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ABSTRACT
.A technique for the solution of the Helmholtz equation
together with associated boundary conditions is described. "I‘h.is :
method is based on a generalization of that used for the .solu.tion of

the Dirichlet problem of potential theory, in which a dipol_e distribu-

tice is introduced on the boundary of a region to generate the poten-

tial inside. In order that the boundary conditions be satisfied, the

-distribution must be found as the solution of an integral equation.

If the boundary is smooth, the equation is of Fredholm type, but if: it

has a corner the equation is singular. The problem of a sharp corner

»is a,nalyzed, and properties of the solution are developed using the

theory of singular integral equations. A few results are given' for

the numerical evﬁluation of eigenvalues of the Laplacian forbs_ome poly--

' goms which can also be obtained analytically. It is observed that

eigenvalues of the integral equation can produce non-triviel distribu-
iicns which generate "null" solutions of the original Helmholtz

equation.

—2-

I. INTRODUCTION

In modelling a wide variety of ‘physical wave phenomena, one

‘1s often faced with the problem of finding a wave motion in a medium

which is Inhomogeneous overall, but in which the medium is localiy
homogeneous and has discontinuities across various boundaries. In

such cases one must typically find a solution to the equation °

2

(W + %) WF) = 0, (1)

where Kj; will be a different constant in each region, i, together
with certain matching conditions for ¢ at the boundaries of the
region.

Aside from a few special .cases which can be trea‘bea analyti-
cally, such proﬁlems must be solved numerically, usually with the aid
of a high-speed computer. Commonly applied techniqués of wide S
applicebility in such calculations are the finite difference and
finite element techniques. The former directly apﬁrox:lmates the de- -
rivatives in Eq. (1) by f.inite. differences, and the latter is best
based on a Lagrangia.n variational principle.'from which Eq. (1) can be
deduced. These techniques are generally applicable independéntly of
whethér subregions are homogeneous or not. On the other hand, althoﬁgi'x
boundary conditions at finite distances.. are easily treated, boundary

conditions "at infinity", which arise in scattering problems, are

_difficult to impose.

In this paper we consider a -different method for the _solution
of such problems which is closgly related to the cla_ssibcal solution
of the Neumann and .Dirichl"et problems of potential theory. In this
technique, the solution of Eq. (1) in a given region is achieved by

the introduction of a monopole or dipole distribution on the boundary
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of that_region. The boundery conditions.cap then be determined in
terms of that distribution and one is led to integral equations for
the boundary condition which must be solved. The method has two
immediate adventages over the previously noted methods: 1. boundary
conditions "at infinity" are easily introduced; and, 2. it is only
necessary .to consider points on the boundary to obtain the solution,
thereby reducing the dimensionality of the problem by one. The
storage requirements for a computer can thereby be reduced signifi-
cantl&. On the other hand, the method has the disadvantage that the
matrices which are generated have relatively few nonzero elements as

.gampared to the former techniques which can produce matrices with
small "band;widths", and the elements of the matrices typically
require calculation of more complicated functions. It is also true,
of course, that the boundary distribution method can only be applied
if individual regions are homogeneous. Thus for differing problems
different techniques may be most efficacious. Although we believe
that -the method can be deﬁeloped for use in fully three-dimensionél
pfoblems, in this paper we will only consider the two-dimensional césq
8o that we will deal with a one-dimensional distribution on the
boundary.

~ The integfal equation which arises in this method is df
Fredholm type if the boundary is smooth, bﬁt it becomes singular if
sharp corners are introduced. In the last few years a number of
zpplications of the method have been méde to acoustic and electro-

(1)

‘magnetic radiation problems , but in these a detailed analysis-of
the complications arising from sharp corners has not been made. In
this paper, in Section II, we first develop the general integral

equation for the -boundary distribution, and then in Section III we

-
give A reasonably complete analysis of the properties of the solution
in the vicinity of a corner. Finally, in Section IV we'givg results
for the numerical solution of a few problems. -Although we wish to
apply the technique to scattering problems, we know of no analytic
solutions to scattering problems with corners. The examples have been
chosen only to illustrate the capability of the method, and so we haveb
determined eigenvalues of the Laplacian for a few special shapes.

Fach of these can be obtained analytiqally and so the error obtained

- provides an indication of the potential accuracy attelnable. It will

be seen that excellent results can be achieved.

II. THE DIPOLE DISTRIBUTION INTEGRAL EQUATION
The famous Dirichlet problem of potential theory is the
determination of a solution of Laplace's equation in a region in
which the potential takes a given value on the boundary. This

problem has been solﬁed for the inside of & closed region by the

introduction of a Green'é function and a continuous dipole distribu-

tion on the boundary. Thus one writes

o) = § e, Tyl (2)
. |

In this expression D(F) is tﬁe dipole distribution at ;,G(;,;') _
is the potential at T owing to a unit charge at T' and dgf' is

the surface element directed along the outward normal. The integral
is carried over the surface SV which encloses the volume V, and
¢(;) is théreby determined throughout V. In the two-dimensional

case, in which we shall be interested in this paper,

G(F, ¥1) = 2 1og [F - 1], » (3)
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end of course the volume, V, becomes an area, and SV i; its
bounding contour.: The solution of the Dirichlet problem is then re-
duced to finding the solution of an integral equation for I( ;). »

