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Significance

 Delivery of genome editing 
enzymes to diseased cells is 
critical for realizing their 
therapeutic potential. Virally 
derived particles, such as 
enveloped delivery vehicles 
(EDVs), use viral proteins for 
packaging and delivering editing 
enzymes. Understanding how 
they function is essential for 
improving editing enzyme 
delivery. We demonstrate that 
the nuclear delivery of Cas9 
ribonucleoproteins via EDVs 
relies on engineered nuclear 
localization signals rather than 
the native viral capsid structure. 
By removing unnecessary viral 
components and improving 
nuclear localization, we 
engineered minimal EDVs 
(miniEDVs) that showed 
increased editing efficiency. Our 
findings highlight the importance 
of understanding how virally 
derived particles function to 
eliminate unnecessary viral 
proteins and create more 
efficacious and easier-to-produce 
delivery vehicles for therapeutic 
genome editing.
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The widespread application of genome editing to treat and cure disease requires 
the delivery of genome editors into the nucleus of target cells. Enveloped deliv-
ery vehicles (EDVs) are engineered virally derived particles capable of packaging 
and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence 
of lentiviral genome encapsulation and replication proteins in EDVs has obscured 
the underlying delivery mechanism and precluded particle optimization. Here, we 
show that Cas9 RNP nuclear delivery is independent of the native lentiviral capsid 
structure. Instead, EDV-mediated genome editing activity corresponds directly to 
the number of nuclear localization sequences on the Cas9 enzyme. EDV structural 
analysis using cryo-electron tomography and small molecule inhibitors guided the 
removal of ~80% of viral residues, creating a minimal EDV (miniEDV) that retains 
full RNP delivery capability. MiniEDVs are 25% smaller yet package equivalent 
amounts of Cas9 RNPs relative to the original EDVs and demonstrated increased 
editing in cell lines and therapeutically relevant primary human T cells. These results 
show that virally derived particles can be streamlined to create efficacious genome 
editing delivery vehicles with simpler production and manufacturing.

genome editing | delivery | viral-like particles

 CRISPR-Cas9-mediated genome editing has enabled genetic therapies including an 
approved treatment for sickle cell disease ( 1 ). To advance the utility of genome editing in 
larger patient populations, efficient methods are needed to deliver editing enzymes into 
diseased cells in the body. Enveloped delivery vehicles (EDVs) are virally derived particles 
that can package and transport genome-editing ribonucleoproteins (RNPs) into cells in 
culture and in vivo ( 2 ,  3 ). These particles are programmable when engineered to display 
both a fusogen and antibody fragments on their surface ( 2 ,  4 ). While attractive as a delivery 
strategy for CRISPR-Cas9 RNPs, the structure and delivery mechanism of EDVs have 
yet to be determined.

 Derived from HIV-1 lentiviral vectors, EDVs could employ multiple mechanisms 
of protein and nucleic acid nuclear delivery. Lentiviral vectors (LVs) package nucleic 
acids and associated proteins, such as nucleocapsid, into a proteinaceous capsid core 
structure that assembles during virion maturation ( 5     – 8 ). After virions escape from 
endosomes in infected cells, the capsid cores protect the RNA genome and associated 
proteins from innate immune detection, traveling along microtubules to deposit their 
contents into the nucleus by translocation across the nuclear pore ( 9   – 11 ). Some HIV-1 
proteins, including the matrix protein, contain nuclear localization signals (NLSs) that 
bind to host proteins, such as importin α, for transport through the nuclear pore 
complex ( 12 ). Other HIV-1 proteins, such as the integrase, may use both the capsid 
and NLSs for nuclear delivery ( 13 ). Because the Cas9 RNPs packaged in EDVs com-
prise both nucleic acids and NLS-containing proteins, their mechanism of EDV- 
mediated nuclear delivery has been unclear.

