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ABSTRACT OF THE DISSERTATION

Discerning Code Changes From a Security Perspective

by

Yue Duan

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2019

Dr. Heng Yin, Chairperson

Programs are not immutable. In fact, most programs are under constant changes

for security (e.g, vulnerability fix) and non-security (e.g., new features) reasons. These code

changes, however, could expose great security challenges. Android packers, as a set of code

transformation techniques, are gaining increasingly popularity among Android malware,

rendering existing malware detection techniques obsolete. Despite the importance of this

emerging trend (app packing), no comprehensive study has ever been conducted to help the

community understand the status quo of Android packing and unpacking techniques.

Android third-party libraries (TPL) that can provide complementary functionali-

ties and ease the app developments have become one of the major sources of Android security

issues due to the pervasive outdatedness issue. Prior efforts have been made to understand

and mitigate specific types of security issues in TPLs, but there exists no generic solution

to solve the issues and keep them up-to-date.

Binary Code Differential Analysis, a.k.a, binary diffing, is a fundamental analysis

capability that aims to quantitatively measure the similarity between two given binaries and
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produce the fine-grained block level matching. It has enabled many critical security usages

including patch analysis and malware analysis. Existing binary diffing techniques suffer from

low accuracy, poor scalability, coarse granularity or require extensive labeled training data

to function. A new technique is needed to accurately and efficiently perform binary diffing

at a fine-grained basic block level.

This dissertation addresses these problems by presenting concepts, methods and

techniques to perform generic Android packer analysis, automatically generate updates for

outdated TPLs and propose an novel unsupervised deep neural network based program-wide

code representation learning technique for binary diffing.

Firstly, an Android packing analysis framework called DroidUnpack is developed

to reliably capture and analyze unpacking behaviors on Android. It monitors the execution

at the lowest level and reconstruct Java level semantics. In this way, it can catch the intrinsic

“write-and-then-execute” unpacking behaviors at either native level or Java level or both.

We further conduct the first systematic large-scale study on Android (Un)packers and report

some surprising findings.

Secondly, LibBandAid is proposed to automatically generate updates for TPLs

in Android apps in a non-intrusive fashion without the need of source code. It extracts the

outdated libraries from apps and compare them to their latest versions. Then it analyzes

the code changes and further performs updating in a way that it does not require any code

modification on the app side and more importantly, introduce no impact to the library

interactions with other components locally (e.g., underlying Android system) and remotely

(e.g., server) as we call it non-intrusive.

vii



Thirdly, DeepBinDiff is presented as an unsupervised deep neural network based

program-wide code representation learning technique for binary diffing. It relies on both the

code semantic information as well as the program-wide control flow information to generate

block embeddings and further performs a K-hop greedy matching to find the optimal diffing

results using the generated block embeddings.
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Chapter 1

Introduction

Computer programs are not static. In fact, most of them are constantly being

updated due to a variety of reasons including vulnerability fix, new feature implementation

and intellectual property protection. These code changes, however, oftentimes expose great

challenges when performing security analyses for both traditional binary programs as well

as emerging mobile apps. In particular, we identify three important security problems to

be our main focus: 1) packed Android malware, 2) outdated third-party libraries (TPLs) in

Android apps and 3) binary diffing problem. These problems are critical to understanding

and improving security and yet have not been addressed by existing techniques due to the

challenges introduced by code changes.

Packed Android malware Studies [146, 135] show that both malicious and benign apps

utilize packing techniques to hide their code. The complexity in analyzing obfuscated code,

as introduced by these techniques, has become a new barrier to protecting Android users.

Particularly, without in-depth understanding of Android packers, malicious and plagiarized
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apps could easily circumvent the vetting process put in place by app markets and spread

across Android devices through these markets [2, 11].

Despite the importance of this emerging trend (app packing), no comprehensive

study, however, has ever been conducted to help the community understand the status quo of

Android packing and unpacking techniques, which is crucial to building practical defense and

mitigating the security risks brought in by these techniques. Moreover, this task cannot be

done by any existing Android unpackers due to their design limitations. Concretely, current

Android unpackers could be roughly categorized into three types based on distinct system

designs. 1) signature-based unpackers (e.g., kisskiss [120]) locate DEX file by signature and

perform memory dump; 2) DVM hooking-based unpackers (e.g., dexhunter [146]) modify

DVM to hook certain important functions to find DEX file and then dump the code; 3)

DVM data structure based unpackers (e.g., AppSpear [135] modify DVM to dump Dalvik

data structures on the air and then assemble them back into a DEX file. None of them

can handle unknown packing operations nor can they have any view for behaviors at native

level. On the other hand, existing PC unpackers (e.g., Renovo [79]) are just designed for

binary code and cannot handle Java code.

Outdated TPLs in Android apps Security vulnerabilities are thwarting the security of

Android apps. More interestingly, the outdatedness problem of Third-party libraries (TPL)

have become a new hot source for vulnerabilities [42, 58] as TPLs are constantly getting

more popularity. It has been revealed [42] that 70.40% of Android apps include at least one

outdated TPL and 77% of app developers update at most a strict subset of their included

libraries since they do not have enough incentive to keep the TPLs up-to-date, leaving many
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known security vulnerabilities unpatched within their apps. In fact, updating TPLs can be

a non-trivial task for app developers by virtue of two major reasons. First, more than half

(51.8%) of the libraries require code modification to the apps when updated to the latest

versions due to library API changes [58]. In other words, updating libraries to the latest

version is very likely to involve app modification. Second, although 97.8% of actively used

library versions with a known security vulnerability could be fixed via a drop-in replacement

with a fixed version [58], it is practically infeasible for app developers to manually find a

suitable version with security fix to replace the vulnerable version without app modification

for each and every library in their apps.

Prior efforts are made to study and mitigate problems with TPLs in Android apps.

To understand TPLs in Android, variety of library detection techniques are proposed [96,

52, 42, 87, 88, 58, 125, 145] to detect TPLs in apps and perform measurement study to

comprehend the library prevalence [87, 125, 145], library evolution [88], up-to-dateness [58]

and other security related information [42, 58]. To further mitigate security problems with

TPLs in Android apps, series of techniques are proposed to isolate TPLs from the Android

app. TPLs can be transformed into new processes [116, 142], new apps [121, 78], or new

services [106]. Other works enforce in-app privilege separations [127, 114] so as to keep the

apps’ privileges from TPLs. However, these techniques do not fix security issues per se but

merely limit the harmfulness of potential problems in TPLs from the apps.

Android application patching techniques are a different set of research that could

help with the TPL security issues. AppSealer [139] performs automatic patching for prevent-

ing component hijacking attacks in Android apps. Capper [140] and Liu et.al. [92] rewrite
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the Android apps to keep track of private information flow and detect privacy leakage at

runtime. CDRep [95] fixes cryptographic-misuses in Android with similar bytecode rewrit-

ing technique. Azim et.al. [41] detects crashes dynamically and uses bytecode rewriting

technique to avoid such crashes in the future. Nonetheless, these techniques only aim to fix

specific types of security issues and do not deal with the outdatedness problem on TPLs.

Hence, existing patching techniques on Android cannot keep TPLs updated and fix security

issues in a generic fashion.

Binary Diffing Binary Code Differential Analysis, a.k.a, binary diffing, is a fundamental

analysis capability, which aims to quantitatively measure the similarity between two given

binaries and produce the fine-grained block level matching. Given two input binaries, it

precisely characterizes the program-wide differences by generating the optimal matching

among the blocks with quantitative similarity scores. It can not only present a more precise,

fine-grained and quantitative results about the differences at a whole binary scale but also

explicitly reveal how code evolves across different versions or optimization levels. Due to

this level of precision and granularity, it has enabled many critical security usages in differ-

ent scenarios when program-wide analysis is required, such as changed parts locating [28],

malware analysis [66, 101], patch analysis [132, 89], binary wide plagiarism detection [94]

and patch-based exploit generation [40].

Because of the importance, binary diffing has been an active research focus. Exist-

ing techniques can be categorized into three categories: static, dynamic and learning-based

approaches. Static approaches [34, 60, 108, 65, 57, 55, 56] usually perform many-to-many

graph isomorphism detection on generated flow graphs [60, 108, 65] or decompose the bina-
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ries into fragments [57, 55, 56] for similarity detection. These approaches do not consider

the semantics of instructions which can be critical during analysis, especially when dealing

with different compiler optimization levels. Moreover, traditional graph matching algorithm

such as Hungarian algorithm [83] is expensive and cannot guarantee optimal matching.

Dynamic techniques, on the other hand, carry out the analysis by directly exe-

cuting the given code [61, 126], performing dynamic slicing [100] or using symbolic execu-

tion [70, 99, 94] on the given binaries and checking the semantic level equivalence based

on the information collected during the execution. In general, these techniques excel at ex-

tracting semantics of the code and have good resilience against compiler optimizations and

code obfuscation but usually suffer from very poor scalability and incomplete code coverage

because of the nature of dynamic analysis.

Recently, researchers have been leveraging the advance of machine learning to tackle

the problem. Various techniques such as Genius [68], Gemini [131], INNEREYE [150] and

Asm2Vec [59] have been proposed to utilize graph representation learning techniques [53,

98, 86] and incorporate code information into embeddings (i.e, high dimensional numeri-

cal vectors). Then they use these embeddings for similarity detection. However, existing

learning-based techniques suffer from low accuracy, poor scalability, coarse granularity or

require extensive labeled training data to function.

1.1 Thesis Statement

In a nutshell, the fundamental research question behind these security issues is how

to understand the code changes and use the knowledge to solve security problems. And that
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is the main focus of this thesis. Therefore, the thesis statement is discerning program

code changes from a security perspective has become essential to understand

and further mitigate current security issues.

To this end, we propose three novel techniques as illustrated in Figure 4.1. This

thesis aims to tackle three interconnected security problems by leveraging these three tech-

niques.

Discerning Code Changes 
From a Security Perspective

Impact analysis 
technique

Binary code diffing 
technique

Task 1

Measurement Study 
on Android Packing 

Techniques

Automatic Generation 
of Non-intrusive 

Updates for TPLs in 
Android Apps

Fine-grained Binary 
Code Diffing

Task 2 Task 3

Packing analysis 
technique

Figure 1.1: Overview of Thesis work

• Packed Android Malware. To battle the emerging packed Android malware, we

propose a novel Android packing analysis technique called DroidUnpack based on

a whole-system emulation to reliably capture and analyze unpacking behaviors. It

monitors app execution at the lowest level, so we do not miss any behaviors related

to unpacking. Then it reconstructs Java level execution, for accurate detection and

better understanding of unpacking behaviors. Based on the technique, task 1 aims to

comprehensively understand the current status of code changing technique (packing)

that are used among malware to hide the malice from being analyzed. We conduct

the first comprehensive study over 6 major commercial packers, 3 state-of-the-art

unpackers and 93,910 Android malware samples in the wild and report the findings.
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• Outdated TPLs in Android apps. With the goal of addressing the outdatedness

issue of TPLs, we aim to automatically generate updates for TPLs in Android apps in

a non-intrusive fashion without the need of source code. More specifically, we extract

the code of outdated libraries from Android apps and compare them to their latest

versions. Then we analyze the code changes and further perform updating in a way

that it does not require any code modification on the app side and more importantly,

introduce no impact to the library interactions with other components locally and

remotely as we call it non-intrusive. To this end, we propose a novel technique called

LibBandAid to generate patches that are guaranteed to be sound and concise.

• Binary Diffing. The last task is to solve the binary diffing problem. To overcome

the limitations of existing techniques, we propose an unsupervised program-wide code

representation learning technique named DeepBinDiff that relies on both the code

semantic information as well as the program-wide control flow information to generate

block embeddings. Furthermore, we propose a K-hop greedy matching algorithm to

find the optimal diffing results using the generated block embeddings.
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Chapter 2

Background

2.1 Android

Android has undoubtedly become the most popular mobile operating system as

Google has announced over 2 billion monthly active Android devices and 2.8 million An-

droid apps by 2017 [1]. Ever since the booming of Android, security problems have imme-

diately followed and Android apps have turned into the breeding ground of various security

issues. Security problems including malware [147], vulnerabilities (e.g., privilege escala-

tion [54], permission re-delegation [67] and component hijacking [93]) and privacy leak-

age [64, 62, 76, 147, 149] have attracted much research focus. A series of techniques has

been proposed to mitigate problems by detecting Android malware [133, 73, 35, 69, 138, 122],

fixing vulnerabilities [139, 141] and preventing information leakage [63, 136]. Nevertheless,

many of these security issues have become increasingly complex and render existing tech-

niques obsolete when taking code changes into account.
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2.1.1 Android System

Unlike traditional PC, Android system has a multi-level design. It is built on

top of a customized Linux kernel. A process named Zygote is the parent for all Android

app processes. Above the kernel, Android system provides a set of libraries including app

runtime. The runtime coordinates apps with Android framework libraries so that the apps

can interact with lower-level system through framework APIs. This fundamental design

difference in Android system requires our tool to have multi-level views about the whole

system including OS level, binary level and Java level views. Moreover, just like Android

system, Android runtime environment is also very different from traditional PC, and has

changed drastically over time.

2.1.2 Android Runtime Environment

Dalvik virtual machine. Legacy Android (version 4.4 and earlier) leverages Dalvik Virtual

Machine (DVM) to interpret DEX bytecode programs at runtime. At install time, a dexopt

tool optimizes the input DEX bytecode and creates ODEX files so as to improve runtime

efficiency. Upon execution, DVM enables bytecode interpretation and translates DEX code

to native code for the target architecture.

ART environment. The recent Android system (version 5.0 and later) has substituted

Dalvik VM with the new Android Runtime (ART) in order to improve runtime performance.

In contrast to the bytecode interpretation in DVM, ART conducts ahead-of-time (AOT)

compilation to produce machine dependent code prior to execution. To do so, ART utilizes

the compiler, dex2oat, to transform an input DEX executable into an OAT file. Internally,
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OAT Header

OAT DEX File Header [0]

OAT DEX File Header [n]

OAT Class[0]

OAT Class[1]

DEX File [0]

DEX File [n]

OAT Method Code

oatdata
(.rodata)

oatexec
(.text)

Figure 2.1: OAT file structure.

dex2oat can perform multiple rounds of optimizations and depending upon the existence of

legacy code, it may select between “interpret” and “quick” modes to achieve different levels

of optimizations. The “interpret” mode means no code will be compiled into native, while

“quick” mode compiles as many codes as possible.

An OAT file is essentially an ELF dynamic object, but it follows a unique format.

Figure 2.1 depicts the structure of an OAT file. At the beginning of the file resides the OAT

header, which contains the count of enclosed DEX files. Subsequent to the header, there

exists four major sections, OAT DEX file headers, original DEX files, OAT class headers

and OAT methods. An OAT DEX file header holds offsets to the embedded DEX files and

corresponding OAT class headers, respectively, while the latter further contains offsets to

the compiled OAT methods. A DEX class can be completely, partially compiled or not

compiled at all. Therefore, an OAT class header also keeps a bitmap to indicate whether a
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method has been compiled. Only compiled methods are stored in an OAT file and referenced

by the data structure in the OAT method section.

2.1.3 Android Apps

As a result, Android apps are designed to be quite different from traditional PC

programs as well. Android apps are built as a combination of distinct components that can

be invoked individually and can contain both Java and native parts. Native components are

simply shared libraries that are dynamically loaded at runtime. The app runtime library

(libdvm.so or libart.so) interprets or compiles the Java components to produce and launch

native instructions. The Java Native Interface (JNI) is then used to enable communications

between the native and Java sides. Thus, a packed Android app often packs its Java code

as well as its native code (major program logic or critical functionality) into binary resource

files. Usually, it still maintains a dummy Java component, which acts solely as a dispatcher

to launch the unpacking procedure.

2.1.4 Unpacking techniques

Runtime packers in general have been well studied and series of solutions have

been proposed to defeat them [111, 97, 79, 115]. However, due to the differences in so many

aspects, there exists a major discrepancy in the unpacking techniques between Android and

PC.

PC unpackers such as Omniunpack [97] and renovo [79] monitor and trace the

packed program execution at native instruction or page granularity using either memory

protection mechanism or emulated environment so that they can reliably uncover the pro-

11



gram behaviors at native level. Nonetheless, this kind of unpacking technique does not fit

into Android scenario where apps contain both native and Java components. Fundamen-

tally, the design lacks the capability of monitoring Java level behaviors, thus, will not be

able to understand anything happens at that level.

On the other hand, existing Android unpackers [146, 135, 119] fall short of na-

tive side. Current Android unpackers can be roughly categorized into three types to ex-

tract code based on different design choices: 1) signature-based memory dump unpacker as

Kisskiss [119]; 2) hooking-based memory dump unpacker as DexHunter [146]; 3) Dalvik data

structures dumping and DEX file assembly unpacker as AppSpear [135]. All the Android

unpackers rely on Java level information other than intrinsic nature of packed programs,

which is, the original code will be dynamically generated and then executed [79]. As a

result, none of them is able to detect and analyze previously unknown packing techniques

and understand what happens at the native side let alone the interactions between Java and

native.

2.1.5 Android Ecosystem

Last but not least, another significant and special characteristic about Android

which has great influence on packing study is the unique Android ecosystem. This ecosys-

tem applies a huge impact to both app developers and users. After the Android apps are

developed, the developers upload them to Android app markets, e.g., Google Play. The mar-

ket will perform necessary vetting process to the uploaded apps and make them available for

the end users. By default, Android system disallows users to install apps outside of Google

Play. Further, because of the vetting performed by those Android app markets, users tend
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to trust them and download apps from them. According to 2016 Google I/O [6], Google

Play has reached over 1 billion monthly active users in 2016 which makes it the world largest

app distribution platform. As a result, malware and plagiarized apps that circumvent app

markets security checks and infiltrate into this ecosystem can impose even bigger threat to

users than normal malware. However, according to prior reports [7, 11], packing techniques

can indeed help malicious developers sneak malware into Google Play. This fact motivates

us to study Android packing techniques.

What’s more, unlike traditional PC, commercial packing services have become a

part of the Android ecosystem as well. They are being widely used by many developers

to pack and protect their intellectual property before submitting to app markets [135]. In

order to prevent people from abusing the services, they have enforced their own malware and

plagiarism detection mechanism. Our study also would like to find out if these services can

be exploited and abused by malicious users. And since all the Android commercial packing

services are freely available to users, it gets us wondering about what their business models

are and further motivates us to study the detailed behaviors of those packers.

2.2 Change Impact Analysis

Change Impact Analysis [46] or Impact Analysis for short studies how code changes

in one place could affect codes in other places of the program. Many works have been

proposed [85, 104, 110, 109, 37, 118, 82, 144, 112, 90] to improve the change impact analysis.

Some of the works utilize call graph analysis to study the impact of code change [110, 109, 37].

The limitation for this kind of analysis is that call graph by nature can only provide a coarse-

13



grained information usually at method level which does not meet our need since we need

very fine-grained analysis at code statement level. Another set of research [85, 104] utilizes

dynamic analysis to understand the impact of code changes. However, dynamic analysis

often falls short of code coverage and is not suitable for us either.

Static slicing [129] becomes a promising technique to grasp a comprehensive under-

standing of the impact for code changes. A series of research [118, 82, 144, 112, 90] has been

done towards this direction. GRACE [82] proposes to perform forward slicing to capture all

potentially affected codes. However, static slicing algorithm [129] is very conservative and

usually generates large slices. To deal with this problem, Sridharan et.al. [118] propose a

new slicing algorithm called thin slicing which only considers value-flow. P-slicing [112] and

PRIOSLICE [144] augment the forward slicing with a relevance score which indicates how

likely a code statement can be actually affected by the change so as to reduce the size of

slices. As we can see, no existing approach can maintain the soundness for our updating

purpose with respect to both control and data dependencies after reducing the size of slices.

2.3 Android Program Patching

Automatic Program Patching in the context of Android falls into two categories:

Android system patching and Android app patching. A number of research works have

been done [102, 51, 143, 50] to perform patching on Android system programs and kernels.

PatchDroid [102] uses in-memory patching techniques to address vulnerabilities in both na-

tive and managed code. KARMA [51] is proposed as an adaptive live patching system for

Android kernels. It features a multi-level adaptive patching model that can overcome the
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Android fragmentation issue. Embriodery [143] only targets the binary code in Android

kernels by using binary rewriting techniques. It transplants official patches of known vul-

nerabilities to different devices by adopting heuristic matching strategies to deal with the

Android fragmentation issue. InstaGuard [50] adopts hot-patching techniques to patch the

system programs in Android. It takes a different approach that enforces instantly updatable

rules that contain no code to block exploits of unpatched vulnerabilities.

Android application patching techniques, on the other hand, are also proposed to

mitigate security problems in Android apps. AppSealer [139], which is the most similar work

with ours, performs automatic patching for preventing component hijacking attacks in An-

droid apps. Capper [140] and Liu et.al. [92] rewrite the Android apps to keep track of private

information flow and detect privacy leakage at runtime. CDRep [95] fixes cryptographic-

misuses in Android with similar byte-code rewriting technique. Azim et.al. [41] detect

crashes dynamically and use byte-code rewriting technique to avoid such crashes in the

future.

2.4 Code Similarity Detection

As mentioned, existing technique mainly fall into three categories: static ap-

proaches, dynamic approaches and learning based approaches.

Static Approaches. Static approaches transform binary code into graphs (e.g., control

flow graph) using program static analysis and then perform the comparison among binary

code. Bindiff [34, 60] which is the state-of-the-art binary diffing commercial tool, performs

many-to-many graph isomorphism detection on callgraph to match functions and leverages
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intra-procedural CFG graph matching for basic blocks. Binslayer [47] further augments the

graph matching with the Hungarian algorithm for bipartite graph matching to improve the

matching results. Pewny et.al. [108] searches bugs within binary programs by collecting a list

of input/output pairs to capture the semantics of a basic block and perform graph matching.

