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ABSTRACT OF THE DISSERTATION 

 

Decoding the Relationship between Composition and Various Properties  

of Calcium Silicate and Calcium Aluminosilicate Glasses 

 

by 

 

Yushu Hu 

Master of Science in Materials Science and Engineering 

University of California, Los Angeles, 2020 

Professor Gaurav Sant, Chair 

 

This dissertation contributes to decode the relationship between glass composition and various 

properties that are crucial to novel glass design by performing molecular dynamics simulations. 

The topics include the prediction of glass transition temperature, the origin of glass-forming 

ability, and the impact of cooling rate on glass relaxation. 

 

 In general, the first two properties are analyzed by utilizing topological constraint theory. By 

combining molecular dynamics simulations and topological constraint theory, a fully analytical 

model is developed to predict the fictive glass transition temperature of (CaO)x(SiO2)1-x glass 

system. To be specific, this model takes composition as input and provides the prediction of 

glass transition temperature as output.  
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On the other hand, glass-forming ability is an important factor that guides the manufacturing 

process while sometimes imposes limitations to glass engineering. Despite many empirical 

successes to identify and characterize glass-forming ability in various glass systems, there exists 

a lack of knowledge of physical details in the glass structure. Here, we conduct molecular 

dynamics simulations of a series of calcium silicate glasses. We show that the flexible-to-rigid 

topological transition coincides with the compositional window that has optimal glass-forming 

ability. By explaining this transition from the aspect of internal flexibility and internal stress 

within the network, we aim to provide an alternative topological explanation for the nature of 

glass-forming ability. 

 

Chapter 3 is a reprint of a previously published journal article. It demonstrates the impact of 

cooling rate on glass transition by analyzing glass relaxation and hysteresis of a series of silicate 

glasses. It proves that by extrapolating simulation data, one can access the results that are close 

to those generated from experimental cooling rates. 
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Chapter 1 Topological Model for (CaO)x(SiO2)1-x Glasses: 

Prediction of Glass Transition Temperature 

 

1.1 Introduction 

Silicate glasses have been extensively studied throughout glass technology and materials science 

as they are ubiquitous in nature (i.e., Earth’s mantle, magmas, etc.)1,2. The addition of alkali 

cations, such as Na+, Ca2+, etc., into the silicate network has been shown to modify their 

properties, which advance their application in many fields. For example, substrates for displays3, 

optical discs, bioactive glasses4, cement hydrates5, etc. Among them, binary alkali silicate 

glasses have gained attention mainly due to their simplicity and technological relevance2,6.  

  

Among various glass properties, the glass transition temperature is directly linked to viscosity, 

hence making it an important factor for glass manufacturing process and for understanding the 

glass transition and relaxation7. Mauro and his collogues developed the Yue-Ellison-Gupta-Allan 

(MYEGA) equation8, which directly describes the relationship between glass transition 

temperature (Tg), fragility (m) and the infinite temperature viscosity (𝜂∞). 

𝑙𝑜𝑔10𝜂(𝑇) = 𝑙𝑜𝑔10𝜂∞ + (12 − 𝑙𝑜𝑔10𝜂∞)
𝑇𝑔

𝑇
𝑒𝑥𝑝 [(

𝑚

12 − 𝑙𝑜𝑔10𝜂∞
− 1) (

𝑇𝑔

𝑇
− 1)] 

 

Eq.  1 

 

Tg and m are input parameters, and studies suggest that 𝜂∞ is a constant due to the fact that all 

constraints are supposedly broken at infinite high temperature. As a result, the viscosity of the 
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liquid reaches a limit ultimately. In conclusion, the full behavior of the viscosity-temperature 

relationship can be predicted with the input of Tg and m. A recent study is focused on 

(Bi2O3)x(NaPO3)1-x glasses by applying this equation, and it successfully predicts the glass 

transition temperature and the fragility of the system9 . 

 

The fragility of the system can be essentially defined by the topological constraint environment 

of the system, which is linked to glass composition. This idea was first introduced by Phillips’ 

topological constraint theory (TCT) (Figure 1. 1), which will be elaborated in the following 

sections10. His theory was later improved mathematically by the joining effort from Thorpe to 

connect glass topology with various compositional-dependent glass properties at zero 

temperature11–13. Their work was then extended by Mauro and Gupta14,15, as they studied the 

effect of temperature on constraints and hence their contribution to different glass properties (i.e., 

Tg, m and hardness). 