 Here, we determined the components that are necessary for EDV-mediated genome 
editing. We found that although the capsid structure assembles in a subset of EDV 
particles, it does not transport Cas9 RNPs into the nucleus. Instead, NLS peptides 
engineered into the Cas9 protein confer nuclear entry and can be tuned to improve 
delivery efficiency. Furthermore, Mechanism-guided engineering enabled simplification 
of the EDV design, creating miniEDV particles with only 22% of the original viral 
residues while achieving up to 2.5-fold higher editing potency compared to the original 
EDVs in primary human T cells. Understanding the functional components of virally 
derived particles paves the way toward more effective and readily manufacturable 
genome editing therapies. 
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Results

The EDV Capsid Core Does Not Mediate Nuclear Delivery of Cas9 
RNPs. We showed previously that inhibiting the capsid core with a 
preclinical small molecule, GS-CA1, did not reduce EDV editing 
activity (2). This preliminary result suggested that the capsid core 
was not essential for nuclear transport of Cas9 RNPs, a surprising 
finding given the central role of the capsid structure in LV cargo 
nuclear localization. In LV, the capsid core packages and facilitates 
nuclear transport of the nucleic acid and associated protein cargo. 
To explore this further, we tested two additional small molecule 
inhibitors of the capsid core, lenacapavir and PF-3450074 (PF74) 
(Experimental schematic shown in Fig. 1A) (14–16). We produced 
EDVs packaging Cas9 RNPs that cut a prematurely truncated 
luciferase reporter gene (C205ATC) (17). HIV-1 lentiviral vectors 
packaging a transgene encoding Cas9 enzymes and the same guide 
RNA were used as a positive control. The particles were incubated 
with HEK-293T cells expressing the truncated luciferase reporter 
in either the presence or absence of the inhibitors. Cutting leads 
to insertions and deletions that can restore the luciferase reporter 
reading frame. We found that luciferase expression was specific to 
cleavage at the luciferase locus, proportional to the dose of EDVs 

and detectable  48 h after transduction (SI  Appendix, Fig.  S1). 
In the presence of increasing concentrations of lenacapavir, 
a clinically approved HIV-1 inhibitor that impairs cargo 
delivery by stabilizing the core (Fig. 1B) (14, 15). no decrease 
in EDV-mediated induction of reporter cell luminescence 
occurred (Fig. 1C). Similarly, incubation of cells with increasing 
concentrations of the capsid core destabilizer PF74 (Fig.  1D) 
(16) had no effect on EDV-mediated luminescence (Fig.  1E). 
Parallel experiments with LVs encoding analogous components 
(Cas9 and sgRNA against the luciferase reporter gene) showed 
dose-dependent loss of reporter cell luminescence, consistent with 
inhibitor prevention of nuclear delivery (Fig. 1 F and G). Together, 
these results support the conclusion that the capsid core is not 
needed for Cas9 RNP delivery by EDVs.