If we introduce the G(;, ;‘) of Fq. (3) into Pq. (2), we

~ find:

Kty § i oot

-, .2 °
B

'mis expression would be useful for determining the potential at

- internal points of the regioh V, but if one wishes _¢(;) on the

boundary the limit must be taken from the insidé, since the ¢(;)
obtained from this expression is discontinuous across the boundary.
In the limit in which = approaches ‘a point on the boundary where it~

is smooth, one can write

e e - Her § i Catiig
T SV SV mir' - r

In this relation, the integrand is in general sihgular as T > 7T but
the integral can be defined as a prinecipal value integral. If the
side ;:ontaining T is straight, the contribution from that side will
vanish and the int\egral is then regular, but in any case, if the
boundary satisfies a Liapunov smoothness .condition, it can then be
shown that the integral is in fact well-defined as a principal value
tegral for ;' *;. (2)

Thus, for a smooth boundary, a solution of the Dirichlet

problem is obtained if one can solve the integral equation

an|Fr - F|°

f(;)=D(T;)+P‘§ D(;')(;' -;) dot

- It can be shown

-6~

(3)

that this equation does in fact have a unique
solution and so the problem is solved.
In our Approach we extend the preceding technique to apply to ~

the Helmholtz equation:
(¥ + &%) W) = 0. W

In this case, we must choose G(;, ;')‘ to be a solution of Eg. '(4),

with the result that:
G(T,7') = & I(k|F - F']) + B Y (x[F - F1]),

where JO and Yo are the usuai regular and irregular Bessel
functions of order zero, and, A and B must be determined using
the limiting condition as T o , -and, if applicable, th_e condi-
tion as 7 + ©, If EES ;', G will approach the same limit as for
K =0, and so, since Yo(x) ~(2/m) log x, as x>0, we find
that B = 1/4. On the other hand, A will be determined for the
specific problem con'sidere‘d: If oﬁ_e is dealing with the inferior of
a closed region, A .can be chosen as zero. If, however, the region
is open and ; can approach :'Lnfinit&, A‘ will then be chosen in
such a way as to satisfy the asymptotic condition on /w(;).

In order to find the asyﬁxptotic condition, it is help_ful to

consider the time-dependent equation from which the Helmholtz

equation typically arises. In the case of wave propagation, we

would have

2 ' .
2 1 3 > =
: Q _c_2 -a—:t?)¢(r’ t) i 0 ’ (5)
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wkere c¢ 1is the propagat_ion velocity for waves in the région. If we

‘then assume &(r, t) = WT) exp(-iwt), we get Eq. (4), where « = w/c.

For a scattering slituastion, we consider as a typical case that a plane

wave is incident on the scattering region, and write
wD) = EF Ly ()
s¢ :
Here, wsc(;) is the scattered v}ave.and we require that it must have
only "outgoing" parts. Further, we introduce the distribution D( ;)
on the boundafies where * is finite and fhey will theﬁ be used to
generate- wsc only. \
A simple way of determining A so that only "outgoing”
scattered waves occur, with the assumed time dependence, is to require

that

<>

oF, #1) = - u (D - 7, (8)
where A

Ho(l)(x) = 3y(x) + 1 Y(x)

ié the usual Hankel f‘unction(l’). ‘This cleariy gives the correct B,

and if ;’l#w:
1/2

«F F) - -3 oLl = /),

2
r + o T

which clearly represents outgoing waves, since asymptotically

. d’sc(;’ t) ~ exp[i(kr - wt)].
T >
If we now introduce Eq. (6) for G(¥, *') into Eq. (2), we
have:
6.3 = - L ¢ pEnwm Dicfpr - 2])ea0"
se T o cfrt - » 5

SV

-8-
or, since Ho(l)(x)' = -Hl(l)(x), .

ix

Voo P) = (7)

§ 30, P fF - FNE - Peaor

Clearly the scattered wave given by Eq. (7) automatically giveé only

outgoing waves, and in fact we have

. ke - 3n/4) -1Kr' 8 :
Vg () - e — § ) e e do' ,
c r>w (8'"1‘)1/2 v
Sy

where é‘r = T/r.
If we let E3 approach the boundary, the resultihg equation

has the same small (T' - ) behavior as in the Dirichlet case, so

that we may write:

Hl(l)(nclr' -r|)

f(?)=D(2—;)4iT"P f
sy

The same considerations as in the Dirichlet case with regard to the

DT )T - r)edo! . (8)
[rt - r|

singular nature of the equation apply. It is this integral equation
which we propose to investigate. A

There is one important difference between the poteﬁtial
problem and the Helmholtzl problem that should be mentioned. Although
the interior Dirichlet problem has a unique solﬁtl;on, the exterior

problem does not, and in fact will only have a solution &t all if

§f(;) @) =0.
has a solution. (It is easily seen that a constant satisfies the

homogeneous equation.) Consequently, as follows from the Fredholm

theory of this self-adjoint equation, only if f(;) is orthogonal to
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the solution of the homogeneous equation is there a solution of the
inkomogeneous equation. In the Helmholtz case, the homogeneous

equation will not generally have a solution, so both the inner and

- outer problems have a unique solution.