The major drawback for graph matching based approaches is that the algorithms in general is

very expensive. For the sake of improving runtime performance, discovRE [65] chooses to use

lightweight syntax level features and applies pre-filtering before graph matching. However,

the pre-filtering process may significantly affect the accuracy of the matching result [68].

Due the limitations of graph matching, techniques are proposed to use static pro-

gram analysis to decompose functions into fragments. Tracelet [57] converts CFGs into a

number of paths with fixed-length called Tracelets and then matches them by rewriting.

Esh [55] decomposes the functions into segments named strands which represent data-flow

dependencies and uses statistical reasoning to calculate similarities. GitZ [56] further im-

proves Esh to find strands equality through re-optimization. Although no heavy graph

matching is required, these techniques still bear with two major limitations. First, to ab-

stain from massive number of fragments, they can only decompose within functions. Second,

these techniques can not handle instruction and basic block reordering.

Dynamic Approaches. Based on an insight that similar code must have semantically

similar behavior, dynamic analysis becomes another promising line of research. Blanket

Execution [61] executes functions of the two input binaries with the same inputs and com-

pares monitored behaviors for similarity. BinHunt [70] uses symbolic execution and theorem

proving and compares intra-procedural CFGs to find the matching between basic blocks.
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iBinHunt [99] extends the comparison to inter-procedural CFGs and reduces the number

of candidates of basic block matching by monitoring the execution under a common in-

put. CoP [94] also uses symbolic execution to compute the semantic similarity of blocks

and leverages the longest common sub-sequence of linearly independent paths to measure

the similarity. BinSim [100] which is specifically proposed to compare binaries with code

obfuscation techniques, relies on system calls to perform dynamic slicing and then check

the equivalence with symbolic execution. Essentially, dynamic analysis approaches could

deliver accurate results when facing compiler optimizations or obfuscation. However, they

by nature suffer from poor scalability and incomplete code coverage.

Learning based Approaches. Recently, researchers have turned to machine learning tech-

niques to detect code similarity. Genius [68] forms attributed control flow graphs (ACFG) for

each function and calculates the similarity through their graph embeddings which are gener-

ated through comparing with a set of representative ACFGs named codebook. Gemini [131]

directly improves Genius by leveraging neural network to generate embeddings for each bi-

nary function. Then it trains a Siamese network for similarity detection. INNEREYE [150]

regards instructions as words and basic blocks as sentences and utilizes LSTM-RNN to au-

tomatically encode the information of basic blocks and further uses a Siamese network to

detect the similarity. Both Gemini and INNEREYE rely on supervised learning and requires

extensive training with massive labeled training dataset. Asm2Vec [59] adopts an unsuper-

vised learning approach by generating token and function embeddings using PV-DM model.

However, it only works on function comparison but cannot perform binary diffing at block

level. Also, it does not consider any program-wide CFG structural information.
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2.5 Graph Embedding Learning

Graph analysis has been increasingly popular as many problems can be modeled as

graphs. Generating vector representation of each node that contains important graph and

node properties, a.k.a, graph embedding learning, has become widely popular. There are

mainly three categories of embedding learning techniques [71]: factorization, random walk

and deep learning.

Factorization. Ahmed et.al. [36] proposes a graph factorization technique to factorizes

the adjacency matrix of the input graph by minimizing a loss function. GraRep [48] de-

fines a node transition probability and proposes a k-order proximity preserved embedding

method. The major drawback is scalability. HOPE [105] is similar to GraRep and pre-

serves higher-order proximity. It fully captures transitivity and uses generalized Singular

Value Decomposition to perform efficiently. TADW [134] considers feature vectors for nodes

during matrix factorization. A recent work REGAL [75] is proposed to perform matrix fac-

torization very efficiently with the consideration of node features. However, it only checks

the existence of features other than considering the numeric values.

Random Walk. DeepWalk [107] is proposed to learn latent representations of nodes in

a graph using local information from truncated uniform random walks. And node2vec [74]

specifically designs a biased random walk procedure that efficiently explores diverse neigh-

borhoods of a node to learn continuous feature representations of nodes.

Deep Learning. DNGR [49] proposes a novel graph representation model based on deep

neural networks that can capture the graph structure information directly. SDNE [124]
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designs a semi-supervised deep model that has multiple layers of non-linear functions to

capture both the local and global graph structure that is highly non-linear. GCN [80]

uses a localized first-order approximation of spectral graph convolutions to perform semi-

supervised learning on graphs in a scalable way. Structure2Vec [53] is proposed for structured

data representation via learning features spaces that embeds latent variable models.

2.6 Summary

Existing Android unpacking techniques can be put into three categories: 1). sig-

nature based approaches; 2). hooking based approaches and 3). data structure dumping

approaches. None of them can be generic enough to have a whole view in multiple levels of

the Android system nor can they detect unknown packers.

Security issues in Third-party libraries within Android apps have become very

serious. Existing patching techniques focus on fixing specific types of security issues and do

not deal with the outdatedness problem. On the other hand, TPL isolation based approaches

do not solve security issues per se but merely limit the harmfulness of potential problems.

Binary diffing techniques serve as vital role for many security analyses including

malware analysis and vulnerability analysis. Although existing learning-based approaches

enjoy multiple advantages over the traditional graph based and dynamic analysis approaches,

they still fall short of low accuracy, poor scalability, coarse granularity or require extensive

labeled training data to function.
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Chapter 3

Systematic Study for Android

(Un)Packers

3.1 Introduction

Mobile computing has become a new frontier for the perpetual battle between

cybercriminals and those who want to stop them. For years, those criminals are utilizing

all kinds of malicious apps to gain undesired access to system resources [54, 72, 67], collect

private user information [64, 62, 76, 147, 149], compromise data integrity [148, 93], etc.

In response, various static [38, 128] and dynamic analysis techniques [62, 133] have been

developed and deployed to capture their malicious activities. Such protection, however,

has come under the threat of Android app packing, which becomes increasingly popular.

Studies [146, 135] show that both malicious and benign apps utilize packing techniques

to hide their code. The complexity in analyzing obfuscated code, as introduced by these

techniques, has become a new barrier to protecting Android users. Particularly, without in-
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depth understanding of these Android packers, malicious, vulnerable and plagiarized apps

could easily circumvent the vetting process put in place by app markets and spread across

Android devices through these markets.

Understanding packers. Despite the importance of this emerging trend (app packing), no

comprehensive study, however, has ever been conducted to help the community understand

the status quo of Android packing and unpacking techniques, which is crucial to building

practical defense and mitigating the security risks brought in by these techniques. In this

paper, we report our study on the problem, the first of this kind up to our knowledge. The

study investigates a broad spectrum of Android packers and characterizes the apps utilizing

them in terms of their security implications. More specifically, we seek answers to a set of

security-critical questions, which has never been addressed by the prior research, as follows.

First of all, we want to find out how today’s Android packers are being used, par-

ticularly by cybercriminals. Are they (including commercial packing services) being abused

by malware authors? How widely are the packers utilized by Android malware? What are

the distributions of different commercial and custom packers across Android apps? How do

the distributions change over time?

Then, we look into technical details. How do Android packers work? Is it very

different from traditional packing? What are the security impacts when applying the packers

to apps? Is it easy for malicious developers to exploit commercial services to pack their

malware or plagiarized apps?

Moving forward, we study the direction of technique development and its security

implications. Have Android packers been evolving? What are the future trends?
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Finally, we check the state-of-the-art of Android unpacking techniques. Particu-

larly, How do today’s Android unpackers perform? Are they still effective in the presence of

the most advanced packers?

Answers to these questions can only be found through an in-depth analysis of

packing and unpacking operations on Android code, to reliably identify related behaviors

including those never seen before. This cannot be done by any existing Android unpack-

ers [146, 135, 119], which can only handle known packing operations and have no view for

behaviors at native level. Although the tools built for unpacking PC programs (e.g., Ren-

ovo [79]) could help find some new packers, they are just designed for binary code and cannot

handle Java code. So far, none of the existing techniques are capable of performing the cross

Java and native code analysis required for an in-depth understanding of complicated Android

packing behaviors.

Our study and findings. To find answers to these security-critical questions and better

understand the security implications of Android packing techniques, we developed an An-

droid packing analysis framework called DroidUnpack based on a whole-system emulation.

To reliably capture and analyze unpacking behaviors on Android, DroidUnpack has been

designed to monitor at the lowest level and reconstruct Java-level execution. In this way, it

can catch the intrinsic “write-and-then-execute” unpacking behaviors at either native level

or Java level or both.

With the help of this analysis framework, we conducted a comprehensive study

over 6 major commercial packers, 3 state-of-the-art unpackers and 93,910 Android malware

samples in the wild.
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3.2 DroidUnpack System

3.2.1 Key Idea

To address the unique challenges in detecting and analyzing unpacking behaviors

in Android, we need to:

(1) Monitor app execution at the lowest level, so we do not miss any behaviors related to

unpacking;

(2) Reconstruct Java level execution, for accurate detection and better understanding of

unpacking behaviors.

To capture the intrinsic characteristics (i.e, Write-and-then-Execute) of unpacking,

we will monitor the app execution at the native code level to label dirty memory regions,

as well as code execution happens at both native and Java levels. In this way, we are able

to detect and analyze unpacking behaviors happening at either level or in a combination of

both.

To do so, we take a whole-system emulation based approach. More specifically, we

run the android system and the app of interest within an emulator so that we can easily

monitor all memory writes initiated by the app. Then by reconstructing the Java execution

context from native execution, we are able to reliably detect the execution of unpacked code,

no matter if the unpacked code is interpreted, pre-compiled, or just native code.

3.2.2 DroidUnpack Overview

To realize this key idea, we choose to build DroidUnpack on top of Droid-

Scope [133]. DroidScope is a QEMU and VMI-based dynamic instrumentation framework
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Figure 3.1: Overview of DroidUnpack.

that enables instruction tracing on both Linux and DVM sides. However, it does not support

the recent Android Runtime (ART), and thus cannot recover the high-level code semantics

in ART. To address this limitation, we manage to reconstruct the ART view of running

Android apps. Figure 3.1 illustrates the overview of DroidUnpack.

The entire Android system, including the packed Android apps, runs on top of an

emulator, and the analysis and unpacking are conducted from outside of the emulator. We

introspect the guest Android system, so that both the OS-level and ART-level semantics

can be reconstructed using trustworthy points-to relations among internal data structures.

Interfacing with the core DroidUnpack platform, we have developed several anal-

ysis tools to investigate packed Android programs. 1) The Hidden Code Extractor precisely

identifies and dumps memory regions that contain hidden DEX, OAT methods. 2) The

Multi-layer Unpacking Detector discovers iterative unpacking operations that intermittently
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occur in multiple layers. 3) The Self-Modifying Code Detector detects an even stealthier

unpacking behavior that intentionally wipes out previous executable code. 4) The JNI

Inspector aims to search for sensitive API calls made through JNI interface.

3.2.3 Reconstructing Semantic View

Semantic view consists of two views at different levels, OS-level view and ART-

level view. We rely on DroidScope to recover the OS-level view which provides two types of

information: 1) the native process names and 2) the meta-data of memory-mapped modules

for each process (i.e., base address, size, name, corresponding inodes and function offsets).

Hence, we can accurately pinpoint a native function in memory via matching its address with

(module_base_address + offset). We modify DroidScope to support the reconstruction

of ART-level semantics. In particular, we have managed to recover the application names,

compiled and interpreted Java methods.

Application name. The application name plays an important role in Android app un-

packing because it indicates the context of decrypted hidden code. Unlike native processes,

the name of an Android application is not resolved when a fork takes place. Instead, its

name is later appointed through calling the native function set_process_name. Hence, we

hook this function in the native library libcutils.so in order to correlate application name

to each individual app process.

Compiled Java method. We further recover the corresponding Java method names,

offsets and sizes of native functions that have been pre-compiled from DEX code. Such

information can assist accurate collection and semantic-level understanding of the code.

25



To collect such meta-data for compiled methods, we need to search for the asso-

ciated DEX and OAT files. To do so, we first hook the function ArtMethod::Invoke() in

libart.so, which accesses ArtMethod code for invocation. Next, at the hooking point, we re-

trieve the ArtMethod data structure from memory, which contains a reference HeapReference<Class>

declaring_class_ that eventually points to its host class. Using the reference, we locate the

class structure that holds the resolved DEX file cache DexCache. Then, we can reverse

engineer this DEX cache to obtain the pointer to DexFile data structure.

Once a DexFile has been discovered, DroidUnpack can further identify the code

module that hosts this DEX file. This code module is in fact the OAT file that contains each

original DEX file as well as its compiled OatClasses. By walking through each OatClass, we

can then retrieve its meta-data, including the name and offset of every OatMethod. In this

way, we reconstruct the mapping between name and address (i.e., (module_base_address+

offset)) for each compiled method. Besides, we also iterate over every OatMethodHeader to

find the code size of corresponding OatMethod, so that at runtime, we can precisely dump

each unpacked code at method level.

Interpreted Java method. Although Android ART runtime provides the capability

of compiling all Java methods beforehand, bytecode interpretation still remains available.

Therefore, we also need to handle interpreted methods and retrieve their semantic informa-

tion. Similarly, we hook the DoCall() function in libart.so, which starts the interpretation

of ArtMethods in Java. Again, we can trace back to the corresponding DexFile from each

ArtMethod. In addition, we also obtain the dex_method_index_ of ArtMethod, with which we

can identify the exact DexMethod in the DexFile and therefore extract its name, offset, size
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Algorithm 1 Locating Executable in Memory
1: procedure LocateCodeInMem(pc)
2: mod← GetCurrentModule(pc)
3: if mod == “libart.so” then
4: func← GetCurrentFunction(pc)
5: if func == “DoCall(ArtMethod*)” then
6: md← GetDexMeth(ArtMethod∗)
7: else if func == “ArtMethod::Invoke()” then
8: md← GetNativeMeth(ArtMethod∗)
9: end if

10: memmethod ← GetAddressRange(md)
11: return memmethod

12: end if
13: return ∅
14: end procedure

and bytecode instructions. In this way, we are able to capture the interpreted Java code

that is unpacked during execution.

3.2.4 Code Behavior Analysis

Powered by the unique capability of DroidUnpack, we have enabled four code

analyzers to understand Android packer behavior.

Hidden OAT/DEX code extraction. Malicious code is packed to avoid detection and

analysis. With the reconstructed OS view and ART-level view, we can now extract packed

executable code at runtime. We first follow Algorithm 1 to locate Java methods in memory.

To be more specific, we examine the program counter pc to check whether the current

running function func is either ArtMethod::Invoke() or DoCall(). If so, we further fetch

the memory regions, memmethod, containing the compiled or interpreted Java method that

is about to execute. In the meantime, we intercept every memory write operation to obtain

the addresses of modified memory regions. As illustrated in Algorithm 2, all the dirty
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memory regions are stored inMemUDdirty, which is being continuously updated every time

a memory write occurs (Ln.1). Then, Algorithm 2 detects unpacking activities by identifying

memmethod for each basic block (Ln.12), and checking if the identified method falls into the

dirty memory region (Ln.13). If that is true, unpacked code is discovered and we dump the

method code and meta-data. After that, we also remove the memmethod from MemUDdirty

(Ln.15), so that next time when the same method code is invoked, DroidUnpack will not

count it as unpacked new code.

Note that this algorithm skips behaviors performed by Webview if JavaScript is

enabled (Ln.7 to Ln.10). This filter is implemented to avoid potential false positive from

JavaScript Just-in-time compilation (JIT) technique since its behavior can be mistakenly

considered as packing.

Self-modifying code detection. Self-modifying code can be considered as a specific kind

of unpacking. In addition to introducing decrypted new code, it also modifies the executable

that has been previously launched. This practice, prevalently adopted by traditional PC

malware, intends to cover the trace of historical execution or to change control flow and

therefore needs special attentions.

To detect this, DroidUnpack searches particularly for the operation sequence

execute  (write  execute) conducted on the same memory region. Such a sequence

indicates that a previously executed code region has been replaced by newly unpacked

code. Algorithm 2 depicts the detection of self-modifying code as well. In addition to

the aforementioned unpacking detection, this algorithm collects every executed basic-block

region memcode (Ln.11). The aggregation of all these code blocks, Memcode, thus represents
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Algorithm 2 Analysis Using DroidUnpack
1: MemUDdirty ← {Overwritten memory regions updated by memory write monitor.}
2: MemULdirty ← {Overwritten memory regions updated by memory write monitor.}
3: layer ← 0
4: Memcode ← ∅
5: for basic_block ∈ App execution trace do
6: pc← GetBeginAddress(basic_block)
7: mod← GetCurrentModule(pc)
8: if JavaScript enabled and mod = “libwebview” then
9: Continue

10: end if
11: memcode ← GetAddressRange(basic_block)
12: memmethod ← LocateCodeInMem(pc)
13: if memmethod ∩MemUDdirty 6= ∅ then
14: DumpMethod(memmethod)
15: MemUDdirty ←MemUDdirty −memmethod

16: if memmethod ∩Memcode 6= ∅ then
17: Self-modifying code is detected.
18: end if
19: end if
20: Memcode ←Memcode ∪memcode

21: if memmethod ∩MemULdirty 6= ∅ then
22: layer ← layer + 1
23: MemULdirty ← ∅
24: end if
25: end for

output layer as count of unpacking layers

previously executed code (Ln.20). Hence, if memmethod is detected to be a newly unpacked

method, the overlap between memmethod and Memcode (Ln.16) demonstrates the presence

of self-modification.

Multi-layer unpacking detection. Unpacking is not necessarily a one-time operation. If

DroidUnpack realizes that multiple code sections have been unpacked gradually over time,

it can reveal the existence of multi-layer unpacking. Concretely speaking, DroidUnpack

considers all the continuously decrypted but not yet executed code belongs to the same

unpacking layer, and the execution of previously unpacked code indicates the end of a layer.
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Algorithm 2 shows the detection details. First, we collect another copy of dirty

memoryMemULdirty, specifically for computing unpacking layer, again via observing mem-

ory writes (Ln.2). Then, we examine the overlap between the identified Java methods

memmethod and MemULdirty (Ln.21). A non-empty intersection, indicating an execution

of dirty code region is about to happen, triggers the increment of layer count (Ln.22) and

eventually the accumulated count is provided as output. Once a new layer is discovered,

we also clear the dirty memory MemULdirty (Ln.23). This is to ensure that executing any

unpacked code from the last layer does not cause DroidUnpack to increase the layer count.

Java native interface inspection. To avoid static inspection, sensitive APIs can be

triggered through Java Native Interface (JNI) calls. Hidden bytecode or native code may

also follow the same practice. Therefore, even if decrypted code has been captured, the

static analysis of dumped code still may not successfully reveal the complete behavior of a

packed app.

To make things even more complicated, packed apps can make recursive JNI calls.

That is, a Java function Func1 can be invoked from a native function Func2 which is called

through JNI from another Java function Func3. To handle cases like this, boundaries of

each JNI call need to be captured.

Through the monitoring of context switching between Java and native modules,

DroidUnpack can reliably detect the entrance and exit of each JNI calls and infer the

boundaries. It further inspects all calls made at both Java and native side. In particular,

DroidUnpack focuses on the detection of sensitive Android API calls invoked through JNI

from native components. To identify sensitive API calls, we rely on PScout [39].
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3.2.5 Discussion

Data Compression and Encoding Techniques such as data compression/encoding are not

considered as packing techniques by DroidUnpack because they only introduce memory

writes but do not execute at the same memory region. As a result, data compression and

encoding will have no impact on our system.

Supporting Android versions. Being built upon DroidScope [133], DroidUnpack de-

liberately chooses to support Android 4.2 (DVM only) and 5.0 (DVM was replaced by ART)

to cover the two runtime environments in Android. Supporting more Android versions will

require relatively small efforts, such as recompiling the kernel and updating offsets for rel-

evant data structures. Moreover, since variant versions of Android (e.g., Android Wear,

Android Auto) share the same fundamental runtime environment, DroidUnpack should

be able to support them with some fairly simple twists.

Emulation Detection. DroidUnpack is an emulation-based approach which means it

cannot handle apps with emulation detection. To be more specific, our system cannot per-

form any automatic behavioral analysis if the apps hide all behaviors when they detect the

existence of emulator. To deal with this limitation, DroidUnpack monitors four common

anti-emulation techniques reported by SophosLabs [117] including examining services infor-

mation, build information, system properties and the presence of emulator related files such

as “/sys/qemu_trace”. If any of the techniques is used by the testing app, DroidUnpack

will raise alert which allows us to perform further manual investigation.

31



3.3 Study Methodology

To answer the four sets of research questions brought up in Section 3.1, our study of

Android packer/unpacker follows a well-defined study methodology which consists of a broad

range of automatic analysis using the capability of DroidUnpack as well as some manual

investigations. This section elaborates on the methodology that we have systematically

identified and itemized to facilitate the answers to each and every question.

3.3.1 Dataset and Setup

In order to accomplish the aforementioned tasks, we have gathered five datasets

including:

• Dataset 1: We hand-pick seven popular and representative commercial packers in-

cluding Ali [8], apkprotect [4], baidu [9]1, Bangcle [10], ijiami [12], Qihoo [14] and

Tencent [15].

• Dataset 2: To study those commercial packers, we implement five representative apps,

consider them as ground truth and perform diff analysis with their packed counterparts.