 

Figure 1. 1 Topological constraint theory has the advantage of simplifying complex disordered atomic 

networks into mechanical trusses made of nodes (atoms) that are connected to each other by constraints 

(chemical bonds). 
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Despite studies carried out to understand the glass transition for calcium silicate (CS) systems16, 

a fully analytical model is always desired to predict the glass transition temperature with the 

input of composition. As for now, the prediction of Tg utilizing the MYEGA relationship has not 

been applied to many other glass systems. In addition, according to Eriksson and Pelton17, some 

composition ranges of the binary CS glasses have poor glass-forming ability. To be specific, high 

alkali content could cause phase separation, whereas low content results in a liquidous that is 

extremely high for glass to form. With the difficulty mentioned above, MD simulation has its 

advantage to take into place instead of carrying out experiments, especially for certain 

compositions. MD simulations enable us to capture the topology environment of the glass 

network, while at the same time eliminate the limitations caused by glass-forming ability.  

 

The goal of this work is to build a fully analytical model that predicts the glass transition 

temperature of CS glasses with the input of composition only, which allows direct access in the 

future without doing further MD simulations. For simplicity, we first perform MD simulations of 

a series of (CaO)x(SiO2)1-x glasses and calculate their glass transition temperatures. Note that due 

to the nature of simulations (with a high cooling rate of 100 K/ps), the Tg mentioned in this paper 

is fictive. Then, we analyze the structural environment by utilizing topological constraint theory 

and determine the onset temperature of each constraint that contributes to the rigidity of the 

network. Finally, by investigating the relationship between topological constraints and Tg, we are 

able to build a topological model that provides good predictions of the fictive glass transition 

temperature. 



   

 

4 

1.2 Theory 

1.2.1 Topological Constraint Theory 

The idea of applying topology to amorphic glassy systems is based on the concept of mechanical 

stability by Maxwell-Lagrange18. In general, mechanical trusses can be described as in the 

following states of rigidity: flexible (with insufficient constraints), stressed-rigid 

(overconstrained), or isostatic (with exactly the right amount of constraints). To determine the 

state of rigidity of a specific truss, one can compare the number of mechanical constraints ( Nc ) 

with the number of degrees of freedom of the nodes connecting the trusses. As demonstrated in 

Figure 1. 2, Nc can be determined by counting the number of red sticks. In three-dimensional 

systems, since there are three translation directions per node, the initial number of degrees of 

freedom is 3N, with N being the number of nodes. Similarly, for a rigid structure viewed as a 

whole, there are six macroscopic degrees of freedom, which include three translation and three 

rotation directions. Note that nodes are considered as points for simplicity, so the rotation 

directions are not included. As a result, the remaining degrees of freedom after comparing can be 

viewed as floppy modes, F , which are then given by: 

𝐹 = 3𝑁 − 𝑁𝑐 − 6 

 

Eq.  2 

The concept of F can be understood as the internal modes of deformation of a system, where 

each constraint Nc removes one internal degree of freedom and thus prevents one mode of 

deformation. That being said, the state of rigidity of a mechanical truss can be identified by 

assessing F. The network is considered as: (i) flexible, if F > 0, (ii) stressed-rigid, if F < 0, or 

(iii) isostatic, if F = 0. To be specific, flexible networks have a number of internal modes of 
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deformation which make them prone to be structurally altered even without the existence of 

external energy. However, stressed-rigid and isostatic trusses are fully rigid. Thus external 

energy is necessary to change their structure. Moreover, for stressed-rigid trusses, all constraints 

cannot be satisfied at the same time. Instead, some of the constraints are under tension while 

others are under compression, which leads to the formation of internal eigenstress stress. Since 

all constraints mutually compensate each other, there is no effect on the macroscopic stress of the 

stressed-rigid trusses. In Figure 1. 3, isostatic structure has the ideal state where there is neither 

internal modes of deformation nor eigenstress. 