III. ANALQSIS OF THE PROBIEM OF A BOUNDARY>WI_TH SHARP CORNERS

‘ Altﬁough the boundary distribuftion technique can be applied
directly to cases in which the boundary is smooth, i.e., satisfies a
Liapunov condition, some édditional a_nalysis must be'given if the
‘boundafy has sharp corners. In the former case, thev kernel of the .
equation can be shown to be ‘completely continuous a.nd so the usual
Frédholm theorems apply; On the other hand, if there are corners the
ké;nel is singular. _
To deai ‘with this s“i’tuation, we will consider' a corner in a“

boundary and for simplicity we will assume that the two sides of the

corner are straight. The angle between these two sides will be

. called a. Further, since the singular nature of the equation comes

. about because of the small-distance behavior of the kernel, we divide

the kernel into a leading term which includes the most singular part,

and a remainder which is completely continuous; Thus we write:
- i
Hl(l)(x).= - t%). + R(x), . (9)

end we will focus att,ention" principally on the first term.
If Eq. (9) is now introduced into Eg. (8), we find:

2y _ D(D) D7 (T - T)edo’
£(F) = 22+ p _
T § an[Fr - 7|2

+ i;. P § RO = F]) piy 2 - F)egor

# -

«]0~

Let us now introduce the notation that Dl(s) is D{T) on side 1
of the corner, where - s is the distance from the corner, and D2(s)
is D(;) on side 2. U{ith this notation, the equetion can be expli--

citly written for 3 on side 1 as:

D(s) ¢ sin a fz ' Dy(s')ds’
(s1?

£.(s) + .
1 2 2 - 2s' s cos o + 32)

R[nc(s'2 - 28' s cos o + 32)1/2]

ik . J
+ =g sin a - D.(s')ds!
4 2 , 2 1/2 2
0 (s'“ - 2s' s cos a + s°)
() = _ 2 . .
cie (B o ED e e
2 7 - 3 ’
ct )

where fl(s) is the boundary value of f(F¥) on side 1. For a
straight side there is no contribution from.the distribution le(s)
to the potential on that side except for the term‘ Dl( s)/2, because
the vector ;' - ; is perpendicular to the surface element. The
length of side 2 is £ ‘. The integral over C' 1is the contribution

2
from the distribution other than the part on sides 1 and 2. This

‘last integral is analytic as a function of s, since it is a finite

integral and I;' - ;| >0 for ' ‘on C' and T on side 1.

Similarly, for side 2 we have:

2
fz(s) : DZ(S) .ssina Ll Dl(s')ds'
(s

+ ... s
2 < 2 2s' s cos o + 52) _

where the -.. indicates terms similar to the R, C' terms for fl'
To analyze the corner singularity, we introduce )

Di(s) = Dl(s) + D2('s), and we then obtain

Di(s) 8 sin o !'m Di-(s‘)c}s'
z * T on (a2

- 5 = Ft(s) s
- 28' s cos o + 8 -
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where 2m is the lesser of. 11 and £2,

cantributions of fi(s) and the remainder of the equations coming

and F (s) includes the

from R, C', and the integral for the larger zi beyond lm.

Obviously, these integral equations have a singular kernel as

s, s' + 0, and so some care must be used in dealing with them, either
\

for analytic or numerical purposes.

To proceed, we make a Mellin transformation of the equations

tc obtain _
. oo 2
808 °t :
12 + __S_l_nzi [ ag' A (E") rn(s')'E EL
) (21") i ¢c-ieo _— 0 .
o E '
s” ds
i . = 0,(8) .
X j ) s° - 2s s' cos a + §'° *
0 (10)

. Q0 .
In this equation, A(f) = f D(s) s&1 ds. To obtain Eq. (10), we
0
have made the direct Mellin integration and have used the inverse
relations: otim
D(s) = (2mi)t I ME)Eas .
c-iw

The choice of the constant ¢ "will be discussed later. The transform
of the function F+(s) is ¢+(£). In arriving at this equation we
have interchanged the order of integrations, but this can be justified

a4 posteriori. Next we can evaluate(5) the right-most integral in

Eq. (10):

-1 sin [(n—' a)é}]
sin o sin(wg)

= n(s"

ON———8

0

N

!

3N

w

2] .

-l
(s

Q

o Q.

123 (7]

Q

+

[0}

N
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where 0 < o <-2ﬁ, and -1 < Re £ < 1. Then we can cérry out the

next integral: . '
g-g'
m . (%)
L ()% agr =« 2,
E-&'

~

where we require that Re(£ - £') > 0. Thus the equations become:

cHim

8,08) g I (2,055 a, (8 aer
= tmT e xS (1)
c~dea : ‘
where
2(E) = sin(m - 0)g

sin 7 £

This equation is in standard singular integral equation form,

and thus may be treated using kmown techniques(é)

. We begin by
considering the homogeneous equation, and introduce a function

ct+im .
ani (E-¢) ’

(0)

where A is a solution of the homogeneous equation. Clearly
H(E) is an analytic function in the finite half-planes defined by
Re(&) Z ¢, and it has a discontinuity in crossing the contour of

+ . :
integration. If we define the H(')(E) to be the functions obtained

from the integral in which Re(£) 2 ¢, respectively, together with

their analytic continuations, we then easily find that

2Oy - ey - 1 ey

and so

3 E{t“)(g) S AR r(a)ﬂt(*)(eﬂ =0 (22)
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9

£

Ea
b
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This equation can be used to deduce the analytic structure of
8,0%e).