To make sure we can seize modifications done by packers to majority of Android apps,

the apps are designed to be concise yet still cover all four Android components -

Activity, Service, Content Provider and Broadcast Receiver, also with two widely used

features - dynamic class loading and JNI function calling. We then leverage packers

in Dataset 1 to generate packed apps.
1baidu packer requires Chinese ID so we exclude it in the detailed analysis
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• Dataset 3: For the sake of studying packing techniques among wild malware, we

manage to collect 93,910 Android malware from VirusTotal [17] which are labeled as

malicious by at least 50% of all detectors with a wide time span from 2010 to 2015.

• Dataset 4: Five recent malicious apps including Android.Malware.at_plapk.a, An-

droid.Troj.at_fonefee.b, candy_corn, braintest and ghostpush are collected from a

public malware repository in github [13] to study malware detection of commercial

packers. And for plagiarized apps, we manually insert empty Android activities into

three most popular benchmark apps - Vellamo, Quadrant and AnTuTu and create

three plagiarized apps.

• Dataset 5: Lastly, we collect three state-of-the-art Android unpackers that are pub-

lished in mainstream academic and industry security conferences [135, 146, 119].

3.3.2 Methodology

For each set of research questions, we elaborate our methodology by listing four

most important aspects: 1). dataset, 2). challenges and solutions, 3). detailed analysis

and 4). limitations. Dataset section is to describe the data samples used for answering the

specific set of questions. Challenges and solutions section is to list all the technical challenges

to be addressed during the study as well as our proposed solutions. Detailed analysis section

describes the proposed analysis to be performed in order to explore the answer. Limitations

section is elaborated to discuss the possible limitations of our analysis.

Question set 1: Are Android packers (including commercial packing services) being abused

by malware authors? How widely are the packers utilized by Android malware? What are

33



the distributions of different commercial and custom packers across Android apps? How do

the distributions change over time?

The first set of research questions is to understand the high-level landscape of

current Android packers among malware, including the popularity of Android packers, dis-

tributions of each individual type of packers and how the distributions change over the

years.

Dataset. In order to understand the high level landscape of Android packers, we

utilize Dataset 3, the malware sample set which includes 93,910 samples in the wild with a

wide time span from 2010 to 2015.

Challenges and solutions. There are two major challenges for conducting this study.

First, understanding the existence of Android packers within malware samples is needed.

Second, we have to further differentiate and recognize different types of packers. For the

first challenge, we leverage the multi-layer unpacking detection capability in DroidUnpack

to understand the existence of packing. As long as there exists a single layer of unpacking

during the execution of a malware sample, we can then confirm the existence of packing

within that sample. For the second challenge, as stated in [146, 135], commercial packers

have strong and stable signatures across different versions. In our study, we rely on those

signatures including activity names and native library names to identify the existence of

different commercial packers. We collect signatures from packers in Dataset 1 and consider

other packers as custom ones. Thanks to DroidUnpack, unlike previous works [146, 135],

we are able to detect all the packers, commercial or custom, based on only intrinsic packing

behaviors.
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Analysis. To answer the first set of research questions, we first execute all mal-

ware samples in the dataset using DroidUnpack, during which we detect and record the

existence and usage of different packers. We then calculate the ratio of packed malware

among all the malware samples. Furthermore, we count the usage of each known packer

and consider others as custom. Lastly, we extract the creation time for each sample and

examine how the yearly distributions of different packers change from 2010 to 2015.

Limitations. Our analysis has several limitations. First, since we only collect

signatures for the six packers, which are by no means complete, the ratio for the custom

packers may be overestimated. Second, theoretically, the custom packers can impersonate

the commercial packers by using the same signatures. However, we argue that the six

packers are popular and representative. And despite the fact that the custom packers can

impersonate the commercial packers, they probably do not have enough incentive to do so.

Question set 2: How do Android packers work? Is it very different from traditional

packing? What are the security impacts when applying Android packers to apps? Is it easy

for malicious developers to exploit commercial packers and pack their malware or plagiarized

apps?

The second set of research questions is about detailed behaviors and impacts of

Android packers.

Dataset. To understand the detailed behaviors and impacts of Android packers, we

need to have ground truth first. To this end, we make use of Dataset 2 to conduct our study.

We further leverage Dataset 4 to study the malware and plagiarism defense of commercial

packers.

35



Challenges and solutions. Two major challenges need to be resolved here. First,

we need to separate the behaviors of packer’s code from the original code. The second

challenge is to fully understand the detailed behaviors of Android packers at different levels

including Java level, native level and their interactions via JNI. For the first challenge, we

run our benign apps along with their packed counterparts under DroidUnpack and record

all the behaviors. Then we perform diff analysis to reveal only the behaviors of packer’s

code. The second challenge requires us to understand the behaviors at different levels. For

Java level behaviors, we rely on hidden code extractor in DroidUnpack to extract packed

DEX code and further perform static analysis using other tools such as FlowDroid [38]. For

native level behaviors, we are able to retrieve OS-level view and leverage self-modifying code

detector and multi-layer unpacking detector from DroidUnpack to observe the unpacking

behaviors. Moreover, we intercept important function calls to trace file operations, memory

mapping and more to uncover how code is unpacked and loaded into the memory. For JNI

interactions, JNI inspector in DroidUnpack is utilized to monitor everything that happens

through JNI, especially sensitive API calls.

Analysis. In order to grasp how Android packers work, we first execute and record

all the behaviors of packed apps and compare with ground truth. Then, manual investigation

is performed on top of the behaviors to further understand the semantics and underlying

rationale behind those behaviors so that we can not only know what happens but also why

it happens. For the sake of understanding security impacts of commercial packers, we first

extract the hidden code using DroidUnpack and examine the packer added code via static

analysis tools and manual investigation. Lastly, we act like malicious developers to submit
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malware samples and plagiarized apps to commercial packing services and check whether

the submissions can be detected and prevented. To further measure the impact of packing

in terms of malware detection, we submit the packed malware samples to VirusTotal [17].

Limitations. Since our analysis involves human effort to investigate the behaviors,

there may be some behaviors that fail to catch our attention, therefore are missed by our

study. Also, we fail to find any service that could allow us to measure the impact of packing

in terms of plagiarism detection.

Question set 3: Have Android packers been evolving and how? And what are the future

trends of this evolution?

The third set is a two-part question. It is related to the evolution of Android

packers for learning the current status as well as forecasting the future trend.

Dataset. Evolution can only be observed via analyzing large amount of data. Thus,

we use all samples including Dataset 2 and 3 for this purpose.

Challenges and solutions. One challenge here is how to define evolution. We define

it as the change of complexity during unpacking process and characterize this complexity in

two aspects: the number of unpacking layers and some unique behaviors that are designed

to defeat existing unpackers. Inevitably, packed apps have to perform an unpacking process

before original code can be executed. This unpacking process is not necessarily a one-time

effort, in stead, it may contain multiple layers of packing and unpacking. Subsequently,the

number of unpacking layers can be a quite representative attribute to measure the complexity

of packers. Furthermore, we also propose to use new behaviors that are only discovered in

recent years as a sign of evolution as well.
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Analysis. To capture the Android packer evolution, we first consider the number

of unpacking layers by executing all the packed malware samples and utilize the multi-layer

unpacking detector in DroidUnpack to collect the layers distribution information over dif-

ferent years. We hope to see a clear trend of increasing layers of packing. Then, we scrutinize

some novel behaviors captured by DroidUnpack that are clearly targeting unpackers and

only appear in the recent years and then use those to demonstrate the evolution.

Limitations. Our current measurement of complexity is by no means comprehensive

and complete, as compared to the one used for measuring the traditional PC packers [123].

We leave a more comprehensive study of complexity and evolution as future work.

Question set 4: How do today’s Android unpackers perform? Are they still effective in

the presence of the most advanced packers?

The last set of questions is about current Android unpackers. Due to the afore-

mentioned complexity of Android packers, we would like to see if state-of-the-art Android

unpackers can handle all the cases correctly from a design point of view.

Dataset. We utilize Dataset 5, a group of state-of-the-art Android unpackers to

understand the internals of unpackers and their fundamental design limitations. To test the

effectiveness, we propose to use the samples in Dataset 2 and some malware with advanced

behaviors from Dataset 3 to evaluate those unpackers.

Challenges and solutions. The major challenge is to understand the designs and

fundamental limitations of current Android unpackers. The solution for this challenge is

to study through the literatures and the source code in order to fully understand those

unpackers.
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Analysis. By reviewing the literatures and source code, we perform manual analysis

on the fundamental designs and limitations of each unpacker. To better understand the

whole picture of current Android unpackers, we would like to conduct experiments and

further compare them with DroidUnpack.

Limitations. Although the three Android unpackers are state-of-the-art tools, there

may exist other tools that embrace unique designs and share different insights. We will

continue this investigation in our future research.

3.4 Our Findings

In this section, we present our answers to the four sets of questions raised earlier.
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3.4.1 Question Set 1: High-level Landscape
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Figure 3.2: Yearly distribution.
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Figure 3.3: Packer distribution.
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Figure 3.4: Trend of packer distribu-
tion.

As discussed in the previous reports [11, 7], researchers have found that malware

samples have been leveraging packing techniques to evade detections and infiltrate into

Android ecosystem. Therefore, understanding the high level landscape of packing techniques

among Android malware samples has become the very first thing for us to study.

Question 1.1: Are Android packers (including commercial packing services) being abused

by malware authors? How widely are the packers utilized by Android malware?

Answer : Yes, Android packers are being abused by malware author and packing

techniques are quite prevalent among malware. We present Finding 1 to answer the question.

Finding 1. Malicious developers extensively leverage packing techniques to hide

malice. By depicting the yearly distribution for packed apps, Figure 3.2 shows the fact that
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packing techniques have embraced similar popularity among malware from 2010 to 2015

with an average of 13.89%. Interestingly, this observation contradicts AppSpear [135] where

the authors claim that the ratio of packed apps is increasing. The reason to this discrepancy

is that AppSpear only detects packers by signatures thus misses custom packers while we

are able to extract a more complete picture of packing techniques.

Question 1.2: What are the distributions of different commercial and custom packers

across Android apps?

Answer : The following finding 2 answers this question by showing the distributions

of different packers.

Finding 2 . Custom packed malware samples take up the largest portion of all

packed malware. The distribution of packed app over different packers is presented in

Figure 3.3. For all the 93,910 malware we collect, 13,052 (13.89%) of them are packed.

We find custom packing takes up the biggest portion (70.35%) of the packed malware and

followed by Bangcle which is utilized by 16.64% of the packed malicious apps. This finding

further indicates the necessity of DroidUnpack as no existing tool can analyze custom

Android packers.

Question 1.3: How do the distributions change over time?

Answer : By depicting the trend of packer distribution from 2010 to 2015, Finding

3 gives us the answer to the above question.

Finding 3 . Android commercial packers are increasingly abused by malware. Apart

from what has been stated above, Figure 3.4 takes one step further to illustrate the trend

of packer distribution among different years. Clearly, commercial packers are increasingly
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leveraged by malware as the ratio of custom packers has decreased gradually from 88% in

2010 to 69.3% in 2015. This finding is then on par with what AppSpear [135] claims.

Summary for finding 1-3. Two observations can be made from the above study. First,

the existence of packed malware is a real threat with very long history tracing back to

early stage of Android. This indicates that the study of Android packing techniques is not

only beneficial but also necessary for malware analysis. Second, while custom packers still

dominate, commercial packers are gaining popularity steadily over time. Despite the effort

of enforcing different kinds of detection techniques, commercial packers still have a long way

to go for filtering out malware from being packed.

3.4.2 Question set 2: Detailed Analysis on Android Packers

From the previous results, we know Android packers including commercial and cus-

tom ones have been widely abused by malware. It is important to understand the behaviors

of these packers, especially the unique behaviors that do not appear in the traditional PC

packers. To this end, we perform detailed analyses on both commercial and custom packers.

Our study shows Android packers have embraced some unique packing techniques that are

not reported by the previous Android and traditional packer research [123, 146, 135]. More

importantly, as free services, we find commercial packers are not as secure and innocent as

they claim to be.

Question 2.1: How do Android packers work? Is it very different from traditional packing?

Answer : Yes, Android packers are indeed very different from traditional packers.

We elaborate the differences using Finding 4.
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Table 3.1: Commercial packer behavior.
apkprotect Ali Bangcle ijiami Qihoo Tencent

Context switching via JNI 7 7 7 3 7 7

Native/DEX obfuscation 3 3 3 3 3 3

Pre-compilation 7 7 7 7 3 7

Multi-layer unpacking 7 7 3 3 3 3

libc.so hooking 7 7 3 7 7 7

Self modification 7 7 7 7 7 7

Component hijacking vulnerability 7 7 7 7 3 7

Information leakage 7 7 7 7 7 3

Table 3.2: Multi-layer unpacking.
# of layers

apkprotect 1
Ali 1
Bangcle 9
ijiami 4
Qihoo 4
Tencent 40

Finding 4 . Commercial packers have adopted many unique yet unreported features

for anti-unpacking. Following the methodology described in Section 3.3.2, we comprehen-

sively study the behaviors of six popular commercial packers. Table 3.1 summaries unique

features of those packers.

App context restoration via JNI. Application context restoration is a common prac-

tice among Android packers. To hide the original code completely, packers including ijiami,

Qihoo and Tecent create their own wrapper applications. These wrapper applications col-

lect environment information (e.g. CPU architecture), load necessary libraries, unpack the

original code and restore the app context back to the original code. AttachBaseContext()

is the function that packers usually override to perform these tasks since it is called by the

framework even before OnCreate() and has the ideal timing for pre-processing. JNI, on

the other hand, is extensively used by packers for various of reasons. First, JNI functions
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which are declared within Java level but defined in native libraries will break the control-flow

and data-flow analyses. Second, some functions with heavy computations can be written

as native yet still be called from Java level to boost performance. Third, packers can also

leverage JNI to hide sensitive behaviors from being detected, thwarting most of the current

Android app analyses. By leveraging DroidUnpack JNI analysis capability described in

Section 3.2.4, we can bridge the gap between Java and native, thus understanding exactly

what has happened at native level and how Java and native codes cooperate. In our study,

we utilize PScout [39] and DroidUnpack to monitor sensitive API calls within JNI and

discover that only ijiami packer cleverly invokes its application context restoration via JNI,

making it harder to be detected.

Native/DEX obfuscation. As reported by the previous work [146, 135], obfusca-

tion techniques are widely employed by commercial packers at both DEX and native levels.

DEX code level obfuscation includes a wide range of techniques, such as string obfuscation,

reflection, dead code injection and more. But for native code, things are slightly different.

In Android, JNI builds up a bridge between Java code and native code, allowing them to

interact with each other. There are mainly two ways of performing method lookup: 1) tra-

ditionally, developers could name the JNI functions in a specific way using Java + package

name + class name + function name format so that the function mapping is automatically

handled; 2) JNI functions can also be explicitly registered via JNI_OnLoad. All the pack-

ers other than apkprotect take this approach so that they can randomize function names,

making it more difficult to obtain the control flow graph. Moreover, most of the commer-

cial packers will introduce native libraries as stated in [146] for the purpose of performing
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unpacking. We discover that all of the native libraries are equipped with encryption to

data and code sections within binary so as to prevent analysis. At runtime, the libraries

are first loaded into memory, then unpacking code will identify the address by reading from

/proc/pid/maps and decrypt the libraries dynamically. This kind of behavior is observed

using DroidUnpack through libc function interception and memory operation analysis.

Multi-layer unpacking. Many Android unpackers [146, 135, 120] depend on an as-

sumption that there exists a clear boundary between packer’s code and original code within

packed apps to function normally. However, according to our observation, this assumption

no longer holds. According to our study, many commercial packers turn to multi-layer un-

packing strategy, meaning other than unpacking the original code at once and loading into

memory, they unpack the original code layer by layer during execution. This technique will

obviously render the current memory dump based unpackers useless since the dumped mem-

ory will contain mostly the unreadable packed code other than the original code. Table 3.2

shows that Bangcle, ijiami, Qihoo and Tencent adopt this unpacking technique, among

which, Tencent is the most complex one.

Pre-compilation. Code in OAT file is allowed to be compiled into native code or

remains as DEX. From the app analysis point of view, DEX code is much better than native

code in terms of readability and simplicity as it preserves semantic meaning of the program.

So willfully, packers want to avoid revealing DEX code as much as possible. However,

as we find out in the study, completely transforming original app’s DEX code into native

code is such a challenging idea that all packers simply avoid. Nevertheless, we would like

to see if any of the packer’s code is pre-compiled into native even before the installation.
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In order to detect this behavior, we first configure the dex2oat (the ART compiler) to be

interpret-only so that theoretically no code should be compiled into native code at all.

Then, we utilize DroidUnpack to extract hidden code from all the packed samples and

check if there still exists any native code. While the answer is expected to be negative, we

actually find that the sample packed by Qihoo packer has pre-compiled DEX code. Further

looking into it gives us more details. Just like most of the packers, when packing with Qihoo,

the packer will insert a few new components into the app. However, unlike other packers,

it pre-compiles some of the packer-added DEX code into native code by invoking dex2oat

with default configuration, ignoring the interpret-only flag. This technique is much less

difficult than converting app’s original code into native code, but can still be very useful to

hinder analysis tools understanding the whole picture, especially for tools that hook Android

runtime functions, e.g., DexHunter [146].

libc.so function hooking. Among many anti-debugging techniques that the packers

adopt, libc modification is a very special one. We only observe this behavior with Bangcle

packer. By analyzing memory operations, we discover that it actively modifies the libc.so

module. Further inspection shows the packer tries to hook a series of important libc functions

such as read, write, open, mmap, etc. This hooking behavior will disrupt many unpackers.

Unpackers such as DexHunter [146] rely on libc functions like fwrite to dump the code

from memory into files. When using these packers to unpack Bangcle, the app will simply

crash if these libc functions are called, therefore, completely breaks the unpacking process.

In order to bypass this restriction, one has to modify the unpackers and directly invoke the

associated system calls instead of libc functions. This requirement certainly puts an extra
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hurdle for unpacker users. This technique, on the other hand, will not affect DroidUnpack

since it is based on whole-system emulation.

Question 2.2: What are the security impacts when applying Android packers to apps?

Answer : We discover severe security vulnerability and data breach2 that some

commercial packers are responsible for.

Finding 5 . Android packers have led to severe security vulnerability and data

breach affecting more than 1 billion users.

Commercial packers are believed by developers to be secure and only to protect

intellectual property. The results of our study, however, shows that by applying some of the

packers, the apps will have serious component hijacking vulnerability as well as information

leakage problem.

Component hijacking vulnerability. Component hijacking vulnerability in Android

is dangerous due to the fact that it allows malicious app to invoke vulnerable components

and achieve a series of goals including privilege escalation and information stealing. One

component within Android app can be considered as a potential target as long as its at-

tribute “android:exported” is set to true in Manifest file. During the study, surprisingly, we

notice two potential vulnerable components created by Qihoo packer: a content provider

and a service. By examining the Manifest file, we find that the attribute “android:exported”

for both components are set to be true, indicating the possibility of component hijacking

vulnerabilities. Further study shows that the service is successfully launched during app

execution. Since the service is fully packed, we utilize DroidUnpack to extract the hidden

code and conduct a thorough investigation. Eventually, we confirm that the service is indeed
2This issue was identified by static analysis. We tried to contact Tencent to confirm but no reply so far.

47



vulnerable to component hijacking attacks. The service handles two different intents, one

of them allows the service to download files from remote server and replace arbitrary file

within the app using the app’s permission. We manage to write a Proof-of-Concept code

that can exploit this vulnerability by downloading a DEX file from our own server and re-

placing arbitrary files within the vulnerable apps. In a nutshell, using this packer to pack a

perfectly secure app exposes serious arbitrary file write and even arbitrary code execution.

We have reported this security issue, it was acknowledged and assigned highest priority.

Information leakage. Our study unveils another astonishing fact that one of com-

mercial packers adds code to the original app to collect sensitive user data and send back to

its own servers, thus causes an information leakage problem. As shown in Table 3.1, among

the packers we study, Tencent packer introduces this kind of dangerous behavior. Upon

packing, it will add six new permission requests to the original apps including some very

sensitive ones such as ACCESS_NETWORK_STATE and READ_PHONE_STATE. Once the packed

app is launched, it will collect sensitive user data such as “deviceId”, “subscriberId”, “MAC

address”, and send them back to its own server via an insecure HTTP connection. This be-

havior not only leaks user sensitive information to their server without any user awareness

but also gets them exposed to the public as attackers can easily eavesdrop via man-in-the-

middle attack. During the investigation, we rely on DroidUnpack to extract hidden code

and discover the information leakage using FlowDroid [38], a state-of-the-art context-, flow-,

field-, object-sensitive static analysis tool.

Impact. By simply examining the apps that are using the two problematic packers,

we can draw a conclusion that these two security issues are very severe as they are affecting
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Table 3.3: Security scrutiny.
apkprotect1 Ali Bangcle ijiami Qihoo Tencent

Malware defense failure 5/5 0/5 2/5 2/5 0/52 1/5
Plagiarism detection failure 3/3 3/3 3/3 3/3 3/3 3/3
1 apkprotect is not on-line service and has no prevention for malware or plagiarism.
2 Qihoo detected first attempt and blocked further malware submission.

more than 1 billion users right now. Qihoo packer, which introduces component hijacking

vulnerability, has been leveraged by some most famous apps including Gaode Navi, Qian-

niuniu Finance. Gaode Navi is actively used by more than 500 million users as their daily

navigation app. The vulnerability within it can easily be leveraged by attackers to obtain

users’ daily routing information. Qianniuniu finance, which has been downloaded for more

than 3 million times, is an investment app. The vulnerability within it can severely damage

users’ financial security. The information leakage issue, on the other hand, is affecting even

more users as it is applied by a series of popular apps including QQ, a chatting app that

has more than 800 million active users.

Question 2.3: Is it easy for malicious developers to exploit commercial services to pack

their malware or plagiarized apps?

