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ABSTRACT 

A technique for the solution of the Helmholtz equation 

together with associated boundary conditions is described. This 

method is based on a generalization of that used for the solution of 

the Dirichlet problem of potential theory, in which a dipole distribu-

tian is introduced on the boundary of a region to generate the poten-

tial inside. In order that the boundary conditions be satisfied, the 

·dis"'"..ribution must be found as the solution of an integral equation. 

If the boundary is smooth, the equation is of Fredholm type, but if it 

has a corner the equation is singular. The problem of a sharp corner 

is analyzed, and properties of the solution are developed using the 

theory of singular integral equations. A few results are given for 

the numerical evaluation of eigenvalues of the Laplacian for some polY-

gems which can also be obtained analyticallY. It is observed that 

eigenvalues of the integral equation can produce non-trivial distribu-

tions which generate "null" solutions of the original Helmholtz 

equation. 

\ 
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I. INTRODUCTION 

In modelling a wide variety of physical wave phenomena, one 

is often faced with the problem of finding a wave motion in a medium 

which is inhomogeneous overall, but in which the medium is locally 

homogeneous and has discontinuities across various boundaries. In 

such cases one must typicallY find a solution to the equation 

(1) 

where Ki will be a different cops.tant in each region, i, together 

with certain matching conditions for 1jl at the boundaries of the 

region. 

Aside from a few special cases which can be treated analyti-

caliy, such problems must be solved numericallY, usuallY with the aid 

of a high-speed computer. Conunon1Y applied techniques of wide 

applicability in such calculations are the finite difference and 

finite element techniques. The former-directlY approximates the de-

rivatives in Eq. (1) by finite differences, and the latter is best 

based on a Lagrangian variational principle from which Eq. ( 1) can b.e 

deduced. These techniques are generallY applicable independentlY of 

whether subregions are homogeneous or not. On the other hand, although 

boundary conditions at finite distances are easilY treated, boundary 

condi tiona "at infinity", which arise in scattering problems, are 

difficult to impose. 

In this paper we consider a ·different method for the solution 

of such problems which is closelY related to the classical solution 

of the Neumann and Dirichlet problems of potential theory. In this 

technique, the solution of Eq. (1) in a given region is achieved by 

the introduction of a monopole or dipole distribution on the boundary 
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of that region. The boundary conditions can then be determined in 

terms of that distribution and one is led to integral equations for 

the boundary condition which must be solved. The method has two 

im:lediate advantages over the previously noted methods: 1. boundary 

conditions "at infinity" are easily introduced; and, 2. it is only 

necessary to consider points on the boundary to obtain the solution, 

thereby reducing the dimensionality of the problem by one. The 

storage requirements for a computer can thereby be reduced signifi-

cantly. On the other hand, the method has the disadvantage that the 

matrices which are generated have relatively few n~zero elements as 

·.eompared to the former techniques which can produce matrices with 

small ''band-widths", and the elements of the matrices typically 

require calculation of more complicated functions. It is also true, 

of course, that the boundary distribution method can only be applied 

if individual regions are homogeneous. Thus for differing problems 

different techniques may be most·efficacious. Although we believe 

that ·the method can be developed for use in fully three-dimensional 

problems, in this paper we will only consider the two-dimensional case, 

so that we will deal with a one-dimensional distribution on the 

boundary. 

The integral equation which arises in this method is of 

Fredholm type if the boundary is smooth, but it becomes singular if 

sharp corners are introduced. In the last few years a number of 

applications of the method have been made to acoustic and electro

~gnetic radiation problems(l), but in these a detailed analysis·of 

the complications arising from sharp corners has not been made. In 
. 

this paper, in Section II, we first develop the general integral 

equation for the·boundary distribution, and then in Section III we 
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give a reasonably complete analysis of the properties of the solution 

in .the vicinity of a corner. Finally, in Section IV we give results 

for the numerical solution of a few problems. ·Although we wish to 

apply the technique to scattering problems, we know of no analytic 

solutions to scattering problems with corners. The.examples have been 

chosen only to illustrate the capability of the method, and so we have 

determined eigenvalues of the Laplacian for a few special shapes. 

Each of these can be obtained analytically and so the error obtained 

provides an indication of the potential accuracy attainable. It will 

be seen that excellent results can be achieved. 

II. THE DIPOLE DISTRIBUTION INTEGRAL EQUATION 

The famous Dirichlet problem of potential theory is the 

determination of a solution of Laplace's equation in a region in 

which the potential takes a given value on the boundary. This 

problem has been solved for the inside of a closed region by the 

introduction of a Green's function arid a continuous dipole distribu-

tion on the boundary. Thus one writes 

q,(i:) f D(i:• )ll•G(i:, i:• )o(ld'. (2) 

Sv 
In this expression D(i:) is the dipole distribution at -;,G(;,i:r) 

is the potential at 1: owing to a unit charge at 1:• and dd' is 

the surface element directed along the outward normal. The integral 

is carried over the surface 5v which encloses the volume V, and 

q,( 1:) is thereby determined throughout V. In the two-dimensional 

case, in which we shall be interested in this paper, 

G( ...,.r, _,.r') 1 1_,. _,. I = 21T log r - r 1 
, (3) 
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and of course the volume, V, becomes an area, and B.y is its 

bounding contour. The solution of the Dirichlet problem is then re

duced to finding the solution of an integral equation for D(t). 

