

560 nm) 
9 s 

TSI DustTrak, Model 8520 PM2.5 Mass 5 s 

EcoChem PAS 2000 Particle-bound PAH 10 s 

Teledyne API Model 300E CO 21 s 

LI-COR, Model LI-820 CO2 7 s 

Teledyne-API Model 200E  NO 22 s 

Magee Scientific Aethalometer AE42 Black Carbon 21 s 

Vaisala Sonic Anemometer and 

Temperature/RH sensor 

Surface winds, temperature, and 

relative Humidity (RH) 
- 

Garmin GPSMAP 76CS Location and speed - 

Eurotherm Chessell Graphic DAQ Recorder Data-logger - 

a Response time is an averaged value for smoke test results (Choi et al., 2013 (S3)). 

 

The MMP was driven multiple times along a fixed route (Fig. 1). Each day two data 

collection sessions were conducted, one in the morning (07:00–10:00) and one in the afternoon 

(14:00–17:00) with 6–9 and 6–7 runs in the morning and afternoon, respectively (Table 2). MMP 

turns at intersections were recorded in a time log. The MMP was parked intermittently at various 

locations for 5 min periods to collect meteorological data from its sonic anemometer mounted on 

the roof of the MMP. In each measurement session, video recordings of traffic were made at the 

central intersection using cameras mounted at each of the four corners of the intersection. Detailed 

information on the traffic signal light changes and traffic counts for all four traffic flow directions 

were obtained manually by reviewing the video records. All data processing was done in 

MATLAB R2012a (The Mathworks, Inc.). 
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Table 2. Measurement periods and surface meteorology at BW-7th. 

Date 
Measurement 

Period 

BW 7th 

Wind 

speed 

(m s–1) 

Wind 

direction# 

Traffic flow 

(vehicles s–1) 

Wind 

speed 

(m s–1) 

Wind 

direction# 

Traffic flow 

(vehicles s–1) 

7/1/2013 

09:15–11:45 

15:30–18:00 

0.96 

0.91 

SW 

SW 

0.09 

+ 

1.08 

+ 

ESE-NE* 

+ 

0.15 

+ 

7/3/2013 

08:15–11:00 

16:00–18:00 

1.34 

1.80 

SSE–SW* 

SW–S* 

0.10 

0.18 

1.06 

1.45 

ESE–NE* 

NE 

0.13 

0.18 

7/5/2013 

08:45–11:00 

15:30–18:15 

1.23 

1.13 

* 

SSW–NW* 

0.95 

0.14 

0.94 

1.48 

ESE–NW* 

NE 

0.08 

0.14 

# NE (northeasterly), ESE (east-southeasterly), SSE (south-southeasterly), S (southerly), SSW (south-

southwesterly),  

SW (southwesterly), NW (northwesterly). 

* variable wind (wind direction was spread over two or more quadrants). 

+ data not available. 

 

2.3 Data Analysis Methodology 

The UFP number concentrations measured using the CPC had the lowest response time 

(Table 1) and consequently highest spatial resolution, making it the best data set for concentration 

variations at a high spatial resolution. Therefore, we present the data analysis methodology using 

CPC measured UFP number concentrations.  

2.3.1 Separation of the High-Emitting Vehicle Contribution 

Transient concentration spikes from high-emitting vehicles (HEV) are common on 

roadways. HEV encounters have a strong stochastic element and the associated concentration 

spikes can deviate as much as 1–2 orders of magnitude above the baseline. As HEV data have the 

potential to obscure general trends in concentration maps, depending on the question being asked, 
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it may be desirable to remove them. 

Here HEV encounters occurred 10 to 14% of the time, depending on the session, defined 

as follows. To identify HEV-related spikes, a threshold concentration value must be defined. The 

method developed by Choi et al. (2013) was used here, in which a site- and session-specific 

threshold was calculated. The threshold concentration value was defined as the baseline plus three 

standard deviations of the baseline. First, we subtracted a baseline calculated using a robust 

smoothing function that employs a local regression of weighted linear least squares and a 2nd 

degree polynomial model. The smoothing function assigns lower weight to outliers in the 

regression and assigns zero weight to data outside six mean absolute deviations. Next, the standard 

deviation of the baseline-subtracted concentrations was calculated. Then all concentrations above 

this intermediate threshold of three standard deviations were identified as HEV spikes and 

removed from the data set. A new standard deviation was calculated from the remaining 

concentration data, resulting in a new threshold. The process was iterated eight times, until the 

threshold value converged to a constant value. All concentration values above the calculated final 

threshold were replaced by the baseline concentration values to obtain the final HEV spike-

removed concentration time series used for certain analyses. 

2.3.2 Correction of Geographical Data 

Handheld GPS units are able to obtain coordinates with a horizontal accuracy of 

approximately 3–5 m when the unit can receive a wide area augmentation system (WAAS) signal. 

Otherwise, the accuracy is approximately 10–15 m. In urban settings with tall buildings, 

shadowing effects can result in poor reception of satellite signals (Misra & Enge, 2006) and further 

decrease position accuracy. In our dataset the GPS data diverged by up to about 30 m from the 

roadway at times, almost exclusively under slow moving or stationary conditions. This is similar 
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to the divergence reported by Birmili et al. (2013). Often near street corners, the GPS data appeared 

in clusters or gave sets of position data implying backward movement (Fig. 2). 

 

 
Fig. 2 An example of the divergence of GPS data in an urban street canyon. The color dots show 

the position data of four runs, obtained from GPS device (Garmin GPSMAP 76CS) while 

driving along Broadway Northbound. The blue squares denote the reference line; a close 

representation of the actual driving route of the MMP during the data collection. 

 

GPS data were corrected as follows. A time log of the instant the MMP turned at each 

intersection was used to divide both concentration and position data time series into street 

segments. Clusters of position data implying backward movement were identified by comparing 

GPS data to latitude/longitude values along the diving route. As these ‘wandering’ data clusters 

were most pronounced under slow moving or stationary conditions, all the concentrations 

associated with such a set of positions were attributed to the last position which showed a forward 

movement.  
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2.3.3 Handling Non-Uniform Spatial Resolution of Measurements 

To achieve the objective of developing representative mean concentration maps with high 

spatial resolution, data averaging should be performed in a manner that does not overweight or 

underweight any of the data. Initially we adapted an areal average (Hagler et al., 2010; Pattinson 

et al., 2014) in which values with in a fixed radius were averaged for data points along the route. 

For example, if a radius of 4 m was chosen, all points within an 8 m diameter circles were averaged 

and assigned to the center of the circle. This approach proved to be erroneous at small spatial scales 

because a large number of data points associated with large divergences of GPS data were 

excluded.  

In a novel approach to handling the non-uniform spatial resolution of mobile monitoring 

data, we first constructed reference lines to provide a framework with which to organize the data. 

For one way streets, the reference lines were assigned to the mid-line of the street, and for two lane 

streets the reference lines were assigned to the mid-line of all the lanes in a single direction. These 

reference lines provided the framework and acted as placeholders to produce concentration maps 

at different spatial resolutions.  

As described earlier, in practice the spatial resolution of the concentration data is related to 

the instantaneous speed of the MMP. The average speed of the MMP was about 3 ms–1 for all 

sessions, with a standard deviation of 2.9 ms–1 and 3.4 ms–1 for morning and afternoon sessions, 

respectively. This average MMP speed is comparable to the 3.2 ms–1 reported by Peters et al. 

(2014) for bicycling (with 1 s resolution instruments) but is much faster than the 0.8 ms–1 reported 

by Birmili et al. (2013) for walking (with 10 s resolution instruments). Fig. 3 shows that about 

80% of the time the MMP traveled at speeds below 5 ms–1, corresponding to a spatial resolution 

at or above 5 m. However, lower spatial resolution data tend to be clustered in certain areas, such 
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as low trafficked streets and at the middles of the blocks. Based on this understanding of the 

variation of the spatial resolution of data, we decided to look at spatial scales ranging from 2 m to 

40 m and investigated the implications of the choice of spatial scale in data aggregation and 

averaging.  

 

  

Fig. 3 Cumulative fraction of the binned instantaneous speed of the mobile monitoring platform 

(MMP), calculated for the whole dataset including both morning and afternoon sessions. 

 

After the correction of GPS data, each data value for each run was assigned to the closest 

line reference point along a particular street. After this step, runs typically have some line reference 

points with no assigned values and others with many values. In cases where multiple data values 

were assigned to a reference point for an individual run, the mean of the assigned values was 

calculated. The rationale for averaging these data points is to not to over-weight the MMP stops. 

In the dense urban area of our study, street lights spend equal amounts of time as red and green 

(with a brief yellow phase), but the MMP naturally collects more data while stopped at a red light, 
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sometimes as much as 50 times the data collected when it passes through an intersection on a green 

light. Thus averaging the extended measurements from the red phase gives appropriate weighting 

to the green and red phases. Not surprisingly, as the spatial resolution of the reference lines was 

increased, the number of reference points with no assigned data values increased. These empty 

reference points present a problem because they cause over-weighting of the runs that did produce 

data at a particular reference point. This problem can have a dramatic effect, producing plots that 

are very noisy. Over-weighting a run is particularly concerning if that run is influenced by a 

transient emission event. Further, as the urban background concentration (see definition in section 

2.3.4) varies throughout a measurement session, a run that is missing data at a given reference 

point results in a temporal bias toward the time periods in which runs are available at that point.  

As a solution to these biasing issues, to assure the availability of a concentration value at 

each reference point for each run, the concentration data within individual runs were interpolated 

at points where a data value was missing for that run. For this interpolation the Piecewise-Cubic-

Hermite-Interpolation scheme (PCHIP) was selected. PCHIP uses a third degree polynomial 

specified in Hermite form to produce a smooth continuous function of the concentration time series 

(Fritsch & Carlson, 1980). The piecewise calculation not only keeps the calculation ‘local’ using 

only four neighboring data points, but also avoids the oscillations in the interpolated data that are 

associated with higher order polynomial interpolations. Fig. 4 show that the PCHIP scheme 

preserves the concentration time series well for individual runs. 
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Fig. 4 An example of the interpolation of concentration data values for an individual run at 2 m 

spatial resolution. ’Data’ points (circles) represent observed concentration values. ‘PCHIP 

data’ points represent the interpolated concentration values (squares). Note that the maps 

shown in Fig. 6 use 5 m resolution and thus fewer interpolation points than this example. 

 

 An investigation of the percentage of interpolated data values required at different spatial 

scales shows that concentration maps of 4 m spatial resolution can be obtained by including 32% 

interpolated values; this number falls to 4% for 10 m spatial resolution (Fig. 5). The percentage of 

interpolated data allowed suggests an upper-bound for the spatial resolution of concentration maps. 

Considering the horizontal accuracy of the GPS position data is about 3–5 m and that the PCHIP 

scheme preserves the within-run concentration time series well, we choose to allow up to 21% of 

values to be interpolated, and present concentration maps with 5 m spatial resolution. Once each 

run has an appropriate single data value assigned at each reference point, the runs are averaged 

together to create the desired concentration maps. 
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Fig. 5 The percentage of interpolated points in the data set used to calculate the mapped 

concentration as a function of spatial resolution of the reference lines, for data with 1 s time 

resolution and mobile monitoring platform mean speed of about 3 ± 3 m s–1.  

 

2.3.4 Estimation of the Urban Background 

Day to day and within several hours on the same day, average pollution concentrations 

often move up and down by a factor of two or more, due to large scale phenomena such as mixing 

height and turbulence intensity, as well as general traffic trends. These variations in the urban 

background must be accounted for prior to averaging data from different sessions and days. The 

urban background can be defined as the ambient air pollution concentration that does not show 

transient variations due to local sources (Brantley et al., 2014). Background estimation techniques 

fall into two main categories: location-based estimates such as the use of a background site, and 

time-series based estimates such as the use of a low percentile of the data, the rolling minimum 

over small time windows, a spline over the minimums or low percentiles of small time windows 

of the time series. The efficacy of these different techniques and the dependence of time series-

based estimates on the width of the time window were discussed extensively in Brantley et al. 
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(2014). They concluded the time series based background estimate that best captured the diurnal 

and daily variations was a spline over the minima of reasonably narrow time windows, and that 

the choice of a 5 min or 10 min time window does not make a significant difference. Their study 

showed that for UFP concentrations, the time series-based background estimates using a spline 

over minimums (after removing background zones from the time series) and the location-based 

estimate of the median of a background zone were in good agreement.  