 

 

Figure 1. 2 The three states of rigidity of a mechanical network. The dashed red line shows a redundant 

constraint that is under tension. 

 

 

Figure 1. 3 The demonstration of the internal eigenstress that is present in stressed-rigid structures. 
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1.2.2 Applying Topological Constraint Theory to Glass Systems 

The topological constraint theory used for glass systems was first introduced by Phillips in 

197910, where he applied the Maxwell-Lagrange mechanical stability framework to amorphous 

glassy networks. This prototype was then refined mathematically by Thorpe in 198311. The 

application is based on the analogy between mechanical trusses and atomic networks. 

Specifically, atoms can be considered as nodes that are connected to each other by some 

constraints. Each constraint serves to prevent the relative atomic motions and remove internal 

modes of deformation (or internal degrees of freedom). As shown in Figure 1. 4, only short-

range interactions are considered, which include two kinds of constraints: (i) the radial 2-body 

bond-stretching (BS) constraints that fix the inter-atomic distances around their average values, 

and (ii) the angular 3-body bond-bending (BB) constraints that fix angles. 

 

 

Figure 1. 4 The illustration of the radial bond-stretching (BS) and angular bond-bending (BB) constraints. 

BS constraints fix interatomic distances, and BB constraints fix interatomic angles. 



   

 

7 

In covalent networks, all constraints are intact and the number of them only depends on the 

coordination number ( r ) of each associated atom. Hence the linear and angular constraints can 

be calculated as follows: 

𝑛𝐵𝑆 =
1

2
 𝑟|𝑟≥2 

 

Eq.  3 

 

𝑛𝐵𝐵 = (2𝑟 − 3)|𝑟≥2 Eq.  4 

To specify, for each atom, a BS constraint is shared by two atoms, so the number of BS 

constraints is given by r/2. While for BB constraints, since any combination of three atoms has 

one BB constraint inherently and two new constraints are need to fix the position of one 

additional neighbor, the number of BB constraints is given by 2r – 3 for r ≥ 2. It is assumed that 

atoms with r = 1 do not have any BB constraints. With the assumption that all N atoms have a 

coordination number larger or equal to two, we can calculate the total number of constraints Nc 

as follows: 

𝑁𝑐 = ∑ [𝑁𝑖(
𝑟𝑖
2

+ 2𝑟𝑖 − 3)] = ∑ (𝑁𝑖

5𝑟𝑖
2

) − 3𝑁
𝑖𝑖

 

 

Eq.  5 

 

Ni is the number of atoms having a coordination number of ri. With this equation, one can 

calculate the number of internal degrees of freedom F and thus assess the rigidity of the glass 

system.  
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However, it is mathematically more convenient to apply the mean-field approximation in this 

case, since there is a huge amount of atoms within glasses. By looking at the average number of 

internal degrees of freedom per atom, f = F/N, one can have the follows: 

𝑓 = 3 − 𝑛𝑐 −
6

𝑁
= 3 − 𝑛𝑐 

 

Eq.  6 

 

where nc = Nc / N is the average number of constraints per atom. Here 6 / N can be ignored 

because this term tends to be infinitely small when N is large enough (i.e., there is a large 

number of atoms within the atomic network). By applying the same concept, the nc can also be 

written as follows: 

𝑛𝑐 = ∑ [𝑥𝑖

5𝑟𝑖
2

] − 3
𝑖

 

 

Eq.  7 

 

where xi = Ni / N is the fraction of atoms that have a coordination number ri. 

 

Similarly, the rigidity of glass systems can be thus determined by assessing f based on the 

mechanical stability theory of Maxwell-Lagrange. Glasses are considered as: (i) flexible, if f > 0 

(i.e., nc < 3), (ii) stressed-rigid, if f < 0 (i.e., nc >3), or (iii) isostatic, if f = 0 (i.e., nc =3). With the 

same spirit, flexible glasses have some internal modes of deformation, and the number of floppy 

modes per atom is calculated by f = 3 - nc19–22. On the other hand, stressed-rigid glasses exhibit 

internal stress as the result of mutually dependent constraints, and the number of excess 
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constraints per atom is given by nc – 3. Isostatic glasses are in the “ideal state” where there are 

neither floppy modes nor internal stress5,23. 