If we introduce the G(it, t•) of Eq. (3) into lq. (2), we 

find: 

1 
21T 

ct• - r)•da' 

I ... , +12 r - r 

This expression would be useful for determining the potential at .. 
internal points of the region V, but if one wishes _q,( r) on the 

boundary the limit must be taken from the inside, since the lj>( r) 
obtained from this expression is discontinuous across the boundary. 

In the limit in which -; approaches ·a point on the boundary wh:ere it 

is smooth, one can write 

lim 
~ + Bv 

+ (r' - r)•da' D( r' ) =-----'--'-;;:-
2trlr' - rl 2 

+ + 
In this relation, the integrand is in general singular as r' + r but 

the integral can be defined as a principal value integral. If the 

side containing f is straight, the contribution from that side will 

vanish and the int~gral is then regular, but in any case, if the 

boundary satisfies a Liapunov smoothness .condition, it·· can then be 

shor.n that the integral is in fact well-defined as a principal value 

~tegral for r' + r. (2 ) 

Thus, for a smooth boundary, a solution of the Dirichlet 

problem is obtained if one can solve the integral equation 

D(r') cit• - ;~ da' 
... +12 2trlr' - r 
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It can be shown(J) that this equation does in fact have a unique 

solution and so the problem is solved. 

In our approach we extend the preceding technique to apply to · 

the Helmholtz equation: 

(4) 

In this case, we must choose G( it, t' ) · to be a solution of Eq. ( 4), 

with the result that: 

.... .... I... .... I I... ... I G(r,r') =A J
0
(K r- r' ) + B Y

0
(K r- r' ), 

where J
0 

and Y
0 

are the usual regular and irregular Bessel 

functions of order zero, and, A and B must be determined using 

the limiting condition as r + t•, and, if applicable, the condi-

tion as ; +co. If ;. + -;,, G will approach the same limit as for 

K = 0, and so, since Y
0
(x) - (2/tr) log x, as x + 0, we find 

that B = 1/4. On the other hand, A will be determined for the 

specific problem considered: If one is. dealing with the interior of 

a closed region, A can be chosen as zero. If, however, the region 
.... 

is open and r can approach infinity, A will then be chosen in 

such a way as to satis~ the asymptotic condition on ~w(r). 

In order to find the asymptotic condition, it is helpful to 

consider the time-dependent equation from which the Helmholtz 

equation typically arises. In the case of wave propagation, we 

would have 

fv2
_ -..!... .s\ q,(t, t) 0 , 

' c2 at') 
( 5) 
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where c is the propagation velocity for waves in the region, If we 

then assume ~(r, t) = ~(;) exp(-iwt), we get Eq. (4), where K = w/c. 

For a scattering situation, we consider as a typical case that a plane 

wave is incident on the scattering region, and write 

......... 
.tJ-+) 1.k•r ( .... ) 
~r = e + ~sc r 

+ 
Here, ~sc(r) is the scattered wave and we require that it must have 

only "outgoing" parts. Further, we introduce the distribution D(;) 

en the boundaries where 1: is finite and they will then be used to 

generate wsc only. 

A simple way of determining A so that only "outgoing" 

scattered waves occur, with the assumed time dependence, is to require 

that 

(6) 

where 

H0(l)(x) = J0(x) + i Y0(x) 

is the usual Hankel function ( 4 ), This clearly gives the correct B ,. 

and if 

i 2 1/2 
- i(Kr - 7T/4), 

4 1TT e 

which clearly represents outgoing waves, since asymptotically 

have: 

exp [i( Kr - wt )] • 
r+co 

. + .... 
If we now introduce Eq. (6) for G(r, r') into Eq. (2), we 

~s/f) - i p D(;' )V'Ho(l)(Kit' - rl )·dcr' 

Sv 

or, since H ( l )(X) 1 

0 

(
-+ _ iK 

Wsc r) - T 

-H (l)(x), 
1 
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! D(i• )H
1
(l)(KI;' -;I)(-;' - -;)•do' 

r rt· - ztl 
(7) 

Clearly the scattered wave given by Eq. (7) a11tomatically gives only 

outgoirig waves, and in fact we have 

A - .... / where er = r r. 

-iei( Kr - 37T/4) 

(87fT )1/2 

-iri• ·~ f D(;•) e r er•dcr', 

sv 

If we let t approach the boundary, the resulting equation 

has the same small (t• - f) behavior as in the Dirichlet case, so 

that we may write: 

r(;) = D(;) + iK P ! 
2 4 j (8) 

lr' - rl 

The same considerations as in the Dirichlet case vnth regard to the 

singular nature of the equation apply. It is this integral equation 

which we propose to investigate. 

There is one important difference between the potential 

problem and the Helmholtz problem that should be mentioned. Although 

the interior Dirichlet problem has a unique solution, the exterior 

problem does not, and in fact will only have a solution at all if 

! .... .... j f( r) I do' I = 0 

has a solution. (It is easily seen that a constant satisfies the 

homogeneous equation.) Consequently, as follows from the Fredholm 

theory of this self-adjoint equation, only if f(f) is orthogonal to 
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the solution of the homogeneous equation is there a solution of the 

inhomogeneous equation. In the Helmholtz case, the homogeneous 

eq~tion·will not generally have a solution, so both the inner and 

outer problems have a unique solution. 