Here we obtained a time series-based background estimate by fitting a smooth function to 

the minimum values in 10 min time windows for each morning and afternoon session. By 

subtracting the spline of minimum values from the measured concentration values, the 

background-subtracted concentration time series were obtained. This resulted in approximately 

6.8% negative values in the concentration time series, which is comparable to the 7.3% reported 

by Van Poppel et al. (2013) for a location based background correction method.  

Background-subtracted time series from different days can be averaged to produce mean 

concentration maps to probe spatial variations. However, such maps do not represent the measured 

concentration values, only their variability. To address this issue, a representative urban 

background can be added back to provide exposure estimates. The percentage contribution of the 

background to the measured concentration, calculated using the ratio of mean of background time 

series to the mean of measured time series, was 33% and 26% for morning and afternoon sessions, 

respectively. This is comparable with an all session average of 26% reported by Brantley et al. 

(2014). In order to make the background corrected concentrations representative of the 

measurements, we averaged the estimated background splines for different sessions and added the 

resulting mean background spline to each background-subtracted concentration time series to 

obtain the background-adjusted concentration time series. These background-adjusted 
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concentration time series from different days were used together with corrected GPS data to assign 

concentration values to the reference grid points and then data within individual runs were 

interpolated at points where a data value was missing for that run, as described in section 2.3.3. 

Next, all runs from several days were averaged (morning and afternoon sessions separately) to 

obtain the mean concentration maps (Fig. 6). 

 

2.3.5 Micrometeorological parameters 

The sonic anemometer measurements (Table 1) were used to calculate several 

micrometeorological parameters related to surface turbulence. The along-wind (U), mean cross 

(V) and vertical (W) components of the wind measurement at time t, can be expressed in terms of 

the mean wind for a given period ( , ,u v w ) and the fluctuation of the wind at time t ( ', ', 'u v w )(Eq. 

1).  

'
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'

U u u

V v v

W w w

= +
= +
= +

                                               (Eq. 1) 

Then the mean fluctuations of vertical winds (σw), friction velocity (u*) representing a 

velocity scale for the total vertical flux of horizontal momentum and the mean turbulence kinetic 

energy (TKE) are given by Eq.2,3 and 4, respectively (Stull 1988).  
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2.4 Results and Discussion 

2.4.1 High Spatial Resolution Concentration Maps 

2.4.1.1 Ultrafine particles 

The 5 m spatial resolution maps shown in Fig. 6 are the result of careful consideration of 

several underlying data processing issues of mobile monitoring data. With the use of a background 

correction, we were able to average data over sessions from different days, and thus over a higher 

number of runs. After averaging data over varying effects of micro-meteorology, traffic volume, 

traffic fleet composition and background concentrations over different measurement sessions and 

different days, resulting UFP concentrations maps retain the robust block and sub-block scale 

features of the concentration variation, making them a potentially useful tool in identifying 

pollution hot spots at the block or sub-block scale (Choi et al., 2018).  

Fig. 6 shows the UFP concentration maps at 5 m spatial resolution for the full data set 

including HEV-related spikes (“raw”, Figs. 6(a) and 6(c)) and also for the data with HEV-related 

spikes removed (“spikes removed”, Figs. 6(b) and 6(d)). The dominant feature of the “raw” 

concentration maps are the ‘hot spots’ that appear at and near intersections, including both the area 

where queues form and where vehicles accelerate away from intersections. Once the HEV related 

spikes are removed, features appear that reveal more about the influence of the built environment 

on street level concentrations. While “raw” concentration maps are important in exposure analysis, 

maps with HEV spikes removed help understand various other factors influencing small spatial 

scale variations of the UFP concentration.  
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Fig. 6 Spatial variations of background corrected UFP concentrations averaged over (a,b) 

morning and  (c,d) afternoon sessions from three days for (a,c) data including HEV related 

spikes and (b,d) data excluding HEV related spikes. The spatial resolution of the maps is 5 

m.The heights of the buildings in the nearby area is shown in gray scale. 
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The “spikes removed” data reveal features at both the block- and sub-block scales. Fig. 

6(d) shows that at the block-scale, in the afternoon, 6th street shows the highest concentrations, 

despite having low average traffic volume compared to other streets. On 7th street, in both morning 

and afternoon, there are generally higher concentrations on the east-bound side compared to the 

west-bound side, despite having nearly the same traffic flow in both directions. Moreover, Fig. 

6(b) shows that at the sub-block scale, in the morning on BW northbound near the intersection of 

8th and BW, the south end of the block has elevated concentration in comparison to the queue 

forming north end. A similar situation can be noted on 8th street, just west of the intersection of 

BW and 8th, where the east end of the block shows elevated concentration in comparison to the 

queue forming at the west end. Many of these features can be explained by the surface level wind 

flow patterns that are heavily influenced by the local built environment, traffic patterns and non-

vehicle local sources (Choi et al., 2016).  

 

2.4.1.2 Gas pollutants  

We chose to demonstrate the mapping methodology using UFP because UFP 

measurements have the potential to show the heterogeneity of the spatial distribution of the 

pollutants in high spatial resolution maps. However, the internal averaging times of all the 

instruments were on the same order of magnitude (Table 1) and the concentration data for all the 

pollutants and MMP position data were recorded at 1 s time resolution. Given that the time 

resolution of the concentration data set and geographical data set is the same for all the pollutants, 

the mapping methodology considering the geographical data correction and handling of the non-

uniform spatial resolution of measurements apply directly to the mapping of any of the pollutants.  
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Below we present examples of concentration maps of pollutants other than UFP. For each 

pollutant, the data-procession methodology described in section 2.3 was used to produce 

concentration maps at 5 m spatial resolution (Fig. 7 and  Fig. 8). However, we emphasize that the 

instruments used to measure CO and NO have internal averaging times substantially longer than 

the 1s associated with the UFP measurements (Table 1). This means the underlying data do not 

capture a true signal change at 5 m spatial resolution. Additionally, their concentrations deviate 

less relative to UFP above the urban background. Both of these factors result in concentration maps 

that show with lower spatial heterogeneity than for UFP. 

Fig. 7 Spatial varation of background corrected NO concentrations avaraged over (a) morning 

and  (b) afternoon sessions from three days for data including HEV related spikes.The spatial 

resolution of the maps is 5 m.The heights of the buildings in the nearby area is shown in gray 

scale. 

NO concentration (ppb)  

(a) (b) 
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 Fig. 8 Spatial varation of background corrected CO concentrations avaraged over (a) morning 

and  (b) afternoon sessions from three days for data including HEV related spikes.The spatial 

resolution of the maps is 5 m.The heights of the buildings in the nearby area is shown in gray 

scale.  

 

2.4.2 Estimation of the Minimum Number of Runs Needed for Representative Concentration 

Maps 

Due to transient and small spatial scale variations in pollution concentrations, a single run 

of mobile measurements is clearly unable to capture a representative concentration field of an area. 

This raises the question of how many repeated measurements are needed to estimate a 

representative concentration field. Clearly this question is dependent on variability in 

meteorological as well as traffic conditions, features that in some cases might require very large 

amounts of sampling. Here we are interested in typical morning and afternoon conditions that, in 

the case of our study site, are the most common by far. The average wind speeds on BW were 1.2 

± 0.2 ms–1 for mornings and 1.3 ± 0.5 ms–1 for afternoons. The most prevalent wind direction on 

CO concentration (ppb)  

(a) (b) 
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BW was SW in both morning and afternoon sessions. On 7th the average wind speeds were 1.0 ± 

0.1 ms–1 for mornings and 1.5 ± 0.1 ms–1 for afternoons. The most prevalent wind directions on 

7th were ESE in the mornings and NE in the afternoons (Table 3). To investigate this question, the 

following data experiment was performed on the UFP number concentration data set. 

Table 3. Average surface meteorology at BW-7th. Here, u*is the friction velocity, σw is the 

variance of vertical wind velocity and TKE is the turbulent kinetic energy*. 

Date 

Temp. 

(°C) 
u* (m s–1) σw (m s–1) 

TKE 

(m2 s–2) 
Temp. (°C) u* (m s–1) σw (m s–1) 

TKE 

(m2 s–2) 

Morning Afternoon 

7/1/2013 25.9 0.23 0.37 0.47 32.2 0.23 0.40 0.46 

7/3/2013 23.0 0.17 0.35 0.47 22.5 0.36 0.57 0.97 

7/5/2013 20.6 0.19 0.30 0.47 24.0 0.15 0.48 1.21 

* The definitions of micrometeorological parameters are presented in section 2.3.5. 

 

First, all morning runs and all afternoon runs from the background-corrected concentration 

data set were collected separately. Each of these sets had runs spanning several days; many with 

fairly similar meteorological and traffic conditions (Table 2). For mornings, up to 22 runs were 

available for BW south-bound and 7th east-bound and 24 runs for BW north-bound and 7th west-

bound. For afternoons, up to 19 runs were available for BW south-bound and 20 runs for other 

streets. For each street, at each line reference point, runs were selected at random (without 

replacement) and the mean concentration was calculated using an increasing number of runs, up 

to one less than the total number of runs available. This process was repeated 10 times for each 

street, choosing runs in different random order. For the sets of 10 repeated mean concentration 

calculations at different reference points and for different number of runs averaged, the relative 

error (standard deviation normalized by mean) was calculated and plotted (Fig. 9(a)). As shown in 
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Fig. 9(a), the rate of decrease in relative error varies among reference points along a given street. 

For simplicity, the maximum relative error along each street is considered and plotted against 

number of runs averaged for HEV spikes removed data (Fig. 9(b)) and for HEV spikes retained 

data (Fig. 9(c)). The minimum number of runs needed for the relative error to drop below 0.15 is 

calculated (the green or yellow symbols on each plot in Fig. 9(b) and (c)) and considered as the 

minimum number of runs needed for a representative UFP concentration value.  

The estimate of the minimum number of runs needed for representative UFP concentration 

values at 5 m spatial resolution varies somewhat from street to street and is dependent on the data 

filters applied (Fig. 9 (b) and (c)). For HEV spikes removed data, the maximum relative error along 

each street vs. number of runs averaged (Fig. 9(b)) initially drops rapidly (in the first 2–7 runs). 

The maximum relative error along streets also drops rapidly initially, from the initial values of 

282–90% to 50% at 4–9 runs, after which it decreases more slowly, reaching 15% at 15–21 runs. 

Hence, the estimate of the minimum number of runs needed for representative concentrations at 5 

m spatial resolution ranges 16–21 runs for the mornings and 15–16 runs for the afternoons (Fig. 

9(b)). For mornings when 16 runs are included, the average relative error considering all four 

streets is 11%. For afternoons when 15 runs are included, the average relative error considering all 

four streets is 9%. The morning sessions usually have low wind speeds (Table 3). Consequently, 

the turbulent kinetic energy (TKE) and variance of vertical wind velocity (σw) are lower in the 

mornings in comparison to the afternoons (Table 3), denoting lower atmospheric turbulence and 

mixing rates. The need for more runs for the morning sessions can be attributed to the lower mixing 

rates, resulting in a stronger influence of local sources on pollutant concentrations. 

The inclusion of transient and large HEV spikes generally increases the minimum number 
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of runs needed for all the streets and for both AM and PM sessions (Fig. 9(c)). Similar to the HEV 

spikes removed data, morning sessions need more runs compared to afternoon sessions. For HEV 

spikes retained data, the maximum relative error along each street vs. number of runs averaged 

drops slowly compared to HEV spikes removed data. The maximum relative error along streets 

also drops from the initial values of 244–143% to 50% at 8–14 runs and drops below 15% only 5 

sessions out of the 8 sessions. For all the streets maximum relative error along the streets drop 

below 22% at 21–23 runs for the mornings and for 17–18 runs for the afternoons. Hence we 

conclude that the of the minimum number of runs needed for representative UFP concentrations 

at 5 m spatial resolution is at least 21–23 runs for the mornings and at least 17–18 runs for the 

afternoons.  