We‘eventuallvaish to deduce the analytic sfructure’of Xs),
which will require using the inverse transform on A(£). For the
latter step, in the 1limit s + O, the contour in the inverse trans-
foerm can be closed on the left, and so the behavior of D(s) is
deterﬁinéd by singularities on the left of the contour. In this
region H(_)(E) is clearly analytic, and so we can solve for
ﬁ(+)(5) in terms of H(—)(E) using Eq. (12) to analytically

econtinue H(*)(E)"to the left of the contour. Thus we find: -

1) = (1 e u, e,

A solution of this equation can be obtained by taking the logarithm
of the equation and then no;ing that 1log H(E) is a function with
a given discontinuify on the contour. The solution of this problem
{ the ﬁHilbert.problem") then can be writtencv):

ct+io

1 a1 + (g}
= —— t .
Hi(i) exp | = -—-27--2T——'d€
c-ie
assuming that the integral converges. We then see that Hi(—)(g)
is analytic and nonzero on the left of the contour, and if we use

Eq. (12) to analytically continue VHi(“)(g), it is evident that

at(*)('g) will also be analytic unless
1+r(E)=0

At such points, H+(+)(£) will generally have poles. Thus At(o)(g)

also has poles at such points.

~14-

The solution of Eq. (11) may now be obtained by introducing

FE) = o o7 )t aena
- S S C U 9
c-ie

Then it is easily seen that
H ey 23y = aayp),
so that
(1 s (¥ e - 2 ) = -20,(2). (13)
Using |
(re =) = 1w ey,
this equation can be written: ‘
AR I AR NN
e e 1)

Again we have a discontinuity equation to satisfy and we obtain as

the formal solution: '

C+ie

H,(E) J 0 (E) 4
ir BAED) £ Tk

¢-1w

F,(8) = -

Since :Ni(')(g) is analytic on the left of the contour, if we use
Eq. (13) to obtain the analytic continuation of J’Fi(‘”)(g),’ we
finally find that .
so(£)#, 7)) + 20(¢)

1 % r(g)

8,(8) =

Thus, we can generally'expect poles in' A(g) in the left half plane
wherever 1 * r(g) =0 on the left of the contour.

To complete the discussion, it is necessar& to specify the
contour; i.e., to determine c. In the first place, from the

restriction on Re(g), we require that -1 < ¢ < 1. In addition,
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tre preceding development will only give a meaningful expression for
Be) if zn[l tr(g)] »0. as |Img| +=. It is easily seen that
{g) ~ exp[(lﬂ -a| - m)|Im F,'ﬂ as |Img| » =, 50 E) + 0.
Thus the logerithm will approach zero at , ‘unless it has an
imaginary part of the form imn. To guarantee that this does not
happen, we can choose c¢ = O, since r(f) is real and nonzero on the
imaginary axis. Any other ¢ satisfying the limit restriction is
equally acceptable as long as the contour would not thereby be dis-
torted from the imaginary axis by going past a zero(g) of 1 +r(£),
since in such a case the logarithm wOuld acquire an imaginary part
at «.

We now can conclude that IXs) will behave as ~ s-gn as

s + 0, where En is a pole in the transform, A(£). Such poles will

appear if
sin(w - a)En
tEr—mre
n
or

gin w £, =% sin(w - a)En N
if £ # 0. In the case of A,, the solutions of this equation are

g (*) . (-1 2ny

i
n o ’ 2T - o ?

and in the case of A,

g (=) _zm (on - 1)m
n o’ T Ton-a !

where n 1s eny positive integer. .
In addition to these poles, we must consider other possible
singularities in A(£). Since 3¢1_)(£)‘ is analytic, the only other

possibility would be singularities in ¢(£). In fact, &£) in part

=16~

comes from contributions to f(s) arising from distributions on the

" Other boundaries, C',v and since these contributions will be analytic

near s = 0, this partvof ¢t(g) will be the transform of functions
which have power series expansions; 1i.e., they have poles at the
negative integers(g). There will also be a pole in ¢t(€) at £ =0,
but because f_(0) =0, ¢ (£) has no such pole. Thus, to the poles
already given, we have.additional poles at the integers.

Finally, we must consider singularities related to the
Hl(l)(x), aside from the most singular paft which has already been

3

treated. For this we assume that D(s) ~ s , and then deduce the

form of . )
- * D)
_ iks sin a - .
IE(S) 4 J W (S') ds ?
0
1/2
where w = (s'2 -~ 2s' 3 cos a + 32) / . This integral can be
evaluated using Gegenbauer's addition theoren‘lo):'
Ig(s) =2sina ZE: (m+ 1) Cm(l)(cos a) H&ig(Ks)
s m=0 : 2
L -E-1 ) -£-1.(1)
x j (') ¥ hgpp(ketdast + 3, 1(ks) | (') (ks Jas*
0 ) 8

where Cm(l)(cos o) is a Gegenbauer polynomial. The Hankel function
can be divided into two parts:

Hgiz(ns) = %%-log s = Jq(ks) + 4 (s),

where
[o0)

booy(5) - Z o s

n=0
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If the series for wm+1(s) and Jm+l(Ks) are introduced into the

expression for: Ig(s), it is then easily found that log s does not

coccur in Ig(s), and that the powers of s which occur are £ + Zn,

anéd n + 1, where n is an integer > O. Thus each of the poles,

Ei, generates a series of polés spaced at even-integefs from Ei' or,
equivalently, an even series of powers of 8 of the form & n,
This completes the determination of the analytic form of the solutions
of the boundéry integral equation at a sharp corner.