 As the luminescence produced by the reporter cells depends on 
both nuclear entry and Cas9 editing, we directly tested whether 
Cas9 nuclear entry required the capsid core. We incubated 
HEK-293T cells with EDVs and PF74 for 24 h, isolated cell nuclei 
and used Western blots to determine the relative amounts of Cas9 
enzymes or capsid associated with the nucleus (SI Appendix, 
Fig. S2A﻿ ). PF74 was used in this experiment because lenacapavir 
has been shown to stall capsid cores on the cytosolic side of nuclear 
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Fig. 1.   Small-molecule inhibitors that disrupt the capsid core do not impact EDV editing. (A) Schematic of small-molecule inhibition experiments. EDVs or LV were 
incubated with luciferase reporter HEK-293T cells in the presence of lenacapavir or PF74. The luminescence of the reporter cells were recorded after incubation. 
(B) Schematic showing that lenacapavir stabilizes the capsid core. (C) Lenacapavir did not inhibit EDVs compared to the DMSO control (0 nM). (D) Schematic 
showing that PF74 destabilizes the capsid core. (E) PF74 did not inhibit EDVs compared to the DMSO control (0 nM). (F) Lenacapavir inhibited LVs compared to 
the DMSO vehicle control (0 nM). (G) PF74 inhibited LVs compared to the DMSO vehicle control (0 nM). Schematics are not to scale. Data were normalized to the 
DMSO control. P-values were calculated using an ordinary one-way ANOVA with Dunnett’s multiple comparisons test to the vehicle control. Mean ± SD of n = 3 
batches of EDVs. Nonsignificance indicated by “ns”, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001 ****P ≤ 0.0001.
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pores, leading to their coisolation with the nuclear fraction ( 18 ). 
We confirmed successful nuclear isolation by monitoring nuclear 
localization of EZH2 and cytosolic localization of GAPDH 
(SI Appendix, Fig. S2B﻿ ). The 24 kDa mature capsid protein 
decreased in the nuclear fraction in the presence of 10 µM PF74, 
while the amount of Cas9 enzyme remained consistent across all 
PF74 concentrations (SI Appendix, Fig. S2B﻿ ). Both the Gag–Cas9 
polyprotein (220 kDa) and Cas9 (160 kDa) were present in the 
nuclear fractions. The presence of Gag–Cas9 in the nuclear fractions 
is surprising because it was assumed that editing enzymes needed 
to be liberated from viral structural proteins to enable nuclear entry 
( 2 ,  3 ,  19 ,  20 ). The observation of Gag associated with the nucleus 
is consistent with previous reports that the HIV-1 Gag protein can 
localize to euchromatin and associate with DNA demethylases in 
the nucleus ( 21 ,  22 ). Our results suggested that the liberation of 
Cas9 enzymes by protease cleavage may not be necessary for nuclear 
association. These results confirm that Cas9 RNP delivery into the 
nucleus is independent of the EDV capsid core.  

EDVs Form Capsid Cores That Do Not Encapsulate Cas9. We 
wondered why Cas9 RNP nuclear entry was independent of 
the capsid core. We began by testing whether EDVs contained 
capsid cores as observed in LVs, because the absence of capsid 
cores could explain the lack of effect from the capsid inhibitors. 
After purification by iodixanol cushion ultracentrifugation to 
remove contaminating proteins, EDVs and LVs were visualized 
using cryogenic electron tomography (23–26). We aligned the 
tilt movies of the particles, then reconstructed three-dimensional 
tomograms of our EDV and LVs. Three-dimensional tomograms 
of the EDVs and LVs (Movies S1 and S2) revealed spherical 
particles with a lipid bilayer in each case (Fig.  2A). Surface 
glycoproteins appeared as dark spots densely coating the lipid 
bilayer exterior. We quantified and compared the proportion 
of mature particles (with a capsid core), immature particles 
(concentric rings of proteins under the lipid bilayer), and 
unknown particles. Both EDVs and LVs were of similar size 
(~125 nm diameter) and contained multiple morphologies of 
the mature capsid core (SI Appendix, Fig. S3 A–D) (27). Roughly 
29% of EDVs and 51% of LVs contained a capsid core, while 
36% of EDVs and 18% of LVs were immature with concentric 
rings of protein (Fig.  2B). The remaining ~30% of particles 
could not be categorized and were presumed to be other types 
of vesicles or broken particles (Fig.  2B). We confirmed the 
lower proportion of EDVs containing the mature capsid core 
compared to LVs by Western blotting the capsid protein inside 
of the particles. Formation of the capsid core requires the 24 
kDa capsid protein to be proteolytically cleaved from the 55 
kDa Gag polyprotein. In LVs harvested at 30, 48, or 72 h after 
transfection, the mature capsid protein was more abundant 
than the uncleaved Gag polyprotein (Fig. 2C). In contrast, a 
similar analysis of EDVs showed the 55 kDa Gag polyprotein 
was more abundant than the 24 kDa capsid species at all time 
points (Fig. 2C).