These results apply only to UFP concentrations because the minimum number of run 

needed for representative concentration values depends on the magnitude of variance of the data 

set. Hence the results depend on the pollutant considered. We also showed that the results depend 

on the data filters applied (Fig. 9(c)). The effect of spatial resolution on the estimate of the 

minimum number of runs needed for representative concentration values is discussed in section 

2.4.3. For both HEV spikes removed and spikes retained data sets, the initial values of the 

maximum relative error markedly decreased when spatial resolution was decreased to 10 m. The 

minimum number of runs needed for representative concentration values generally decreased for 

all the streets and for both AM and PM sessions. 
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Fig. 9. (a) The relative error of repeated calculations of mean concentration of HEV spike 

removed data, for different numbers of averaged afternoon runs included in the averaging (x-

axis), at each line reference points along a single example street (BW SB) (y-axis). (b, c) The 

variation of maximum relative error along different street segments vs. the number of runs 

averaged for morning (AM) and afternoon (PM) sessions (b) for HEV spikes removed data 

and (c) for HEV spikes retained data. The green and yellow symbols denote the points at 

which the relative error is at or below 0.15. The spatial resolution of the maps considered is 5 

m. 
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In their effort to assess the minimum number of runs needed for representative 

concentrations at the street-scale, Van Poppel et al. (2013) and Peters et al. (2013) used data from 

moderately sized sets of mobile monitoring runs (20–24 runs), selecting different numbers of runs 

at random (without replacement) and averaging them to calculate the street means or medians. 

They used 1 s time resolution data, collected by a MMP travelling at an average speed 2.7 m s–1. 

The minimum number of runs needed to obtain representative concentrations was defined as the 

point at which these mean/median values calculated using a sub-set of runs came within a certain 

percentage deviation (15%–25%) of their “representative values”. They defined the 

“representative values” as the mean/median of all available runs. Peters et al. (2013) using a 15% 

deviation percentage concluded that for UFP concentrations the number of runs needed was 16 

and 18 for the two sites considered. Van Poppel et al. (2013) used a portion of the data set used in 

Peters et al. (2013) study and concluded that for UFP concentrations, a 25% deviation could be 

achieved from 10–16 and 8–16 runs depending on the street, for analysis without and with 

background correction, respectively.  

In a continuation of this work, Van den Bossche et al. (2015) used a large dataset (96–256 

runs) of BC measurements for a similar exercise. BC was measured at 1 s time resolution but as 

discussed earlier, the spatial resolution of these data is variable and complex due to the use of a 

post-data processing technique (ONA). Allowing replacement in the random selection of runs and 

employing a background correction, trimmed mean and 25% deviation they concluded that the 

number of runs needed is 14–61 depending on the street, and also showed that this rose to 108 runs 

when considering a spatial resolution of 20 m. Prior studies (Peters et al., 2013; Van Poppel et al., 

2013) done with small UFP data sets are different from this study in terms of both the way in which 

the minimum number of required runs is defined and in the spatial scale considered.  
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Despite these differences, our estimate of the minimum number of runs needed for 

representative UFP concentration values is also comparable with these two prior studies. 

2.4.3 The effect of spatial resolution on the estimate of minimum number of runs needed for 

representative concentration maps 

To investigate the effect of spatial resolution on the estimate of the minimum number of 

runs needed for representative concentration values we conducted the data experiment described 

in section 2.4.2 on both HEV spikes removed and HEV spikes retained data sets, using a spatial 

resolution of 10 m (Fig. 10). For both data sets, the initial values of the maximum relative error 

are markedly decreased with decreased spatial resolution and the minimum number of runs needed 

for representative concentration values generally decreases for all the streets and for both AM and 

PM sessions.  

For HEV spikes removed data the maximum relative error along streets also drops from 

the initial values of 123% - 82 % to 50% in just 3-5 runs (Fig. 10 (a).) The estimate of the minimum 

number of runs needed for representative concentrations also drops slightly at 10 m spatial 

resolution, ranges16-18 runs for the mornings and 14-16 runs for the afternoons (Fig. 10 (a)). For 

HEV spikes retained data the maximum relative error along streets also drops from the initial 

values of 202-136 % to 50% at 6-12 runs (Fig. 10 (b)) and drops below 15 % only 4 sessions out 

of the 8 sessions. For all the streets maximum relative error along the streets drop below 17% for 

20-23 runs for the mornings and for 18 runs for the afternoons (Fig. 10 (b)). Hence we conclude 

that the of the minimum number of runs needed for representative concentrations at 10 m spatial 

resolution is at least 20-23 runs for the mornings and at least 18 runs for the afternoons. 
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Fig. 10 The variation of maximum relative error along different street segments vs. the number 

of runs averaged for morning (AM) and afternoon (PM) sessions (a) for HEV spikes removed 

data and (b) for HEV spikes retained data. The green and yellow symbols denote the points at 

which the relative error is at or below 0.15. The spatial resolution of the maps considered is 

10 m. 
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3. Effectiveness of vegetation and sound wall-vegetation combination barriers on 

pollution dispersion from freeways under daytime and early morning conditions 

3.1 Introduction 

Physical barriers affect pollutant concentrations by increasing turbulence and initial mixing 

of the emitted pollutants (Hölscher et al., 1993). Roadside solid sound walls (SW), also known as 

noise barriers, force pollutants to move up and over the barrier, creating the effect of an elevated 

source and enhancing vertical dispersion of the plume. The dispersion is further enhanced by a 

highly turbulent shear zone characterized by slow velocities and a recirculation cavity created on 

the lee side of the barrier. These effects contribute to a well-mixed zone with lower pollutant 

concentrations downwind behind the barrier (Bowker et al., 2007).   

Vegetation barriers have potential to alter flow as well, but with several differences. 

Vegetation imposes a drag on the air moving through the leaves and branches. This flow 

obstruction causes some air to move up and around the canopy, thus increasing vertical mixing 

and in turn reducing pollution concentrations downwind of the barrier. Vegetation can also remove 

some gaseous pollutants by absorption and particulate matter by deposition (Abhijith et al., 2017 

and references therein). The deposition of the smallest particles is controlled by Brownian 

diffusion, while interception and inertial impaction determine the deposition of larger particles 

(Petroff et al., 2008). On the other hand, the imposed drag on the airflow creates a windbreak effect 

behind the vegetation barrier, characterized by lower wind speeds and lower turbulence in the 

wake of the canopy (Wang et al., 2001). This windbreak effect decreases both dispersion and the 

rate at which traffic-related pollutants can be advectively transported away, potentially increasing 
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the pollutant concentrations downwind of the barrier. 

While general features of pollutant concentrations downwind of barriers are emerging, 

concentrations downwind of specific barriers can vary widely depending on many factors. For 

solid sound walls, the dominant features include the physical characteristics of the barrier such as 

the height, length, distance from road, number of barriers and their orientation with respect to the 

wind (Hagler et al., 2011; Heist et al., 2009), meteorological conditions such as wind speed, wind 

direction and atmospheric stability (Baldauf et al., 2008; Finn et al., 2010), traffic activity such as 

vehicle volume, speed and fleet mix (Baldauf et al., 2008), and configuration of the road such as 

the elevation/depression relative to the terrain (Heist et al., 2009) and surrounding 

structures/vegetation (Bowker et al., 2007). The impact of vegetation barriers on pollution 

dispersion can depend on several additional variables, including density of the vegetation, seasonal 

growth patterns, leaf type (Fujii et al., 2008), leaf area index (LAI)/leaf area density (LAD)/optical 

porosity (Steffens et al., 2012; Ghasemian et al., 2017) and tree canopy type.  

In open street environments, solid sound walls can reduce the UFP concentrations by up to 

about 50% compared to open road values, within 15-50 m on the lee side of a sound wall (Bowker 

et al., 2007; Baldauf et al., 2008; Heist et al., 2009; Ning et al., 2010; Finn et al., 2010). 

Understanding of the effectiveness of combination barriers; sound walls together with vegetation 

barriers, is very limited and studies are few (Bowker et al., 2007; Baldauf et al., 2008). One field 

study has showed that a combination barrier can augment the reduction of pollutant concentration 

compared to sound wall-only values (Baldauf et al., 2008), but the authors acknowledge that the 

proximity of the measurement transects to the edge of the barrier and wind direction dependencies, 

might have influenced this result.  The impact of vegetation barriers alone on pollution dispersion 
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is also an open question; studies of this barrier configuration have produced inconsistent findings. 

While some field work (Hagler et al., 2012; Tong et al., 2015; Morakinyo et al., 2016) showed 

high variability in the effectiveness of vegetation barriers alone, other studies found reduction of 

UFP (Steffens et al., 2012; Al-Dabbous et al., 2014; Lin et al., 2016; Lee et al., 2018 ), PM2.5 (Chen 

et al, 2016), PM10 (Chen et al.,2015), BC (Brantley et al., 2014), CO (Lin et al.,2016) and NO2 

(Fantozzi et al., 2015a) behind vegetation barriers. Furthermore, vegetation varies widely with 

location.  

Here we attempt to develop a better understanding of the effectiveness of vegetation 

usually found in the semi-arid climate of California in reducing the pollution concentrations 

downwind of roads under different meteorological conditions. We present results from an 

extensive field measurement campaign to investigate the pollution reduction efficiency of 

vegetation and sound wall-vegetation combination barriers.  Data from mobile and stationary 

measurements were collected at two sites in California (Santa Monica and Sacramento), each with 

different barrier configurations. Data were collected during daytime at the Sacramento site and in 

the early morning at the Santa Monica site, to examine effect of different meteorological conditions 

on decay profiles.  

3.2 Measurements 

3.2.1 Pollution and meteorological measurements  

Mobile measurements were conducted at two sites in California using the ARB mobile 

monitoring platform (ARB-MMP), an electric sub-SUV fitted with a suite of instruments that 

measure several particulate and gas phase pollutants (Table 4). The ARB-MMP inlet design and 
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calibration procedures are provided elsewhere (Hu et al., 2009; Choi et al., 2012) and thus are 

described only briefly here. For the summer measurement session at the Santa Monica site, a zero-

emission electric vehicle equipped with a DiSCmini (Testo) and a GPS unit (Qstar XT) was used 

as the MMP.  At each site, mobile measurements were performed on two transects with different 

barrier configurations, selected to be as close as possible to perpendicular to a heavily trafficked 

freeway (Figs. 11 and 12). The MMP was driven 12-14 runs (a run is one pass of the MMP along 

the full length of the sampling route) on the downwind side on each transect and at least three runs 

on the upwind side. The downwind runs were conducted in six sets of 4-5 runs, completed by 

alternating between the two transects. After the completion of a set of runs at both downwind 

transects, an upwind run was conducted at both upwind locations. While completing each upwind 

run, the MMP was stopped to collect stationary measurements for 2-5 min at an upwind location 

20-25 m from the edge of the freeway. 