III. ANALYSIS OF THE PROBLEM OF A BOUNDARY WITH SHARP CORNERS 

Although the boundary distribution technique can be applied 

directly to cases in which the boundary is smooth, i.e., satisfies a 

Liapunov condition, some additional analysis must be given if the 

b~~dary has sharp corners. In the former case, the kernel of the 

equation can be shown to be completely continuous and so the usual 

Fredholm .theorems apply. On the other hand, if there are corners the 

ke:!"!!el is singular. 

To deal with this situation, we will consider a corner in a 

boundary and for simplicity we will assume that the two sides of the 

corner are straight. The angle between these two sides will be 

called a. Further, since the singular nature of the equation comes 

about because of the small-distance behavior of the kernel, we divide 

the kernel into a leading term which includes the most singular part, 

and a remainder which is completely continuous. Thus we write : 

~ ( l )(X) ;: - (;; ) + R( X) , 

and·we will focus attentio~·principally on the first term. 

If Eq. (9) is now introduced into Eq. (8), we find: 

p ! D(r1 )(r1 - r)•dcr1 

r 21T~~~ - ~~2 

+ iK p ! R(Kir1 - -;,) D(rl )(rl 
4 r ~~~ - rl 

(9) 
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Let us now introduce the notation that D1(s) is D(r) on side 1 

of the corner, where s is the distance from the corner, and D
2
(s) 

is D(;) on .side 2. With this notation, the equation can be expli-

citly written for 

Dl ( s) s 
fl(s) = -2- + 

~ on side 1 as: . f~ D2( s I )ds I 
s1n a --~----~----------~ 2

1T 
0 

( s 1 2 2s 1 s cos a + s2 ) 

iK 
+ 4 s 

~ 
sin a J [ 2 s2 )1/2) R K(s 1 - 2s 1 s cos a+ 

~---------.....,.1-,2~ D2( s I )ds I 

(s 12 - 2s 1 s cos a+ s 2 ) 0 

+ iK 
T 

C' 

where f 1(s) is the boundary value of f(r) on side 1. For a 

straight side there is no contribution from the distribution D
1
(s) 

to the potential on that side except for the term D
1
(s)/2, because 

the vector ; 1 - ; is perpendicular to the surface element. The 

length of side 2 is 12• The integral over C1 is the contribution 

from the distribution other than the part on sides 1 and 2. This 

last integral is analytic as a function of s, since it is a finite 

I
~ ~, ~ 

integral and r' - r > 0 for r 1 on C' and ; on side 1. 

Similarly, for side 2 we have: 

D (s) 111 D (s 1 )ds 1 
f ( S ) 

= _2 __ + s sin a · ---,,...---.:;1 _________ __,_ 
2 2 2 2 2 + ••• , 

1T ( S I - 2S I S COS ct + S ) 

where the ···indicates terms similar to the R, C1 terms for f
1

• 

To analyze the corner singularity, we introduce 

and we then obtain 
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where ~m is the lesser of ~l and ~2 , and F±(s) includes the 

contributions of fi(s) and the remainder of the equations coming 

from R, C1, and the integral for the larger ~i beyond ~m' 

Obviously, these integral equations have a singular kernel as 

s, s 1 + 0, and so some care must be used in dealing with them, either 

for an~lytic or numerical purposes. 

To proceed, we make a Mellin transformation of the equations 

to obtain 

.1+( 0 sin a 
----+ 

2 - (27T)2 i 

c+ioo ~ 

f d~ I fl±( ~I ) r (s 1 )-~I ds 1 

0 c-ico 

00 s~ ds 
X f s2 - 2s s 1 cos a+ s 12 

0 (10) 

In this equation, M ~) :: 1 D( s) s~-l ds. To obtain Eq. (10), we 

have made the di~ect Mellin integration and have used the inverse 

relations: c+ico 

D(s) (21Ti)-l I ll(Os-~ ds 

c-ioo 

The choice of the constant c will be discussed later. The transform 

of th~ function F±(s) is ~±(0. In arriving at this equation we 

haTe interchanged the order of integrations, but this can be justified 

a posteriori. Next we can evaluate( 5 ) the right-most integral in 

Eq. (10 ): 

00 

I 
0 

s~ ds 

s2 ~ 2s s' cos a+ s• 2 

sin [< TT-' ex)~] 
1T( S I ) ~ -1 _ ___;;;...___......;;;_ 

sin ex sin(TT~) 
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where 0 < a < 21T, and -1 < Re ~ < 1. Then we can carry out the 

next integral: 
~ ( ~ )~-~I 
rm (s' )~-~~-1 ds' = _m __ 
..b ~ - .~1 

' 
where we require that Re(~- ~~) > 0. Thus the equations become: 

where 

r(~) _ sin(7r - a)~ 
= Sl.n TT I; 

(~-~·) 
(11) 

This equation is in standard singular integral equation form, 

and thus may be treated using known techniques( 6 ). We begin by 

considering the homogeneous equation, and introduce a function 

where 

1 
H(~) =-21Ti r 

c-i"" 
(I; - ~· ) 

.1 ( 0) is a solution of the homogeneous equation. Clearly 

H(O 

Re( ~) 

is an analytic function in the finite half-planes defined by 

~ c, and it has a discontinuity in crossing the contour of 

integration. If we define the H(±)(~} to be the functions obtained 

from the integral in which Re( 0 ~ c, respectively, together with 

their analytic continuations, we then easily find that 

and so 

0 (12) 
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This equation can be used to deduce the analytic structure of 

!1±(0)(0. 