 This observation led us to examine whether the differences 
in the formation of the capsid core were due to structural dif-
ferences between the immature EDVs and LVs. We used sub-
tomogram averaging and alignment to compare the immature 
capsid domains of EDVs and LVs to those of published HIV-1 
structures (PDB: 5L93). Subtomograms containing the capsid 
protein were iteratively aligned and then averaged to recon-
struct the structure of the immature capsid domains inside the 
particle. This analysis revealed that the immature capsid 
domains of both EDVs and LVs matched the HIV-1 structure 

(PDB: 5L93) ( 24 ) with RMS deviations of 1.2 Å and 1.7 Å, 
respectively (SI Appendix, Fig. S3 E  and F ). These data show 
that immature capsid domains in EDVs were structurally indis-
tinguishable from LVs.

 We next tested whether EDV editing activity was independent 
of the capsid core because the core does not encapsulate Cas9. 
To test this, we used photocatalytic proximity labeling with a 
eosin Y-lenacapavir conjugate to label proteins located near the 
capsid core ( Fig. 2D  ). We incubated eosinY-lenacapavir or uncon-
jugated lenacapavir and eosin Y with EDVs, then added 
phenol-biotin ( 28 ). Upon illumination with blue light, proteins 
proximal to the photocatalytic eosin Y were biotinylated and 
captured by biotin immunoprecipitation. Capsid and nucleocap-
sid proteins acted as positive controls, because the lenacapavir is 
bound to the capsid core and the nucleocapsid proteins are 
located inside of the capsid core. EDVs incubated with uncon-
jugated eosin Y and lenacapavir showed that Gag–Cas9 (220 
kDa), Cas9 (160 kDa), nucleocapsid, and capsid proteins could 
all be biotinylated ( Fig. 2E   EY & LEN lanes), because the eosin 
Y could diffuse throughout the particle leading to nonspecific 
biotinylation. When particles were incubated with the eosin 
Y-lenacapavir conjugate ( Fig. 2E   EY–LEN lanes), both the 
mature capsid and nucleocapsid protein were biotinylated as 
expected, because conjugating eosin Y with lenacapavir localizes 
it to the capsid core. However, we could not detect any Cas9 or 
Gag–Cas9 proteins. Each sample had similar quantities of input 
proteins, so the differences in abundance detected by biotin 
immunoprecipitation were caused by different localization of the 
photocatalyst and not sample loading. These results are consistent 
with our observations of uncleaved Gag–Cas9 in the EDVs ( 2 , 
 3 ), where the Gag–Cas9 polyproteins are on the inner membrane 
of the EDVs and distal from the capsid core. This observation 
shows that small molecule inhibition of the capsid core ( Fig. 1 ) 
did not decrease the activity of EDVs because Cas9 RNPs do not 
associate with the core.  

EDV Editing Activity Correlates with NLS Abundance on Cas9. 
Since the capsid core does not transport Cas9 RNPs to the cell 
nucleus, we reasoned that engineered NLSs on the Cas9 enzyme 
might be essential for nuclear entry and editing activity. EDVs 
were prepared with Cas9 RNP cargo bearing different NLS 
designs, and equal volumes of these EDVs were incubated with 
luciferase reporter cells to simultaneously determine differences 
in particle titer and editing efficiency. We systematically tested 
different numbers N-terminal p53 NLSs and C-terminal 
SV40 NLSs on the packaged Cas9 enzymes. NLS reduction 
corresponded to a decrease in the luminescence of reporter cells, 
consistent with a requirement for NLS-mediated Cas9 nuclear 
transport (Fig. 3A). Removing the C-terminal SV40 NLS had 
a larger effect on reporter luminescence than removing the N-
terminal p53 NLS, indicating that the type and position of NLS 
is important for nuclear transport. Removing all NLSs reduced 
the luminescence of EDV-treated reporter cells by more than 
95%. We further tested whether the residual editing activity 
of the Cas9 RNPs without NLSs could be due to nuclear 
transport by the capsid core. Lenacapavir did not significantly 
decrease the luminescence of reporter cells incubated with 
EDVs packaging Cas9 RNPs lacking NLSs, indicating that the 
residual editing activity was not due to capsid core transport 
(Fig. 3B). We next tested whether the residual editing activity 
was due to two naturally occurring NLSs in the matrix protein 
(29). Mutating the first NLS or both NLSs in the matrix protein 
in EDVs packaging Cas9 lacking NLSs further decreased the 
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luminescence of the reporter cells from 4 ± 2% to 0.4 ± 0.3%.  
Mutating the second NLS alone in the matrix protein in EDVs 
packaging Cas9 lacking NLSs did not have an effect. These results 
show that the residual editing activity was due to a small amount 
of Cas9 RNP nuclear transport from the matrix protein.