Answer : Yes, Finding 6 shows that it is very easy for malicious developers to

exploit commercial packers and avoid being detected.

Finding 6 . Malicious developers can easily exploit commercial packers to pack

malware and plagiarized apps and thus evade detections.

As we know, all of the packers except for apkprotect provide on-line services which

aim to present packing service to protect developers’ intellectual property while avoid being

leveraged by malware and plagiarized apps. Consequently, they all claim to implement some
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Table 3.4: Malware detection rate comparison.
Malware name Original detection rate Packed detection rate
Android.Malware.at_plapk.a 61.67% 26.67%
Android.Troj.at_fonefee.b 66.67% 35%
braintest 63.33% 37.29%
ghostpush* 70% N/A
candy_corn 68.33% 38.98%
* All commercial packers can successfully detect it as malware.

kinds of security scrutiny. To this end, we conduct a study on this subject by submitting

5 confirmed recent (early 2016) malicious apps and 3 plagiarized apps to these packers and

the results are presented in Table 3.3.

Malware defense. Malware detection is hard but packed malware detection is even

harder [11, 5]. To protect users from being compromised, all studied commercial packing

services claim to conduct advanced code analysis to rule out malware. However, our study

result somehow shows otherwise. Among those five packers, Qihoo is namely the best when

it comes to malware defense. It detected our first malware and blocked us from further

submission. Ali also managed to detect all five malicious apps and prevented us from

packing them. Together with Figure 3.4, we can clearly observe a huge improvement over

malware detection for Qihoo and ALi. Other packers, however, can only detect a portion of

them resulting in successful packed malware. We then submit the original malware samples

as well as the packed ones to VirusTotal [17]. As illustrated in Table 3.4, the detection rates

for malware have dropped significantly after packing, showing that malicious developers can

easily exploit commercial packers to pack their malware and evade detection.

Plagiarism detection. Although all packers claim to help developers scan over mul-

tiple Android markets to detect plagiarism, no one actually stops developers from submitting

plagiarized apps to its server. In our study, we submit three plagiarized apps to those pack-
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ers and easily create packed plagiarized ones through all packers without any issue. This

security loophole can be effortlessly leveraged by plagiarized app developers to pack their

apps, rendering plagiarism detection more difficult.

3.4.3 Question set 3: Evolution of Android Packers

Question 3.1: Have Android packers been evolving and how? What are the future trends

of this evolution?

Answer : Yes, Android packers are clearly evolving. We describe this trend with

Finding 7.

Finding 7 . Android packers have been evolving very fast in the last few years.

Based on the systematic study of large number of packed malware samples over multiple

years, we observe that Android packers are clearly evolving. We characterize this evolution

in two different aspects: the number of unpacking layers and featured behaviors.
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Figure 3.5: Layer distribution.
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Number of unpacking layers. We have seen multi-layer unpacking in commercial

packers, but we haven’t seen such complicated unpacking process as shown in Figure 3.5.

In year 2015, there exist about 1.3% of custom packed Android malware that unpack their

hidden code with more than 1000 layers. This level of complication is never observed in

commercial packers and certainly brings tremendous difficulty for unpackers to operate. In

contrast, the most complicated custom packed malware we have in year 2010 has only 6

layers. The ratio of packed malware that equip with 10 or more layers unpacking has grown

from 0% in 2010 to 24.73% in 2015 which is a clear indicator that Android custom packers

have been evolving in a fast pace.

Behaviors. We consider two interesting behaviors as a clear sign of evolution

for Android packers. First is the aforementioned libc.so hooking. As described, Bangcle

packer modifies libc.so module so as to hook functions and prevent unpackers such as Dex-

Hunter [146]. By analyzing the timing, we can see this behavior was not added by Bangcle

until DexHunter has released. Clearly, Bangcle itself is evolving to defeat unpackers. Sec-

ond, a more advanced technique has been observed by us that it modifies DEX code at

runtime so that apps can change their behaviors dynamically. By closely monitoring mem-

ory writes and code executions as described in Section 3.3.2, we observe this behavior in

20 out of 93,910 wild malware samples, 6 from 2014 and 14 from 2015. Self modification is

normally done via JNI since native code is more suitable than Java code for memory manip-

ulations. The app invokes JNI function which is responsible for code modification to start

this process. The function first finds the right module by scanning over /proc/self/maps

file which stores the addresses of all modules. Then, it locates OAT file in memory via
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magic number “oat\n” and parses the OAT file to acquire the correct class and method to

modify. Before modification can be performed, it needs to change the memory protection by

calling mprotect to make it writable. Finally, payload is inserted into the designated code

region via memcpy and gets executed. This kind of technique has been useful for hiding sen-

sitive code from static analysis and unpacking tools. For example, one sample dynamically

modifies the code so that other than invoking the original function, it calls a different one.

Note that this technique is designed to work on DEX code which means ART may have

compatibility issue as the compiler compiles DEX code into native code Ahead-Of-Time. To

verify, we test those apps again with dex2oat configured as “speed” mode and observe that

self-modifying behavior has disappeared.

Future trends of this evolution. Android packers are evolving. We believe the future

Android packing technique could push its limits further into several directions that could

get unpacking increasingly problematic. First, more interactions between DEX code and

native code will appear in packing techniques. Native code is favorable for packers as it is

unobservable from Java level, and thus is more difficult to extract. Moreover, it is a known

challenge to recover semantics information even if unpackers can successfully extract the

code. The pre-compilation behavior we observe is only the very first step that falls into this

category. Second, Android packing strategy will continuously become more sophisticated.

We have seen Android packers growing from single-layer to multi-layer and will probably

see packers carrying other features as what has happened in PC packer [123], such as cyclic

transition, multi-frame and more. Third, Android packers may eventually turn to emulation-

based packing techniques which can defeat all existing unpackers including DroidUnpack.
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3.4.4 Question set 4: Android Unpackers

We study the designs, implementations and limitations of the mainstream Android

unpackers and test them against the packed malware samples in the wild.

Question 4.1: How do today’s Android unpackers perform? Are they still effective in the

presence of the most advanced packers?

Answer : No, state-of-the-art Android unpackers are not working properly as ex-

pected. We clarify this answer by introducing Finding 8 which gives an overview of how

those unpackers perform.

Finding 8 . State-of-the-art Android unpackers have serious design limitations that

they cannot handle advanced Android packers. Current unpackers could be roughly cate-

gorized into three types based on distinct system designs. 1) Locate DEX file by signature

and perform memory dump; 2) Modify DVM to hook certain important functions to find

DEX file and then dump the code; 3) Modify DVM to dump Dalvik data structures on the

air and then assemble them back into a DEX file. As discussed in Section 3.3.2, we pick

three state-of-the-art unpackers from each category and compare them with DroidUnpack

in Table 3.5.

Design choices. Kisskiss [119] follows a very traditional unpacking process. It is

compiled as a stand-alone program and pushed into Android system for attaching to and

accessing memory of target application using ptrace. It recognizes odex objects based on

the memory map and the magic number and finally performs the memory dump. Dex-

Hunter [146], on the other hand, is designed to be more general-purpose based on a study of

protections of current packers. Relying on customization of class loading of both Dalvik and
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ART runtime, it guarantees that all classes of odex are initially loaded, correctly located

and then extracted. Certainly, this runtime customization approach is immune to anti-

debugging and anti-emulation techniques. AppSpear [135] adopts techniques of bytecode

extraction and DEX reassembling based on Dalvik instrumentation. Once the main activity

is interpreted or a new DEX file is loaded, AppSpear extracts the inner Dalvik Data Struc-

ture (DDS) and performs a reassembling process to recover the DEX file. DroidUnpack

takes a completely different approach from those unpackers by leveraging the whole-system

emulation technique. It detects a packed app via monitoring program execution on overwrit-

ten code regions and relies on only intrinsic characteristics of Android runtime and enables

VMI to recover hidden code.

Limitations. Unlike DroidUnpack, none of the existing Android unpackers can

have a whole view in multiple levels of the system nor can they detect unknown packers in

a complete fashion.

Besides this, Kisskiss faces several severe limitations. First, commercial packers

usually deploy techniques, like anti-debugging or in-memory obfuscation towards odex ob-

jects, to defeat this unpacking process [146]. Since Kisskiss relies on the magic number

to dump odex objects, it does not work with unknown new packers or even the upgraded

version of existing packers. Moreover, as it only dumps the memory once based on signature

and could be easily defeated by more advanced techniques such as multi-layer unpacking

and self-modifying code.

DexHunter mainly improves the way of locating DEX file in memory by hooking

class loading functions. This design choice makes it more robust than Kisskiss. However,
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it is still far from being perfect. First of all, as stated in the previous section, libc.so func-

tion hooking in Bangcle packer could defeat DexHunter unless users modify it accordingly.

Second, multi-layer unpacking and self-modifying code will result in incomplete and even

erroneous code dump because DexHunter only dumps the memory at the class loading time

when the hooking functions get triggered.

AppSpear customizes DVM to collect the DSS data structure so that the code it

dumped must be unpacked. However, it still exposes a few important limitations. First, it

only works in Dalvik but not in the latest ART. In ART, code can be compiled into native

during installation and will not even appear in any Dalvik data structures. Second, finding

correct timing to extract DSS can be a very challenging task. By default, it only considers

the main activity as unpacking point [135] which may lead to incomplete code coverage.

Despite the fact that DroidUnpack can overcome limitations described above, it

does have a few drawbacks. As shared by all dynamic analysis techniques, DroidUnpack

certainly suffers from limited cover coverage as it can only dump the code that executes.

And since it is built on top of whole-system emulation, packers that enforce anti-emulation

techniques will inevitably break the analysis.

Experiments. We conduct the experiments upon Android 4.3 and 4.4 emulators

for two popular open sourced unpackers. DexHunter and Kisskiss with two datasets. 1)

Dataset 2 in Section 3.3.1; 2) self-modifying malware samples collected in the above study.

As shown in Table 3.5, at the time our experiment was carried out, Kisskiss failed to dump

memory from all six packers. This is probably because the signatures that Kisskiss relies on

have been changed. The experiment results then show that DexHunter is rather sensitive
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Table 3.5: Study of unpackers
Tool Design Limitations Open source Recover code Self-modifying samples

DexHunter

Modifies DVM and hooks
class loading functions for
locating and extracting
DEX file

a) rely on feature string,
which could vary when a
packer is upgraded; b) diffi-
cult to find the right timing,
can’t deal with incremental
packer, which means there
isn’t a single moment when
all codes coexist in memory
together

Yes

Success: Tencent.
Failure: Ali, Bangcle,
ijami, Qihoo. Not
support: apkprotect

No

AppSpear

When MainActivity is
launched or a new DEX
file is loaded, AppSpear
extracts inner DDS and
reassembles the DEX file.

a) lack of support for ART;
b) hard to find correct tim-
ing for extraction

No N/A N/A

Kisskiss

Uses ptrace to attach to
the memory of target appli-
cations, and identifies and
dump odex objects based
on memory map and magic
number.

a) can’t handle apps with
anti-debug or in memory ob-
fuscation techniques; b) re-
quires understanding of the
specific packer to get magic
number thus doesn’t work
with unknown packer or
even slightly upgraded exist-
ing packer

Yes

Success: none. Fail-
ure: all samples. Can
find odex file in mem-
ory map, but failed in
locating the correct
address. So, pread
syscall failed.

No

DroidUnpack

Monitor program execution
and memory operations
based on whole-system
emulation

a) cannot handle packed
samples with anti-emulation

Yes
Success: Ali, apkpro-
tect, Bangcle, ijiami,
Tencent, Qihoo

Yes

in the arms race with packers. The prototype relies on a fingerprint (feature string) of each

known packer, which we found only works for Tencent packer now. Note that the result for

Tencent is still incomplete as it adopts multi-layer unpacking.
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Chapter 4

Automatic Generation of

Non-intrusive Updates for

Third-Party Libraries

4.1 Introduction

Third-party libraries (TPL) have been used extensively in Android to provide rich

complementary functionalities for Android apps and ease the app development. This trend

becomes even more obvious recently as Android apps are getting increasingly complicated.

Prior research has shown that every app contains 8.6 distinct TPLs on average [145], and

42.9% of Android apps even have more code in TPLs than in their real logic [87].

Despite the benefits, TPLs also brings serious security problems for Android app.

It has been revealed [43] that 70.40% of Android apps include at least one outdated TPL
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and 77% of app developers update at most a strict subset of their included libraries, leaving

many known security vulnerabilities unpatched within their apps. In fact, updating TPLs in

Android apps can be so time-consuming and tedious that app developers are often forced to

leave TPLs outdated. First, updating libraries to the latest version is very likely to involve

considerable manual efforts to solve backward incompatibility issues [58]. Second, although

97.8% of actively used library versions with a known vulnerability could be fixed via a drop-

in replacement with a specific version [58], it is impractical for app developers to search for

a suitable version and replace the vulnerable one for each and every library in their apps.

Existing Research. Prior efforts have been made to study and mitigate the problems

with TPLs in Android apps. To understand TPLs, a variety of library detection tech-

niques are proposed [96, 52, 43, 87, 88, 58, 125, 145] to detect TPLs in apps and study

the prevalence [87, 125, 145], library evolution [88], up-to-dateness [58] and other security

issues [43, 58]. Further, a series of techniques are proposed to isolate TPLs from the Android

app. TPLs can be transformed into new processes [116, 142], new apps [121, 78], or new

services [106]. Other works enforce in-app privilege separations [127, 114] in order to keep

the apps’ privileges from TPLs. However, these techniques do not fix security issues per se

but merely limit the harmfulness of potential problems in TPLs from the apps.

To alleviate the issues, AppSealer [139] performs automatic patching for preventing

component hijacking attacks in Android apps. Capper [141] and Liu et.al. [92] rewrite the

Android apps to keep track of private information flow and detect privacy leakage at run-

time. CDRep [95] fixes cryptographic-misuses in Android with similar byte-code rewriting

technique. Azim et.al. [41] detect crashes dynamically and use byte-code rewriting technique
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to avoid such crashes in the future. Nonetheless, these techniques only aim to fix specific

types of security issues and do not deal with the outdatedness problem on TPLs. Hence,

existing patching techniques on Android cannot keep TPLs updated and fix security issues

in a generic fashion.

Our Approach. To solve the problem, we aim to automatically generate updates for TPLs

in Android apps in a non-intrusive fashion such that it does not require any code modification

on the app side and more importantly, introduce no impact to the library interactions with

other components locally and remotely as we call it non-intrusive. The advantages of non-

intrusiveness are two-fold: 1). it requires zero change to the code for the given Android app

so that the full backward compatibility and maintainability of the apps are ensured; 2). the

internal state consistency of the app is secured since the updates guarantee no impact to

the program logic of the updated library.

To achieve this goal, we need to understand the impact of the code changes between

the outdated libraries and the latest versions. LibBandAid utilizes forward program slicing

algorithm to perform Impact Analysis [46]. Traditional slicing algorithm [129] is extremely

conservative and often generates unwieldy slices [45, 113]. In our case, these slices will very

likely to violate the non-intrusiveness. Techniques [118, 144, 112] have been proposed to

prune the slices. However, they either consider only data-flow [118] or calculate relevance

scores [112, 144] and remove the less relevant codes. Obviously, none of them can meet our

need of soundness. As a result, we propose a novel slicing algorithm called Value-sensitive

Differential Slicing that fully leverages the diffing information between two versions and

eliminates the over-conservativeness of the traditional slicing by keeping track of value set

60



changes for all variables. With it, we are able to produce much smaller slices while still

preserving the soundness for the purpose of updates generation.

We further implement a prototype system called LibBandAid to solve the out-

datedness of TPLs. Our system first extracts the outdated libraries from a given Android

app, compares each outdated library with its latest version counterpart and generates diffing

information that precisely characterizes the code changes at code statement level. Then it

uses our new slicing algorithm to analyze the impact of each code change and group related

changes together to form a set of candidate updates based on control and data dependencies.

Finally, our system carries out a selective updating process to apply only the non-intrusive

updates to the Android app.

We then conduct a comprehensive evaluation on LibBandAid by collecting 9 pop-

ular TPLs with 173 security related commits across 83 versions and 100 real world apps.

The experimental results show that LibBandAid can effectively patch the security vulner-

abilities with a high success rate.

Contributions. In summary, this paper has made the following contributions:

• We propose an automatic non-intrusive patch generation technique and implement

a prototype system called LibBandAid, which is the first of its kind to solve the

outdatedness problem for TPLs in Android apps.

• A novel slicing algorithm called Value-sensitive Differential Slicing is proposed to uti-

lize the diffing information between old and new versions of the code and reduce the

over-conservativeness of the traditional forward slicing while still preserving the sound-

ness for generating updates.
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• We evaluate LibBandAid with 9 popular TPLs with 173 security related commits

across 83 different versions and 100 real world apps. The experimental results show

that LibBandAid can effectively update the outdated library to fix security vulner-

abilities with an average success rate of 80.6% and even higher rate of 94.07% when

combined with potentially patchable vulnerabilities. We demonstrate the correctness

of the updated apps with automatic and manual testing.

4.2 Problem Statement

Deployment Model. Our proposed technique is anticipated to be deployed as a service for

Android app developers (other than app markets or end users). Developers can feed their

apps with an outdated TPL as well as the latest version of that TPL into LibBandAid. Our

system will perform automatic updating by generating and applying non-intrusive updates

to the TPL within the submitted Android app without any modification to the apps’ code.

Our approach is designed to be conservative such that it is guaranteed to maximize the

updating in a non-intrusive manner. As a result, security related updates as well as other

updates (e.g., new features and optimizations) can be applied to the outdated library.

It is noteworthy that the trade-off of non-intrusiveness is the completeness. Lib-

BandAid will avoid applying updates that could change the interactions among the TPL

and other components. As a result, our approach makes a reasonable underlying assumption

so that LibBandAid is set to cover most of the security related updates.

Assumption. LibBandAid is designed to update the outdated TPLs as much as possible

with a high coverage for security related updates without violating the non-intrusiveness.
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The underlying assumption is that a security patch (e.g., insert a new condition check) is

unlikely to introduce backward incompatibility or change how the TPL interacts with other

components locally (e.g., with the app) and remotely (e.g., with TPL server). Hence, most

of the security related issues can be fixed by our technique as they are very unlikely to be

filtered out by the pre-defined rules that are designed to ensure the non-intrusiveness. This

assumption is demonstrated by our evaluation with 9 most popular TPLs in Section 5.7.

Goals. Specifically, LibBandAid achieves the following design goals:

• No source code required. Our technique does not require any source code from

Android app or the included TPLs. This is important because TPLs can be closed-

source.

• High coverage for security patches. LibBandAid aims for a high coverage in

updating security related issues in outdated TPLs.

• Non-intrusiveness. The generated updates do not change how the original app

interacts with other components nor do they break the correctness of the app.

4.3 System Overview

In this section, we first present a running example and use it to explain the work-

flow of LibBandAid. Note that our approach works at byte-code level, source code is

presented here only for ease of understanding.
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4.3.1 Running Example

The example is based on Dropbox library [19], one of the most popular third-party

libraries. Assuming that a given Android app is using Dropbox library version 3.0.3 (released

on May 2017). There exist 50 commits from version 3.0.3 to the latest version 3.0.6 (released

on Jan 2018), including 16 code commits 1. Listing 4.1 displays two commits. Lines with

colors show the code changes: green indicates code insertions while red and yellow specify

code modifications.

The first commit is a new security feature commit to add a field accountId in the

class DbxAuthFinish to identify Dropbox users instead of using userId in older versions.

The second commit is a vulnerability fix that adds a body field and calls close() function of

the body in a callback function onFailure(). When Internet access is cut off, the callback

function onFailure() will be invoked to close body so that potential system hang is avoided.

4.3.2 Overview of LibBandAid

Figure 4.1 delineates the overview of LibBandAid. As shown, there exist four

major components in LibBandAid: preprocessing, diffing analysis, update generation and

selective updating.
1Other non-code commits include changes in README, build file, tutorial and tests
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Listing 4.1: Running example
1 public class DbxAuthFinish implements CallBack {

2 private St r ing user Id ;

3 + private String accountId ;

4 + private PipedRequestBody body ;

5

6 - public DbxAuthFinish(String uid) {

7 + public DbxAuthFinish(String uid,String aid,Body body) {

8 this . u se r Id = uid ;

9 + this.accountId = aid;

10 + this.body = body;

11 }

12 public DbxAuthFinish ( ){

13 + this.body = null;

14 + this.accountId = null;

15 this . u se r Id = null ;

16 }

17 public void onFai lure ( IOException ex ) {

18 this . e r r o r = ex ;

19 + if(body) this.body.close();

20 n o t i f yA l l ( ) ;

21 }

22 public DbxAuthFinish read ( ) {

23 + String accountId = null;

24 St r ing use r Id = null ;

25

26 while ( getCurrentToken ( ) ) {

27 i f (n . equa l s ( " uid " ) )

28 use r Id = readFie ld ( ) ;

29 + else if(n.equal("accountId"))

30 + accountId = readField();

31

32 + if(accountId == null)

33 + throw JsonReadexception;

34 }

35 - return new DbxAuthFinish(userId) ;

36 + return new DbxAuthFinish(userId, accountId, body) ;

37 }

38 + public String getAccountId() {

39 + return accountId; }

40 }
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Figure 4.1: Architecture Overview.