 

Then a simplified version to describe glass rigidity can be given in terms of the average 

coordination number <r> as follows: 

< r >= ∑ 𝑥𝑖𝑟𝑖
𝑖

 Eq.  8 

with which the previous equation of nc can be then expressed as: 

𝑛𝑐 =
5 < 𝑟 >

2
− 3 

 

Eq.  9 

 

By assuming all BS and BB constraints are intact and all atoms within the network have a 

coordination number larger or equal to 2, we can conclude that for an isostatic network, where nc 

= 3, the average number of coordination number <r> = 2.4.  

 

1.2.3 Topology Dependent Glass Transition Temperature 

To build an analytical model with the input of composition-dependent constraints and the output 

of temperature, the quantitative structural details are needed. First, we need the actual mole 

fraction of each species within the glass system. That being said, we are then able to assess the 

contribution to the network rigidity of each species, and thus calculate the number of constraints 

of each species based on TCT. On the other hand, it is also necessary to determine the onset 

temperature of each constraint, which is the temperature at which each constraint breaks. The 
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onset temperatures can be calculated by investigating the angular excursion of the corresponding 

constraint. 

 

The combination of Adam-Gibbs theory24 and the work of Naumis25,26 provides a way to define 

the relationship between glass transition temperature, Tg, and the number of constraints per atom, 

nc, as follows: 

𝑇𝑔(𝑥)

𝑇𝑔(𝑥𝑟𝑒𝑓)
=

𝑓[𝑇𝑔(𝑥𝑟𝑒𝑓), 𝑥𝑟𝑒𝑓]

𝑓[𝑇𝑔(𝑥), 𝑥]
=

𝑑 − 𝑛𝑐[𝑇𝑔(𝑥𝑟𝑒𝑓), 𝑥𝑟𝑒𝑓]

𝑑 − 𝑛𝑐[𝑇𝑔(𝑥), 𝑥]
 

 

Eq.  10 

 

where x is the composition of the CS glass in the fully analytical model, xref is the composition of 

the chosen reference, f is the internal degrees of freedom, nc is the number of constraints per 

atom, and d is the dimensionality of the network. 

 

1.2.4 Simulation Details 

We first simulate a series of calcium silicate glasses (CaO)x(SiO2)1-x within the range of  

x = 0 ~ 80% by molecular dynamics. The potential used to simulate the CS glasses was 

developed by Jakse et al3. This interatomic potential relies on fixed partial charges and a simple 

two-body Buckingham potential formulation. A timestep of 1 fs is used and the Coulombic 

interactions are evaluated with the Ewald summation method, with a convergence criterion factor 

of 10-5, 27–33. For the short-range and Coulombic interactions, the cutoffs are 8 and 12 Å34, 

respectively. This potential was demonstrated to provide a sound description of the structural and 

elasticity properties of CS glasses35. When preparing the melts using LAMMPS package36, the 
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initial liquid configurations are generated by randomly allocating around 3000 atoms in a cubic 

simulation box, while at the same time avoiding any unrealistic overlap. Then the system is 

equilibrated at 3000 K for 100 ps in NVT ensemble to ensure the loss of the memory of the initial 

configurations. Following that, the system is relaxed at 3000 K in NPT ensemble (under zero 

pressure) for another 100 ps. Then the glass is ready to be cooled at the rate of 1 K/ps from 3000 

K to room temperature, 300 K, with the cooling increment of 100 K during temperature decrease. 

Finally, the system is subjected to a final relaxation by staying at room temperature for 100 ps.  

 

1.3 Structure 

 

Figure 1. 5 Fractions of different types of oxygen atoms as a function of [CaO] mol%. BO: bridging 

oxygen, which connects two Si atoms; NBO: non-bridging oxygen, which connects one Si atom and one 

Ca atom; FO: free oxygen, connected with and only with at least two Ca atoms. The solid lines serve as a 

guide to the eye.  
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Figure 1. 6 The average coordination number of all Ca atoms as a function of [CaO] mol%. The 

contributions of BO, NBO, and FO are also demonstrated, which is in accordance with the observation in 

Figure 1. 5. The lines serve as a guide to the eye. 