A few comments are appropriate at this point: In deducing

the analytic form of thé solution, we have assumed that the unknown

functions on the remainder of the boundéry away from the corner of

interest can be treated‘as if they were known. The legitimacy of
this approach can be rigorously established following the complete
treatment of singular equations, but we did noﬁ feel tbat such an
aporoach, -which mainly only increéses the complexity of rotation and
the bulk of the equations, was particularly illuminating and so we
have chosen the more heuristic épproach given above. We refer the

terested reader to the rigorous treatments of‘singular integral
equations for a discussion which will indicaté the necessary
extension of the preceding argument. v

In the above analysis, we have assumed also that the poles

which appear are simple. While this is generally the caée, in
special cases, poles may come together. For example, if o = 27/3
we find that two poles occur at § = - % for . A(+). In such &

g

sitﬁation, the s¥space function then has a term of ‘the form: s~

£

as well as the usual s ~.

log s

-18-

Finally, we consider the relation between the behavior of
: -+ -+
D(s) near a cormer and that of . f(r), where r is not on the

boundary. Here:

v 1 [ X P - 2E - Freaor
o) - 2 4 _

FoA

If we represent the point T in polar coordinates (r, 6) and assume

s) ~ s-g the leading contribution to f for small r is then

A\t
1 - (s) ®r sin 6 ds
. 03 - Ed 0 s2 + r2 - 28 r cos §
R 4
o X IZ (s)_gr sin (o - 8)ds .
- 2 2 e
o 5 *ri-2sr cos(a - 8)

- where the  * sign is chosen according to whether we have the odd or

even part of D, and the remainder is less singular as r - 0. The

two integrals then contribute to f(r, 8) as

o £
£
fr, 0) - mmmg L1,

and we see that the behavior of D (s) 1is reflected in f(r, 8) near

£

the corner, but D_(s) does not contribute a term of the form r .
. If the results of this paper are applied to an electric field

for which f = -Vo, ﬁhere ¢ is the electric'potential, then at a

corner, ¢ ~ & and E ~ Er—E-l. The electric field energy

(= f2/8n) is then integrable (as is expected on physical grounds)

since & £ 0. The condition of integrability of the electromagnetic

énergy density was introduced by Meixner in order to6 obtain a

unique solution for Maxwell's equations in the case of the diffraction

of electromagnetic waves by perfectly conducting screenéul).
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IV. NUMERICAL EXAMPLES
To‘illustrate the effectiveness of the boundary distribution
methéd, we have uged it to find approxiﬁate eigenvaluesbfor a number
of polygons in which the eigensolutions for w(;) and « are known.
Thus we look for solutions of the integral equation In which f(;) =0
on the boundary of the region. To our knowledge, the'corfesponding
distributions, D(;), cannot be obtained analytically in these cases
so unfortunately a direct comparison of the numerical results for
them cannot be madeé.
At the outset, it should be noted that we do not féel that

the boundary method is necessarily the best choice for finding such
eigenvalues, and it is not for such problems that we ultimately wish

- to use it. An apparent disadvantage as comparea with the finite
element method, for example, is that it does not seem to satisfy an
extremum conqition, and, for the lowest eigenﬁalue, a minimum principle
Thus, by changing certain paremeters in the caleculation it may be
possible to find values for « which change frbm below the correect-
value to above it, and for a suiteble choice one could get as éccurate
a result as desired. In the calculations to be descfibed, variation
of parameters with this goal was not carried out and parameters wéré
chosen somewhat arbitrarily. Such a change in 'k was observed to
occur as the balance between the number of poinfs in the corner regions
and the central regions was varied with the total number of points
fixed. Thus the accuracy of the calculated. K is not completely
‘satisfying as an indicatof of the overall accuracy of the calculétion.
(it will be seeh from the results, however, that in many cases

errors in the eigenvalue are very small.)

.method, for example, has few, if any, zero elements.

- =20-

Another disadvantage of the method for finding elgenvalues
is that & occurs in the kernel of the integral equation so that the
epproximating matrix must be recalculated for each choice of k. In
the finite element method, such iterative complexity is not necessary.

In addition, the kernel is a complicated function, and the ensuing

~matrix, while having meny fewer elements than the finite element

Thus, it is
not clear that 6vera11 efficiency is obtained. There is generally a
trade-off between storage requirements. and the complexity involvéd;
On the other hand, for scattering problems it is not necessary to

iterate the matrices; and the automatic satisfying of the outgoing

-scattered wave boundary condition seems to us a great advantage.’

We have used the method of this paper to obtain eigensolutions
for a sqﬁare, for an gquilateral triangle, for a 45° isosceles
triangle, and for a 500-600-90o triangle. In each case the eigensolu-
tion for Kk and w(;) can be obtained analytically. In addition,
we havé obtained eigensolutions for tﬁo other figures which have been
treated using the finite element method.