Additionally, we conducted continuous stationary sampling (6-24 hours/day) at an upwind 

and a downwind location on each transect. Stationary monitoring included UFP total particle 

number concentration and size distribution (TSI, SMPS 3080), PM2.5 (TSI, Dustrack 8520) and 

BC mass concentrations (Magee Scientific, AE-33 and AE-42). These measurements are discussed 

in Lee et al. (2018). Wind speed and direction was measured at each site by a sonic anemometer 

(10 Hz CSAT3, Campbell Sci. Inc., 21 Hz WindMaster, Gill Instruments Ltd.) that was installed 

on a rooftop close to measurement transects (indicated in Figs. 11 and 12).  
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Table 4. Monitoring instruments on the mobile monitoring platform 

Instrument Measurement Parameter 
Response timea 

(Inlet to record) 

Data time 

resolution 

TSI Portable CPC, Model 3007 UFP count (0.01-1µm) 4 s 1 s 

Testo DiSCmini 
UFP count (10-700 nm), 

mean size 
2 s 

1 s 

TSI FMPS, Model 3091 UFP size (5.6-560 nm) 9 s 1 s 

TSI OPS, Model 3330b Particle size (0.3-10 µm) 3 s 5 s 

TSI DustTrak, Model 8520c PM2.5mass 5 s 1 s 

Teledyne API Model 300E CO 21 s 1 s 

LI-COR, Model LI-820 CO2 7 s 1 s 

Teledyne-API Model 200E NO, NO2, NOx 22 s 1 s 

Magee Scientific Aethalometer, 

AE-33 and AE-42 

Black Carbon (BC) 25 s 1 s 

Vaisala Sonic Anemometer and 

Temperature/ RH sensor 

Surface winds, temperature, 

relative humidity (RH) 
- 

1 s 

Garmin GPSMAP 76CS and 

Qstar travel recorder XT 
Qstar travel recorder XT - 

1 s 

Eurotherm Chessell Graphic 

DAQ Recorder 
Data-logger - 

1 s 

a Response time is an averaged value for smoke test results (Choi et al., 2013 (S3)) 
b At Santa Monica site only 
c At Sacramento site only 

 

The average heights and optical porosities were estimated for vegetation within ± 100 m 

of the measurement transects at each site (Figs.13-17). Optical porosity of the vegetation is defined 

as the fraction of pore spaces and gaps in the total area of the tree crown profile. High optical 

porosity corresponds to low density vegetation and/or large amounts of gaps between trees. The 

optical porosity of the vegetation barriers was estimated by measuring the optical porosity of each 

tree crown according to a US Forest Service field guide for vegetation characterization (USFS, 

2011).  The effective optical porosity of vegetation at a site was calculated by rescaling the mean 
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optical porosity of the site to maximum height of vegetation at either of sites. Horizontal 

dimensions of the trees and their heights with respect to the highway road surface were measured 

in Google Earth Pro. The vegetation characterization and estimation of the mean optical porosity 

are discussed in detail in section 3.2.2. 

Two measurement sites with different barrier configurations were chosen. At the morning 

site in Santa Monica, CA (34° 1'35.97"N/ 118°27'33.66"W), the I-10 freeway had an east-west 

orientation. In the mornings, the prevailing winds were mostly northerly, and the sound wall of 

interest was on the south side of the freeway. Downwind mobile measurements were conducted 

in the mornings (05:00-07:30) on Dorchester Ave. where a combination (sound wall and 

vegetation) barrier (CB) was present, and on Granville Ave. where a vegetation-only barrier 

(VB) was present (Fig. 11). The transects were approximately 840 m long. Upwind 

measurements were conducted on Dorchester Ave. and Granville Ave., on the north side of the 

freeway.  

Measurements were performed in different seasons, in late summer and early fall 2015 

and winter 2016 (Table 5). Only UFP measurements were collected during the late summer 

session; these were grouped with early fall measurements (summer/fall) because the meteorology 

during both periods was similar. Relative to ground level, the I-10 freeway is elevated by 

approximately 6 m at both sites. The height of the sound wall at the CB is approximately 4 m. 

The vegetation at VB site is considerably denser (lower optical porosity) and somewhat taller 

than the vegetation at the CB site. The mean height and the effective optical porosity of 

vegetation is 8 m and 0.53, 6 m and 0.79 at the VB and CB sites, respectively (Table 7). Except 

for several cypress trees at VB site and a pine at CB site, all species are evergreen broadleaf 

trees, none drop their leaves in winter. 
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The daytime site in Sacramento, CA (38°32'7.41"N / 121°28'21.55" W) was along the 

SR-99 freeway which has a north-south orientation. The daytime prevailing winds were 

westerly/north-westerly on most days, and the barrier of interest was on the east side of the 

freeway. Downwind mobile measurements were conducted in the afternoons (Table 5) on 19th 

Ave. where a sound wall and vegetation combination barrier (CB) was present and on and 9th 

Ave. where a sound wall (SW) was present (Fig. 12). The transects were approximately 540 m 

long. Upwind measurements were conducted on 19th Ave. and 9th Ave., on the west side of the 

freeway. The CA-99 freeway was elevated by approximately 1 m relative to ground level at both 

sites.  

 

 

Fig. 11 The mobile sampling route at the I-10 site in Santa Monica, CA (blue lines). The green 

lines denote the vegetation barriers and the red lines denote the sound walls. Map source: 

Google Earth. 

AM winds 

500 m 

N 
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Table 5. Measurement periods and surface meteorology at the sites 

Date Measurement 

Period 

Mean wind 

speed (m/s) 

Prevailing 

Wind 

directionb 

Perpendicular 

wind percentage 

( %)c 

Parallel wind 

percentage ( %)c 

Santa Monica 

Summer
a
 

     

08/12/15 05:15-07:00 0.44 NNW-NNE 81 14 

08/13/15 05:00-06:45 0.35 NE-N 64 29 

08/26/15 05:25-06:45 0.34 N 56 29 

08/27/15 05:15-07:10 0.23 NNE-NNW 59 21 

08/28/15 05:35-07:15 0.24 NNE-N 64 27 

Santa Monica 

Fall 

     

10/01/15 05:40-07:30 0.33 NE 58 42 

10/02/15 05:50-07:20 0.35 E-ENE 23 52 

10/06/15 05:25-07:15 0.32 NE-ENE 8 75 

10/08/15 05:50-07:40 0.33 N-NE 75 20 

10/09/15 05:00-07:10 0.41 N-NE 59 30 

      

Santa Monica 

Winter 

     

02/22/16 05:11-07:25 0.54 NE 50 44 

02/24/16 04:52-07:12 0.98 NNE 74 26 

02/25/16 05:04-07:47 0.68 NNE 70 30 

03/08/16 05:26-07:35 2.00 NNW - NE 100 0 

03/09/16 05:08-07:07 1.20 NE - N 49 39 

Sacramento      

06/20/16 13:15-16:45 1.40 W 70. 30 

06/21/16 13:45-16:15 1.48 WNW-NW 26 74 

06/22/16 12:22-15:15 1.40 SSW 91 9 

06/27/16 14:15-17:00 1.70 WNW 94 6 

06/28/16 12:45-15:00 1.48 W 45 55 

06/29/16 12:30-15:15 1.42 SW 83 15 

06/30/16 12:45-15:30 1.37 WNW 70 30 

      

      
a only UFP measurements 
b prominent (>20% of the time) wind direction is noted first 
c Mean of percentage of time each transect was under downwind/parallel wind condition (see text for definition) 

during full length of the measurement period 
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Fig. 12 The mobile sampling route at the SR-99 site in Sacramento, CA (blue lines). The green 

lines denote the vegetation barriers and the red lines denote the sound walls. Map source: Google 

Earth. 

The heights of the solid sound walls at the CB and SW sites were approximately 4 m and 

5 m, respectively. The SW site had minimal vegetation in the immediate vicinity of the 

measurement transect, with few isolated tall (~13 m) trees (Table 7). The CB site had a relatively 

dense line of trees, consisting of honey locust and Australian pine, with a mean height of 15 m and 

an effective optical porosity of 0.63 (Table 7). 

3.2.2 Vegetation Characterization and Optical Porosity of Vegetation 

Optical porosity of vegetation is defined as the fraction of pore spaces and gaps in the total 

area of the tree crown profile. High porosity corresponds to low density vegetation and/or large 

PM winds 

750 m 

N 
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amounts of gaps between trees. The height and optical porosity of the vegetation barriers at the 

measurement sites were estimated by Prof. Ulrike Seibt and Dr.Wu Sun as described below.   

The large tree canopies for each highway section was identified from the satellite imagery 

of Google Earth Pro software (Figs. 13 and 14).  Satellite images used dated from 2016.  Each 

highway section investigated spans 100 m-200 m in both directions from each target transect, 

which should cover most contributions from vegetation under both parallel and perpendicular wind 

configurations.  Additionally, locations of the tree canopies were validated against Google Street 

View images seen from the highways and from the local roads.  For the Santa Monica sites, the 

identified tree locations were additionally validated in field visits.  There was no any significant 

misrepresentation of tree objects in Google Earth Pro compared with field observations, indicating 

the reliability of the geo locational data in Google Earth Pro. Horizontal dimensions of the trees 

and their heights with respect to the highway road surface, and distances to the local road section 

where air sampling were conducted, were measured in Google Earth Pro.  The tree heights at the 

Santa Monica sites were validated using trigonometric methods in the field and found that 

measurements from Google Earth Pro were within 10% accuracy compared with field values. 

Optical porosity (also known as foliage transparency in forestry) of the tree crowns were 

measured according to a field guide for vegetation structure measurements by the US Forest 

Service (USFS, 2011).  The tree crown as seen by the observer is compared with the images of 

tree crowns with known density values on a standard Crown Density–Foliage Transparency Card 

to determine the optical porosity.  Measurements of the optical porosity values of the canopies at 

the Santa Monica sites were conducted in the field near the highway sound walls using this USFS 

method (USFS 2011).  For canopies at the Sacramento sites, screenshots were extracted  from the 
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Google Street View at the exact locations on the highway and estimated the optical porosity with 

the same method.  For the Sacramento sites, the Google Street View images were shot in August 

2016, which is close to the time when we did air sampling. 

 

 

Fig. 13 Aerial view and locations of trees at the (a) vegetation barrier (Granville) and (b) 

combination barrier (Dorchester) transects in Santa Monica (Map source: Google Earth). 

(a) 

(b) 
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Fig. 14 Aerial view and locations of trees at the (a) sound wall (9th) and (b) combination barrier 

(19th) transects in Sacramento (Map source: Google Earth) 

 

The average heights and optical porosity was estimated for vegetation within ± 100 m of 

the intersection of each transect and the freeways at the Santa Monica and Sacramento sites (Fig. 

19th Ave. 

(a) 

(b) 
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15 and Fig. 16).  Furthermore, an effective optical porosity was calculated of the comparable 

“scene” for the pairs of transects; this is for a height equal to the tallest tree at either transect. As 

this calculation includes a significant amount of sky, the optical porosity values calculated this 

way are quite high. Additionally, the inclusion of trees up to ± 100 m from the transect impacts 

some of the values; most freeway sections had similar quantities of trees, but the Sacramento 9th 

street site had a large block of trees beginning ~50m from one end of the transect, so for more 

perpendicular winds the effective optical porosity will be higher. In general, it is very difficult to 

link optical porosity directly with tree species, since the leaf area of a tree species is not a consistent 

parameter, but depends on the tree stand age and environmental parameters such as water stress, 

nutrient status, etc.  With this significant caveat in mind, Table 6 shows a qualitative description 

of the optical porosity of several species identifiable at the measurement sites. 
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Fig. 15 Profile view (top panels) and top view (bottom panels) of the tree canopies along (a) 

vegetation barrier (Granville) and (b) combination barrier (Dorchester) transects in 

Sacramento. In the profile view panels, tree columns are color coded by the optical porosity.  

The “average optical porosity” indicates the average at the average height of the tree canopy.  
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Fig. 16 Profile view (top panels) and top view (bottom panels) of the tree canopies along (a) 

sound wall (9th) and (b) combination barrier (19th) transects in Sacramento. In the profile 

view panels, tree columns are color coded by the optical porosity.  The “average optical 

porosity” indicates the average at the average height of the tree canopy.  
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Table 6. Approximate optical porosity for some representative tree species observed at the study 

sites in Southern California 

Tree species Optical porosity* 

Schinus molle high 

Schinus terebinthifolius high 

Chilopsis linearis high 

Jacaranda mimosifolia medium 

Afrocarpus falcatus medium 

Pinus canariensis high 

Eucalyptus polyanthemos medium 

Cupressus sempervirens low 

Fraxinus uhdei medium 

*High (> 60%), medium (30–60%), low (< 30%).  The lower the optical porosity, the denser the 

tree crown. 

 

Average optical porosity for each section was calculated by weighting optical porosity of 

individual canopy by length along the highway direction, and height.  Gaps between tree canopies 

were also accounted for by assigning 100% porosity.  The average optical porosity was calculated 

by following the steps below. 

1.  Calculate the average height of the trees weighted by their widths.  If the height of the tree � is 

ℎ�, the width is ��, and the total length of canopy-covered section is �∗ (excluding gap segments), 

then the average height is 

ℎ� =
∑ ℎ����

�∗
 

Note that gaps between trees are not considered in the above equation. 