 

In order to do constraints enumeration, we first focus on the identification of the atomic 

structures within the CS glasses simulated. As shown in Figure 1. 5, as more CaO content is 

added to the system, the number of BO decreases and the number of NBO increases. This is 

expected since theoretically, each Ca atom added to the system would create two NBOs. 

However, what is not predicted is the formation of FO, which dramatically increases starting at 

[CaO] mol% = 70 %. The formation of FO is due to the fact that an added Ca atom does not 

necessarily consume a BO first. Instead, it can possibly connect to an NBO, thus creating an FO. 

This has a higher possibility to happen when the concentration of CaO is relatively higher or 

when the system is almost saturated with glass modifier, where there are significantly more 

NBOs than BOs. 
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We then look at the Ca coordination number and the contributions coming from different oxygen 

species to further access the structural details of the glasses. Figure 1. 6 presents the average Ca 

coordination number together with the contributions. The coordination number that comes from 

all oxygen species in total has a steady distribution and is always around 6, which yields 

expected result as it is the usual coordination number of Ca in a crystal lattice. On the other hand, 

the contributions coming from BO, NBO and FO all share the same trend as that of the fraction 

of different species in Figure 1. 5. Both analyses yield expected structural details, which show 

the validity of applying TCT in this glass system and lay a sound foundation for constraints 

enumeration of the system. 

 

1.4 Topological Model for Glass Transition Temperature 

1.4.1 Counting Constraints Based on the Relative Motion between Atoms 

When it comes to interatomic interaction measurements, it is desirable if a direct computation of 

the bonding energy between atoms (pairs or triplets) can be conducted. However, it is more 

convenient to track the relative motion between atoms where we look at the “consequence” 

instead of the “cause” of topological constraints37–39 . 

 

The analysis of the interatomic motion can be viewed as proving the existence of constraints that 

are preventing such motions. Similarly, this kind of “reverse” analysis is often used, for example, 

analyzing the parabolic trajectory of a projectile to infer the magnitude of gravity. This idea is 

based on the fact that both BS and BB constraints serve to maintain the interatomic distance or 
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angles and keep them at their average values, as shown in Figure 1. 7. That being said, subtle 

interatomic motions suggest strong constraints, whereas strong interatomic motions infer weak 

constraints or even the lack of constraints. This way of counting constraints has been 

successfully applied to chalcogenide and oxide glasses38–44 and to atomic-scale models of cement 

hydrates5,45,46. 

 

Figure 1. 7 Illustration of the analysis of the topological constraints by measuring the relative motion 

between atoms with MD simulations. (a) Radial bond-stretching and (b) angular bond-bending 

constraints per atom. 

 

1.4.2 Enumeration of Bond-Bending Constraints 

We then focus on the analysis of the Si-O-Si and O-Si-O BB constraints. For a central atom 0, 

we first determine its N nearest neighbors, and they form N(N-1)/2 independent angles around it 

(i.e., 102, 103, 104, 203, etc.). Then we track the value of each angle over time to compute the (i) 

average angle θ and (ii) standard deviation σθ of each angle. The concept of σθ is defined as the 

angular excursion (with the unit in degree) of each angle formed with the central atom 0. After 

that, we are able to calculate the relative angular excursion of each angle as σθ / θ (with the unit 
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in %). This methodology is proved to show a clear gap between the relative angular excursion of 

intact and broken constraints for both BS and BB constraints. Even though the choice of 

threshold does not significantly matter due to the clear gap, a threshold around 7% typically 

gives good results38,47, which is also in accordance with the Lindemann criterion48. Note that the 

exact value of this threshold of relative angular excursion may depend on the choice of 

forcefield. 

 

1.4.3 Effect of Temperature on Topological Constraints 

As mentioned earlier in Theory section, each constraint has certain free energy, and eventually 

breaks as temperature increases. In order to build a temperature-dependent topological model, it 

is necessary to assess the onset temperature at which each contributing constraint breaks 14,15,49. 

With this information, we can then analyze the fraction of intact and broken constraints, 

respectively, as a function of temperature38. 