In reducing the integral equation to an epproximate finite
form we have approximated the integrals in the integral eqﬁation in
two ways: For T' near a corner, we have assumed that D(s) can be
expanded in a finite series of terms of the form sg, in which the
E's chosen are the lowest values in the set of allowed £'s. Then
the kernel was broken into two parts, of which the first included the
most singular terms as k|’ - ©| + 0, and the second was the
remainder. The first part together with the various (sg)'s. was
integrated énalytically using Various~rapidly convergent series;

while the second part of the kernel was assumed to be approximated by
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a quadratic form, and this was then integrated exactly in conjunction

with the factors sg. The method used for this part of the kernel

was quite analogous to that used in obtaining Simpson's rule. On the

other hand, for T away from a corner the entire kernel times D(s')

was assumed to be approximately a quadratic form in s', and then
this function was integrated exactly, again anaiogously to Simpson's
rule.

In the calculations reported here, we are dealing with a
clesed region, and hence in the kernel no asymptotic éondition as
r += is needed. Thus we have chosen the Neumann function Y,
instead of the Hankel functioﬁ Hl(l) in the kernel. This has the
advantage that the kernel and D(;) become real. Further, we have
choéen to reflect the distribution about one of the sides. This
automaticelly satisfies the w(;) = 0 .boundary condition on that
side, and no distribution is needéd along it. We also find that the
results for k depend on which side is used for reflection in the
300-600;900, and 450 isosceles triangles. In Table I we give some
calculated «k's for vérious triangles. For the results giveﬁ, we
have chosen 26 points on each side of the triangle and in the vieinity
of a corner we express D+(s)' using the lowest sii terms and D (s)
using the lowest five, In the series of powers. In Table II, we |
$1lustrate the variation of k. for a square, as the number of points

per side is varied. The accuracy obtained for ﬁhe eigenvalues is

remarkable, particularly so in the absence of a variational principle.

We also give in Table III the values for k obtained for an "L-

shaped" region consisting of three unit squares and 6f a unit-sided

rhombus in which the corners make angles of 60° and 120°. Approximate

-22-

eigenvalues for the latter two regions have been obtained using the

finite element method(lz).

For the rhdmbus, we have also varied the
nurber of points per side to illustrate the convergence of the eigen-
value. It may be noted that the symmetry of the various figures was .

not used to reduce the size of the matrices involved, and in the case

of the L-shaped region this would have been very desirable to reduce

the storage requirements. It is interesting that in comparison with

the calculation for a rhombus by J. A. George which was carried out
using 225 linear equations for the determination of the solution for

ﬁhich the associated matrix had a band width of 65, our calcplation'

‘with 79 points on the boundary produced somewhat better results for

x as judged by the convergence of the results. The calculations of
(13)

Stadter are considerably less accurate, giving

4.98811 € ¥ £ 4.99770. For the "L-shaped" region, a very accurate
' (14)

technique developed by Fox, et. al. gives an eigenvalue of

K = 3,1047905, while the finite element calculation of J.A. George(lz).
using 210 equations with a bandwidth of 101 and taking advantage of the
symmetry, gives «k = 3.1051; and the finite difference calculation

of Reid and Walsh{l’), using 360 points and & 5-point formula, gives

K = 3.1102. One sees that our approach compares very favorably with

these results. Furthermore, it is noted by Fox, et. al.(l4)

that
their technique, which is very effective for the "L—shapeé" region,
is not particularly better than other methods for a rhombus.

A few results are presénted'in Tables 1-3. A fuller discus-
sion of these calculations will be published elsewhere. The analyfic

(16),

lowest eigenvalues in the various cases are
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k (square) = V2 m,
x (equilateral triangle) = 4n/V3 ,
k (45° isosceles triangle) = /5

snd (o] 0.0 .
' . ¢ (30°-60"-90" triangle) = 4m/7/3

The corresponding eigemsolutions are given in Appendix A. The
distributions, D(s), for several representative cases are exhibited
in Figs. 1-4.

In obtaining the eigenvalues, it is seen that some configura-
tions produce a considerably better result than do others. For
example, in the 450 isosceles triangle the error is much smaller if
the side reflected about is the longest one. This is also the case
for the 300—600-90o triangle. It is not clear as yet why this should
be so. In general, the errors in «k seemed to us surprisingly small
censidering the number of points used per side.

We also have found that the series expansion for Is) does

not converge especially wéll; i.é., the last term in the series for a’

point at the farthest distance from the corner for which the series
is used is typically a few percent of the leading term. The only
counter-example is that in which we have a 90° corner at a reflected
_side., 1In this caée, Ds) is analjtic in s and has an odd-integer
oower expansion which typically converges extremely well. On the
cther hand, it is found that coefficients of the lower powers in the
series are very stable with respect to variations of parameters in
-tre calculation and they seem to converge very well to a precise.
value as the number of points per side is increased. The higher

coeffigients in the series tend to be erratic, presumably because

2

they are called upon to approximate the remainder of a series which

ie not of the form s It ma& be noted that.the En's in the
expansion are not very well separated and hence the expansion coefi- -
cients may not be very precﬁSely obtained, so that the D{(s) could
be much more accurately given than are its constituent parts.