2.  Calculate the height-weighted average crown density using the average tree height ℎ� as the 

threshold.  For overlapping trees, crown density (
) in the overlapping cannot exceed one.  The 
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reason to use crown density (1 – optical porosity) for the averaging instead of optical porosity is 

that, the sky portion above a tree canopy will be automatically accounted as having zero density 

this way.  The average crown density of the section is 


̅ =
∑ ℎ��� ⋅ 
��

ℎ��
 

where � is the total length of the section including canopies and gaps (200 m). 

3.  The average optical porosity is then the reverse of the average crown density on a 0 to 1 scale, 

i.e., 


̅ = 1 − 
̅ 

The average heights and porosities for vegetation within ± 100 m of the intersection of each 

transect and the freeways at the Santa Monica and Sacramento sites are listed in Table 7. Fig. 17 

shows the effective optical porosity at each site as a function of height. 

 

Table 7. Average height and average porosity of trees at each location on the primary downwind 

side, and max height of any vegetation at either of each pair of sites, and the corresponding 

optical porosity for the max height. 

Name Mean 

height (m) 

Mean optical 

porosity 

(dimensionless) 

Max 

height (m) 

Mean optical 

porosity rescaled 

to max height 

(dimensionless) 

I-10/Granville Ave. 

(Vegetation only) 

7.7 0.28 11.9 0.53 

I-10/Dorchester Ave. 

(combination barrier) 

5.9 0.57 11.9 0.79 

CA-99/9th Ave. 

(soundwall only; most 

vegetation is 50 – 100 m 

from the center of the 

10.5 0.90 20.1 0.95 
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transect.) 

CA-99/19th Ave. 

(combination barrier) 

14.6 0.49 20.1 0.63 

 

At the Sacramento site, in the immediate vicinity of 9th St. there is minimal vegetation, 

consisting of a few isolated individual tall (~12 m) trees.  As they included in the analysis ± 100 

m of the target transect, the scene does show some dense trees, beginning 50 m from the center of 

the transect.   

 

Fig. 17 Effective optical porosity as a function of height.  The solid lines indicate the heights up 

to the maximum height of any tree in the scene; dotted lines include increasing amounts of 

clear sky.  High porosity corresponds to low tree density and/or gaps between trees.                                                                       
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3.3 Data Analysis Methodology 

3.3.1 Concentration plots 

 Deriving accurate concentration profiles from a series of concentration measurements 

collected on different days and under slightly different conditions requires several steps. Without 

careful consideration, it is easy to over- or under-weigh some points and/or runs, allow 

contamination by high-emitting vehicles on the road where sampling was performed to obscure 

the target source freeway, or include data for runs when the winds were not perpendicular to the 

freeway. Here we describe the approaches used to handle these limitations. Many of the 

approaches used here were developed in Ranasinghe et al. (2016) and Choi et al. (2013) and are 

described only briefly here.  

The multi-step process is as follows. First, data from different instruments on the MMP 

were synchronized to account for the different response times of instruments, using the time-lag 

correlation method described in detail in Choi et al. (2012). Next, the contribution from high-

emitting vehicles (HEV) encountered along the sampling route was removed, by adapting the 

method developed in Choi et al. (2013) to identify HEV-related spikes. This method uses an 

iterative statistical approach to establish a site- and session-specific baseline threshold to 

determine events caused by HEVs, using a specified smoothing time window (60 s) to estimate 

the baseline.  

Close to the freeway, it is more difficult to distinguish the freeway plume from the local 

traffic emissions. To address this, the threshold value was increased for distances close to the 

freeway. Site-specific distance bins and threshold values were chosen based on the location of 

local roads and general traffic volume on those roads during the measurement period. All the 
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sites were selected such that at close proximity to the freeway, the local roads had minimal 

traffic, resulting in minimal HEV related spikes. Therefore, all data collected within the first 40 

m from the edge of the freeway were retained, and short-lived spikes observed in the time series 

were manually removed by identifying HEV related incidents using traffic video from the MMP. 

With increasing distance from the freeway, sites had heavily trafficked arterial road. Hence, the 

thresholds were exponentially increased as follows. At the Santa Monica site, for 40-150 m, 150-

300 m, 300-450 m and > 450 m, the threshold was set to 12, 9, 6 and 3 baseline thresholds, 

respectively. At the Sacramento site, for 40-75 m, 75-120 m, 120-160 m and > 160 m, the 

threshold was 24, 12, 6 and 3 baseline thresholds, respectively. All concentration values above 

the calculated threshold were replaced by the baseline concentration values to obtain the HEV 

spike-removed concentration time series. 

The usage of a site- and session-specific baseline threshold together with distance based 

cutoff threshold successfully removed the short-lived HEV related spikes, while retaining the 

slow varying freeway signal (Fig. 18). The HEV removal calculations were repeated with several 

small increments and decrements to the distance bins and threshold values to investigate the 

sensitivity of the results to the values chosen in the HEV removal process. No changes were 

observable in the results, indicating a low sensitivity.  
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Fig. 18 A HEV spiked removed UFP concentration time series of the Sacramento site.  The 

squares show the raw UFP measurements. Each color represent a bin of distance from the 

freeway;< 40 m (red),  40-75 m (magenta), 75-120 m (blue), 120-160 m (yellow) and > 160 

m (cyan). The squares with black dots show the concentration time series after HEV spike 

removal.   

 

 The effect of barriers on pollution dispersion downwind of freeways has shown to be 

strongly dependent on the wind direction (Finn et al., 2010, Steffens et al., 2012). We used the 

meteorological data collected at an upwind location to partition all concentration data according 

to wind direction. The concentration data were divided into a near-perpendicular data set and a 

near-parallel data set, defined as wind coming from ± 450 from perpendicular or ± 450 from the 

parallel to the freeway, respectively. Next, all the concentration data sets were normalized by the 

freeway traffic flow at each site; this normalization is described below (Section 3.3.2). As the 

concentration measurement at a particular time and distance from the freeway is influenced by 

the emissions and the wind direction from several minutes earlier, we introduced a 10 min lag in 

traffic flow normalization and wind direction selection, based on the average travel time of 

pollutants from source to the transects. At each data point, the average traffic flow and wind 

direction from 10 min earlier was calculated and used for the traffic flow normalization and wind 

filter. 

     raw data 
*  HEV removed data 
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Next, we used the line reference system developed by Ranasinghe et al. (2016) to provide 

a framework to organize the data and produce concentration maps at specific spatial resolutions. 

With this procedure, the GPS data for each run (one pass of the MMP along the sampling route) 

was used to assign each concentration data point to the closest line reference point along a 

particular street. Then for each session, all data values assigned to a reference point were 

averaged, and the standard deviation of the mean calculated.  There is a higher data density at the 

ends of the transects because the MMP was slowed to turn around, and the concentration changes 

most rapidly near the freeway. To exploit this higher data density at the start of the transect, we 

used a 10 m spatial resolution in the first 30 m and 20 m spatial resolution thereafter. The 

number of data points averaged at a line reference point ranged 31 ± 17. For PM2.5 and PM10 

profiles, we used a 40 m spatial resolution because data collected using the OPS (TSI OPS3330) 

had lower time resolution (5 s) (Table 4).  

From day to day, average pollution concentrations vary by a factor of two or more, due to 

meteorological phenomena such as mixing height, turbulence intensity and atmospheric stability. 

These variations in the urban background must be accounted for prior to averaging data from 

different sessions and days to avoid over/under weighting.  

In this study, the upwind background stationary measurements were made at 15 m and 10 

m from the edge of the freeway in Santa Monica and Sacramento, respectively; upwind mobile 

measurements were made at 20-150 m from the edge of the freeway at both sites. However, data 

from these measurements were not used for several reasons; Santa Monica upwind 

measurements were likely too close to freeway; Choi et al. (2012) showed some influence from 

the freeway up to 500 m during early mornings, and both Santa Monica and Sacramento sites 

were influenced by variable winds making the upwind site downwind intermittently. The number 
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of mobile measurement runs conducted on the upwind side of the freeway was limited to two, 

due to the limitations on measurement time and mobile platform mileage. The session mean 

pollution concentration levels of some pollutants on upwind of the freeway are shown below for 

each transect, when winds were perpendicular to the freeway (Fig. 19). The measurements that 

were made approximately 15-80 m from edge of the road was extracted.  

 

 

Fig. 19 The upwind (a) number concentration and (b) mean size of UFP along the two transects 

at the I-10 Santa Monica site, under perpendicular wind conditions for fall 2015 and winter 

2016 measurement session. The session mean concentration is plotted together with the 

standard deviation.  

 

(b) 

(a) 
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The upwind site characteristics were different for the two transects. In Santa Monica, the 

Dorchester street upwind site was situated in a low trafficked residential area while the 

Grandville street upwind site was downwind of busy arterial road. However, on most days the 

mean concentration levels at upwind sites were similar, whenever sufficiently large data sets 

were available for both sites (Fig. 19). 

To account for the daily variations in the urban background, we normalized the 

concentration profiles by the daily maximum concentration. The daily maximum concentration 

of transects was obtained from daily average concentration profiles made from HEV-removed, 

wind filtered data averaged at line reference points. Then the daily average concentration profiles 

of both transects were normalized by dividing all values by the daily maximum concentration.  

Each day had a different number of data points corresponding to the percentage of time 

each transect was downwind and had near-perpendicular winds during the measurement period. 

Moreover, consistent winds give higher quality data with a clearer freeway plume decay pattern. 

Therefore, we used a weighting factor based on the mean percentage of time transects were 

downwind on each day. If the mean percentage of time the transects was downwind was below 

25%, that day was not included in the averaging. Then the weighted, normalized concentrations 

were averaged over all days of a session to obtain the general concentration dispersion pattern. 

The weighted variance over all days of a session was used to calculate the standard error of the 

mean.  

 

3.3.2 Traffic flow variations 

To correct for time and day-dependent variations in traffic, 5 min resolution traffic data 

was retrieved from the Caltrans Performance Measurement System (PeMS). We chose the 
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closest main-line sensor on the freeway for each measurement transect and each traffic flow 

direction, provided that the sensor had > 99% observation rate. The exception was one sensor at 

the Sacramento site which had a 75% observation rate; there were no better alternatives for this 

site. All main-line traffic sensors were within 2 km of the transects. When there were on/off-

ramps between a selected main-line sensor and the target measurement transect, either measured 

or historic traffic flow rates from on-ramp/off-ramp sensors were used to estimate  the traffic 

flow at each transect. Traffic data had 5-min time resolution. 

Figs. 20 and 21 show the 30 min means of the traffic flow in both directions at each 

measurement transect, together with the standard deviations of the means. The day-to-day 

variation in the traffic flows in Santa Monica was small, but slightly different at the two 

transects; the freeway traffic flow near Granville Ave. was 2.5% and 4.9% higher than the 

freeway traffic flow near Dorchester Ave. in the fall and winter seasons, respectively. The 

Sacramento daytime freeway traffic flow varied widely from day to day, and traffic flow near 

19th Ave. was 4% higher than the traffic flow near 9th Ave. 
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Fig. 20 The diurnal traffic flow variation on I-10 at Santa Monica site, during (a) summer, (b) 

fall and (c) winter measurement sessions. The 30 min mean of the traffic flow in both 

directions at each measurement transect (color symbols) and the standard deviation of the 

mean. Different symbols indicate different measurement days.  

 

Fig. 21 The diurnal traffic flow variation on SR 99 at Sacramento site. (a) The 30 min mean of 

the traffic flow in both directions at each measurement transect (color symbols) and the 

standard deviation of the mean. Different symbols indicate different measurement days. (b) 

(a) 

(c) 

Dorchester Ave. 

Granville Ave. 

(b) 

(a) (b) 
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The 30 min mean of the traffic flow in both directions, averaged of all measurement days, 

and the standard deviation of the mean. 

 

3.4 Results and Discussion 

3.4.1 Combination barrier vs. vegetation barrier  

Fig. 22 shows the traffic-normalized ultrafine particle number concentration [UFP] 

average decay profile under perpendicular wind conditions, for early morning stable atmospheric 

conditions at the Santa Monica site. In agreement with the earlier studies (Hu et al., 2009; Choi 

et al., 2012; Choi et al., 2014), the [UFP] gradually decreases throughout the full length of the 

transect (840 m) in both sessions.  