 

The previously explained methodology of calculating angular excursion could be utilized and 

extended to track the effect of temperature on topological constraints. To be specific, we track 

the relative angular excursion of the contributing constraints as a function of temperature, which 

yields a distribution of the relative angular excursion for each constraint at each temperature. 

Figure 1. 8 demonstrates this distribution of the relative angular excursions of Si-O-Si and O-Si-

O bond-bending constraints in a (CaO)50(SiO2)50 glass. Note that for each Si atom, there are 4 O-

Si-O angles; and for each BO, there is 1 Si-BO-Si angle. From the distributions, we found that 

the relative angular constraints around Si atoms are lower than that around BO atoms, which is in 
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accordance with the fact that intrapolytope (inside the SiO4 polytopes) BB constraints are 

stronger than interpolytope (between the SiO4 polytopes) BB constraints14,38. Also, we note that 

both of the distributions gradually shift toward larger values of relative angular excursion as 

temperature increases. This trend infers that BB constraints start to become intact with an 

increasing temperature. 

 

  

(a) Si (b) BO 

Figure 1. 8 Distributions of relative angular excursions of the angles forming around (a) Si atoms (i.e., 4 

O-Si-O angles) and (b) BO atoms (i.e., 1 Si-BO-Si angle) in a (CaO)50(SiO2)50 glass. 

Despite the commons, there are some noticeable differences between the behaviors of the two 

BB constraints as well as temperature increases. First of all, for O-Si-O BB constraints, the 

position where the distribution is at its maximum only shifts moderately toward larger values of 

relative angular excursion upon increasing temperature. Meanwhile, the distributions show long 

tails extending toward very large value of relative angular excursion. This reflects that a large 

portion of BB constraints remains relatively unaffected as temperature increases, with a fraction 
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of them break dramatically as shown by the long tail. This pattern can be well explained by a 

previous work showing that for each Si atom, the BB constraints associated with the fourth O 

neighbor (i.e., angles 104, 204 and 304) are the first to break, and the rest remain intact even 

until very high temperature38. Different from that, the distributions of the Si-BO-Si BB 

constraints gradually shift as a whole toward larger values as temperature increases. This 

suggests that BB constraints collectively break as temperature increases. In general, the 

distributions of the relative angular excursion combined with the 7% threshold mentioned earlier 

allow us to determine the fraction of intact and broken constraints respectively. 

 

In addition, the onset temperature of each constraint can also be calculated from the relative 

angular excursion. Figure 1. 9 is generated by taking the average of the relative angular 

excursion at each temperature and plotting as a function of temperature for each constraint. In 

general, the average relative angular excursions of Si-BO-Si and O-Si-O BB constraints both 

show a bilinear behavior. They are almost constant at lower temperatures, and they linearly 

increase at higher temperatures. Again, the onset temperature can be determined by looking at 

the 7% threshold, which is the temperature at which the constraint has its average relative 

angular excursion crosses the threshold. The analysis gives us the two onset temperatures for Si-

BO-Si and O-Si-O BB constraints: T1 = 1350 K and T2 = 2250 K. The result is in accordance 

with the previous analysis that O-Si-O BB constraints are strong than Si-BO-Si BB constraints 

and thus can sustain higher onset temperature before they break. 
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Figure 1. 9 Average relative angular excursions associated with the bond-bending BB constraints around 

Si atoms and BO atoms, respectively (i.e., O-Si-O and Si-BO-Si), as a function of temperature. The 

horizontal line indicates the threshold of relative angular excursion (7%) defining intact (< 7%) and 

thermally-broken (> 7%) constraints. 

 

1.4.4 Analytical Model 

In order to build an analytical model that can predict the glass transition temperature with 

topological constraints, it is necessary to know the topology of the network. Here in Table 1, we 

present our calculation of constraints per atom within the CS network.  
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Table 1 Analytical calculation of constraints per atom. 