 We also found that adding additional NLSs to Cas9 enhances 
EDV-mediated Cas9 RNP editing efficiency. We created EDVs 
packaging Cas9 RNPs containing two to ten SV40 NLSs at the 
C-terminus of the Cas9 enzyme ( Fig. 3D  ), because the C-terminal 
SV40 NLS had a larger effect on editing ( Fig. 3A  ). Cas9s with 
four to nine NLSs showed ~twofold higher activity compared to 
the original two-NLS design, with seven NLSs being the best ( 2 ). 
Adding additional N-terminal NLSs to the Cas9 enzymes with 
seven C-terminal NLSs did not further improve EDV-mediated 
editing activity (SI Appendix, Fig. S4A﻿ ). We note that editing 
efficiency decreased when excess NLS were added because the 
expression of the Gag–Cas9 polyprotein in the producer cells 
decreased, impacting EDV production (SI Appendix, Fig. S4B﻿ ). 
To confirm that the improvements in EDV editing were not 
specific to the luciferase reporter cells, we tested our best designs 
(the four- and seven-NLS constructs,  Fig. 3D  ) in primary 
human-activated T cells. We targeted the TRAC  locus to disrupt 
the native T cell receptor (TCR), a step in the creation of thera-
peutic TCR-T cells ( 30 ). Activated T cells were incubated with 
an equal number of EDVs as determined by nanoparticle flow 
cytometry ( 31 ,  32 ), and editing was quantified 3 d postincubation 
by sequencing. EDVs packaging Cas9 RNPs with four or seven 
C-terminal NLSs increased editing by 79% and 73% at the TRAC  
locus, respectively, compared to our initial design ( Fig. 3E  ). This 
increase in TRAC  editing resulted in a corresponding reduction 

in the number of TCR-expressing T cells as quantified by flow 
cytometry (SI Appendix, Fig. S4C﻿ ).  

Capsid Core-Related Components Are Unnecessary for EDV 
Function. Having shown that the capsid core was not necessary for 
EDV function, we next wondered whether viral structural proteins 
(such as the capsid, Pol and nucleocapsid) that form or interact 
with the EDV capsid core could be removed. This could simplify 
particle production and avoid undesirable interactions with host 
cell proteins, especially as Gag proteins can be found in the nucleus 
(21, 22, 33, 34). We made deletions to the viral structural proteins 
in the EDVs, then incubated them with luciferase reporter cells. 
Equal volumes of EDVs were added to reporter cells to capture 
both changes in particle production and editing activity. Based on 
data showing that the C-terminal domain of the capsid protein 
was sufficient for immature HIV-1 virions assembly (24, 35), we 
removed the capsid N-terminal domain (amino acids 5 to 148) 
from the Gag, Gag–Pol, and Gag–Cas9 polypeptides and tested 
the resulting EDVs in luciferase reporter cells. N-terminal domain 
removal had no effect but removing the entire capsid protein 
(amino acids 5 to 227) decreased editing by ~75% (Fig. 4A). Next, 
we tested the removal of the Pol polyprotein, which is composed 
of the viral protease, reverse transcriptase and integrase. The viral 
protease matures HIV-1 virions to form the capsid core. It may 
also liberate Cas9 RNPs from Gag proteins but was previously 
found to be unnecessary in murine leukemia virus-based particles 
packaging base editors (36). Reverse transcriptase and integrase 
assemble with the capsid core to form the preintegration complex 
with the HIV-1 lentiviral genome for transgene integration (37). 
As EDVs do not package a lentiviral genome, we hypothesize 
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that the Pol would not be necessary. Removing either the viral 
protease only or viral protease, integrase and reverse transcriptase 
did not significantly decrease the activity of the EDVs (Fig. 4B). 
We further tested the removal of the nucleocapsid protein which 
condenses the viral genome inside of the capsid core (38). and 
should be unnecessary in EDVs. The nucleocapsid is composed of 
two zinc fingers. EDVs with only the first zinc finger did not show 
a reduction in editing. Removing the first zinc finger or removing 
the entire nucleocapsid protein increased EDV-mediated editing 
by 43% (Fig. 4C).