We eventually wish to deduce the analytic structure. of D( s ), 

which will require using the inverse transform on b( ~ ) • For the 

latter step, in the limit s ~ 0, the contour in the inverse trans-

fcrm cim be .closed on the left, and so the behavior of D( s ) is 

determined by singularities on the left of the contour.. In this 

region H(- )( ~) is clearly analytic, and so we can solve for 

H( + )( 0 in terms of H(- )( ~) using Eq. (12.) to analytically 

continue H( + )( ~) to the left of the contour. Thus we find: 

A solution of this equation can be obtained by taking the logarithm 

of the equation and then noting that log H( ~) is a function with 

a given discontinuity on the contour. The solution of this problem 

(the "Hilbert .problem") then can be written(.?): 

T 
c-ico 

R.nll ± r(~' >I 

~ - ~ d~' } 

assuming that the integra~ converges. We then ~ee tha.t H± (- )( ~) 

is analytic and nonzero on the left of the contour, and if we use 

Eq. (12) to analytically continue H±(+)(~), it is evident that 

H± ( + )( ~) will also be analytic unless 

1 ± r(~) = 0 

At such points, H± ( + )( 0 will generally have poles. Thus l1± ( 0 )( 0 

also has poles at such points. 
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The solution of Eq. ( 11) may now be obtained by introducing 

c+i~ (~ )~-~· l1(~')d~' 
;#( ~ ) :: -k f. m ( ~I - 0 

c-J.~ 

Then it is easily seen that 

so that 

Using 

this equation can be written: 

24>i~> 

H/-'co 

( 13) 

Again we have a discontinuity equation to satisfy and we obtain as 

the formal solution: 

e+i00 

I 
c-i~ 

Since ~ (- )( ~) is analytic on the left of the contour, if we use 

Eq. (13) to obtain the analytic continuation of Jl±(+)(~), we 

finally find that 

±r(~)Jt±(-)(~) + 24>(~) 

1 ± r(~) 

Thus, we can generally expect poles in l1(~) in the left half plane 

wherever 1 ± r(~) = 0 on the left of the contour. 

To complete the discussion, it is necessary to specify the 

contour; i.e., to determine c. In the first place, from the 

restriction on Re(~ ), we require that -1 < c < 1. In addition, 
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tte preceding development will only give a meaningful expression for 

H(O if R. [1 n 
±r(t;)]+O.as 

- ex! - 1r)IIm t;Q 

IImE;i+co. 

as lim t;l 

It is easily seen that 

+ ... ,so r(O+O. 

Thus the logarithm rill approach zero at "", illlless it has an 

izlginary part of the form i1rn. To guarantee that this does not 

happen, we can choose c = 0, since r(t;) is real and nonzero on the 

~nary axis. Any other c satisfying the limit restriction is 

equally acceptable as long as the contour would not thereby be dis

torted from the imaginary axis by going past a zero(B) of 1 ± r(t;), 

since in such a case the logarithm would acquire an imaginary part 

at""· 

We now can conclude that D( s) will behave as 

s + 0, where ~n is a pole in the transform, 6(t;). 

appear if 

or 

1 
sin(1T- ex)~ 

s~n 7T ~n 

sin 1T ~ = + sin(.7f - ex)t;n , 

-~ 
- s as 

Such poles will 

if ~ t o. In the case of 6+, the solutions of this equation are 

~ ( +) 
n 

and in the case of 6 

(2n- l)7T 
ex 

There n is any positive integer. 

-~' 27T - ex ' 

(2n- l)1T 
27T - ex 

In addition to these poles, we must consider other possible 

singularities in 6(t;). Since ~(-)(t;) is analytic, the only other 

possibility would be singularities in ~(t;). In fact, ~(t;) in part 
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comes from contributions to f(s) arising from distributions on the 

other boillldaries, C', and since these contributions will be analytic 

near s = 0, this part of ~±(~) will be the transform of filllctions 

which have power series expansions; i.e., they have poles at the 

negative integers( 9 ). There will also be a pole in ~±( E;) at E; = 0, 

but because f_(o) = o, 4>_(t;) has no such pole. Thus, to the poles 

already given, we have additional poles at the integers. 

Fi~ally, we must consider singularities related to the 

treated. 

aside from the most singular part which has already been 

For this we assume that D(s) - s-t;, and then deduce the 

form of 

iKs sin ex 
4 

R. 

I 
H (l)(KW) 

1 w (s')-t; ds', 

0 

2 2 1/2 
where w = (s' - 2s' s cos ex+ s ) • This integral can be 

evaluated using Gegenbauer's addition theorem(lO):· 

I~(•) , 2 •in • f (m • 1) Cm(l)(oo• o) {{!£<") 

x Js(s•r~-1J (::~)ds' + J (Ks) JR. (s•rt;-~(l)(Ks')ds'} 
~L . ~1 ~1 

0 s 

where C (l)(cos ex) is a Gegenbauer polynomial. The Hankel filllction m 

can be divided into two parts: 

where 
co 

I 
n=O 

-m-1+2n a .s 
n 
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If the series for ljlm+l(s) and Jm+l(Ks) are introduced into the 

expression for I~(s), it is then easily found that log s does not 

occur in I~( s), and that the powers of s which occur are I; + 2n, 

and n + 1, where n is an integer ~ 0. Thus each of the poles, 

l;i' generates a series of poles spaced at even integers from l;i' or, 

equivalently, an even series of powers of s of the form s -I; + 2n 

This completes the determination of the analytic form of the solutions 

of the boundary integral equation at a sharp corner. 