_ Finally, in addition to the true eigenvalues diséussed above,

the boundary distribution integral equation can also produce spurious

k's. In Appendix B, we have applied the boundary distribution tech~

nique to the case of a circular boundary, for which an analytic treat-

ment is possible. As is shown there, not only do we obtain the well-
known set of eigenvalues for that case, but we also find another set
in which D(s) can be finite, but the w(;) which arises from it is
identically zero. As is shown in Appendix.B, the eigenvalues are
given by Jn(KR)Hn(l)(KR)' = 0, or, if one is dealing with a finite
region since the Green's fﬁnction can then be constructed using the

Neumann function, Yn, instead of the Hankel function, Hn(l),

t =
Jn(KR) Yn(KR) 0,
or

I (kR) (kR) - é% T (R) =0 .

Yn+1

Thus, if n = 0, we have JO(KR)YI(KR) = 0. One finds that the roots
associated with non-trivial solutions and those which give null
solutions are unfortunately quite close together. Thus, for example,
the lowest zero of Jo(x) occurs for x = 2.4048, while the lowest
zero of Yl(x) oceurs at x = 2.1971, and_higher roots are even

closer together.
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These spurious solutions also occur in the cases we have

evaluated. In Table IV we give some cases of pairs of sélutions

together with calculated values of w(;) at the center of the figure

involved. Since the integral equation is linear, the value of w(;)

is arbitrary, but it has been fixed by choosing T) to have a first
side maximum of 1. It 1is seen that for fhe "null" solutions w(;) is
very small, and its size may well be indicative of the accuracy of the
treatment of the integral équation.

As in the case of the circular boundary, these pairs of
eigenvalues are distréssingly close together. Although the proximity
of ihe "null" solutions may not be critical for the eigenvalue deter-
mination, the accuracy of the eigensolution, wK, will be affected

adversely. Thus, in the interior of the region we can write:

. Y (|7 - 7)) . o=
T e G GRS 2

together with a corresponding equation for the "null" solution:
-+ > '
Y. (Ar' - r])
0=-2 § A D (F)F - P,
4 |z - r]
where A is the eigenvalue for the "mull" solution. These can be

cambined to give

TEREN {IKK(;, ) - R Bol@ @« n )

T+

ICAE DR Ne DR ERC DA(;')l} : (15)

where K'< and. K, are the corresponding kernels in the equation

A

for ¢. From the numerical solutions, one finds that

26~

[DK(;) - DA(;)I<<|DK(;)", as is shown in Fig. 5 forlthe 45° tfiangular
case with A = 9.76196. Thus;‘since Kl ~—KK for A ~ x, in case the
roots are close together the calculated wK ‘will be small. On ihe
other hand, errors in its calculation will be generated by DK, if

Eq. (14) is used, so the relative errors will be large. As an alterna-
tive, one could use Eq. (15) to calculate Ve bﬁt one must ihen

have solutions for the original equation for both k and A. Another
alternative would be to use the Hankel function in the kernel instead

of the Neumann function. In the circular case this moves the null-

.caée éigenvalues intp‘thé complex plane and these complex roots are

typically far removed from the desired ones. The disadvantage with
this approach is that one must then deal with a complex kernel and
solution, D. On the other hand, if one uses the method for a scatter-
ing problem, it is then necessary to use Hl(l) in the kernel in any

case, so the spurious cases would be unimportant.

In conclusion, the results presented here clearly show that it

is feasible to solve problems involving the Helmholtz equation by

making use of distributions on the boundary. Although presence of the
"null" solutions produces a largerverror in ¢ because of caﬁcella-_
tions than might otherwise be the case, the cancellations might be"
avoided with some effort. On the other hand, the eigenvalues calcula-
ted seem quite accurate and perhaps they best illustrate the overall
abcuracy of the technique.-'Since a variational eigenvalue determina-
tion produces armuch more accurate eigenvalue than the associated
eigenfunction, the method described here appears to give very good
solutions of the Helmholté_problem. Whether thié method can be an

effective competitor to the finite element or finite difference methods
in applicable cases can only be determined by experience.
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APPENDIX A
In the numerical analysis we have made comparisons with
various analytic eigensolutions of Helmholtz' equation. The solutions
fcr the square are well known. For the various triangles they are:

Eguflateral triangle

Hx,y) =sin 22 (B x+y)-sinL(SFx-y)-sin Ly,
3 V3 3

Iscsceles right triangle

m+n .
)j sin nmx sin mmy ,

Hx,y) = sin mmx sin nny - (-1
and

( %°-60°-90°) triangle

Wx,y) = GOS%T-T-(5x+ 3y)- cosz—;r-(5x- /3 y)

'rcos%l(-x—Bv’B_y)-cos%1 -x + 3/3y)

+

cos 27" (-4x + 2/3 y) - cos 3317-(—4x -23y) .
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APPENDIX B
Although the boundary integral equation, Eq. (8), must
generally be solved numerically, iﬁ the .case of & circular boundary
the equation can be treated analytically, and some insight can thereby
be obtained.
If the radius of the circular boundary is R, Eq. (8) can be

written as:

27 ) .
_D(e) ., ikR 1 . 8 -0 C s o' - 6
f(e):D(2 + = I H_l( )(2,<R sin |=— |)p(e!) sin | > lag!