 We next tested whether the two remaining HIV-1 proteins, 
matrix and p6, were necessary for EDV function. The matrix protein 
is myristoylated and anchors the viral structural proteins to the 
inside of the producer cell membrane to enable particle assembly 
( 38 ). We also found that the matrix protein contains NLSs that 
contribute to the nuclear delivery of the Cas9 RNP ( Fig. 3C  ). 
Consequently, we anticipated that it would be essential for EDV 
function, but previous reports have also suggested that the first eight 
amino acids of matrix containing the myristoylation signal were 
sufficient for particle production ( 39 ). We tested this hypothesis by 
truncating the matrix protein one secondary structural element at 
a time starting from the C-terminus and found that any deletions 
to the matrix protein decreased EDV activity ( Fig. 4D  ). We next 
tested removing the p6 protein from EDVs. The p6 protein recruits 

the producer cell’s Endosomal Sorting Complexes Required for 
Transport (ESCRT) machinery for particle budding ( 40 ). Removing 
the p6 signal ablated the activity of the EDVs ( Fig. 5E  ). Altogether, 
these data show that most viral proteins related to the capsid core 
(N-terminal of the capsid, nucleocapsid, protease, integrase, and 
reverse transcriptase) were not necessary in EDVs, but the matrix 
and p6 proteins were essential.          

Removing Capsid Core-Related Components Created Functional 
Minimal EDVs. We combined our core-related deletions and NLS 
optimizations together to create minimal EDVs (miniEDVs) using 
only 22% of the viral residues of the original EDVs (Fig. 5A). 
We first used cryogenic electron tomography to confirm that 
miniEDVs formed particles. Cryogenic electron tomograms 
showed that miniEDVs were 80 ± 30 nm in diameter, ~25% 
smaller than the original EDVs (SI  Appendix, Fig.  S5 A and 
B). The lipid envelope and glycoproteins were visible. Patches 
of protein density underneath the membrane were visible that 
may correspond to the minimized Gag protein (SI  Appendix, 
Fig. S5C). Having confirmed that miniEDVs formed particles, 
we next quantified their yield. We tested both four and seven 
C-terminal NLS Cas9 designs due to their similar editing 
potency (Fig.  3E). We found that producer cells were able to 
produce an equal number of miniEDVs (~109 particles/mL) 
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compared to EDVs (SI Appendix, Fig. S5D) using nanoparticle 
flow cytometry. As the producer cells may also produce other 
vesicles and exosomes that are morphologically similar to EDVs, 
we quantified these background particles by transfecting producer 
cells with noncoding plasmids. Cells transfected with noncoding 
plasmids produced 2 × 108 particles/mL. These results indicate 
that ~80% of particles produced were likely to be EDVs and 
agree with our particle classifications in Fig. 2B where ~70% of 
the particles were EDVs. We further quantified the loading of 
Cas9 and sgRNA into the particles as this is crucial for editing 
activity. Using enzyme-linked immunosorbent assays, we found 
that the EDVs with two-NLS, miniEDVs with four-NLS, and 
miniEDVs with seven-NLS packaged 470 ± 60, 320 ± 50, and 
210 ± 20 Cas9 enzymes respectively (SI  Appendix, Fig.  S5E). 
Quantifying the packaging of sgRNAs using real-time quantitative 
reverse transcription polymerase chain reactions, we observed that 
EDVs with two-NLS, miniEDVs with four-NLS, and miniEDVs 
with seven-NLS packaged 230 ± 30, 199 ± 5, 187 ± 7 sgRNAs 
per particle respectively (SI  Appendix, Fig.  S5F). These results 
are consistent with previous work showing that the number of 
sgRNA inside EDVs was limiting for RNP formation (2) and 
suggest that both EDVs and miniEDVs package roughly 200 
Cas9 RNPs per particle. We further found that miniEDVs could 
be produced without supplementing producer cells with plasmids 
encoding extra Gag–Pol proteins (SI Appendix, Fig. S6), which 
simplifies their production. In addition, single-chain antibodies 