A few comments are appropriate at this point: In deducing 

the analytic form of the solution, we have assumed that the unknown 

functions on the remainder of the boundary away from the corner of 

interest can be treated as if they were known. The legitimacy of 

this approach can be rigorously established following the complete 

treatment of singular equations, but we did not feel that such an 

approach, which mainly only increases the complexity of notation and 

the bulk of the equations, was particularly illuminating and so we 

have chosen the more heuristic approach given above. We refer the 

interested reader to the rigorous treatments of singular integral 

equations for a discussion which will indicate the necessary 

extension of the preceding argument. 

In the above analysis, we have assumed also that the poles 

which appear are simple. While this is generally the case, in 

special cases, poles may come together. For example, if a 

we find that two poles occur at ~ =- ~ for ~(+). In such a 

situation, the s-space function then has a term of ·the form s-l;log s 

as well as the usual -I; s . 
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Finally, we consider the relation between the behavior of 

D( s) near a corner and that of f(;), where ; is not on the 

boundary. Here: 
.. (1) 1.. .. .. .. ! D( r' )H1 ( K :' - :I )( r' - r) • da' 

j lr' - rl 
-+ iK 

f(r) = T 

If we t:epresent the point -; in polar coordinates (r, e) and assume 

D(s) - s-1; the leading contribution to f for small r 

f(r, e) - 2~ 
t 
(l ( s )-l;r sin e ds 
J 2 2 0 s + r - 2s r cos e 

+l 
- 21T 

1 

f
2 (s)-l;r sin (a- e)ds 

s2 + r 2 - 2s r cos(a- e) 
0 

is then 

+ ••• J 

where the ± sign is chosen according to whether we have the odd or 

even part of D, and the remainder is less singular as r -+ 0. The 

two integrals then contribute to f( r, e) as 

r-1; 
f(r,e)- {1±1}, 

2s~n nl; 

- and we see that the behavior of D+( s) is reflected in f( r, e) near 

the corner, but D_(s) does not ~ontribute a term of the form r-1;. 

If the results of this paper are applied_ to an electric field 

for which E = -V~, where ~ is the electric potential, then at a 

corner, ~- r-1; and Er l;r-l;-1 • The electric field energy 

-+2 (= E /8n) is then integrable (as is expected on physical grounds) 

since I; ~ 0. The condition of integrability of the electromagnetic 

energy density was introduced by Meixner in order to obtain a 

unique solution for Maxwell's equations in the case of the diffraction 

of electromagnetic waves by perfectly conducting screens(ll). 
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IV. NUMERICAL EXAMPLES 

To illustrate the effectiveness of the boundary distribution 

method, we have used it to find. approximate eigenvalues for a number 

of polygons in which the eigensolutioos for tj!(;) !l!ld K are known. 

Thus we look for solutions of the integral equation in which f(;) = o 

an the boundary of the region. To our knowledge, the corresponding 

distributions, D(;), cannot be obtained analytically in these cases 

so unfortunately a direct comparison of the numerical results for 

them cannot be made • 

At the outset, it should be noted that we do not feel that 

the boundary method is necessarily the best choice for finding such 

·eigenvalues, and it is not for such problems that we ultimately wish 

to use it. An apparent disadvantage as compared with the finite 

element method, for example, is that it does not seem to satisfy an 

extremum condition, and, for the lowest eigenvalue, a minimum principle 

Thus, by changing certain parameters in the calculation it may be 

possible to find values for K which change from below the correct 

value to above it, and for a suitable choice one could get as accurate 

a result as desired. In the calculations to be described, variation 

of parameters with this goal was not carried out and parameters were 

chosen somewhat arbitrarily. Such a change in K was observed to 

occur as the balance between the number of points in the corner regions 

and the central regions was varied with the total number of points 

fixed. Thus the accuracy of the calculated K is not completely 

satisfying as an indicator of the overall accuracy' of the calculation. 

(It will be seen from the results, however, that in many cases 

errors in the eigenvalue are very small.) 
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Another disadvantage of the method for finding eigenvalues 

is that K occurs in the kernel of the integral equation so that the 

approximating matrix must be recalculated for each choice of K. In 

the finite element method, such iterative complexity is not necessary. 

In addition, the kernel is a complicated function, and the ensuing 

matrix, while having many fewer elements than the finite element 

method, for example, has few, if any, zero elements. Thus, it is 

not clear that overall efficiency is obtained. There is generally a 

trade-off between storage requirements. and the complexity involved. 

On the other hand, for scattering problems it is not necessary to 

iterate the matrices, and the automatic satisfying of the outgoing 

·scattered wave boundary condition seems to us a great advantage. 

We have used the method of this paper to obtain eigensolutions 

for a square, for an equilateral triangle, for a 45° isosceles 

triangle, and for a 30°-60°-90° triangle. In each case the eigensolu

tion for K and tjl(;) can be obtained analytically. In addition, 

we have obtained eigensolutions for two other figures which have been 

treated using the finite element method. 