0

If D(O) is expé.nded in a Fourier series,
[o}
Do) = Z a8 e:Lne s (B1)
n = -
we thén have the integral, In’ to evaluate:
] 2
1 . (0! -0 ._18' - 8; ind!
In(KR)= I Hl( )(ZKR sin| = |)sml 5 ]e.n ae!
. ) g
R (17) .
This integral may be evaluated to give
I (kR) = -1 7S 1 (Ver)s (xr)| o11°
n dalkR) n n .
Thus we find: © :
'| in®
1 imcR (1)
£(8) = 3 Z ad 1- 32 [Ptz )] | e
n = -

and, on meking use of the Wronskian relation between Hn(l) and J_,

n’
we get: 00 _
_ _imR (1) inb
£(9) = 2 aan(KR) Hn (xR)' e .

n = -



-and X is the angle between the vector (r+ - T) and o
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This result can be used to solve specific probléms, For
example, if one wishes the eigenmodes for the interior of a circular
region in which ¢(r, 8) is zero on the boundary, one immediately

tains the relation:
(1) "<
Jn(KR) Hn (<R) 0

The modes associated with .Tn(KR) are well known, but the apparent

(18>., and we will now demonstrate that

modes for Hn(l)( KR)' are not
for such k's, even though the dipole distribution.does not vanish,
the associated U’(;) is zero everywhere inside the circle, so such
solutions of the integral equation in this case are not useful. On
the other hand, such solutions could arise in a numerical calculation
of <he integral equation, and one must be careful not to confuse them
with nontrivial solutions. The distinction between solutions ¥ would

only be noticeable away from the boundary.

To find Y(r, 6) once D(r) is known, we can use .

. 21
Wr, 8) = i—:' J Hl(l)(Kw)D(e') cos ¥ db'
0
where .
2, .2 1/2
w=Ec + R -2chos_(6-6')_J ,

~
rl

{See Fig. 8.) We again express D(8) in a Fourier series, Eq. (Bl)

and, for r < R, we use Graf's addition theorem for Bessel func-

tions(lg) to give:

e o}

Hl(l)(K'W) cos X = Z H(l) (kR) Jm(Kr) cos m(6 = B') .

m+l

m= -0
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Thus one easily finds:

a) -
wr,6) = =2 Z ERE RECIEAEY
n=-m
+ HS:‘BI(KR) J_n(ICI‘) eind
Using the relations( 20):

I (2) = (D%(2), B ey = (1P 1 M), ena

K1) - B2y = - 28 Pay

we find: ©

Wr,0) = - 1R Z o a5 () 1 (Vi)

2 n

n=-00

Thus, for the eigenmodes, we see that

_¥(r,8) = - 112n<R (a) eind 4 a_g e~ J (k) Hn(l)(KR)'_

The as a_n are arbitrary, and, as stated earlier, we see that if

Jn( kR) = 0 we get the well-known eigenmodes, whereas if

Hn(l)(KR-)' =0, ¢(r, 8) =0 for all r.
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TABLE I

Calculated Eigenvalues for Various Triengles

~34-
TABLE III

Calculated Eigenvalues for an L-shaped Region and a 30o Rhombus

Case Points/Side k (Calc.) k (fin. elem.)
L 28 3.10465 3.10479
Rhombus 26 4.9898337
Rhombus 36 4.9898439 4.98988
. Rhombus 46 4.9898456
TABLE IV

Comparison of "Null" and Proper Solutions for Varicus Figures

Case Refl. Side . K Error
Equilateral Triangle Any 7.255218367 2.09 x 1077
45°-45°-90° Long Side ©  9.934553730 “3.45 x 1077
Short Side  9.933726725 -8.62 x 1074
30%-60°-90° Long Side  11.08250607 8.89 x 1070
Middle Side  11.08234361 -1.54 % 1074
Short Sidé  11.08187716 -6.20 x 1074
TABLE II
Calculated Eigenvalues for a Square
Points/Side K Error

26 4.44,2863650 -1.93 x 10~°

‘36 4442880014 -2.92 % 107®

46 -8.04 x 1077

©4.442882134

Refl
Case Side A » K ¢#cen) .¢écen)
. Square Any  4.0759% 4.44286 -7 x 1077 -.17
45%-45°-90° Long  9.56806 9.93455 -.15 x 1074 -.13
45°-45°-90° Sshort 9.76275  -9.93373 -.20 x 1077 -.042
0_;0_on oy -5 ,
30°-60°-90° Long 10.81737  11.08251 .92 x 10 -.072

30°-60°-90° Middle 10.84880  11.08234  -.92 x 1074 -.048




Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.
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FIGURE CAPTIONS
X8) for a square. From symmetry D(3 - s) = D(s).

D(s) for an equilateral triangle. From symmetry
D2 - s)=Ds).

Xs) for a 30°-60°-90° triangle reflected along the long

side.
D(s) for the L-shaped region.

The solid curve represents DK(s) for a 450 isosceles
triangle reflected along a short side. The dashed curve

represents 5 x (DK(S) - DA(S))-

Illustration of variables used for the analytic treatment

of a circular region.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Energy Research and Development Administration, nor any of
their employees, nor any of their contractors, subcontractors, or
their employees, makes any warranty, express or implied, or assumes
any legal liability or responsibility for the accuracy, completeness
" or usefulness of any information, apparatus, product or process
disclosed, or represents that its use would not infringe privately
owned rights. ’
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