Preprocessing. This step is to filter out the unchanged functions and generate function

pairs that are modified across the two versions. Preprocessing component takes as inputs an

app with outdated library and a latest version of the library, and outputs a set of function

pairs. More specifically, it extracts the outdated library within the given app, analyzes all

classes in the two versions of the library and performs function level byte-by-byte compar-

isons.

old library

new library

DbxAuthFinish()
DbxAuthFinish(String)
read()
onFailure()
…

DbxAuthFinish()
DbxAuthFinish(String, String, Body)
read()
onFailure()
getAccountId()
…

Function Mapping List: 
(function in old lib -> function in new lib)

DbxAuthFinish()  ->  DbxAuthFinish()
DbxAuthFinish()  ->  DbxAuthFinish(String, String, Body)
DbxAuthFinish(String) ->  DbxAuthFinish()
DbxAuthFinish(String) ->  DbxAuthFinish(String, String, Body)
read()  ->  read()
onFailure()  ->  onFailure()

New Functions:
DbxAuthFnish: getAccountId()

class 
DbxAuthFinish

class 
DbxAuthFinish

Figure 4.2: Preprocessing.

As shown in Figure 4.2, LibBandAid first pulls out all the functions in the class

and performs byte-by-byte comparisons for each function in old library with the functions

in the new library as long as they share the same function name. Note that we use function

name other than function signature to tolerate changes of modifier, parameter or return

type. For example, DbxAuthFinish() in the old library is compared with DbxAuthFinish()

and DbxAuthFinish(String, String, Body) in the new library. When the byte-by-byte
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comparison fails (two functions are not identical), we put them in the potential function

mapping list and send it to diffing analysis for further analysis. This list signifies the

functions in which the code changes between old and new versions reside.

Diffing Analysis. Diffing analysis in LibBandAid is to perform function level matching

with a granularity of code statement so as to comprehend the exact code changes between

old and new versions of a given library. To achieve this goal, we leverage the Tracelet Exe-

cution [57] idea and use 3-tracelet to perform code matching at code statement level. Given

the output of preprocessing, 3-tracelets are generated to capture partial flow information by

breaking down the control-flow graphs for each function pair. Then, the distance between

tracelets are calculated to match code statements.

For LibBandAid, we need to perform one more step to match the functions that

have more than one matched candidates. For example, in Figure 4.2, DbxAuthFinish()

in the old library can be matched to either DbxAuthFinish() or DbxAuthFinish(String,

String, Body) in the new library. To understand real code change, LibBandAid leverages

the distance information to further match the functions. Particularly, LibBandAid consid-

ers it as a linear assignment problem and uses Hungarian Algorithm [83] to find the optimal

matching.

Tracelet technique has demonstrated a 0.99 accuracy in comparing functions in

binary code [57]. In our case, byte-code matching is easier than binary code since it is more

semantic-rich. Therefore, we observe no false positive during diffing.

In our running example, DbxAuthFinish() and DbxAuthFinish(String) are matched

to DbxAuthFinish() and DbxAuthFinish(String, String,Body) in the new library respec-
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tively. The final output of diffing analysis is the real mapping of the functions as well as a set

of code changes (pairs of code statements) that precisely characterize the changes between

the old and new versions of the third-party library. For our running example, the produced

code changes are the same as the colored lines in Listing 4.1.

Update Generation. Once LibBandAid identifies all the code changes between the old

and new versions of the library, it starts the update generation as depicted in Figure 4.3.

Latest 
library

code 
changes

Impact 
Analysis

Points-to 
Analysis

Grouping

old 
library

SDG 
Generation

SDG 
Generation

SDGold

SDGnew

Set of 
updates

Figure 4.3: Update Generation.

The whole process takes three inputs: 1). the set of code changes generated by

diffing analysis; 2). the old version of the library; and 3). the new version of the library,

and generates one output (a set of updates). It first generates system dependence graphs

(SDGs) for new and old library. Then it generates a patch for each code change by performing

impact analysis. Finally, it performs grouping based on the alias information generated from

points-to analysis to produce a set of updates.

The purpose of this indispensable step is two-fold. First, since many code changes

have control and data dependencies with each other, LibBandAid should always put them

together and perform updating collectively. For example, in Listing 4.1, Ln.10 and 14 assign

values to a newly added class field body (defined at Ln.4). Ln.21 further calls a member
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function close() of the field. These code changes should be put into one group since they

are the definition and usages of a same variable body. Second, to fulfill the non-intrusiveness

design goal as described in Section 4.2, LibBandAid will perform impact analysis, combine

code changes with all the potentially affected codes and further associate the group into one

update so that our system can apply them as a whole if the update is indeed non-intrusive.

As for our running example, after this step, the code changes in Listing 4.1 will be grouped

precisely into two updates, one for each commit. More details on how LibBandAid performs

impact analysis and update generation will be presented in Section 4.4 and 4.5.

Selective Updating. The last component of LibBandAid is selective updating. This

component takes the updates generated in the previous step, performs filtering to discard

the updates that could potentially break the non-intrusiveness and eventually updates the

old library to generate a new app with an updated library. The core part of this step is

to systematically devise a set of pre-defined rules for filtering so that the non-intrusiveness

of our generated updates can be preserved. As for the running example, two updates are

generated and fed into selective updating. The one related to accountId can potentially

be filtered out by LibBandAid since it will change an interface DbxAuthFinish(String)

and may cause incompatibility issue. We confirm this by analyzing the given Android app.

More detailed information is presented in Section 4.6.

4.4 Update Generation

In this section, we describe how LibBandAid performs update generation by pre-

senting the three major steps: impact analysis, points-to analysis and grouping.
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4.4.1 Impact Analysis

Impact Analysis is to understand the impact (affected codes) of the code changes

generated from diffing analysis. Once the impact of the code changes is known, LibBandAid

groups code changes into updates and performs filtering to remove the ones that violate the

non-intrusiveness.

Program slicing technique seems to be a perfect solution. Starting from a subset of a

program’s behavior, slicing reduces that program to a minimal form which still produces that

behavior [130]. Hence, if we start slicing from a specific code change, it will conservatively

includes all the codes that can potentially be affected by the change. However, traditional

slicing is too conservative to be practical and generates gigantic slices. The larger a slice

is, the more codes it contains, hence, the bigger chance it will violate the non-intrusiveness

and get filtered out (more in Section 4.6). To solve this problem, a new slicing algorithm

is desired to perform a sound impact analysis with respect to our definition of impact to

achieve non-intrusiveness while greatly reducing the over-conservativeness. We discuss the

slicing in detail in Section 4.5.

4.4.2 Points-to Analysis and Grouping

After the impact analysis, LibBandAid performs points-to analysis to extract

alias information and further groups code changes into updates. This step is to group slices

that are accessing the same global variables or have overlapping code statements. We rely

on the existing points-to analysis in Soot [3] to extract alias information.
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4.5 Value-Sensitive Differential Slicing

In this section, we first introduce some important definitions and then describe

how our slicing algorithm works in detail.

4.5.1 Formal Definitions

We formally define the impact of a code change and then lay out our definitions

on the relationships between program behaviors and value sets, upon which the soundness

of our slicing algorithm is built.

Definition 1. We denote impact of a code change on a code statement as I(d, c), where

• d represents a code change in the new library;

• c represents a code statement that has not changed from the old to the new version of

the library;

Therefore, I(d, c) 6= ∅ means that a code change d has impact on code statement

c. Intuitively, I(d, c) = ∅ means that a code change d has no impact on c. We then define

a code change that has no impact on a code statement as:

Definition 2. I(d, c) = ∅⇐⇒ Bd
c ⊆ Bc, where

• Bd
c is a set of behaviors representing all possible program behaviors of cwith d applied;

• Bc is a set of behaviors representing all possible program behaviors of c without

applying d;
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Here, the impact of a code change to a certain code statement is represented by

the change of program behaviors for that code statement. It shows that if and only if all the

possible program behaviors of a code statement c with the code change d applied are still

within the original behavior set, we can say d has no impact on c.

We further make the following definition on the relationship between value-set [44]

of all the variables used in one code statement and the program behaviors of that code

statement:

Definition 3. V Sd(I, c) ⊆ V S(I, c)⇒ Bd
c ⊆ Bc, where

• V Sd(I, c) denotes the value set of all the variables I (global and local) and their

combinations used in a code statement c with d applied;

• V S(I, c) denotes the value set of all the variables I (global and local) and their com-

binations used in a code statement c without applying d;

Essentially, this definition shows that if the value sets of all variables and their

combinations used in a code statement are unchanged or a subset of the original value sets,

then the program behaviors of that code statement must stay unchanged or a subset of the

original ones.

This definition gives a strong mapping from value sets of all variables in a code

statement to the program behaviors of that statement. Together with Definition 2, we can

draw a link between value sets of all variables in a code statement and the impact of a

code change to that code statement. More specifically, our impact analysis can remove the

over-conservativeness by examining the value set changes of all variables in a code statement

between old and new versions of the library. If the value sets are unchanged or become a
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subset of the original set for a statement before and after applying a code change, that

means the code change has no impact on the statement and our algorithm can safely stop

further slicing.

This may be counter-intuitive at first glance. For example, if after applying code

change d, statement c has only one behavior in its behavior set while the original behavior

set has 100 behaviors, d would still have no impact on c as long as the one behavior is within

the original behavior set. However, in this case, We can actually stop slicing safely since we

know the original code c can correctly handle d and its affected behavior (it is within the

original behavior set and introduces no unexpected behavior).

4.5.2 Basic Scheme

The idea of our algorithm is to take into consideration the value changes of all

variables between old and new versions of the code and leverage this information to reduce

the over-conservativeness of the traditional slicing.

Intuitively, the basic scheme algorithm starts slicing from a code change and per-

forms whole library-wise context- and flow-sensitive value-set analysis [44] on all variables

and their combinations for each code statement that has either control or data dependency

with the code change. Then it compares the value sets for the variables within these code

statements in two versions of the library. If there exists no change in the value sets, meaning

the code change has no impact on the current code statement, then it does not include the

code statement in the slice. Note that since many values can never be determined in static

analysis, we compute value formulas in a context- and flow-sensitive fashion as the value-set

for non-constant variables.
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Theoretically, this Impact Analysis is sound with respect to the definition of impact.

Accordingly, it should be able to remove the over-conservativeness of traditional slicing

algorithm. However, this design clearly introduces a huge performance overhead for the

whole library-wise context- and flow-sensitive value-set analysis on all variables and their

combinations on every control or data dependent code statement for a single code change

(note that there can easily be thousands of code changes between two versions), rendering

the algorithm practically infeasible.

Consequently, we present two optimizations to this basic scheme to improve the

runtime performance as well as to further reduce the over-conservativeness. Again, source

codes are listed just for ease of presentation while LibBandAid works on bytec-code.

4.5.3 Slice-wise Value-set Analysis

To reduce the complexity, we propose an optimization to narrow down the search

space to the current slice which begins from the code change.

Listing 4.2 shows a real-world security commit from a popular library Event-

Bus [20]. At Ln.4, a condition check !subscriptions.isEmpty() is added in the new

version. The traditional forward slicing will start from the code change and include every

single line from Ln.4 to Ln.23 and even more codes in functions like invokeSubscriber()

since they all have dependency with the code change. However, by manual investigation, we

know the code change does not introduce any new behavior to the postToSubscription(),

hence, our slicing could stop here.

For basic scheme, we then compute value sets for all variables and their combina-

tions in every code statement that is data-dependent on the code change. For instance, for
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code at Ln.6, we calculate value sets for variables sc and event as well as their combina-

tions (say, sc = 1 only if event == 0). This calculation can only be done in a heavyweight

whole library-wise context-sensitive fashion as the value of event is from the caller function

postSingleEvent().

To accelerate the process, we can perform the value-set analysis only within the

slice instead of the whole program since our analysis is to include all code statements that the

starting of the slice (a code change) has affected. That is, as long as the code change (Ln.4)

does not affect the value sets of sc or event or their combinations, we could stop the value-set

analysis and keep our slicing from further propagating into postToSubscription(). This

analysis can be done much faster within the current slice other than the whole library. As

a result, a much smaller slice (Ln.4-8) will be produced in a very lightweight fashion.

This optimization is an approximation to the basic scheme algorithm. It sacrifices

precision of the whole library-wise value-set analysis but greatly improves the performance.

Consequently, it is more conservative than the basic scheme. For example, consider a case

where an assignment a = 1 is inserted in a new library. Every code that uses the variable

a will be included under our optimization. However, a library-wise value-set analysis may

tell us that a = 1 is still within the original value-set. Therefore, we in fact do not need to

include the code statements that are data-dependent on the newly inserted assignment.
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Listing 4.2: Slice-wise Value-set Analysis
1 void postS ing leEvent (Obj event ) {

2 sub s c r i p t i o n s = subscriptionsByEventType . get ( ) ;

3 i f ( s ub s c r i p t i o n s != null

4 + && !subscriptions.isEmpty()) {

5 for ( Subsc r ip t i on sc : s ub s c r i p t i o n s ) {

6 postToSubscr ipt ion ( sc , event ) ;

7 }

8 subscr ipt ionFound = true ;

9 }

10 . . .

11 }

12 void postToSubscr ipt ion ( Subsc r ip t i on s , Obj event ) {

13 switch ( s . threadMode ) {

14 case PostThread :

15 invokeSubscr ibe r ( s , event ) ;

16 break ;

17 case MainThread :

18 mainThreadPoster . enqueue ( s , event ) ;

19 . . .

20 }

4.5.4 Intra-procedural Value-set Analysis.

As discussed, the first optimization that searches only within the slice may bring

over-conservativeness. As a result, we propose a second optimization to relax the search

scope of value-set analysis to the beginning of the function that contains the code change.

Consider Listing 4.3 from Dropbox [19] library. It shows another real-world security

commit that fixes Android Fake ID vulnerability. Code statements at Ln.15-17 in the old

version are updated to codes at Ln.19-20 in the new version and Ln.23 is updated to Ln.24.

Since return true (Ln.17) has now become return false (Ln.20). Apparently, the value

set of variable in the return statement has changed. According to the first optimization, our

slicing algorithm will continue flowing into the call site of hasDropboxApp() at Ln.2, further
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propagate to Ln.2-5 and eventually include almost every line of code in the example except

for Ln.10-14.

In fact, a closer look will tell us that the code changes within hasDropboxApp()

does not really expose any impact on its caller onResume(). Although the return value

is modified, both the old and new versions of the function bear the same function-wise

return value set: {true, false}. In order to capture this information, our algorithm needs

to perform intra-procedural Value-set Analysis beyond the scope of a slice but still within

hasDropboxApp(), which is the function that contains the code changes. As a result, our

algorithm will stop slicing and the generated slice contains only Ln.19 and 20.

Listing 4.3: Intra-procedural Value-set Analysis
1 void onResume ( ) {

2 i f ( hasDropboxApp ( o f f i c i a lAu t h I n t e n t ) )

3 s t a r tAc t i v i t y ( o f f i c i a lAu t h I n t e n t ) ;

4 else

5 startWebAuth ( s t a t e ) ;

6 }

7 boolean hasDropboxApp ( Intent i n t en t ) {

8 Reso lve In fo i n f o s = queryIntent ( i n t en t ) ;

9 i f ( i n f o s == null )

10 return fa l se ;

11 else {

12 for ( S ignature s i g : packInfo . s i g s ) {

13 - for(String dbSig : DROPBOX_SIGS)

14 - if (dbSig.equals(signature))

15 - return true;

16

17 + if (!DROPBOX_SIGS.contains(sig)

18 + return false;

19 }

20 . . .

From the description above, we can see that this optimization sits between the basic

scheme (whole library-wise context- and flow-sensitive analysis) and the first optimization
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(pure slice-wise analysis). Therefore, by applying this optimization to all the variables, our

slicing will be more accurate while maintaining the similar performance gain from the first

optimization with negligible overhead.

4.5.5 Value-sensitive Differential Slicing

Now we present the details of our slicing algorithm in Algorithm 3, which is a

dependence graph based slicing algorithm as [77]. It takes as inputs three elements (a code

change diff and SDGs for the two versions of the library SDGn and SDGo) and generates

slice for that code change as output.

The algorithm first locates the diff in two SDGs (Ln.6) and adds stmtn into a

workingSet (Ln.7) to start the iterative process. The algorithm will continue running as

long as the workingSet is not empty (Ln.9). For every statement in the working set, we

extract its immediate successors by calling ImmediateSuccessors(). For every immediate

successor succ, the algorithm checks if it is another code change. There exist two cases under

this scenario. First, if succ is a code change which contains a new function invocation, our

algorithm needs to leverage traditional slicing by calling Forward_Slicing() to keep track

of the new function call (Ln.13-14) as all its codes are new codes compared to the old version.

Second, if succ is a normal code change, we then consider it as another input to a recursive

function call for V_Slicing() (Ln.15-16).

When succ is not a code change, we add it into the workingSet as well as the

slice if it is only control-dependent on stmt (Ln.17-19). When succ is a return statement,

we apply the second optimization discussed in Section 4.5.4 by performing function-wise
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Algorithm 3 Value-sensitive Differential Slicing
1: input1: diff ← {stmto, stmtn}
2: input2: SDGn ← {SDG of the new library.}
3: input3: SDGo ← {SDG of the old library.}
4: procedure V_Slicing(diff, SDGn, SDGo)
5: slice← ∅
6: fn ← Locate(stmtn, SDGn); fo ← Locate(stmto, SDGo)
7: workingSet← workingSet ∪ stmtn
8: slice← slice ∪ stmtn
9: while workingSet 6= ∅ do

10: stmt← workingSet.remove()
11: Setsuccs ← ImmediateSuccessors(stmt, SDGn)
12: for succ ∈ Setsuccs do
13: if succ contains new invocation then
14: slice∪ ← Forward_Slicing(succ, SDGn)
15: else if succ is another diff ′ then
16: slice∪ ← V_Slicing(diff ′, SDGn, SDGo)
17: else if succ is control-dependent on stmt then
18: slice← slice ∪ succ
19: workingSet← workingSet ∪ succ
20: else if succ is return statement then
21: if !(RetV S(fo) ⊆ RetV S(fn)) then
22: slice← slice ∪ succ
23: workingSet← workingSet ∪ succ
24: end if
25: else if succ is only data-dependent on stmt then
26: vfn ← CalV S(succ, slice, SDGn)
27: vfo ← CalV S(succ′, slice, SDGo)
28: if !(vfn ⊆ vfo) then
29: slice← slice ∪ succ
30: workingSet← workingSet ∪ succ
31: end if
32: end if
33: end for
34: end while
35: Return slice
36: end procedure
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value-set analysis for all return statements to improve the accuracy (Ln.20-23). When succ

is data-dependent on stmt, we calculate and compare the value-sets by calling CalV S() to

extract value formulas at the scope discussed in the second optimization for both old and

new versions and only add succ when stmt has impact on it (Ln.25-30). Eventually, our

algorithm produces a slice by returning slice (Ln.35).

4.6 Selective Updating

The final component in LibBandAid is the selective updating. It takes the

generated updates, performs filtering and applies the updates to eventually produce an

updated TPL. Figure 4.1 shows the two major steps: filtering and updating.

4.6.1 Filtering

This step is to filter the updates that may affect the interactions between the

library and other components in order to achieve the non-intrusiveness goal as explained in

Section 4.2.

LibBandAid applies a set of pre-defined rules to filter out the generated updates

that may violate the non-intrusiveness. These rules are defined to be conservative and can

guarantee that all satisfying updates will not change how the library interacts with other

components. To this end, we investigate into how TPLs works and propose four categories

of interactions as well as the rules.

Interaction with the given app. The first category is listed in the first row in Table 4.6.1.

It defines the rules for interactions with the given app. Android apps that use a TPL are by
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nature the most important component for the TPL to interact with. Therefore, when the

library gets updated by LibBandAid, we guarantee the interactions with the app will not

be affected.

Since the interactions are always through library APIs, we need to make sure the

APIs that are utilized by the app will stay the same in terms of function names, return

types, parameters and exceptions. To this end, LibBandAid performs program analysis to

collect the library APIs used within the app and filters the updates that could change these

APIs. Additionally, LibBandAid performs analysis on the library APIs to collect exception

thrown information. If an update introduces a new exception, it will be discarded.

It is noteworthy that the interaction with the given app is the only category that

relies on program analysis due to two reasons. First, we need to perform program analysis

on the two versions of the library to understand which APIs are changed. Second, even if

some APIs are indeed changed in the newer version, we may still safely update as long as

the Android app does not directly call the APIs.

Interaction with server. Another important interaction for a TPL is to communicate

with its server. For example, Dropbox library communicates with Dropbox server to ac-

cess files. Therefore, our system needs to make sure that the protocol between server and

client stays the same. To do so, LibBandAid scans over each update and checks if there

exists any code within it that performs any network communication (incoming or outgo-

ing). As long as such code exists, our system will be conservative and choose to not apply

this update. For example, if one update contains API calls such as HttpURLConnection:

getResponseMessage(), LibBandAid will filter it out.
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Interaction with system. We then consider the interactions between a library and the

underlying Android system.

First, our update may interact with the Android framework by calling a new An-

droid API that does not exist in the old version. We rely on the result of PScout [39] to check

if the new Android API requires any new Android permission. If it does, then LibBandAid

will discard the update. Second, we check if an update performs any file manipulation in the

Android system. Particularly, LibBandAid cares if the update affects the current system

state, such as creating a new file or writing into a file. The tricky part is the file read. Our

system only prevents the library from modifying the file pointer while reading a file (e.g., a

call to RandomAccessFile: seek()). Third, library may create new kernel objects such as

thread and process. LibBandAid allows this kind of interactions since they do not affect

the execution of Android apps.

Interaction with other apps. The last category of interaction is the interaction with

other apps in the Android system. Apps within an Android system could communicate with

each other via Binder. LibBandAid disallows any update to change the communication

either by creating a new intent or by changing any of the existing intent. Also, an update

that starts, binds or unbinds services in the system is discarded.