The [UFP] reduction behind the barriers showed different trends in the summer/fall and 

winter measurement sessions. Under perpendicular wind conditions, in the summer/fall session, 

the vegetation-only barrier was more effective in reducing downwind [UFP] than the 

combination barrier (Fig. 22a), while in the winter session, the combination barrier was more 

effective than the vegetation-only barrier (Fig. 22b). In the summer/fall season, the traffic-

normalized [UFP] downwind of the vegetation-only barrier during perpendicular winds was 32% 

lower than the combination barrier (Fig. 22a), averaged over the entire transect (800 m). 

Averaged over the first 160 m (~ 525 ft.), this difference was 37%. For the winter season, the 

traffic-normalized [UFP] downwind of the combination barrier during perpendicular winds was 

6% lower than the vegetation-only barrier (Fig. 22b) averaged over the entire transect. Averaged 

over the first 160 m from the edge of the freeway, this difference was 16%.  
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Fig. 22 The normalized (a, b) UFP number concentration and (c) PM2.5, (d) PM10 mass 

concentration along the two transects at the I-10 Santa Monica site under perpendicular wind 

conditions for (a) summer-fall 2015 and (b, c, d) Winter 2016 measurement sessions. The 

traffic-normalized concentration averaged over (a) 8 and (b, c, d) 5 sessions (lines) is plotted 

together with the standard error of the mean (shaded areas).  

 

The surface meteorology in summer/fall vs. winter sessions was different in several 

respects that likely contributed to the observed differences in pollution plume decay downwind 

of the freeway.  The average wind speed in the summer/fall session was 0.3 ± 0.1 m/s, while in 

the winter session it was 1.1 ± 0.6 m/s; an investigation of the wind speed dependence of the 

pollution reduction is presented in section 3.4.3. Also, the wind direction was more variable in 

the summer/fall session than in winter; the average percent time transects were downwind of the 

freeway (as defined in section 3.3.1)  was 55 ± 22% in the summer/fall session and 69 ± 21% in 

(a) (b) 

(c) (d) 
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the winter session. When variable winds cause intermittent switching of the side that is 

downwind, the (mostly) upwind pollution levels tend to increase and (mostly) downwind 

pollutions levels tend to decrease, affecting the downwind concentration decay profile.    

The pollution profiles are less influenced by the freeway pollution plume under 

parallel/near-parallel wind conditions and likely to be more influenced by local sources. The 

benefit of barriers seem very limited under parallel wind conditions in the morning stable 

atmosphere. Fig. 23 shows the average traffic-normalized [UFP] decay profiles under parallel 

wind conditions at the Santa Monica site. Compared to the perpendicular wind case, [UFP] decay 

profiles under parallel wind conditions showed only small reductions along each transect. After a 

limited initial decay behind the vegetation barrier, there was no significant difference in the 

concentrations behind the different barriers. The initial [UFP] reduction behind the combination 

barrier was 19, 7%, averaged over the first 80, 60 m from the edge of the freeway, in fall and 

winter, respectively.  

PM2.5 and PM10 mass concentration ([PM2.5] and [PM10]) data were not available for the 

fall season, due to instrument malfunction. In winter, under perpendicular wind conditions, the 

traffic normalized downwind [PM2.5] (Fig. 22c) and [PM10] (Fig. 22d) showed a small and in 

appearance gradual decay with increasing distance, in the first 200 m from the freeway and the 

particle concentrations behind the combination barrier was lower compared to the vegetation-

only barrier. This gradual decay is due to the fact that freeway is a weak source of these 

pollutants, compared to their background levels (Karner et al., 2010; Choi et al., 2014). The 

concentration difference that extends along the full length of the transect indicates the likely 

contribution from an additional area-wide source of PM2.5 and PM10. However, the barrier effect 

on PM2.5 and PM10 concentrations is similar to that on UFP; the combination barrier was more 
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effective in reducing fine/coarse particulate matter than the vegetation-only barrier under winter 

meteorological conditions.  

 

 

Fig. 23 The normalized UFP number concentration along the two transects at the I-10 Santa 

Monica site, under parallel wind conditions for (a) summer-fall 2015 and (b) winter2016 

measurement sessions. The traffic-normalized concentration averaged over (a) 6, (b) 4 

sessions (color plots) is plotted together with the standard error of the mean (shaded area).  

 

Continuous stationary measurements of particulate matter conducted at a site in Encino, 

CA, a site with a similar barrier configuration (CB and VB); found the same pattern of pollution 

reduction (Lee et al., 2018). For both [UFP] and [PM2.5], a combination barrier was more 

effective reducing downwind pollution concentrations under perpendicular wind conditions. The 

analysis did not distinguish between day and nighttime data. Under perpendicular winds, the 

(a) 

(b) 
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average wind speed was 1.1 ± 0.75 m/s. This indicates that regardless of the atmospheric stability 

and different site/barrier characteristics, under moderate wind speeds, combination barriers are 

more effective in reducing downwind UFP and PM2.5 concentrations, than a vegetation barrier 

alone. 

Decay trends of several gas phase pollutants were generally similar to particulate matter 

pollutants trends. Fig. 24 shows the average traffic-normalized concentration profiles of NO 

(Fig. 24a, b), NO2 (Fig. 24c, d) and CO (Fig. 24e, f) under perpendicular winds. For all three gas 

phase pollutants, the reduction downwind of the combination barrier was smaller than the 

vegetation-only barrier in the fall season (Fig. 24a, c and e); and larger than the vegetation-only 

barrier in winter (Fig. 24b, d and f). In the fall, under low wind speeds, a gradual decay was 

observed along the entire transect. In the winter, under higher wind speeds, a relatively steeper 

decay was observed in the first 100 m from the freeway, followed by a gradual decay along the 

rest of the transect.  
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Fig. 24 The normalized (a, b) NO, (c, d) NOx and (e, f) CO concentration along the two transects 

the I-10 Santa Monica site, under downwind conditions for (a, c, e) Fall 2015 and (b, d, f) 

Winter 2016 measurement sessions. The traffic-normalized concentration averaged over (a, 

c, e) 2 and (b, d, f) 5 sessions (lines) is plotted together with the standard error of the mean 

(shaded areas). 
 

3.4.2 Combination barrier vs. Sound wall 

Under daytime unstable atmospheric conditions, elevated pollution levels near freeways 

decay rapidly (Karner et al., 2010 and references there in). Fig. 25 shows the traffic-normalized 

(a) (b) 

(c) (d) 

(e) (f) 



65 

 

[UFP] and [PM2.5] average decay profiles under downwind conditions, in the daytime unstable 

atmosphere at the Sacramento site. The [UFP] shows a steep decay up to about 160 m from the 

freeway (Fig. 25a). This is in agreement with numerous studies that have shown near-road [UFP] 

rapidly returning to background levels within 210-570 m from the freeway (Karner et al., 2010).  

 

Fig. 25 The normalized (a) UFP number concentration and (b) PM2.5 mass concentration along 

the two transects at the SR-99 Sacramento site, under perpendicular wind conditions. The 

traffic-normalized concentration from the summer 2016 measurement session averaged over 

(a) 5 (b) 6 sessions (color plots) is plotted together with the standard error of the mean 

(shaded area) 

 

Under perpendicular winds, the combination barrier was more effective in reducing 

downwind [UFP] than the sound wall alone (Fig. 25a).  The traffic-normalized [UFP] downwind 

(a) 

(b) 
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of the combination barrier was 11% lower than the sound wall only transect, averaged over the 

first 160 m (~ 525 ft.) from the edge of the freeway. The vegetation at the Sacramento 

combination barrier site had a mean height of 15 m and an optical porosity of 0.6; making the 

effective height of the combination barrier significantly higher than the height of the sound wall 

at the other transect (~ 5 m). The observed lower pollution concentration behind the combination 

barrier site, under downwind conditions can be attributed to the increased vertical mixing caused 

by the tall combination barrier. The pollution reduction difference between barriers was small, 

but might have been larger had the sound wall at the combination barrier not have been ~1 m 

shorter than that at the sound wall-only site. This result is in agreement with stationary UFP 

measurements at this site (Lee et al., 2018) and a previously reported field study that found 

higher reduction of particulate matter concentration behind a sound wall with surrounding 

mature vegetation compared to a sound wall only site (Baldauf et al., 2008). 

This pollution reduction pattern found here is similar to that of the winter session at the 

Santa Monica site and stationary measurements a site in Encino, CA (Lee et al., 2018), where the 

combination barriers were more effective than a vegetation barrier alone. Even though 

measurements at these three sites were conducted under very different atmospheric stability 

conditions, the average wind speeds were comparable.  The average wind speeds of Santa 

Monica (winter session), Encino and Sacramento measurement sessions were 1.1 ± 0.6 m/s, 1.1 

± 0.75 m/s and 1.5± 0.1 m/s, respectively. This indicates that regardless of the atmospheric 

stability and different site/barrier characteristic, under moderate wind speeds, combination 

barriers are found to be more effective in reducing [UFP] than a sound wall or vegetation barrier 

alone. The wind speed dependence of the pollution reduction is discussed further in section 3.4.3. 
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It is important to note that this result is likely limited to vegetation and combination barriers with 

vegetation densities comparable to the values reported here. 

Under parallel wind conditions, there was no elevation of [UFP] close to the freeway and 

concentrations mostly remain constant throughout the transects, indicating the low influence of the 

freeway pollution plume (Fig. 26). When averaged over the entire transect, the [UFP] at the sound 

wall only transect was 14.7% lower than the combination barrier transect. This difference in 

concentrations could be due the local sources. Similar to the stable-atmosphere case, there seem 

to be no clear benefit of barriers under parallel wind conditions in daytime atmospheric conditions. 

 

Fig. 26 The normalized UFP number concentration along the two transects at the SR-99 

Sacramento site, under parallel wind conditions. The traffic-normalized concentration 

averaged over 4 sessions (color plots) is plotted together with the standard error of the mean 

(shaded area) 

 

For [PM2.5] (Fig. 25b) the initial decay was very small behind both barriers and there 

were no differences in pollution concentrations. This may be because [PM2.5] near a freeway is 

only slightly elevated above background, and small concentration differences can be quickly 

eliminated in rapidly mixing daytime unstable atmosphere.  
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Profiles for NOx species generally did show significant differences, consistent with fact 

that freeways typically have higher NOx concentrations compared to the background, and thus 

have a clearer signal. Fig. 27 shows the overall average traffic-normalized NO, NO2 and CO2 

concentration profiles at the Sacramento site for downwind conditions. The decay trend of the 

NO and NO2 was similar to the trend shown by UFP; concentrations behind the combination 

barrier were lower than behind the sound wall. On both transects, NO and NO2 decayed rapidly 

within 20-60 m from the freeway, followed by a slower decay up to 250 m. No decay was 

observed for CO2 and the differences in pollution concentrations on the two transects was less 

than 1%. This is in agreement with previous studies that found CO2 is not significantly elevated 

near roads under well-mixed atmospheric conditions (Durant et al., 2010). 
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Fig. 27 The normalized (a) NO, (b) NOx and (c) CO2 concentration along the two transects at the 

SR-99 Sacramento site, under downwind conditions. The traffic-normalized concentration 

from the summer 2016 measurement session is averaged over 5 sessions (color plots) is 

plotted together with the standard error of the mean (shaded area). 