In reducing the integral equation to an approximate finite 

form we have approximated the integrals in the integral equation in 

two ways: For -; 1 near ·a corner, we have assumed that D( s) can be 

expanded in a finite series of terms of the form s~, in which the 

~'s chosen are the lowest values in the set of allowed ~'s. Then 

the kernel was broken into tvro parts, of which the first included the 

most singular terms as Kl;' - ;I ~ 0, and the second was the 

remainder. The first part together with the various (s~)'s was 
. 

integrated analytically using various rapidly convergent series, 

while the second part of the kernel was assumed to be approximated by 
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a quadratic form, and this was then integrated exactly in conjunction 

with the factors s~. The method used for this part of the kernel 

was quite analogous to that used in obtaining Simpson's rule. On the 
-+-

other hand, for r' away from a corner the entire kernel times D{s') 

was assumed to be approximately a quadratic form in s 1 , and then 

this function was integrated exactly, again analogously to Simpson's 

rule. 

In the calculations reported here, we are dealing with a 

closed region, and hence in the kernel no asymptotic condition as 

r ... oo is needed. Thus we have chosen the Neumann function Y
1 

instead of the Hankel function H1 ( 
1 ) in the kernel. This has the 

advantage that the kernel and D(~) become real. Further, we have 

chosen to reflect the distribution about one of the sides. This 

automatically satisfies the ~(~) = 0 boundary condition on that 

side, and no distribution is needed along it. We also find that the 

results for K depend on which side is used for reflection in the 

30°-60°-90°, and 45° isosceles triangles. In Table I we give some 

calculated K 1S for various triangles. For the results given, we 

have chosen 26 points on each side of the triangle and in the vicinity 

o£ a corner we express D + ( s ) using the lowest six terms and D _ ( s ) 

using the lowest five, in the series of powers. In Table II, we 

illustrate the variation of K for a square, as the number of points 

per side is varied. The accuracy obtained for the eigenvalues is 

remarkable, particularly so in the 'absence of a variational principle. 

'le also give in Table III the values for K obtained for an 111-

shaped" region consisting of three unit squares and of a unit-sided 

rhombus in which the corners make angles of 60° and 120°. Approximate 
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eigenvalues for the latter two regions have been obtained using the 

finite element method(l2). For the rhombus, we have also varied the 

number of points per side to illustrate the convergence of the eigen-

value. It may be noted that the symmetry of the various figures was 

not used to reduce the size of the matrices involved, and in the case 

of the L-shaped region this would have been very desirable to reduce 

the storage requirements. It is interesting that in comparison with 

the calculation for a rhombus by J. A. George which was carried out 

using 225 linear equations for the determination of the solution for 

which the associated matrix had a band width of 65, our calculation-

with 79 points on the boundary produced somewhat better results for 

K as judged by the convergence of the results. The calculations of 

Stadter(l3j are considerably less accurate, giving 

4.98811 ~ K ~ 4.99770. For the "L-shaped" region, a very accurate 

technique developed by Fbx, et. al.(l4 ) gives an eigenvalue of 

K = 3.1047905, while the finite element calculation of J.A. George(l2) 

using 210 equations with a bandwidth of 101 and taking advantage of the 

symmetry, gives K = 3.1051; and the finite difference calculation 

of Reid and Walsh(l5 ), using 360 points and a 5-point formula, gives 

K = 3.1102. One sees that our approach compares_very favorably with 

these results. Furthermore, it is noted by Fox, et. al.(l4) that 

their technique, which is very effective for the "L-shaped" region, 

is not particularly better than other methods for a rhombus. 

A few results are presented ·in Tables 1-3. A fuller discus-

sian of these calculations will be published elsewhere. The analytic 
. . ( 16). 

lowest e1genvalues in the var1ous cases are • 
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K (square) ff TT 1 

K (equilateral triangle) 

K (45° isosceles t;iangle) 

T!le corresponding eigsnsolutions are given in Appendix A. The 

distributions, D(s), for several representative cases are exhibited 

in Figs. 1-4. 

In obtaining the eigenvalues, it is seen that some configura-

tians produce a considerably better result than do others. For 

example, in the 45° isosceles triangle the error is much smaller if 

the side reflected about is the longest one. This is also the case 

fc~ the 30°-60°-90° triangle. It is not clear as yet why this should 

be so. In general, the errors in K seemed to us surPrisingly small 

c~idering the number of points used per side. 

We also have found that the series expansion for D( s) does 

not converge especially well; i.e., the last term in. the series for a 

point at the farthest distance from the corner for which the series 

is used is typically a few percent of the leading term. The only 

counter-example is that in which we have a 90° corner at a reflected 

side. In this case 1 D{ s) is analytic in s and has an odd-integer 

pcwer expansion which typically converges extremely well. On the 

ether hand, it is found that coefficients of the lower powers in the 

series ar~very stable with respect to variations of parameters in 

~e calculation and they seem to converge very well to a precise 

value as the number of points per side is increased. The higher 

coefficients in the series tend to be erratic, presumably because 
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they are called upon to approximate the remainder of a series which 
-E;. 

is not of the form s n It may be noted that the E;. 's in the 
n 

expansion are not very weli separated and hence the expansion coefi- · 

cients may not be very prec'isely obtained, so that the D{ s) could 

be much more accurately given than are its constituent parts. 