4.6.2 Updating

After filtering out the unsatisfying updates based on our rules, LibBandAid ap-

plies the satisfying ones to the outdated library. This step is done at Jimple IR level by

using byte-code rewriting capability in Soot [?]. After the rewriting, we convert the up-
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dated Jimple IR into Dalvik byte-code, repackage the DEX file with other resource files and

eventually create a new Android app (APK file) with updated library.

4.7 Evaluation

In this section, we conduct experiments to evaluate LibBandAid with respect to its

effectiveness and correctness. In particular, we first study how well LibBandAid performs

updating to the older versions of the libraries using a representative set of Android TPLs

and real-world apps. And then we evaluate the effectiveness of our new slicing algorithm by

comparing with traditional slicing algorithm in actual updating.

4.7.1 Dataset and Configuration

We collect 9 popular Android third-party libraries [43] including Butterknife [18],

Dropbox [19], EventBus [20], Glide [22], Gson [23], Leakcanary [24], Okhttp [25], Picasso [26]

and Retrofit [27], with a total of 173 security commits over 83 different versions to evaluate

our system. Table 4.2 shows the library names, total number of security commits as well as

the associated library version spans.

We first collect ground truth based on commit information provided in Github

repositories to gather the vulnerability information for all the 173 security commits. Vulner-

ability types proposed in prior research [91] to these security related commits are presented

in Table 4.3. As shown, our representative dataset covers a wide range of different types of

vulnerabilities.

Then, we compile each libraries into a number of testing versions with two require-

ments: 1). each testing version contains at least one security commit; 2). these testing
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Table 4.2: Overview of TPLs in Evaluation
Library Security Commits Testing Versions Versions Span

Butterknife 6 6 7.0.1 - 8.0.1
Dropbox 11 10 3.0.0 - 3.0.6
EventBus 15 10 2.1.0 - 3.1.0
Glide 22 10 4.4.0 - 4.6.1
Gson 13 10 2.2.4 - 2.8.2

Leakcanary 42 7 1.3.1- 1.5.4
Okhttp 26 10 3.7.0 - 3.10.0
Picasso 19 10 1.5.3 - 3.0.0
Retrofit 19 10 2.0.0 - 2.4.0

versions cover all the security commits and version numbers that are listed in Table 4.2. Fi-

nally, we develop Android apps that utilize these testing versions. For each testing version

other than the latest one, we feed the Android apps with these versions along with the latest

version of each library into LibBandAid for evaluation. To illustrate, Butterknife library

has 6 security commits from version 7.0.1 to 8.0.1. We compile 6 testing versions v1 to v6 to

guarantee each one will contain at least 1 commit. Then we develop 5 Android apps a1 to

a5 that use testing versions v1 to v5 and feed (a1,v6), (a2,v6),..,(a5,v6) into LibBandAid

for experiments.

Furthermore, we collect 100 real-world Android apps from F-Droid [21] to demon-

strate LibBandAid in practice.

4.7.2 Effectiveness of LibBandAid

As discussed, we feed each Android app with an older version library along with

the latest version into LibBandAid and then manually investigate the updated libraries to

see if the commits have been updated.

85



T
ab

le
4.
3:

Se
cu

ri
ty

F
ix
es

D
is
tr
ib
ut
io
n

h
h

h
h

h
h

h
h
h

h
h
h

h
h
h

h h
V
u
ln
er
ab

il
it
y

L
ib
ra
ry

B
u
tt
er
kn

if
e

D
ro
p
b
ox

E
ve
nt
B
u
s

G
li
d
e

G
so
n

L
ea
kc
an

ar
y

O
kh

tt
p

P
ic
as
so

R
et
ro
fi
t

Im
pr
op

er
In
pu

t
V
al
id
at
io
n

1
3

3
6

5
2

7
6

1
D
at
a
H
an

dl
in
g
E
rr
or

4
4

5
3

3
3

7
1

6
U
nc

au
gh

t
E
xc
ep

ti
on

1
1

3
4

1
2

7
2

7
M
em

or
y
Le

ak
1

1
32

1
3

In
fo

Le
ak

2
1

R
ac
e
C
on

di
ti
on

3
Im

pr
op

er
A
cc
es
s
C
on

tr
ol

2
U
nc

on
tr
ol
le
d
R
es
ou

rc
e
C
on

su
m
pt
io
n

1
Sy

st
em

H
an

g
1

1
1

2
U
nc
he

ck
R
et
ur
n
V
al
ue

5
2

Il
le
ga

lR
efl

ec
ti
ve

A
cc
es
s

1
St
ac
k
O
ve
rfl
ow

2
5

H
ea
p
A
cc
es
s
E
rr
or

1
1

1
M
is
si
ng

In
it
ia
liz

at
io
n

1
1

In
te
ge
r
O
ve
rfl
ow

1
Fa

ke
ID

1
N
ew

Se
cu

ri
ty

Fe
at
ur
e

1
T
ot
al

6
11

15
22

13
42

26
19

19

86



Security commits can be divided into three categories: 1). ‘patched’ means our

system can successfully update the library with the commit; 2). ‘fail to patch’ gives the

number of commits that are filtered out by the filtering process due to the violation of our

pre-defined rules; 3). ‘potentially patchable’ shows the number of commits that change the

APIs of the library. LibBandAid may still update the ‘potentially patchable’ ones as long

as the analyzed Android apps do not directly invoke the changed APIs. Therefore, whether

or not our system can update them is on a per app basis.

By Absolute Numbers. Figure 4.16 gives the results in absolute numbers for the 9

libraries. The x-axis shows each execution of LibBandAid while y-axis is the absolute

number of vulnerabilities. For example, the x-axis in Figure 4.8 gives the 9 executions from

(a1,v10) to (a9,v10) for Dropbox library and the y-axis shows the total number of security

commits to be updated for each run. By looking at the first bar in the figure, we can see

that there are total of 11 vulnerabilities between the old and new versions of the library.

LibBandAid is able to fix 7 of them but fails in 2. Moreover, there are 2 ‘potentially patch-

able’ security commits that change the APIs. From the 9 figures, 2 libraries (Butterknife

and Picasso) are shown to have no ‘fail to patch’ commit (no yellow bar) for all the versions.

And for the rest 7 libraries, ‘fail to patch’ commits only take up a very small average potion

of total numbers across all executions. (a9,v10) execution in Okhttp (Figure 4.13) is the

worst case in our evaluation in which it has 1 ‘fail to patch’ commit in total of 3 commits.

Further investigation shows that this is due to potential protocol change since Okhttp is

an HTTP client and performs considerable amount of network communications. A more

interesting observation is that the ‘fail to patch’ commits will disappear in many libraries
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when the outdated library becomes more recent and closer to the latest version. For Gson

library in Figure 4.11, starting from (a5,v10), the ‘fail to patch’ commit is gone.

From the experiments, LibBandAid could achieve an average success rate of 80.6%

for updating security commits and even a higher rate of 94.07% when combining with the

‘potentially patchable’.

By Vulnerability Categories. We then examine the categories of vulnerabilities that

LibBandAid fails to update and the results are exhibited in Table 4.4 in Appendix, which

shows the breakdown of vulnerabilities and the number of failures for that security commit

if LibBandAid fails to update in all executions.

We find that among all kinds of security vulnerabilities, Info Leak is most likely to

fail (1 failed in 3 total commits). In general, vulnerabilities that are related to IO exceptions

and information processing (e.g., input validation, data handling) also bear relatively high

failure rates. This result is expected since the updates to these vulnerabilities are most

likely to affect the interactions between the library and the system or the server, therefore,

triggering the filtering in LibBandAid.

Observations. Two observations can be made from the above experimental results. First,

our assumption made in Section 4.2 that security patches are unlikely to introduce backward

incompatibility or change how the TPL interacts with other components, holds in practice.

Second, LibBandAid performs better in updating relatively newer version of the library.

This is because the newer the library is, the less code changes it has compared to the latest

version. As a result, fewer and smaller slices will be generated and they are less likely to be

filtered out by our filtering process.
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4.7.3 Correctness of LibBandAid

The correctness of LibBandAid is demonstrated by performing random testing as

well as manual investigation for the apps that are updated by our system. To this end, we

first use LibBandAid to update TPLs within the 100 real-world apps from F-Droid. Then,

we collect apps with updated TPLs for testing.

For random testing, we run Monkey, which is a popular UI/Application testing

tool developed by Google, on every app with an updated library for 2 hours. Although we

did observe some crashes, we have confirmed that they are the bugs in the original apps.

No new crash is introduced by LibBandAid. The results demonstrate that the updated

library can function normally and pass the random testing successfully without any crash.

Due to the code coverage issue for random testing, we augment it with manual

investigation to try out all the combinations of UI components. Combined with Monkey,

our testing achieves an average code coverage of 25.7% for all the updated libraries. A

closer look shows that our testing covers 30.1% of the functions that are actually updated.

Admittedly, the code coverage is still far from satisfactory, however, the correctness of

LibBandAid can still be demonstrated together with our manual investigation showed in

the previous Section 4.7.2.

4.7.4 Effectiveness of Value-sensitive Differential Slicing

Finally, we evaluate the effectiveness of the new slicing algorithm by comparing

it with the traditional algorithm. We seek to evaluate the algorithm by answering the two

following questions:
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1. How well does Value-sensitive Differential Slicing perform to reduce the over-conservativeness?

2. Can it help LibBandAid achieve better updating results?

0 5000 10000 15000 20000
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40.00%

60.00%

80.00%

100.00%

Figure 4.4: CDF for number of edges
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Figure 4.5: CDF for number of nodes

Figure 4.6: Effectiveness of New Slicing Algorithm

Over-conservativeness Reduction. We evaluate the effectiveness of Value-sensitive Dif-

ferential Slicing by examining how well it could reduce the over-conservativeness across the

9 testing libraries. Figure 4.6 displays the cumulative distributions of the sizes of generated

slices for traditional slicing as well as the new slicing with respect to the numbers of edges

and nodes. The blue line indicates the new slicing algorithm while the yellow line represents

the traditional slicing.
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From the figures, we can see that Value-sensitive Differential Slicing could effec-

tively reduce the number of edges as well as nodes by at least one order of magnitude. For

example, 100% of the generated slices by Value-sensitive Differential Slicing have less than

2,500 edges and 2,000 nodes. On the contrary, traditional slicing generates way larger slices

up to 20,000 edges and 12,500 nodes. This information gives us a clear view for the advantage

of our slicing over the traditional slicing in terms of over-conservativeness reduction.

Updating Improvements. We further evaluate our algorithm by examining the updating

results improvements. From the results shown in Section 4.7.2, LibBandAid could achieve a

high successful updating rate for security commits when leveraging our new slicing algorithm.

To evaluate, we simply run the experiments again with traditional slicing and compare the

differences.

The results show that LibBandAid could only achieve a successful updating rate

of 61.84% with a rate of 74.95% when combined with the potentially patchable commits.

In contrast, with the help of Value-sensitive Differential Slicing, our system could perform

much better at rates of 80.6% and 94.07%, respectively. Detailed information is presented

in Figure 4.36.
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Figure 4.7: Butterknife
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Figure 4.8: Dropbox
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Figure 4.9: EventBus
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Figure 4.10: Glide
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Figure 4.11: Gson
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Figure 4.12: Leakcanary
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Figure 4.13: Okhttp
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Figure 4.14: Picasso
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Figure 4.15: Retrofit

Figure 4.16: Effectiveness Results By Numbers

Table 4.4: Effectiveness Results By Vulnerability Category
Vulnerabilities Total Failures Failure Rate
Race Condition 3 0 0%
Improper Access Control 2 0 0%
Uncontrolled Resource Consumption 1 0 0%
System Hang 5 0 0%
Illegal Reflective Access 1 0 0%
Stack Overflow 7 0 0%
Heap Access Error 3 0 0%
Missing Initialization 2 0 0%
Integer Overflow 1 0 0%
Fake ID 1 0 0%
New Security Feature 1 0 0%
Memory Leak 38 1 2.63%
Uncaught Exception 28 2 7.14%
Data Handling Error 36 3 8.33%
Uncheck Return Value 7 1 14.28%
Improper Input Validation 34 5 14.7%
Info Leak 3 1 33.33%

92



0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v6) (a2,v6) (a3,v6) (a4,v6) (a5,v6)

Patched Potentially patchable

Figure 4.17: Butterknife
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Figure 4.18: Dropbox
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Figure 4.19: EventBus
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Figure 4.20: Glide
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Figure 4.21: Gson
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Figure 4.22: Leakcanary
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Figure 4.23: Okhttp
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Figure 4.24: Picasso
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Figure 4.25: Retrofit

Figure 4.26: Effectiveness Results by Percentage
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Figure 4.27: Butterknife
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Figure 4.28: Dropbox
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Figure 4.29: EventBus
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Figure 4.30: Glide
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Figure 4.31: Gson
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Figure 4.32: Leakcanary
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Figure 4.33: Okhttp
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Figure 4.34: Picasso

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

(a1,v10) (a2,v10) (a3,v10) (a4,v10) (a5,v10) (a6,v10) (a7,v10) (a8,v10) (a9,v10)

Patched Potentially Patchable

Figure 4.35: Retrofit

Figure 4.36: Effectiveness Results with Traditional Slicing
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Chapter 5

Learning Program-Wide Code

Representations for Binary Diffing

5.1 Introduction

Binary Code Differential Analysis, a.k.a, binary diffing, is a fundamental analysis

capability, which aims to quantitatively measure the similarity between two given binaries

and produce the fine-grained block level matching. Given two input binaries, it precisely

characterizes the program-wide differences by generating the optimal matching among the

blocks with quantitative similarity scores. It can not only present a more precise, fine-grained

and quantitative results about the differences at a whole binary scale but also explicitly reveal

how code evolves across different versions or optimization levels. Due to this level of precision

and granularity, it has enabled many critical security usages in different scenarios when

program-wide analysis is required, such as changed parts locating [28], malware analysis [66,
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101], patch analysis [132, 89], binary wide plagiarism detection [94] and patch-based exploit

generation [40].

Because of the importance, binary diffing has been an active research focus. Bin-

Diff [34] which is the state-of-the-art commercial binary diffing tool performs many-to-many

graph isomorphism detection on callgraph and control-flow graph (CFG) and leverages

heuristics (e.g., function name hash, graph edge MD index) to match functions as well

as blocks. Other techniques perform diffing on the generated flow graphs [60, 108, 65] or de-

compose the binaries into fragments [57, 55, 56] for similarity detection. These approaches

do not consider the semantics of instructions which can be critical during analysis, espe-

cially when dealing with different compiler optimization levels. Moreover, traditional graph

matching algorithm such as Hungarian algorithm [83] is expensive and cannot guarantee

optimal matching.

Another line of research utilizes dynamic analysis for diffing. These techniques

carry out the analysis by directly executing the given code [61, 126], performing dynamic

slicing [100] or using symbolic execution [70, 99, 94] on the given binaries and checking the se-

mantic level equivalence based on the information collected during the execution. In general,

these techniques excel at extracting semantics of the code and have good resilience against

compiler optimizations and code obfuscation but usually suffer from very poor scalability

and incomplete code coverage because of the nature of dynamic analysis.

Recently, researchers have been leveraging the advance of machine learning to tackle

the problem. Various techniques such as Genius [68], Gemini [131], INNEREYE [150] and

Asm2Vec [59] have been proposed to utilize graph representation learning techniques [53,
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98, 86] and incorporate code information into embeddings (i.e, high dimensional numerical

vectors). Then they use these embeddings for similarity detection. INNEREYE [150] and

Asm2Vec [59] further leverage NLP techniques to automatically extract semantic information

and generate embeddings for diffing.

These approaches embrace multiple advantages over the traditional static and dy-

namic approaches: 1) higher accuracy as they incorporate unique features of the code into

the analysis by using either manual engineered features [68, 131] or deep learning based

automatic methods [59, 150]; 2) better scalability since they avoid heavy graph matching

algorithm or dynamic execution. Moreover, the deep learning process can be significantly

accelerated by GPUs.

Limitations to Existing Learning based Techniques. Despite the advantages, we

identify three major limitations for the existing learning based approaches.

First, no existing technique can perform program-wide binary diffing at a fine-

grained basic block level. They either perform diffing on functions [68, 131, 84, 59] or on

small code components [150], and tells how two given functions or small pieces of blocks

are similar. As mentioned above, fine-grained binary diffing is an important analysis upon

which many critical security analysis can be built. Hence, a more fine-grained binary diffing

tool is strongly desired.

Second, none of them considers both program-wide dependency information as

well as basic block semantic information during analysis. INNEREYE [150] extracts block

semantic information with NLP techniques [98] but only considers local control dependency

information within a small code component by adopting the Longest Common Subsequence
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(LCS). Asm2Vec [59] generates multiple random walks within functions and uses the walks

to learn token and function embeddings. It is especially troublesome when performing

binary diffing as one binary could contain multiple very similar functions. In this case,

program-wide function calling relations can be vital in differentiating these functions.

Third, most of the learning based techniques [132, 84, 150] are based on supervised

learning. Thus, the performance is heavily dependent on the quality of training data. We

argue that a large, representative and balanced training dataset can be very hard to collect

in binary diffing problem due to the extreme diversity of the binary programs.

Our Approach. To this end, we propose an unsupervised deep neural network (DNN) based

program-wide code representation learning technique for binary diffing. In particular, our

technique learns basic block level embeddings for binary diffing via completely unsupervised

learning. Each learned embedding represents a specific block by carrying not only the

semantic information of the block but also the structural information from the program-

wide inter-procedural control flow graph (ICFG). These embeddings are used to efficiently

and accurately calculate the similarities.

To achieve this, we leverage NLP techniques to generate token (opcode and operands)

embeddings which are further averaged and concatenated to assemble block level feature vec-

tors. These feature vectors contain the semantic information for specific blocks. Then, we

merge the two ICFGs of the input binaries on selected terminal nodes (no outgoing edge)

so that the merged graph contains program-wide structural information for both binaries

yet the original dependency information remains unchanged. Matrix factorization is then

performed on the graph along with the generated feature vectors to produce block level
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embeddings using Text-associated DeepWalk algorithm (TADW) [134]. Consequently, these

block embeddings contain both the program-level structural information as well as the se-

mantics from the blocks. Finally, to deal with the unique challenge of binary diffing, we

present a K-hop greedy matching algorithm to match blocks and confront compiler opti-

mizations including function inlining, instruction reordering, etc.

We implement a prototype named DeepBinDiff and conduct an extensive evalua-

tion with three representative datasets containing 113 binaries. The evaluation results show

that our tool outperforms the state-of-the-art tools BinDiff and Asm2Vec by large margin

in terms of effectiveness with respect to cross-version and cross-optimization level diffing.

Furthermore, we also conduct a case study using real-world vulnerabilities in OpenSSL [33].

The case study also shows that our tool has unique advantages when analyzing vulnerabili-

ties. To our best knowledge, our evaluation is the only work that comprehensively examines

the cross-version and cross-optimization binary diffing problem.

5.2 Problem Statement

In this section, we formalize the problem definition for binary diffing problem and

further describe our problem statement and design goals.

5.2.1 Problem Definition

Given two binary programs, binary diffing precisely measures the similarity and

characterizes the differences between the two binaries at a fine-grained basic block level. We

formally define binary diffing problem as follows:
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Definition 4. Given two binary programs p1 = (B1, E1) and p2 = (B2, E2), binary diffing

aims to find the optimal block matching that maximizes the similarity between p1 and p2:

SIM(p1, p2) = max
m1,m2,...,mk∈M(p1,p2)

k∑
i=1

sim(mi), where:

• B1 = {b1, b2, ..., bn} and B2 = {b′1, b
′
2, ..., b

′
n} are two sets containing all the basic

blocks in p1 and p2;

• Each element e in E ⊆ B × B corresponds to control flow dependency between two

basic blocks;

• Each element mi in M(p1, p2) represents a matching pair between bi and b
′
i;

• sim(mi) defines the quantitative similarity score between two matching basic blocks.

Therefore, the problem can be transformed into two subtasks: 1) introducing

sim(mi) which quantitatively measures the similarity between two basic blocks; 2) find-

ing the optimal matching between two sets of basic blocks M(p1, p2).

5.2.2 Assumptions

To formalize our problem domain, we list the following assumptions on the given

inputs:

• Only stripped binaries are given. This assumption in general makes the problem

harder as no source or symbol information is presented. However, this assumption is

very realistic as COTS binaries are often stripped and malware binaries do not carry

internal symbols for obvious reasons.
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Binary 1

Binary 2

CFG 
Generation

Token 
Embedding

Model

Input

0.015, 0.006, -0.022 …
0.071, -0.014, 0.005 …

...

0.052, -0.006, 0.04 …
0.15, 0.13, -0.0043 …

...

Pre-processing Embedding Generation

0.055, 0.004, -0.07 …
0.07, -0.314, 0.305 …

0.335, -0.93, 0.1189 …
-1.8e-06, 0.092, 0.06 ...

...

K-Hop 
Greedy 

Matching

Code Diffing

token 
embeddings

TADW Matrix 
Factorization

basic block embeddings

0.053, 0.16, 0.032 …
0.12, 0.44, -0.009 …

...

0.411, -0.2206, 0.4 …
0.55, 0.656, 0.33 …

...

feature 
vectors

inter-procedural 
CFGs

Output

diffing 
results

Graph Merging

initial 
matching

• Binaries are not packed but can be optimized with different compiler optimization

levels. Different optimization levels can result in distinctive binary codes even with the

same source code input. Tolerating differences in binaries introduced by optimization

levels is also very important to the code diffing problem. From the evaluation we can

see that even the state-of-the-art tools cannot handle them well. So for packed malware

binaries, we assume they are unpacked by using existing unpacking tools before being

present to our tool.