(a) 

(b) 

(c) 
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3.4.3 Wind speed dependence of [UFP] pollution reduction 

The pollution reduction behind vegetation barriers is attributed to the increasing vertical 

mixing, and removal of some pollutants via uptake and deposition. The windbreak effect due to 

the drag imposed on air moving through the porous vegetation barriers has the potential to 

increase pollution concentrations downwind. Since the porosity, drag force (Kent et al., 2017 and 

references therein) and particle deposition (Lin and Khlystov, 2012) are wind speed dependent, 

the pollution concentration reduction by vegetation barriers is expected to be particle size and 

wind speed dependent. The three measurement sessions at the Santa Monica site had wind 

speeds ranging from 0.2 to 2.0 m/s, sufficient variation to investigate the wind speed dependence 

of [UFP] reduction behind the vegetation vs. combination barrier.  The range of wind speeds for 

Sacramento was lower, 1.4 to 1.7 m/s. The relative [UFP] reduction percentage of a combination 

barrier, in comparison with the vegetation-only barrier (Santa Monica) or a sound wall 

(Sacramento), was calculated as follows: 

For Santa Monica:  ( )   100%
max ,

VEG CB
Relative reduction

VEG CB

−= ×              (Eq. 5) 

For Sacramento:  ( )   100%
max ,

SW CB
Relative reduction

SW CB

−= ×              (Eq. 6) 

 

Where, CB is the [UFP] behind the combination barrier, VEG is the [UFP] behind the 

vegetation-only barrier and SW is the [UFP] behind the sound wall. The relative reduction was 

averaged over the first 160 m from the edge of the freeway and was plotted against wind speed 

averaged over each measurement day (Fig. 28a and b).   
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Fig. 28 The relative [UFP] reduction by a combination barrier, under downwind conditions, 

averaged over the first 160 m from the edge of the freeway for Santa Monica: VEG-CB/VEG 

(a, c) and Sacramento: SW-CB/SW (b, d) as a function of the wind speed (a, b) and Monin-

Obukov length (c, d). Session mean of meteorological parameters are plotted together with 

the standard error. 

 

Fig. 28a and b shows that the relative reduction in [UFP] is strongly dependent on wind 

speed. At the Santa Monica site, the vegetation-only barrier is more effective in reducing [UFP] 

than the combination barrier at very low wind speeds (< 0.6 m/s), indicated by negative relative 

reduction values, and less effective than the combination barrier at higher wind speeds. Higher 

wind speeds can increase vegetation porosity, lowering drag force within the vegetation canopy 

and vertical dispersion, but the difference in vegetation porosity and drag force over the observed 

(a) (b) 

(d) (c) 
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wind speed range is expected be small (Kent et al., 2017). At higher wind speeds the residence 

time of air mass inside the canopy decreases, resulting in lower molecular diffusion rates and in 

turn decreasing absorption/depositional removal of pollutants. This dynamic depositional 

removal efficiency of particles could be the main contributor to the observed wind dependence of 

the relative reduction. The depositional removal of UFP by vegetation is discussed further in 

section 3.4.4.   

This wind speed dependence of the effectiveness of vegetation barriers in removing UFP 

is in agreement with a previously reported that used a comprehensive turbulent aerosol dynamics 

gas chemistry (CTAG) model for vegetation barriers (Steffens et al., 2012) and a wind tunnel 

that used vegetation branches (Lin and Khlystov, 2012). Lin and Khlystov (2012) reported that 

the UFP removal efficiency decreased with increasing particle size, increasing wind speed and 

decreasing packing density (volume fraction occupied by the branches). The sensitivity of 

removal efficiency to wind speed reported by Steffens et al. (2012) for small particle sizes (< 50 

nm) was similar to that found in Lin and Khlystov (2012), but the results diverged for larger 

particle sizes. Steffens et al. (2012) reported that for particles larger than 50 nm, the UFP 

removal efficiency increased with increasing wind speed. 

This wind dependence can explain the different pollution reduction trends observed at the 

Santa Monica site in the two different seasons. As above, most of the vegetation at this site 

consisted of broadleaf trees that maintain their leaf density year around. However, wind speeds 

differed between the two seasons; all measurement days in the summer/fall session had wind 

speeds below 0.6 m/s, and 4 out 5 measurement days in the winter session had wind speeds 

higher than 0.6 m/s (Fig. 28a).  
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At the Sacramento site, the small number of measurement days and low variability in 

wind speed makes it difficult to identify a clear trend. Nevertheless, the relative reduction 

showed a dependence on wind speed (Fig. 28b). At this site, the combination barrier was more 

effective than the sound wall at wind speeds below 1.5 m/s. The reduction difference between 

the two barriers seem to decrease at higher wind speeds. Both mobile and stationary data (Lee et 

al., 2018) from this site indicate that above some threshold value of wind speed (1.5-2 m/s), the 

sound wall alone could be more effective than a combination barrier. At high wind speeds, while 

the effectiveness of the mechanisms that reduce pollution concentrations behind vegetation 

barriers (enhanced vertical mixing and deposition) is reduced, the windbreak effect could be 

inhibiting free horizontal dispersion of pollutants and resulting in higher concentrations behind 

the combination barrier compared to the sound wall-only site. Overall, the variations in the 

relative reduction was smaller for the combination barrier vs. sound wall (Sacramento) than for 

the combination barrier vs. vegetation-only barrier (Santa Monica) comparison (Fig. 28). 

An investigation of the relation between an atmospheric stability (Monin-Obukov length, 

L) and the relative reduction in [UFP] is presented in Fig. 28c and d. At the Santa Monica site, 

although all measurement days had very stable atmospheric conditions (small positive L), L was 

somewhat variable.  However, no clear relation was found between the relative reduction and L. 

At the Sacramento site, all measurement days had moderately unstable conditions (small 

negative L) and low variability. However, relative reduction generally decreased with increasing 

L with one exception; the least unstable day that showed higher concentrations behind the 

combination barrier relative to the sound wall only site. In conclusion, relative reduction has a 

clearer relation to wind speed than to the atmospheric stability parameter L.  
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The wind speed dependence of the relative reduction of many pollutants such at PM2.5, 

NO, NO2 was generally similar to that of UFP, while some pollutants such as PM10, CO showed 

different patterns (Figs. 29 and 30).  

  

Fig. 29 The relative reduction of (a) PM2.5, (b) PM10 (c) NO and (d) CO concentrations by a 

combination barrier, under downwind conditions, averaged over the first 160 m from the 

edge of the freeway for Santa Monica site, as a function of the wind speed. Session mean of 

wind speeds are plotted together with the standard error.  
 

 

 

(a) (b) 

(c) (d) 

(a) (b) 
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Fig. 30 The relative reduction of (a) NO and (b) NO2 concentrations by a combination barrier, 

under downwind conditions, averaged over the first 160 m from the edge of the freeway for 

Sacramento site, as a function of the wind speed. Session mean of wind speeds are plotted 

together with the standard error.  
 

3.4.4 Removal of Ultrafine particles by deposition  

 

 Roadside vegetation barriers force one part of the freeway plume to move up and over the 

barrier, while one part flow through the porous barrier. A fraction of the particles in the flow 

through the vegetation barrier is removed by deposition. The contribution of depositional 

removal to the particle reduction by vegetation barriers near roadways is a complex function of 

the characteristics of the vegetation barrier, particles and meteorological parameters. The particle 

size dependency of deposition could provide insights to the importance of depositional removal 

in reducing particle concentration downwind of vegetation barriers. 

Fig. 31 shows the mean size of UFP downwind of the vegetation-only barrier and 

combination barrier at the Santa Monica site, in two different seasons. Even though the pollution 

reduction patterns behind barriers showed a seasonal difference (Fig. 22a and b), the mean size 

of UFP was larger downwind of the vegetation-only barrier in both seasons. In the first 160m 

from the barrier, the mean size of UFP was 9% and 5% larger in summer-fall and winter seasons, 

respectively. This could indicate the contribution of size dependent depositional removal to 

particle reduction from vegetation barriers. 
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Fig. 31 The mean diameter of UFP downwind of the barriers at Santa Monica in the (a) summer-

fall and (b) winter seasons, under downwind conditions. 

 

 The increase in vertical mixing created by a solid barrier is larger than that of a 

vegetation barrier. The background air that is mixed with the freeway plume generally would 

have larger particles due to atmospheric ageing, in comparison to the freeway plume coming 

from the source. Therefore, the barrier that creates more vertical mixing would contribute to 

increase the size of the particles downwind of that barrier. Therefore, when only dispersion is 

considered, we expect to see larger particle sizes downwind of a solid barrier/combination barrier 

in comparison to a vegetation barrier. The observed opposite trend in particle size highlights the 

(a) 

(b) 
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contribution of depositional removal in reducing UFP downwind of vegetation barriers, under 

low/moderate wind speeds and stable atmospheric conditions.  

For UFP, diffusion is the dominant mechanism of deposition and the smaller particles 

with higher deposition velocities are more efficiently removed (Fujii et al., 2008, Lin & 

Khlystov, 2012). The dispositional removal of particles will contribute to make the mean size of 

the particles downwind of a vegetation barrier larger. The seasonal difference in the mean size of 

particles can further indicate the contribution of deposition. The difference in the particle size 

downwind of the two barriers is much larger in the summer-fall season that had lower average 

wind speeds (0.3 ± 0.1 m/s) than in the winter season that had higher average wind speeds (1.1 ± 

0.6 m/s). The depositional removal of particles is more efficient in lower wind speeds (Fujii et 

al., 2008, Lin & Khlystov, 2012); so the smaller particles can be more efficiently removed by 

deposition at lower wind speeds. 

The windbreak effect of vegetation barriers reduce the flow velocity and inside and 

downwind of the canopy. This increases residence time particles in the flow through the 

vegetation barrier, allowing more time for coagulation, and that would contribute to increase the 

mean size of the particles downwind. However, the timescale for deposition is approximately an 

order of magnitude larger than for coagulation, and therefore coagulation is estimated to be not 

an important process in the neighborhood scale (Kumar et al., 2011 and references therein). 

 



78 

 

4. Modeling pollution dispersion in near-road environments 

4.1 Introduction 

Modeling pollutant transport in complex urban areas is a useful tool, but it has many 

challenges. Dispersion models with a wide range of turbulence characterization complexities 

have been employed to quantify and predict pollution concentrations, with varying success. They 

can be loosely categorized into parameterized dispersion models, semi-empirical operational 

models, chemistry-transport models and computational fluid dynamics models (CFD) (Reynolds 

averaged Navir Stokes (RANS) /Large-Eddy Simulations (LES)).  

Two types of widely used models at the opposite ends of complexity are dispersion and 

computational fluid dynamics (CFD) models. Dispersion models require parameterization of 

dispersion coefficients, which are determined by several meteorological factors. However, the 

detailed turbulence information is affected by surrounding built-environments and quantified 

relationships between them are unresolved in dispersion models. Nonetheless, dispersion models 

are cost-effective in computing power and time. On the other hand, CFD models explicitly solve 

the flow fields through complex built environments by explicitly solving the Reynolds-averaged 

Navier-Stokes equations. When coupled to a mass transport model they can produce 

concentration fields of interest. Despite their explicit solutions, CFD models are intensive 

consumers of computational power and time. The high costs limit the amount of different 

building morphologies, meteorological and traffic variations that can be tested, making them 

difficult to use with a large data set with multiple variables.  

 A modeling environment that can be effectively used with a large data set with multiple 

sites and multiple variables is a modified dispersion model referred to as the "Quick Urban & 
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Industrial Complex" (QUIC) (Brown et al., 2010). QUIC is an empirically based, fast-response 

model with computing time of minutes to hours. It achieves this computational efficiency by 

parameterizing the flow field around obstacles rather than directly solving the governing 

momentum equations. Unlike conventional dispersion models, QUIC can incorporate specific 

building geometries to account for the effects of the built environment on dispersion patterns, 

include vegetative canopies and moving point sources, all of which improve the capability of 

determining the influence of the many factors controlling block and sub-block level variations in 

air pollutant concentrations in urban environments. Furthermore, the QUIC model has multiple 

particle size handling and indoor infiltration and population exposure calculations, making it a 

potentially useful tool in urban air quality studies. Despite the promising capabilities of the 

QUIC model in investigating the traffic related pollution dispersion in urban environments, it had 

only been used few times in conjunction with field measurements (Zwack et al., 2011; Fernando 

et al., 2010; Bowker et al., 2007). In each of these instances good agreement was found between 

the model outputs and field observations and QUIC was found to capture the modification of 

flow around obstacles well. 

 QUIC consists of two main model components; a wind solver (QUIC-URB) and a 

dispersion model (QUIC-PLUME). QUIC-URB is a mass-conserving, empirically based 

diagnostic three-dimensional wind-field model that simulates fine-scale wind field around 

obstacles (Röckle scheme) (Pardyjak & Brown, 2007). The flow field within the entire domain is 

initialized using a logrithmic velocity profile. Based on an incident flow and empirical 

parameterization of flow effects around objects, an initial uniform wind field is prescribed. This 

initial wind field is specified as a unidirectional reverse flow. After the initial wind field is forced 

to be mass consistent, recirculation flows develop in areas where separation and/or low-pressure 
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regions occur and the analyzed wind field is obtained. These reverse flow regions act as a "fix" 

for a mass consistent flow model that does not include the momentum equations.  