 

fraction CN BS BB BS+BB 

Ca x 5 5 0 5 

O 2-x \ \ \ \ 

BO 2-3x 2 \ 1 1 

NBO 2x 1 \ 0 0 

Si 1-x 4 4 5 9 

 

The analytical model is based on several basic assumptions. Firstly, the fraction of each element 

is calculated based on the hypothesis that each Ca atom creates two NBO atoms. Since the 

fraction of Ca, Si and O atoms are known according to (CaO)x(SiO2)1-x, we can simply assume 

the fraction of NBO is twice the fraction of Ca atoms. Based on that, we further assume that 

there are only two types of O atoms, BO and NBO (no FO), which supports the formula: BO = O 

– NBO.  Secondly, when establishing the coordination number (CN) of each element, for Ca 

atoms, it is assumed that their local environment of oxygen atoms would always obey CN_Ca-O 

= 5. Note that we assume there is no BB constraint of Ca atoms, given that their angular 

configuration is not clearly defined. On the other hand, for Si atoms, it is agreed that the Si 

tetrahedra are very stable, hence CN_Si-O = 4. Thirdly, in general, all BS constraints are fully 

attributed to cations, i.e. Ca and Si atoms, while there is no limitation applied to BB constraints. 

The number of BS constraints is determined according to r, the CN of each element, while the 

number of BB constraints complies with the following formula: nBB = 2r – 3 (Eq.4).  
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With that said, the calculation of the nc of the simulated glasses is demonstrated in Table 1 and 

the resulting analytical model of nc is the following equation: 

𝑛𝑐 =
11 − 7𝑥

3 − 𝑥
 

 

 

Eq.  11 

 

Note that the analytical model terminates at x = 0.67, nc = 2.71, where all BO are consumed by 

the added Ca atoms, and the assumptions no longer hold true. At that point, all oxygen atoms are 

considered as NBO. 

 

With the above information, we are able to calculate the contribution of each constraint in the 

network in the form of number of constraints, nc. Note that there are four constraints that 

contribute to the system based on our assumptions: Si_BS, Si_BB, Ca-NBO_BS and BO_BB 

constraints. 

𝑛𝑐,𝑆𝑖_𝐵𝑆(𝑥) =
4 − 4𝑥

3 − 𝑥
 

 

Eq.  12 

𝑛𝑐,𝑆𝑖_𝐵𝐵(𝑥) =
5 − 5𝑥

3 − 𝑥
 

 

Eq.  13 

𝑛𝑐,𝐶𝑎−𝑁𝐵𝑂_𝐵𝑆(𝑥) =
5𝑥

3 − 𝑥
 

 

Eq.  14 

𝑛𝑐,𝐵𝑂_𝐵𝐵(𝑥) =
2 − 3𝑥

3 − 𝑥
 Eq.  15 
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By applying Eq.10 with the above number of constraints, we are able to get the predicted glass 

transition temperature as a function of the glass composition. Note that the glass transition 

temperature of  (CaO)20(SiO2)80 was chosen as the reference Tg (with x = 20%). The predicted 

Tg(x) is plotted together with the Tg from MD simulations in Figure 1. 10(a). In general, the 

model well predicts the simulated Tg, namely they both decrease upon the increase of CaO 

content, with plateaus at both little and very high CaO content. To better understand the 

topological origin of the composition dependence of Tg values, we calculate the contributions 

from each constraint on Tg , which is shown in Figure 1. 10(b). The analysis yields expected 

results, as both Si BB and BB constraints contributing to the network are active throughout the 

whole composition range due to the fact that they are rigid constraints. As CaO content 

increases, more Ca-NBO BS constraints become active, while portions of constraints associated 

with Si start to break. At the same time, the Si-BO-Si BB constraints start to contribute to the 

system rigidity, which eventually all turn inactive at the point when all BO are consumed as Ca 

atoms depolymerize the network. Note that the Si-BO-Si BB constraints are not included at x = 0 

due to the fact that pure silica should be viewed as an exception in terms of topology. It is for the 

same reason that our simulations start with (CaO)10(SiO2)90 instead of pure silica. Also, the result 

aligns with the previously determined onset temperature of Si-BO-Si and O-Si-O BB constraints: 

T1 = 1350 K and T2 = 2250 K, respectively.  