• Two input binaries are for the same architecture. So far DeepBinDiff supports

x86 binaries since they are the most prevalent in real world binaries. Of course,

DeepBinDiff could be extended to handle cross-architecture diffing by performing

analysis on an Intermediate Representation (IR) level. We leave it as future work.
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5.3 Approach Overview

Figure 5.3 delineates the system architecture of DeepBinDiff. Red squares in

the figure represent generated intermediate data during analysis. As shown, the system

takes as input two binaries and outputs the basic block level binary diffing results. The

system solves the two tasks mentioned in Section 5.2.1 by using two major techniques.

First, to introduce sim(mi) which quantitatively measures the similarity between two blocks,

DeepBinDiff embraces an unsupervised deep learning approach to generate embeddings

and utilizes embeddings to efficiently calculate the similarity scores between blocks. Second,

a K-hop greedy matching algorithm is executed to generate the matching M(p1, p2).

The whole system consists of three major components: 1) pre-processing; 2) em-

bedding generation and 3) code diffing. Pre-processing which can be further divided into

two subcomponents: CFG generation and feature vector generation, is responsible for gen-

erating two pieces of information: inter-procedural control-flow graphs (ICFGs) and feature

vectors for basic blocks. Once generated, the two results are sent to embedding generation

component which utilizes TADW technique [107] to learn the graph embeddings for each

node (basic block). DeepBinDiff then makes use of the generated block embeddings and

leverages a K-hop greedy matching algorithm to perform code diffing at basic block level.

5.4 Pre-processing

Pre-processing takes the input binaries, analyzes them and produces inputs for

embedding generation component. More specifically, it uses IDA pro [32] to generate inter-

procedural CFGs for the input binaries and applies a token embedding generation model
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to generate embeddings for each token (opcode and operands). The model is trained using

binaries by leveraging a popular deep learning algorithm Word2Vec [98]. These generated

token level embeddings are further transformed into basic block level feature vectors.

5.4.1 CFG Generation

By combining call graph of the binary with control-flow graphs of each function,

inter-procedural CFG (ICFG) contains control dependency information among basic blocks

cross function boundaries. ICFG in DeepBinDiff plays a very important role, that is

to provide program-wide contextual information when calculating block similarities. This

information is particularly useful when there exist multiple semantically similar blocks. In

this case, this contextual information can be of great help in differentiating them. However,

none of the existing techniques assimilate this information for binary diffing. DeepBinDiff

leverages IDA pro [32] to extract basic block information and generates inter-procedural

CFGs for the two given binaries.

5.4.2 Feature Vector Generation

Besides the structural control dependency information carried by ICFGs, Deep-

BinDiff also takes into account the semantic information from basic blocks by generating

feature vector for each block.

Existing techniques such as Genius [68] and Gemini [131] empirically select some

features from basic blocks and control flow graphs and then embed them into the CFGs to

form attributed CFGs (ACFG). However, by manually selecting limited number of features,

one could easily miss some essential information and impose bias to the results. To overcome
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this limitation, INNEREYE [150] takes a supervised learning approach, utilizes Word2Vec

to generate instruction embeddings and further deploys an LSTM-RNN model to convert

instruction embeddings to block embeddings. It requires sizable and balanced training

dataset with labels (which can be hard to extract) to train the LSTM model. Asm2Vec [59],

on the other hand, uses an unsupervised PV-DM model to produce the token and function

embeddings. In DeepBinDiff, we take the unsupervised learning approach as well due to

the fact that labels and balanced training dataset can be very hard to generate in binary

diffing scenario.

In DeepBinDiff, we leverage an unsupervised NLP technique Word2Vec [98]

model which can generate embeddings for each word based on its context (words around

it) to extract the semantics of each block. In our case, we consider each token (opcode or

operand) as word, generate random walks on top of ICFGs to be sentences and instructions

around each token as its context.

The whole process consists of two subtasks: token embedding generation and fea-

ture vector generation. More specifically, we first train a token embedding model using

Word2Vec, then use this model to generate token embeddings. These token embeddings are

further averaged and concatenated to generate feature vectors for blocks. Hence, the major

component is the token embedding model generation depicted in Figure 5.1. It takes 3 steps:

1) random walk; 2) normalization and 3) model training.

Random Walks When distilling semantics of each token, we would like to make use of

the instructions around it as its context. Therefore, we need to serialize ICFGs to extract
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jbe: 0.015,0.006,-0.22,.. 
im: 0.071,-0.014,0.005,..
ptr: 0.022,0.065,0.04, …
reg4: 0.15,0.13,-0.043 …

token
embedding

model

Step 1
Random Walks

Step 2
Normalization

Step 3
Model Training Output

movzx reg4, ptr
mov reg4, reg4
ja im
mov reg8, reg8
add reg8, im
movzx reg4, ptr
lea reg4, ptr
cmp reg1, im
jbe im
mov reg8, im
cmp reg1, im
jne im
cmp reg1, im
ja im
...

...

...

movzx ecx, byte ptr [rdx]
mov r8d, eax
ja 0x408963

mov rax, rdx
add rax, 1
movzx esi, byte ptr [rax]
lea edi, dword ptr [rsi - 0x30]
cmp dil, 9
jbe 0x407fa6

mov r14, -1
cmp sil, 0x24
jne 0x408033

cmp r8b, 9
ja 0x4088e7
...

...

lea reg4 ptr cmp reg1 im jbe im

context contexttarget

Hidden Layer

Softmax Classifier

Input

Figure 5.1: Token Embedding Model Generation.

control flow dependency information. As shown in Step 1 in Figure 5.1, we do this by

generating random walks for each node in ICFGs so that each random walk contains one

possible execution path of the binary. We then consider these random walks as sentence for

Word2Vec algorithm. Empirically, we generate 2 random walks per block to make sure every

block is covered and each random walk has a length of 5 blocks to ensure enough control

flow information is carried. Then, we put random walks together to generate a complete

article for training.

Normalization Before sending the article to train our Word2Vec model, the serialized

codes may still contain some differences due to various compilation choices. To refine the

code, DeepBinDiff adopts a code normalization process.

Shown as Step 2 in Figure 5.1, our system conducts the normalization using the

following rules : 1) all numeric constant values are replaced with string ‘im’; 2) all general

registers are renamed according to their lengths; 3) pointers are replaced with string ‘ptr’.

It is noteworthy that we do not follow INNEREYE [150] where all the string literals are
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replaced with < STR >. This is because we believe the string literals are very useful to

distinguish different blocks.

Model Training Then DeepBinDiff applies the popular Word2Vec algorithm[98] to the

generated article in order to learn the token embeddings.

Word2Vec Algorithm A word embedding is simply a vector which is learned from the

given articles to capture the contextual semantic meaning of the word. There exist multiple

methods to generate vector representations of words including the most popular Continuous

Bag-of-Words model (CBOW) and Skip-Gram model proposed by Mikolov et al. [98]. Here

we utilize the CBOW model which predicates target from its context.

J(w) =
1

T

T∑
t=1

∑
−c≤j≤c

log p(wt+j |wt) (5.1)

Given a sequence of training words w1, w2, ..., wt, the objective of the model is to

maximize the average log probability J(w) as shown in Equation 5.1

where c is the sliding window for context and p(wt+j |wt) is the softmax function

defined as Equation 5.2.

p(wk ∈ Ct|wt) =
exp(vTwt

vwk
)∑

wi∈Ct
exp(vTwt

vwi)
(5.2)

where vwt , vwk
and vwi are the vector representations of wt, wk and wi. To further

improve the efficiency of the computation, Word2Vec adopts the hierarchical softmax as a

computationally efficient approximation [98].
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Token Embeddings To train the token embedding generation model shown as Step 3

in Figure 5.1, we modify the Word2Vec CBOW model that uses words around a target

word as context. In our case, tokens (opcode and operands) are the words. However, we

consider instructions instead of tokens around the target token as context, shown in Step 3

in Figure 5.1. For example, in the figure, the current target token is cmp (shown in red), so

we use one instruction before and another instruction after (shown in green) in the random

walk as the context.

Our token embedding generation model is inspired by Asm2Vec which also uses

instructions around a target token as context. Nonetheless, our model has a fundamentally

different design goal than Asm2Vec. DeepBinDiff learns token embeddings via program-

wide random walks while Asm2Vec is trying to learn function and token embeddings at

the same time and only within the function. Therefore, we choose to modify Word2Vec

CBOW model while Asm2Vec leverages the PV-DM model so that it can generate the two

embeddings at the same time.

Feature Vector Generation

Once the token embeddings are generated, the last step is to generate feature

vectors for basic blocks. Since each basic block could contain multiple instructions, each

instruction in turn involves one opcode and potentially multiple operands, we calculate the

average of the operand embeddings and then concatenate with the opcode embedding.

Particularly, for an instruction ini which contains an opcode pi and a set of k (could

be zero) operands Setti , we model the instruction embedding as concatenation of opcode em-

bedding and the average of operand embeddings. Therefore, for a block b = {in1, in2, .., inj}
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which contains j instructions, its feature vector FVb is the sum of its instruction embeddings,

as depicted in Equation 5.3.

FVb =

j∑
i=1

(embedpi ||
1

|Setti |
∗

k∑
n=1

embedtin ) (5.3)

5.5 Embedding Generation

Based on the ICFGs and feature vectors generated in prior steps, this component

produces embeddings for basic blocks in the two input binaries with a goal that similar blocks

can be associated with similar embeddings. Hence, block embeddings could be leveraged for

binary diffing in later steps. To do so, DeepBinDiff first merges the two ICFGs into one

graph and then perform matrix factorization based on Text-associated DeepWalk algorithm

(TADW) [134] to generate block embeddings.

Since the most important building block for this component is the TADW algo-

rithm, we first describe the algorithm in detail and present how basic block embeddings

are generated. Then, we justify why graph merging is needed for TADW and report how

DeepBinDiff accomplishes it.

5.5.1 TADW algorithm

Text-associated DeepWalk algorithm [134] is an automatic graph embedding learn-

ing technique based on unsupervised deep learning. As suggested by name, it can be con-

sidered as an improvement over the DeepWalk algorithm [107].
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DeepWalk DeepWalk algorithm is an online graph embedding learning algorithm that

considers random walks as a corpus in language modeling problem, and the graph vertices as

its own vocabulary. The embeddings are then learned using random walks on the vertices in

the graph. Accordingly, vertices that share similar neighbours will have similar embeddings.

More specifically, given a graph G = (V,E) where V represents all the vertices and

E contains all the edges, the algorithm gets a shuffle of V and generates random walks with

a pre-defined length t for each vertex in the shuffle and applies Skip-Gram model as defined

previously in Equation 5.2 with respect to a fixed window size w. Just like Word2Vec, it

also adopts the hierarchical Softmax to improve the efficiency.

Text-associated DeepWalk As described, DeepWalk excels at learning the structural

information from a graph. Nevertheless, it does not consider the features from each vertex

and differentiate them by their own uniqueness. As a result, Yang at el. [134] propose an

improved algorithm called Text-associated DeepWalk (TADW) which is able to incorporate

features of vertices into the network representation learning process.

M

|V|

|V
|

W H

k

f

T
T

|V|
t

Figure 5.2: TADW

It is proven that DeepWalk is equivalent to factorizing a matrix M ∈ R|v|×|v|

where each entry Mij is logarithm of the average probability that vertex vi randomly walks
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to vertex vj in fixed steps. This discovery further leads to TADW algorithm depicted in

Figure 5.2. It shows that it is possible to factorize the matrix M into the product of three

matrices: W ∈ Rk×|v|, H ∈ Rk×f and a text feature T ∈ Rf×|v|. Then, W is concatenated

with HT to produce 2k-dimensional representations of vertices (embeddings).

5.5.2 Graph Merging

The goal for embedding generation of DeepBinDiff is to learn block embeddings

such that similar blocks correspond to similar embeddings. To achieve this, DeepBinDiff

leverages TADW to generate embedding for each block. Since we have two ICFGs (one for

each binary), the most intuitive way is to run TADW twice for the two graphs, hence, blocks

that hold similar semantic (feature vectors) and structural information can obtain similar

embeddings. However, this method has two drawbacks. First, it is inefficient to perform

matrix factorization twice. Second, generating embeddings for the two graphs individually

could in fact lower the effectiveness.

Take the example exhibited in Figure 5.3 for illustration. In this figure, we have

two ICFGs and each graph has one block that calls a libc function fread and another block

that has a reference to string ‘hello’. Ideally, there is a great chance that these two pairs

of nodes (‘a’ and ‘1’, ‘d’ and ‘3’) should matched. However, the feature vectors of these

blocks may not be very similar as one block could contain multiple instructions and call

or reference instruction is just one of them. Also, the two pairs also have quite different

structural information. For example, node ‘a’ has two outgoing edges but no incoming edges

while node ‘1’ has. As a result, it is possible that DeepBinDiff cannot generate very similar

embeddings for the two pairs of nodes.
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To alleviate the problem and make TADW run only once, DeepBinDiff adopts

a graph merging process to merge the two ICFGs before TADW. Particularly, it leverages

IDA Pro to extract the string references and detect calls to external libraries and system

calls. Then, DeepBinDiff creates new virtual nodes for the strings and external library

functions and draws edges from the callsites to these virtual nodes. This way, two graphs

are merged into one graph on some terminal virtual nodes. By doing so, node ‘a’ and ‘1’

will have at least one common neighbor which boosts the similarity between them. Also,

since we only merge the graphs on terminal nodes, the original structures of the two graphs

are unchanged.

call fread call fread
fread

call freadcall fread

ref: ‘hello’ ref: ‘hello’
ref: ‘hello’ ref: ‘hello’

‘hello’

a

b c

d 3

2

1 a

b c

d

1

2

3

Figure 5.3: Graph Merging

5.5.3 Basic Block Embeddings

With the merged graph, DeepBinDiff leverages TADW algorithm and performs

matrix factorization to generate basic block embeddings.

More specifically, DeepBinDiff feeds the merged graph from two ICFGs and the

block feature vectors into TADW for multiple iterations of optimization. The algorithm
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factorizes the matrix M into three matrices by minimizing the loss function depicted in

Equation 5.4 using Alternating Least Squares (ALS) algorithm [81]. It stops when the loss

converges or after a fixed n iterations.

min
W,H
||M −W THT ||2F +

λ

2
(||W ||2F + ||H||2F ) (5.4)

On that account, each generated basic block embedding contains not only the infor-

mation about the block itself, but also the information from the ICFG structural information.

The generated embeddings are essential for binary diffing.

5.6 Code Diffing

Once the basic block embeddings are generated, the last step in DeepBinDiff

is to perform code diffing. The goal is to find the optimal matching between blocks that

maximizes the similarity for the two input binaries.

One spontaneous choice for this task is to consider blocks from one binary as

workers, blocks from the other binary as jobs and embedding similarities as weights, then

perform linear assignment to come up with the global optimal matching. This method,

however, suffers from two major limitations. First, binaries could contain thousands of

blocks or even more and linear assignment at this scale is inefficient. Second, although

embeddings do include structural information, linear assignment itself does not consider

any graph information. Thus, it is still likely to make mistakes when matching very similar

blocks. Another possible way to improve the performance is to conduct two-level linear

assignment at function level and block level. Instead of matching blocks directly, we match
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functions first by using function level embeddings. Then, blocks within the matched function

pairs can be further matched with block embeddings. This approach can be thwarted by

compiler optimizations that alter the function boundary such as function inlining.

5.6.1 K-Hop Greedy Matching

To tackle this problem, we introduce a K-hop greedy matching algorithm. The

idea is to benefit from the ICFG structural information and find matching blocks based on

the similarity calculated from embeddings within the neighbors of already matched ones.

As presented in Algorithm 4, it extracts initial matching Setinitial from the inserted

virtual nodes during graph merging described in Section 5.5.2 and produces Setmatched as the

binary diffing result. The initial matched pairs are generated by using the string references

and calls to external functions. For example, if each binary only has one block that refers to

string “hello world”, it is highly likely that these two blocks will match. Starting from the

initial set, the algorithm loops and explores the neighbors of the already matched pairs in

GetKHopNeighbors() in Ln.7-8. DeepBinDiff then sorts the similarities between neigh-

bor blocks and picks the pair bearing highest similarity by calling FindMaxUnmatched()

in Ln.9. During this step, the algorithm empirically sets a threshold of 0.25 to make sure

the new matching blocks are similar enough. This process is repeated until all K-neighbors

of matched pairs are explored and matched. Note that after the loop, there may still exist

unmatched blocks due to unreached code (dead code) or low similarity within K-hop neigh-

bors. The algorithm then performs linear assignment and finds the optimal matching among

them in Ln.16. Finally, the algorithm returns Setmatched as the binary diffing result.
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Algorithm 4 K-Hop Greedy Matching Algorithm
1: Setinitial ← {initial match from virtual nodes}
2: Setmatched ← Setinitial
3: SetcurrPairs ← Setinitial
4:
5: while SetcurrPairs != empty do
6: (node1, node2)← SetcurrPairs.pop()
7: nbnode1 ← GetKHopNeighbors(node1)
8: nbnode2 ← GetKHopNeighbors(node2)
9: newPair ← FindMaxUnmatched(nbnode1 , nbnode2)

10: if newPair != NULL then
11: Setmatched ← Setmatched ∪ newPair
12: SetcurrPairs ← SetcurrPairs ∪ newPair
13: end if
14: end while
15: Setunreached ← {blocks that are not yet matched}
16: Setmatched ← Setmatched∪ LinearAssign(Setunreached)

output Setmatched as the binary diffing result

5.7 Evaluation

In this section, we evaluate DeepBinDiff with respect to its effectiveness and ef-

ficiency for two different binary diffing scenarios: cross-version diffing and cross-optimization

level diffing. To our best knowledge, this is the first research work that comprehensively

examines the effectiveness of binary diffing tools under the cross-version setting.

Furthermore, we conduct a case study to demonstrate the usefulness of DeepBin-

Diff in real-world vulnerability analysis.

5.7.1 Experimental Setup

Our experiments are performed on a moderate desktop computer running Ubuntu

18.04LTS operating system with Intel Core i7 CPU, 16GB memory and no GPU. The

feature vector generation and block embedding generation components in DeepBinDiff
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are expected to be significantly accelerated if GPUs are utilized since the two components

are built upon deep learning models.

5.7.2 Datasets & Baseline Techniques

Datasets. To thoroughly evaluate the effectiveness of DeepBinDiff, we collect a number

of representative datasets. More specifically, we utilize three binary sets - Coreutils [29],

Diffutils [30] and Findutils [31] with a total of 113 binaries for the evaluation of effectiveness

and efficiency. Multiple different versions of the binaries (5 versions for Coreutils, 4 versions

for Diffutils and 3 versions of Findutils) are collected with wide time spans between the

oldest and newest versions (13, 15, 7 years respectively). This setting ensures that each

collected version has enough distinctions such that binary diffing results among them are

meaningful and representative.

We then compile the programs using GCC 5.4 with 3 different compiler optimiza-

tion levels (O1, O2 and O3) to produce binaries equipped with different optimization tech-

niques. This dataset is leveraged to show the effectiveness of DeepBinDiff in terms of

cross-optimization level diffing.

Moreover, we leverage a popular general-purpose cryptography library OpenSSL [33]

for vulnerability analysis case study. In the case study, we use two different real-world vul-

nerabilities to demonstrate the advantage of DeepBinDiff in practice.

Baseline Techniques. With the aforementioned datasets, we run DeepBinDiff and

compare it against another two state-of-the-art baseline techniques (Asm2Vec [59] and Bin-

Diff [34]). Note that Asm2Vec is designed only for function level similarity detection. We
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leverage its algorithm to generate token embeddings and take the same procedure in the

paper to average operand embeddings and concatenate with opcode embedding to gener-

ate instruction embeddings. Then, we further sum them up to produce block embeddings

and perform binary diffing with the same K-hop greedy matching algorithm adopted by

DeepBinDiff.

5.7.3 Ground Truth Collection

Ground truth information about how blocks from two binaries should be matched

is required when measuring the effectiveness of DeepBinDiff. To this end, we rely on

source code matching and debug symbol information to collect ground truth information.

Particularly, for two input binaries to be diff’ed, we first extract source file names

from the binaries and then use Myers algorithm [103] to perform text based matching for the

source code of the two binaries in order to get the line number matching. We take two steps

to ensure the soundness of our extracted ground truth information. First, we only collect

identical lines of source code as matching but ignore the modified ones. Second, our ground

truth collection process is being deliberately conservative to remove the matching lines like

macros which could expand to multiple lines of code. Therefore, although our source code

matching is by no means complete, it is guaranteed to contain zero false positive.

Once we have the line number mapping between the two binaries, readelf tool is

used to extract debug info to understand the mapping between line numbers and program

addresses. Eventually, the ground truth is collected by examining the blocks of the two

binaries containing program addresses that map to the matched line numbers. This way, we

can successfully collect ground truth block matching information for every pair of binaries.
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Example. Take the diffing between v5.93 and v8.30 of Coreutils binary chown for illus-

tration. To collect ground truth information for block matching between the two binaries,

we first extract source file names from them and perform text-based matching between the

corresponding source files. By matching the source files chown.c in the two versions, we

know Ln. 288 in v5.93 should be matched to Ln. 273 in v8.30. Together with the debug

information extracted by readelf, a matching between address 0x401cf8 in v5.93 chown and

address 0x4023fc in v5.93 chown can be established.

Finally, we use IDA Pro to generate basic blocks for the two binaries. By checking

the addresses within the blocks, we know block 3 in v5.93 chown should be matched to block

13 in v8.30 chown. Therefore, we collect the ground truth information about how the blocks

between the two binaries should be matched and we further use this information to measure

the correctness of the diffing results produced by DeepBinDiff.