QUIC-PLUME is a Lagrangian random walk model. The mean wind fields calculated by 

the wind solver are linked to this to produces the turbulent dispersion of pollutants using 

additional drift terms computed. The normal and shear stresses and turbulent dissipation is 

determined based on similarity theory, gradient transport and a non-local mixing formulation that 

approximate the turbulent mixing in building cavities and street canyons (Brown et al., 2010). 

Usage of several line sources to simulate the tail-pipe release of the traffic, accounts for the 

vehicle-induced turbulence. 

 

4.2 Model setup 

 The QUIC (version 4.3, Los Alamos National Laboratory/University of Utah) 

simulations were conducted for two sites near I-10 Santa Monica, where field measurements of 

pollutant concentrations and surface meteorology data were available for two seasons (described 

in section 3.2.1). Each site was simulated separately with a model domain of 700 m in the along-

wind direction, 1200 m in the crosswind direction and 50 m in height. The model resolution was 

set to 2 m×2 m×0.5 m. The model domain consisted of one city block of buildings and barriers 

on the upwind side of the freeway and several city blocks on the downwind side. Buildings and 

solid barriers were represented using solid, non-permeable blocks. The specific shapes of the 

building were extracted using GIS shape files (ArcMap 10.5). The locations and dimensions of 

all barriers were extracted from Google earth imagery.  

Vegetation barriers were represented using permeable blocks with a specified attenuation 

coefficient. The only vegetation canopy characteristic available from field measurement was the 
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optical porosity. In both sites in Santa Monica, the vegetation barriers had moderate optical 

porosities. Due the complex nature of vegetation canopies, there was no direct method available 

to convert optical porosity values to attenuation coefficients. The attenuation coefficients of 

vegetation is species dependent and are estimated to be ~1 for coniferous canopies (Cionco, 

1978). For the Granville site that had a vegetation-only barrier, several simulation were 

conducted with different attenuation coefficients. The concentration profiles downwind of the 

barrier showed low sensitivity to changes in the attenuation coefficient with increasing distance 

from the barrier (Fig. 32). We choose a constant attenuation coefficient of 1 for all vegetation 

barriers, in all barrier inter-comparison tests. 

 

 

Fig. 32 QUIC model simulated particle concentrations downwind of a vegetation-only barrier, 

for different attenuation coefficients (a) of the vegetation. The wind speed at the reference height 

is 1.1 m/s and wind direction is perpendicular to the barrier. The mean concentration (symbol) is 

plotted together with the standard error (whiskers). The model run with no barriers (NB) is also 

shown. 
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 Many of the QUIC-URB simulation inputs were derived from the meteorological data 

gathered at the field measurement sites. Session mean values of wind speed (0.35 m/s and 1.1 

m/s at a 5.7 m reference height) and Monin-Obukov length (13.3 m) were used. The input wind 

direction was kept exactly perpendicular to the freeway. The model domains consisted of low 

built areas with mostly 1-2 story houses with heights around 5 m. Therefore, the roughness 

length was set to ~10 % of the urban canopy height, at 0.5 m. 

 Representing the tail-pipe emissions from traffic flow, two line sources that were parallel 

to the barriers continuously released particles at a height of 1 m. There was no deposition model 

available for vegetation barriers. Therefore, particles undergo diffusion and dispersion based on 

the velocity fields calculated by QUIC-URB.  The model was run for 600 s to reach equilibrium 

state before collecting particle to produce time average concentrations. The total run time of the 

model was 3000 s and concentration at each grid point was calculated every 1200 s. 

 

4.3 Results and discussion 

The QUIC simulated concentration fields for the two sites (Fig. 33) showed complex 

spatial gradients in both along-wind and cross-wind directions, due to the influence of the 

barriers and surrounding buildings on the surface level winds. The cross-wind concentration 

gradients show that the pollution concentration at a particular downwind distance along a field 

measurement transect (dash lines in Fig. 33) may be not representative of the pollution exposure 

at a particular house, at the same downwind distance. This highlights the importance of cross-

wind field measurements for accurate assessments of concentration gradients, and shows the 

potential of built-environment resolved model simulations to improve exposure assessments in 

near-road communities. 
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Fig. 33 The QUIC simulated particle concentrations for (a) vegetation-only barrier and (b) 

combination barrier sites near I-10 Santa Monica. The wind direction is perpendicular to the 

road and the wind speed at the reference height is 0.7 m/s. Horizontal concentration field at 1.5 

m height is shown. Dash lines note the field measurement transects. 

 

Along the two transects of interest, model output concentrations were averaged over a 

distance of 10 m crosswind, starting at 25 m downwind from the edge of the road. The 

concentration profiles at a 1.5 m height were used, corresponding to the height of the sample 

inlet for mobile measurements.  The normalized particle concentration profiles for each transect 

is plotted together with the downwind distance from the road (Fig. 34). The QUIC simulated 

concentration profiles showed different reduction patterns downwind of different barriers. The 

concentration reduction behind the combination barrier was higher compared to the vegetation 

barrier for all wind speeds tested. This is in agreement with the field measurements at these sites 

(a) (b) 
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under moderate wind speeds, but not for low wind speeds (Fig. 22). The concentration difference 

between the sites generally reduced with increasing distance from the road, but this convergence 

was more pronounced at higher wind speeds. Under lower wind speeds, the pollution decay 

curves remained nearly parallel at 250 m away from the road. This is in agreement with the 

reduction pattern observed from field measurements at these sites (Fig. 22).  

 

  

Fig. 34 The normalized particle concentration along two transects (VB: Vegetation-only barrier, 

CB: Combination barrier) at the I-10 Santa Monica site, under perpendicular wind conditions, 

from two different QUIC simulations. The wind speed at reference height is (a) 0.3 m/s and (b) 

1.1 m/s. The mean concentration (symbol) is plotted together with the standard error (whiskers). 

(a) 

(b) 
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The relative concentration reduction percentage of a combination barrier, in comparison 

with the vegetation barrier was calculated using Eq. 5. Averaged over the first 160 m from the 

edge of the freeway, relative reduction percentages for QUIC simulated concentrations were, in 

general, higher than the relative reduction observed for field measurements.  

Model simulations were conducted with different input wind speeds to probe the wind 

dependence of the relative concentration reduction percentage (Fig. 35). The simulated 

concentration field behind the barriers was not able to reproduce the observed wind dependence. 

The model does not include several mechanisms such as deposition and coagulation, by which 

UFP particles can be removed, especially by vegetation barriers. Therefore, the complex 

variations in particle deposition efficiencies at different wind speeds and for different particle 

sizes are not represented in the model. This could have contributed to the difference in wind 

speed dependence of the relative reductions calculated from field measurements and model 

results.  

 

Fig. 35 The relative particle concentration reduction percentage (VEG-CB/VEG) as a function of 

the wind speed, under downwind conditions, averaged over the first 160 m from the edge of 

the freeway, from QUIC simulations for two sites near I-10 Santa Monica. Mean relative 

reduction is plotted together with the standard deviation. 
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 These results suggests that the vegetation representation in the QUIC model can be 

improved by including a deposition model that incorporates vegetation characteristics related to 

the dynamic deposition efficiency of vegetation, such as the aerodynamic porosity/drag coefficient 

together with  a vegetation density parameter (leaf-area density/leaf-area index/optical porosity). 
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5. Conclusions 

The methodology proposed in chapter 2 produces concentration maps that preserve the 

valuable high spatial resolution of mobile monitoring data. By addressing the issues associated 

with non-uniform spatial resolution of measurements and the uncertainties associated with GPS 

data in a methodical and logical process, we are able to minimize the ambiguity of concentration 

maps. We showed that careful consideration should be given to all the factors influencing spatial 

resolution of underlying data; time resolution of the instruments, average speed of the MMP, post-

data-processing procedures, when choosing an appropriate spatial resolution for producing average 

concentration maps. Adapting such a methodical data analysis for mobile monitoring data can 

facilitate straightforward and meaningful inter-comparison of concentration maps from different 

studies. The resulting high spatial resolution concentration maps provide a tool to identify 

pollution variations/hot spots at the block and sub-block scale, information that could be used to 

develop urban planning strategies to minimize pedestrian exposures in near-road environments. 

The pollution concentration profiles developed from mobile measurements and presented 

in chapter 3 show that for roughly perpendicular winds, near-road elevated levels of ultrafine 

particle concentrations rapidly decrease within about 150 m and 500 m from the edge of the 

freeway, during daytime and early morning conditions, respectively. In general, for 

perpendicular winds, combination barriers resulted in lower pollution concentrations than a 

vegetation-only or sound wall-only barrier (Table 8). The largest benefit was observed closer to 

the barrier.  Under daytime conditions, the combination barrier resulted in lower pollution 

concentrations downwind compared to the site with only a sound wall. However, at higher wind 

speeds the combination barrier became less effective, and was observed to increase pollutant 
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concentrations downwind, relative to a sound wall-only barrier, at the highest wind speed. In the 

calm early mornings, the taller and rather dense vegetation-only barrier was more effective than 

the combination barrier at very low wind speeds (<0.6 m/s), but at higher wind speeds the 

combination barrier was more effective. Similar to the daytime results, the combination barrier 

became less effective at highest wind speed. Under parallel wind conditions, when the freeway 

plume has a much smaller impact on pollutant concentrations in adjacent communities, pollution 

was elevated only slightly or not at all near the edge of the freeway. There was no detectable 

difference between sites with only vegetation only, sound wall only, or combination vegetation-

solid wall barriers.  

Table 8. Relative reductionsa (%) of pollutants 

Site: Session SM: calm 

(wind speed< 0.6 m/s) 

SM: light winds 

(0.6 m/s<wind speed< 3 m/s) 

SC 

Pollutant Full 160 m Full 160 m Full 160 m 

UFP -23 -24 16 25 7b 15b 

PM2.5 -22c 1c 31 33 < 1 < 1  

PM10 -5c 40c 26 30 n/a n/a 

NO -26 -16 29 26 10 22 

NO2 -31 -21 2 6 8 15 

CO -21 -10 17 15 n/a n/a 

 

a relative reduction as defined in Section 3.4.3  
b average of only positive values 
c only one day 

n/a- data not available 

 

This study indicates that in general, all three types of barriers considered; sound wall, 

vegetation and combination barriers, are effective near road air pollution mitigation strategies 
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that can be used by urban planners and policy makers. The combination barriers were found to 

provide the highest reduction under a large range wind speeds.  

This study was able to find consistent results for pollution reduction by vegetation, across 

multiple urban sites. The careful selection of measurement sites, controlling for site 

characteristics that contribute to concentration differences, could have made this possible. The 

pollution reduction by vegetation barriers is strongly dependent on wind speed and 

density/optical porosity of the vegetation. Therefore, the results reported here could be limited to 

dense vegetation-only barriers and combination barriers with moderately dense vegetation. The 

choice of barrier can also be constrained by factors such as the cost, resources available for 

vegetation growth/maintenance. These limitations on effectiveness of vegetation barriers merit 

further research.  

QUIC simulations presented in chapter 4, in general seem to capture the complex flow in 

near-road urban environments. The QUIC model show promise as a useful tool to optimize the 

characteristics of sound walls, vegetation barriers and combination barriers to mitigate near-road 

air pollution exposure and merit further improvements to handle characteristics of vegetation. 

Our results suggests that the vegetation representation in the QUIC model can be improved by 

including a deposition model that incorporates vegetation characteristics related to the dynamic 

deposition efficiency of vegetation, such as aerodynamic porosity/drag coefficient together with  

a vegetation density parameter (leaf-area density/leaf-area index/optical porosity). 

Overall, this research adds to the growing body of scientific work that report large spatial 

variations of air pollution concentrations in near-road environments, and demonstrates how our 

understanding of these spatial gradients can facilitate mitigation strategies.  
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