Finally, in addition to the true eigenvalues discussed above, 

the boundary distribution integral equation can also produce spurious 

K1s. In Appendix B, we have applied the boundary distribution tech-

nique to the case of a circular boundary, for which an analytic treat-

ment is possible. As is shown there, not only do we obtain the well-

known set of eigenvalues for that case, but we also find another set 

in which D{s) can be finite, but the w(i=) which arises from it is 

identically zero. As is shown in Appendix B, the eigenvalues are 

given by J (KR)H (l)(KR)' = 0, or, if one is dealing with a finite 
n n 

region since the Green's function can then be constructed using the 

Neumann function, Y , instead of the Hankel function, H ( 1 ), n n 

J (KR) Y (KR)' = 0, n n 

or 

Thus, if n = 0, we have J
0
(KR)Y1(KR) = 0. One finds that the roots 

associated with non-trivial solutions and those which give null 

solutions are unfortunately quite close together. Thus, for example, 

the lowest zero of J
0
{x) occurs for x = 2.4048, while the lowest 

zero of Y1(x) occurs at x = 2.1971, and_higher roots are even 

closer together. 
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These spurious solutions also occur in the cases we have 

evaluated. In Table IV we give some cases of pairs of solutions 

together with calculated values of ljl(;) at the center of the figure 

involved. Since the integral equation is linear, the value of W(;) 

is arbitrary, but it has been fixed .by choosing D(~") to have a first 

side maximum of 1. It is seen that for the "null" solutions W(;) is 

very small, and its size may well be indicative of the accuracy of the 

treatment of the integral equation. 

As in the case of the circular boundary, these pairs of 

eigenvalues are distressingly close together. Although the proximity 

of the "null" solutions may.not be critical for the eigenvalue deter

mination, the accuracy of the eigensolution, WK' will be affected 

adversely. Thus, in the interior of the region we can write: 

K f 
Y1(Kif' - ;I) 

7 
_,. -+- ,_,..... 

DK~ r 1 )( r 1 - r) • do' , 
- 4 I;' - ;I 

(14) 

together with a corresponding equation for the "null" solution: 

1-+- -+-1 
A T yl (A r' - r ) -+- -+- -+- -+-

- - D ( r 1 )( r 1 - r ) • do' , 
4 1

-+- -+-1 A r' - r 
0 

where A is the eigenvalue for the "null" solution. These can be 

combined to give 

111K(f) = ~ f {liV;, ;. ) -KA(;, ;. )l·dt• InK(;') + DA(f' )I 

+ I"KK<t t') + KA(t, ;; )l·<m• InK(;')- DA(f' )I} , 

where K and K, are the corresponding kernels in the equation 
. K A 

for W• From the numerical solutions, one finds that 

(15) 
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IDK(;)- DA(;)I«IDK(f)l, as is snown in Fig. 5 for the 45° triangular 

case with A = 9.76196. Thus, since KA - KK for A - K, in case the 

roots are close together the calculated WK will be small. On the 

other.hand, errors in its calculation will be generated by DK, if 

Eq. (14) is used, so the relative errors will be large. As an alterna-

tive, one could use Eq. (15) to calculate WK' but one must then 

have solutions for the original equation for both K and A. Another 

alternative would be to use the Hankel function in the kernel. instead 

of the Neumann function. In the circular case this moves the null-

case eigenvalues into the complex plane and these complex roots are 

typically far removed from the desired ones. The disadvantage with 

this approach is that one must then deal with a complex kernel and 

solution, D. On the other hand, if one uses the method for a scatter

ing problem, it is then necessary to use H
1 

( 1 ) in the kernel in any 

case, so the spurious cases would be unimportant. 

In conclusion, the results presented here clearly show that it 

is feasible to solve problems involving the Helmholtz equation by 

making use of distributions on the boundary. Although presence of the 

"null" solutions produces a larger error in ljJ because of cancella-. 

tions than might otherwise be the case, the cancellations might be 

avoided with some effort. On the other hand, the eigenvalues calcula-

ted seem quite accurate and perhaps they best illustrate the overall 

accuracy of the technique. Since a variational eigenvalue determina-

tion produces a much more accurate eigenvalue than the associated 

eigenfunction, the ~ethod described here appears to give very good 

solutions of the Helmholtz problem. Whether this method can be an 

effective competitor to the finite element or finite difference methods 
in applicable cases can only be determined by experience. 
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APPENDIX A 

In the numerical analysis we have made comparisons with 

~-rious analytic eigensolutions of Helmholtz' equation. The solutions 

r~ the square are well known. For the various triangles they. are: 

Eq·~lateral triangle 

T~-{ x,y) = sin 27T ( 13 x + y) - sin ~ ( 13 x - y) - sin 47T y, 
13 13 .13 

Lscsceles right triangle 

V(x,y) = sin m1rx sin nny - (-l)m+n sin n7Tx sin mny , 

and 

(30°-60°-90°) triangle 

« x,y) = cos 2; ( 5x + 13 y) - cos 2; ( 5x - 13 y) 

+ cos 2; ( -x - 3/3 y) - cos 2; ( -x + 3/3 y) 

+cos 2; (-4x + 2/3 y)- cos 2; (-4x- 2/3 y) 
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APPENDIX B 

Although the boundary integral equation, Eq. (8), must 

generally be solved numerically, in the case of a circular boundary 

the equation can be treated analytically, and some insight can thereby 

be obtained • 

. If the radius of the circular boundary is R, Eq. (8) can be 

written as: 
27T 

f( e) = ~e) + i:R J ~ ( 1 )( 2KR sin I e '
2
- e I )D( e' ) sin I e '