can be displayed on miniEDVs to mediate cell entry (SI Appendix, 
Fig. S7). Overall, our results demonstrate that miniEDVs could 
be created with ~20% of the viral residues without a compromise 
in particle yield or RNP packaging compared to EDVs.

 Finally, we compared the editing efficiency of the miniEDVs 
to both our original and NLS-optimized EDV designs using acti-
vated T cells from second donor. Comparing the two donors, the 
NLS-optimized EDV designs showed similar increases in editing 
activity (SI Appendix, Fig. S8 ). EDV-encapsulated Cas9 RNPs 
targeted the TRAC  locus, and editing was quantified by measuring 
the decrease in TCR expression using flow cytometry 5 d postin-
cubation ( Fig. 5B  ). MiniEDVs packaging four or seven C-terminal 
NLS Cas9s increased editing by 107% and 53%, respectively, 
relative to the original EDVs ( 2 ). MiniEDVs had comparable 
editing to their respective NLS-optimized EDV counterparts, 
indicating that removing unnecessary viral components did not 
negatively affect editing efficiency. We further compared the edit-
ing efficiency of the miniEDVs packaging four-NLS Cas9s across 
a range of concentrations in both HEK-293T cells and activated 
primary human T cells at the B2M  locus against our previously 
published best EDV design with 2 × NLS (( 2 ) to benchmark their 
improvement in editing efficiency. We chose the B2M  locus, 
because its disruption enables the production of allogeneic chi-
meric antigen receptor T cells ( 41 ). We observed an average 
increase in editing per EDV particle of ~2.5-fold in both 
HEK-293T and activated T cells ( Fig. 5 C  and D  ). Neither the 
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full EDVs or the miniEDVs decreased the viability of the 
HEK-293T cells or primary human T cells (SI Appendix, Fig. S9 ). 
This shows that miniEDVs could efficiently edit genomes with 
minimal cytotoxicity. Ultimately, understanding the EDV com-
ponents necessary for Cas9 delivery allowed us to simultaneously 
increase particle editing potency and streamline their production 
for genome editing.   

Discussion

 Virally derived particles, including EDVs, have emerged as prom-
ising delivery vehicles for genome editing. EDVs were derived from 
lentiviral vectors by fusing Cas9 RNPs to the end of the structural 
Gag protein. Beyond this change, EDVs retained all the same 