5.7.4 Effectiveness

With the experimental datasets and ground truth information collected, we evalu-

ate the effectiveness of DeepBinDiff by performing diffing between binaries across different

versions and optimization levels, and checking the results against the ground truth informa-

tion. We also compare the results against two state-of-the-art baseline techniques.

Evaluation Metrics In the evaluation, we use precision and recall metrics to measure the

effectiveness of the diffing results produced by diffing tools. The matching result M from

DeepBinDiff for two given binaries can be presented as a set of block matching pairs with a

length of x. Similarly, the ground truth information G for the two binaries can be presented
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as a set of block matching pairs with a length of y. We present them in Equation 5.5 and

5.6. Elements in set M and G show matching relationship between two basic blocks from

the two binaries in the matching result from DeepBinDiff and ground truth information

respectively.

M = {(m1,m
′
1), (m2,m

′
2), ..., (mx,m

′
x)} (5.5)

G = {(g1, g
′
1), (g2, g

′
2), ..., (gy, g

′
y)} (5.6)

We then define two subsets of M : Mc and Mu, representing correct matching and

unknown matching respectively. Correct matchMc =M ∩G is the intersection of our result

M and ground truth G which gives us the correct block matching pairs. Unknown matching

result Mu represents the block matching pairs that no block in these pairs is ever appeared

in ground truth. Thus, we have no idea whether these matching pairs are correct. This could

happen due to the conservativeness of our ground truth collection process. Consequently,

M −Mu −Mc portrays the matching pairs in M that are not in Mc nor in Mu, therefore,

all pairs in M −Mu −Mc are confirmed to be incorrect matching pairs.

Once we have M and G formally presented, we use precision and recall metrics to

show the quality of diffing results. The precision metric presented in Equation 5.7 gives us

the percentage of correct matching pairs among all the known pairs (correct and incorrect).

Precision =
||M ∩G||

||M ∩G||+ ||M −Mu −Mc||
(5.7)
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The recall metric shown in Equation 5.8 is produced by finding the intersection of

sets M and G and dividing its size by the size of set G. This metric shows the percentage

of ground truth pairs that are correctly matched by the diffing tool.

Recall =
||M ∩G||
||G||

(5.8)

Cross-version Diffing In this experiment, we benchmark the performance of Deep-

BinDiff, BinDiff and Asm2Vec by conducting binary diffing between different versions of

binaries (all compiled with O1 compiler optimization level) in Coreutils, Diffutils and Find-

utils. We report the average recall and precision for each tool under different experimental

settings in Table 5.1.

As we can see, DeepBinDiff outperforms Asm2Vec and BinDiff across all versions

of the three datasets in terms of recall, especially when the two diffed versions have a large

gap. For example, for Coretuils diffing between v5.93 and v8.30, DeepBinDiff improves the

recall by 14% and 42% over Asm2Vec and BinDiff. Also, we can observe that Asm2Vec which

carries the semantic information for tokens, in general has better recall than the de-facto

commercial tool BinDiff. This evaluation results show that including semantic information

during analysis can improve the effectiveness of diffing. Moreover, since a major difference

between DeepBinDiff and Asm2Vec is the structural information generated from TADW,

we can also draw the conclusion that structural information can help boost the quality of

diffing results by a large margin.

Interestingly, we also notice that BinDiff sometimes can produce higher precision

than Asm2Vec and DeepBinDiff. We investigate the detailed results and see that BinDiff
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has a very conservative matching strategy. It usually only matches the basic blocks with

very high similarity score and leaves the other blocks unmatched. Therefore, BinDiff gen-

erates much short matching list than DeepBinDiff which uses K-hop greedy matching to

maximize the matching.

We further present the Cumulative Distribution Function (CDF) figures for F1-

scores of the three diffing techniques on Coreutils binaries in Figure 5.8. Again, from the

CDF figures we can see that Asm2Vec and BinDiff have similar F1-scores while DeepBin-

Diff performs much better. And due to the high precision, BinDiff can even have higher

F1-scores than Asm2Vec. In a nutshell, DeepBinDiff can exceed two baseline techniques

by large margins with respect to cross-version binary diffing.

Cross-optimization level Diffing We then conduct experiments to measure the effec-

tiveness of the three techniques in terms of cross-optimization level binary diffing. We

perform diffing between the binaries with the same version but under different optimization

levels. Particularly, each binary is diffed twice (O1 versus O3 and O2 versus O3). We report

the average recall and precision for all settings in Table 5.2.

As shown, just like cross-version binary diffing, DeepBinDiff could outperform

Asm2Vec and BinDiff for most of the settings in recall rate. The only exception is the

Diffutils v3.6 O1 to O3 diffing where Asm2Vec has a recall rate of 0.876 while DeepBinDiff

obtains 0.865. It is because there are only 4 binaries in Difftuils and most of them are small.

In this special case, program-wide structure information may become less useful. Still,

DeepBinDiff could defeat Asm2Vec for all other settings, even for Diffutils. Also, BinDiff
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Figure 5.4: v5.93 compared with
v8.30
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Figure 5.5: v6.4 compared with
v8.30
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Figure 5.6: v7.6 compared with
v8.30
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Figure 5.7: v8.1 compared with
v8.30

Figure 5.8: Cross-version Diffing F1-score CDF for Coreutils

still enjoys a high precision rate, sometimes higher than DeepBinDiff.

One thing we can see from the results is that cross-optimization level binary diffing

is more difficult than cross-version diffing since the recall and precision rates are lower. This

is because of the compiler optimization techniques could greatly transform the binaries.

However, we anticipate DeepBinDiff and Asm2Vec to achieve better results if trained

with more samples.

122



T
ab

le
5.
2:

C
ro
ss
-o
pt
im

iz
at
io
n
le
ve
lB

in
ar
y
D
iffi

ng
R
es
ul
ts

R
ec
al
l

P
re
ci
si
on

B
in
D
iff

A
sm

2V
ec

D
ee
pB

in
D
iff

B
in
D
iff

A
sm

2V
ec

D
ee
pB

in
D
iff

C
or
eu
ti
ls

v5
.9
3
O
1
-
O
3

0.
57

1
0.
55

6
0.
65
2

0.
63

8
0.
53

7
0.
66
8

v5
.9
3
O
2
-
O
3

0.
83

7
0.
90

5
0.
97
6

0.
94
4

0.
85

5
0.
93

2
v6

.4
O
1
-
O
3

0.
57

6
0.
58

9
0.
67
6

0.
64

6
0.
56

9
0.
69
7

v6
.4

O
2
-
O
3

0.
83

8
0.
89

9
0.
97
8

0.
95
4

0.
84

8
0.
93

9
v7

.6
O
1
-
O
3

0.
48

4
0.
62

7
0.
66
8

0.
67

4
0.
60

2
0.
70
4

v7
.6

O
2
-
O
3

0.
84

0
0.
89

8
0.
95
3

0.
94
4

0.
84

5
0.
91

3
v8

.1
O
1
-
O
3

0.
48

0
0.
62

8
0.
67
3

0.
67

7
0.
60

1
0.
71
3

v8
.1

O
2
-
O
3

0.
83

5
0.
86

8
0.
92
1

0.
94
2

0.
83

9
0.
90

1
v8

.3
0
O
1
-
O
3

0.
50

8
0.
51

6
0.
60
7

0.
62

0
0.
49

5
0.
63
8

v8
.3
0
O
2
-
O
3

0.
84

2
0.
88

4
0.
95
2

0.
95
4

0.
83

2
0.
90

3

D
iff
ut
ils

v2
.8

O
1
-
O
3

0.
46

7
0.
77

9
0.
83
1

0.
61

3
0.
75

5
0.
82
8

v2
.8

O
2
-
O
3

0.
86

3
0.
95

5
0.
97
9

0.
95

3
0.
93

6
0.
96
6

v3
.1

O
1
-
O
3

0.
63

3
0.
80

1
0.
81
6

0.
65

5
0.
64

7
0.
77
5

v3
.1

O
2
-
O
3

0.
89

8
0.
90

2
0.
94
3

0.
96
6

0.
92

5
0.
96

4
v3

.4
O
1
-
O
3

0.
57

7
0.
71

2
0.
75
4

0.
70

8
0.
69

8
0.
71
5

v3
.4

O
2
-
O
3

0.
90

3
0.
91

1
0.
93
5

0.
95

3
0.
94

3
0.
96
7

v3
.6

O
1
-
O
3

0.
73

5
0.
87
6

0.
86

5
0.
71

5
0.
81

1
0.
85
3

v3
.6

O
2
-
O
3

0.
91

9
0.
95

4
0.
96
2

0.
96
6

0.
92

2
0.
95

2

F
in
du

ti
ls

v4
.2
33

O
1
-
O
3

0.
63

3
0.
69

5
0.
78
3

0.
76

8
0.
63

7
0.
79
9

v4
.2
33

O
2
-
O
3

0.
93

3
0.
95

2
0.
98
3

0.
96

8
0.
93

1
0.
98
1

v4
.4
1
O
1
-
O
3

0.
67

7
0.
71

5
0.
82
1

0.
73

1
0.
67

7
0.
88
2

v4
.4
1
O
2
-
O
3

0.
83

9
0.
91

2
0.
95
1

0.
96

4
0.
95

2
0.
96
7

v4
.6

O
1
-
O
3

0.
56

3
0.
63

6
0.
76
3

0.
63

3
0.
72

1
0.
79
1

v4
.6

O
2
-
O
3

0.
95

8
0.
93

5
0.
96
1

0.
93

2
0.
91

5
0.
95
4

123



0.0 0.2 0.4 0.6 0.8 1.0
F1-score

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
ta

ge

DeepBinDiff
Asm2Vec
BinDiff

Figure 5.9: v5.93O1 compared
with v5.93O3
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Figure 5.10: v5.93O2 com-
pared with v5.93O3
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Figure 5.11: v6.4O1 compared
with v6.4O3
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Figure 5.12: v6.4O2 compared
with v6.4O3
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Figure 5.13: v7.6O1 compared
with v7.6O3
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Figure 5.14: v7.6O2 compared
with v7.6O3
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Figure 5.15: v8.1O1 compared
with v8.1O3
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Figure 5.16: v8.1O2 compared
with v8.1O3
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Figure 5.17: v8.30O1 com-
pared with v8.30O3
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Figure 5.18: v8.30O2 com-
pared with v8.30O3

Figure 5.19: Cross-optimization level Diffing F1-score CDF for Coreutils
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5.7.5 Efficiency

We then conduct experiments to show the efficiency of our system. The running

time of DeepBinDiff can be split into four parts: training time, preprocessing time, em-

bedding generation time and matching time.

Training Time We train our token embedding generation model with the binaries in our

dataset. Random walks are generated for each binary to produce one article for training our

model. We stop the training for each binary when loss converges or it hits 10000 steps. In

total, It takes about 30 hours for our machine to finish the whole training process. We could

retrain our model when new binaries are fed into DeepBinDiff. For comparison, Asm2Vec

also needs this training time to generate its model while BinDiff does not need any training

time. Note that training the model is only an one-time effort and the training process could

be significantly accelerated if GPUs are used.

Preprocessing Time DeepBinDiff relies on IDA pro for ICFG generation. It takes only

an average of 12.264s DeepBinDiff to finish the graph generation on one binary. Then,

our system applies the pre-trained model to generate token embeddings and calculates the

feature vectors for each basic block. Applying the model and calculating the feature vector

only takes less than 100ms for one binary. BinDiff which also uses IDA pro for preprocessing

takes similar time for its preprocessing.

Embedding Generation The most heavy part of DeepBinDiff is the embedding gen-

eration which utilizes TADW to factorize a matrix. On average, it takes 591s on average

to finish embedding generation for one binary. One way to accelerate the process is to use
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a more efficient algorithms other than the Alternating Least Squares (ALS) algorithm for

TADW matrix factorization. For example, CCD++ [137] is demonstrated to be 40 times

faster than ALS algorithm.

Matching Time K-hop greedy matching algorithm is efficient in that it limits the search

space by searching only within the K-hop neighbors for the two matched blocks. On average,

it takes DeepBinDiff 45 seconds to finish the matching. BinDiff, for comparison, takes

only 3.4s to finish matching since it uses many heuristics to avoid graph matching.

5.7.6 Case Study

Besides the above experiments, we also evaluate DeepBinDiff with real-world

vulnerability analysis to showcase its efficacy in practice. Two representative vulnerabilities

in OpenSSL [33] are utilized for an in-depth comparison among our tool and the state-of-

the-art commercial diffing tool BinDiff.

DTLS Recursion Flaw The first vulnerability (CVE-2014-0221) happens in OpenSSL

v1.0.1g and before, gets fixed in v1.0.1h. It is a Datagram Transport Layer Security (DTLS)

recursion flaw vulnerability which allows attackers to send an invalid DTLS handshake to

OpenSSL client to cause recursion and eventually crash.

Listing 5.1 shows the vulnerability along with the patched code. As listed, patching

is made to avoid the recursive call by changing it to a goto statement (Ln. 10-11).
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Listing 5.1: DTLS Recursion Flaw

1 stat ic long dtls1_get_message_fragment ( ) {

2 int i , a l ;

3 . . .

4

5 + redo: ;

6 i f ( ( f rag_len = fragment ( s , max , ok ) ) {

7 . . . .

8 i f ( s−>msg_callback ) {

9 s−>msg_callback (0 , s−>ver s i on )

10 - return dtls1_get_message_fragment(); ;

11 + goto redo;

12 }

To analyze this vulnerability, we feed a vulnerable version as well as a patched

version of OpenSSL into the diffing tools and see if the tools can generate correct matching

between the blocks that contain the vulnerability and the patch.

Partial results from BinDiff and DeepBinDiff are shown in Figure 5.7.6. This

matching is hard because in v1.0.1h, the patched function dts1_get_message_fragment()

is inlined into another function named dts1_get_message(). BinDiff matches the vulnerable

function in v1.0.1h with its caller in v1.0.1g, leaving the original dts1_get_message() in

v1.0.1g unmatched.

Figure 5.20 shows the matching blocks from BinDiff. Within the function, BinDiff

fails to match the block containing a recursive function call to the block containing a goto

statement. It mistakenly matched the block to the one which has similar opcodes but with

completely different context. Meanwhile, DeepBinDiff finds the correct matching shown in

127



pop     rdx
pop     rcx
mov     esi, dword ptr [rsp+1D8h+var_1D8]
mov     dword ptr [r13+60h], 0
mov     r8, rbx
mov     rcx, rbp
mov     edx, r12d
mov     rdi, r13
call    dtls1_get_message_fragment
jmp     loc_40E34

mov     rax, [r13+50h]
mov     rax, [rax+8]
add     rax, 0Ch
mov     [r13+58h], rax
movsxd  rax, dword ptr [r13+60h]
jmp     loc_40FA1

Figure 5.20: BinDiff for Recursion Flaw.

pop     rdx
pop     rcx
mov     esi, dword ptr [rsp+1D8h+var_1D8]
mov     dword ptr [r13+60h], 0
mov     r8, rbx
mov     rcx, rbp
mov     edx, r12d
mov     rdi, r13
call    dtls1_get_message_fragment
jmp     loc_40E34

pop     r8
pop     r9
mov     rax, [r13+88h]
mov     dword ptr [r13+60h], 0
jmp     loc_4103F

Figure 5.21: DeepBinDiff for Recursion
Flaw

Figure 5.21 by considering both the semantics and the program-wide structural information.

Memory Boundary Checking Failure The second vulnerability (CVE-2016-6308) ex-

ists in OpenSSL v1.1.0 and before, and gets fixed in v1.1.0a. The program fails to check the

length before memory allocation, allowing attackers to allocate excessive amount of memory.

As shown in Listing 5.2, the patch inserts a new condition check on top of the original check.

Listing 5.2: Memory Boundary Checking Failure

1 stat ic int dtls1_preprocess_fragment ( ) {

2 s i ze_t f r ag_o f f ;

3 f rag_len = msg_hdr−>frag_len ;

4 i f ( ( f r ag_o f f + frag_len ) > len ) | |

5 + len > max_handshake_message_len(s)) {

6 SSLerr ( ) ;

7 return SSL_AD_ILLEGAL_PARAMETER;

8 }

9 // memory a l l o c a t i o n us ing l en

10 . . .

For vulnerability analysis, we expect to use binary diffing tool to compare vulner-

able binary with the patched one, and identify the patch as a new insertion.

Depicted in Figure 5.22, BinDiff mismatches the vulnerable block with the new

condition check block, rendering the real matching block unmatched (shown as white block).
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cmp     qword ptr [rdi+1F8h], 454Ch
mov     eax, 454Ch
mov     r12, rdi
cmovnb  rax, [rdi+1F8h]
cmp     rbp, rax
jbe     short loc_3FFF0

mov     rdx, [rdi+98h]
mov     r12, rdi
cmp     qword ptr [rdx+198h], 0
jz      short loc_3FEA8

ov     rdx, [rdi+98h]
cmp     qword ptr [rdx+198h], 0
jz      short loc_40018

Figure 5.22: BinDiff for Memory Checking

cmp     qword ptr [rdi+1F8h], 454Ch
mov     eax, 454Ch
mov     r12, rdi
cmovnb  rax, [rdi+1F8h]
cmp     rbp, rax
jbe     short loc_3FFF0

mov     rdx, [rdi+98h]
mov     r12, rdi
cmp     qword ptr [rdx+198h], 0
jz      short loc_3FEA8

ov     rdx, [rdi+98h]
cmp     qword ptr [rdx+198h], 0
jz      short loc_40018

Figure 5.23: DeepBinDiff for Memory
Checking

For DeepBinDiff, it successfully matches the blocks and identify the new condition check

as a new insertion block.
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Chapter 6

Conclusions

In a nutshell, understanding the code changes in programs could help us com-

prehend the status-quo of Android packing techniques among malware, perform automatic

updates to fix existing vulnerabilities for Third-party libraries in Android apps and can

improve binary differential analysis for various essential security analyses.

DroidUnpack, a whole-system emulation based Android unpacker that can pre-

cisely recover hidden code, is developed to facilitate our study on 6 major commercial

packers, 13,566 packed malware samples out of 93,910 Android malware and 3 existing

state-of-the-art unpackers in order to better understand the security issues.

LibBandAid solves the outdatedness problem for TPLs in Android apps by auto-

matically generating non-intrusive updates. It effectively patches the security vulnerabilities

within libraries with an average of 80.6% success rate and an even higher 94.07% when com-

bined with potentially patchable vulnerabilities.

A novel program-wide code representation learning technique called DeepBinDiff

is designed to perform binary diffing in an unsupervised learning fashion. It leverages NLP
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techniques to generate token embeddings which are further aggregated to generate block

level feature vectors containing semantic information for blocks. It also leverages a K-hop

greedy matching algorithm to find optimal matching for the blocks based on the similarity

of embeddings.

6.1 Discussions

6.1.1 Final thoughts on Android packing techniques

DroidUnpack is by no means the end of the game but merely a start for future en-

deavors as the war between packing and unpacking on Android continues. The real problem

lies within the design choice of Android system. Unlike iOS which enforces code signing [16]

to prohibit app from modification since it was last signed, Android allows the code to be

modified even after installation. This feature opens a broad surface for Android packers to

perform all kinds of packing techniques without any constraint. Granted, packers are also

utilized extensively in legitimate ways for the purpose of protecting intellectual property.

However, from the study we surely see packing techniques are currently abused by malware

authors, exposing great threats to end users. This situation deserves more thinking for the

whole community from a design point of view.

6.1.2 Soundness of LibBandAid

The soundness of our approach results from that of diffing analysis, patch gener-

ation and patching respectively. For diffing analysis, we leverage Tracelet Execution [57]

technique that demonstrates a 0.99 accuracy in its evaluation to compare two given func-

131



tions, and extract code changes at statement level. In our case, false positive (statements

that are not code changes to be considered as changes) is impossible since we match the

exact strings to confirm. Theorically, false negatives are possible, however, we argue that

false negative can only cause the potential reduction of success rate but will not bring any

correctness or incompatibility issue.

For update generation, the soundness of our impact analysis inherits from the

soundness of traditional slicing. The basic scheme strictly follows the definition of impact in

Section 4.2. However, due to the two optimizations, the Value-sensitive Differential Slicing

is still sound with respect to the definition of impact but may contain over-conservativeness

for performance gain.

Based on the soundness analysis of our slicing algorithm, the correctness of up-

dating is ensured by virtue of two reasons. First, LibBandAid introduces absolutely no

code changes other than the ones from the new library. We assume the library developers

have tested their code before commit. Second, the completeness of each generated update

is guaranteed by our slicing algorithm.

6.1.3 Limitations of LibBandAid

There exist several limitations for LibBandAid. To begin with, LibBandAid

can only handle Java libraries and Java code changes within these libraries. Therefore, it

cannot update native libraries in Android apps. Moreover, non-code changes within Java

libraries could bring issues. For example, a version number is recorded in plain text and

used to communicate with server as part of the protocol. In this case, the updating from

LibBandAid may in fact change the protocol and bring compatibility issues. To solve this
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problem, our update generation component has to consider access to the same file as a kind

of data dependency. We leave this as a future work.

Second, our slicing algorithm relies on an accurate data dependency analysis that in

turn depends on a complete modeling of Java and Android APIs. We manually write models

for more than 500 most popular APIs but still can be incomplete. This incompleteness may

thwart the soundness of our analysis.

Third, we handle the diffing analysis as a code matching problem and leverage

existing research [57] to perform analysis. We argue that this problem is orthogonal to our

major focus for updating the TPLs in Android apps. We can definitely make use of the

advance in code matching techniques to improve the performance of LibBandAid.

Fourth, although LibBandAid analyzes the library API to collect new exception

information, the analysis results in theory can be incomplete. For example, a code change in

a TPL’s API can call other function outside the library which eventually rises an exception.

In this case, we may miss it, jeopardizing the non-intrusiveness
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