2
- e I de' 

0 

If D(e) is expanded in a Fourier series, 

00 

D( e) 

n = -oo 

we then have the integral, In, to evaluate: 

21T 

In(KR) = J H
1

(1 )(2KR sinle'
2
- 9 j) sinle'

2
- el eine' de' • 

0 

This integral may be evaluateil?) to give 

Thus we find: 

r(e) = ~ 

00 

n = -oo 

ine 
e 

H (1) 
n 

and, on making use of the Wronskian relation between 

we get: 

r( e) i7TKR 
--2-

00 

n = -oo 

a J (KR) H (l)(KR)' 
n n n 

ine e 

(Bl) 
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This result can be used to solve specific problems. For 

example, if one wishes the eigenmodes for the interior of a circular 

region in which ~(r, 6) is zero on the boundary, one immediately 

obtains the relation: 

J {KR) H (l) {KR)' = 0 
n n 

The modes associated with J ( KR) are well known, but the apparent 
n 

modes for H (l)(KR)' are not(lS), and we will now demonstrate that 
n 

for such K1s, even though the dipole distribution does not vanish, 

the associated W(;) is zero everywhere inside the circle, so such 

solutions of the integral equation in this case are not useful. On 

the other hand, such solutions could arise in a numerical calculation 

of ~he integral equation, and one must be careful not to confuse them 

with nontrivial solutions. The distinction between solutions ~ would 

only be noticeable away from the boundary. 

where 

To find ~(r, 6) 

iK 
~(r, 6) = 4' 

once D(;) is known, we can use 

211 

f H1(l)(KW)D(6') cos X d6 1 

0 

w = ~2 
+ R

2 
- 2rR cos ( 6 - 6' 8112 

and X is the angle between the vector (;, - ;) _and 

(See Fig. 8.) We again express D(e) in a Fourier series, Eq. (Bl) 

and, for r < R, we use Graf's addition theorem for Bessel func

tions(l9) to give: 

00 

~ H~!{ (KR) Jm(Kr) cos m(e - 6') • 

m = -oo 
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Thus one easily finds: 
CD 

~(r,e) = i~R ~ 
n=-oo 

a f H(l+l) (KR) J (Kr) 
n1 n . n 

+ H( l) ( KR) J_n( Kr )} 
-n+l 

ina e 

Using the relations( 20): 

we 

J (z) (-l)nJ (z), H (l)(z) 
-n n -n 

(-l)n H (l)(z), and 
n 

find: 

~( r, 6) 

Thus, 

00 

inKR I --2-

n=-oo 

a n 

2 H (l)(z)' 
n 

din6 J (Kr) H (l)(KR)'. 
n n 

for the eigenmodes, we see that 

~(r,6) =-~(a einS +a e-inS) J (Kr) H (l)(KR)' 
· 2 - n _ -n n n 

The an' a_n are arbitrary, and, as stated earlier, we see that if 

J ( KR) = 0 we get the well-known eigenmodes, whereas if 
n 

H (l)(KR)' = 0, ~(r, 6) = 0 for all r. 
n 
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TABLE I 

Calculated Eigenvalues for Various Triangles 

Case Refl. Side K 

Equilateral Triangle Any 7.255218367 

Loog Side 9.934553730 

Short Side 9.933726725 

Long Side 11.08250607 

Middle Side 11.08234361 

Short Side 11.08187716 

TABLE II 

Calculated Eigenvalues for a Square 

Points/Side K 

26 4-442863650 

36 4.442880014 

4.442882134 

Error 

2.09 X 10-5 

-3.45 X 10-5 

-8.62 X 10-4 

8.89 X 10-6 

-1.54 X 10-4 

-6.20 X lQ-4 

Error 

-1.93 X 10-5 

-2.92 X 10-6 
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TABLE III 

Calculated Eigenvalues for an 1-shaped Region and a 30° Rhombus 

Case Points/Side K (Calc.) K (fin. elem.) 

L 28 3.10465 3.10479 

Rhombus 26 4.9898337 

Rhombus 36 4.9898439 4.98988 

Rhombus 46 4.9898456 

TABLE IV 

Comparison of "Null" and Proper Solutions for Various Figures 

Case Refl I. Side K ~A( cen) ¢1K(cen) 

Square Any 4.07596 4.44286 -.74 X 10-5 -.17 

45°-45°-90° Long 9.56806 9.93455 -.15 X 10-4 -.13 

45°-45°-90° Short 9.76275 9.93373 -.20 X 10-3 -.042 

30°-60°-90° Long 10.81737 11.08251 .92 X 10-5 -.072 

30°-60°-90° Middle 10.84880 11.08234 -.92 X 10-4 -.048 
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FIGURE CAPTIONS 

Fig. L D( s) for a square. From symmetry D( 3 - s) = D( s ). 

Fig. 2. D( s) f'or an equilateral triangle. From symmetry 

D(2- s) = D(s}. 

Fig. 3. D(s) f'or a 30°-60°-90° triangle reflected along the long 

side. 

Fig. 4. D( s) for the L-shaped region. 

Fig. 5. 

Fig. 6. 

The solid curve represents D (s) for a 45° isosceles 
K 

triangle reflected along a short side. The dashed curve 

Illustration of variables used for the analytic treatment 

of a circular region. 
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