components as second-generation LVs ( Fig. 5A  ). Cryo-electron 
tomography showed that EDVs and LVs share similar morphology 
and capsid structures. However, unlike LVs, EDVs do not use the 
internal capsid core for nuclear delivery of Cas9 RNPs. Instead, 
EDV-mediated genome editing depended on the presence of NLS 
peptides engineered onto Cas9. Future studies could identify the 
specific nuclear pore proteins (such as, importin α or nuclear trans-
port factor 2) used by the RNPs to enter the nucleus ( 42 ,  43 ). We 
also found that Cas9 RNPs are not associated with the capsid core. 
Removal of capsid-core-related proteins and optimization of Cas9 
RNP nuclear localization created simpler and more efficacious 
miniEDV particles. MiniEDVs showed 2.5-fold higher editing 
potency relative to our initial EDVs ( 2 ) in both cell lines and 
primary cells. MiniEDVs can be produced in cells transfected with 
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two plasmids, compared to three or more plasmids required for 
full EDVs.

 The miniEDVs are 25% smaller than the full EDVs, yet pack-
aged the same quantity of guide RNAs and by extension Cas9 
RNPs. The components of our minimized particles hold important 
lessons for engineering exosomes and other biological particles. 
We show that a membrane-binding domain (matrix), an assembly 
domain (C-terminal CA), and a budding signal (p6) are sufficient 
for packaging and exporting a proteinaceous therapeutic cargo. 
We anticipate that miniEDVs could be used beyond genome edit-
ing for delivery of enzymes, cytokines, and other therapeutic pro-
teins. MiniEDVs do not contain viral enzymes (protease, reverse 
transcriptase or integrase) or viral nucleic acid-binding domains 
(nucleocapsid), reducing the possibility of unwanted interactions 
with target cells. Future work could focus on understanding  
the effect of the miniGag proteins on editing specificity and 
immunogenicity.

 While we focused on an HIV-1-derived particle system, we antic-
ipate that other virally derived particles, including those based on 
related retroviruses, contain unnecessary proteins and could be 
simplified. As virally derived particles and EDV systems advance 
toward clinical use, ensuring that these delivery vehicles contain 
only necessary components is critical to reduce complexity, improve 
manufacturing pipelines, and potentially reduce immunogenicity. 
The finding that miniEDVs require fewer plasmids to be produced 
while exhibiting higher editing activity and programmable cell entry, 
underscores the value of a mechanism-based approach to develop-
ment. These results lay the groundwork for creating fully synthetic 
particles that use viral proteins to facilitate delivery, making genome 
editing therapies simpler, easier to produce, and more efficacious.  

Materials and Methods

Detailed materials and methods are provided in SI Appendix. Briefly, appropriate 
spacers and modifications were cloned into pJRH-1179 U6-reci Gag–Cas9 v2 
(referred to as Gag–Cas9) and pJRH-1180 U6-reci Gag–pol v2 (referred to as 
Gag–Pol) plasmids using NEBuilder® HiFi DNA assembly. EDVs were produced by 
transfecting Gag–Cas9, Gag–Pol, and surface protein plasmids in HEK-293 T cells. 
Particles were harvested 48 h after transfection and cell debris was removed by 
centrifugation and filtering through a 0.45-μm filter. Particles were additionally 
purified and concentrated by sucrose or iodixanol cushion ultracentrifugation 
for cell or structural studies. Particles were also characterized by nanoparticle 
flow cytometry, Cas9 enzyme-linked immunosorbent assays, and quantitative 
reverse transcription polymerase chain reactions for the single guide RNAs. EDVs 
(normalized by particle number or volume) were subsequently incubated with 
HEK-293 T, luciferase reporter HEK-293 T cells, or activated human T cells in the 
presence or absence of small molecule inhibitors. Editing was quantified 2 to 7 d  
after incubation using flow cytometry, luminescence assays, or next-generation 
sequencing.

Data, Materials, and Software Availability. Plasmids generated in this study 
are available from Addgene (ID: 228957–228960) 44–47. Representative tomo-
grams (EDV: EMD-47705, LV: EMD-47741, miniEDV: EMD-47858) and 3D maps 
(EDV: EMD-47745, LV: EMD-47743) are available from EMDB 48–52.
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