 

Our analysis suggests that for the different composition ranges, the constraints that contribute to 

Tg(x) are different. Specifically, (i) for small x, Si BS and Ca-NBO BS constraints are intact (O-

Si-O BB constraints break at T2 = 2250 K), (ii) for moderate CaO content region, Si BS, Ca-
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NBO BS and O-Si-O BB constraints are active, and (iii) for large x, region, Si BS, Ca-NBO BS, 

O-Si-O BB, and Si-BO-Si BB constraints are all active (Si-BO-Si BB constraints break at T1 = 

1350 K). However, due to the fact that BO atoms are likely all consumed at large x, there are no 

contributions from Si-BO-Si BB constraints as there would supposedly be.  In addition, we 

believe that the high coordination number of Ca atoms compensates for the loss of rigidity due to 

the depolymerization of the network.  

  

(a) (b) 

Figure 1. 10  (a) The simulated and predicted Tf values of the (CaO)50(SiO2)50 glass as a function of the 

CaO composition. (b) Composition dependence of predicted Tf  decomposed into different contributions 

originated from different constraints. 

We then assess the rigidity of the network for three different ranges, namely (i) T < T1 (large x 

with high CaO content), (ii) T1 < T < T2 (moderate CaO content), and (iii) T > T2 (small x with 

little CaO content). According to Eq.10, Tg  is inversely proportional to the degrees of freedom 

per atom. Here we present the number of constraints and degrees of freedom per atom as a 

function of CaO composition in the three different composition ranges (Figure 1. 11). The 
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results echo the analytical model, where (i) for T < T1, the number of constraints per atom is 

larger than 3 and the system is stressed-rigid (overconstrained), (ii) for T1 < T < T2, the number 

of constraints per atom is slightly below 3 and thus the system has certain flexibility, and (iii) for 

T > T2, the network has the most degree of freedom among the three regions hence the system is 

flexible (underconstrained). This concept is also in accordance with the fact that constraints have 

their own free energy, so the more they contribute to the rigidity of the network, the higher the 

glass transition temperature would be. Similarly, stronger constraints have higher onset 

temperatures where they break and become inactive. 

 

  

(a) (b) 

Figure 1. 11  (a) The number of constraints per atom and (b) degree of freedom per atom, respectively, as 

a function of [CaO] mol%. T1 = 1350 K and T2  = 2250 K. 
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1.4.5 Limitations 

In general, the methodology presented above enables direct access to the topological 

environment of the glass network thus providing a model linking glass transition temperature 

with composition. However, limitations exist, among which the most noteworthy one is due to 

the nature of MD simulation. Because of the high cooling rate used in MD, simulated glasses 

often show higher fictive temperatures than those measured experimentally50,51. As a result, the 

onset temperatures may be overestimated here. If one were to use them for real glass 

applications, rescaling would be necessary. It has been shown that by extrapolating MD 

simulation results that are performed at different cooling rates (i.e., from 100 to 0.001K/ps), one 

can access results that are close to those from experimental cooling rates (i.e., around 1K/s)27,52 . 

 

The other limitation comes from TCT, which is due to the fact that the number of BS constraints 

of a specific atom does not necessarily match its geometric coordination number. For example, 

Na atoms usually have 6 nearest neighbors within their first coordination shell, however, they 

typically have only one single BS constraint in the framework of TCT38. 

 

In addition, the angular excursion methodology does not always successfully take into account 

mutually-redundant constraints. To give an example, consider a set of three atoms: 1, 2 and 3. 

According to our methodology, there exist 2 BS constraints (1-2 and 2-3) and 1 BB constraint 

(angle 123). Nevertheless, when calculating angular excursion, the relative motion between 

atoms 1 and 3 may be low. Even though there is no such 1-3 BS constraint, the interatomic 

environment of atom 1 and 3 is still captured anyways. This is the result of the fact that the 
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triangular structure of 1, 2 and 3 is already fully defined by the distance between 1-2 and 2-3 

together with the 123 angle. Consequently, 1-3 distance would be redundant. Thanks to the 

relatively large angular excursions observed in glass systems, this limitation is less 

encountered53,54. 

 

1.5 Conclusions 

By performing MD simulations, we are able to develop a topological model for the 

(CaO)x(SiO2)1-x glass system that predicts the fictive Tg with the input of composition only. The 

behavior of the model well-matches the results calculated directly from simulations. The trend of 

Tg can attribute to the contribution of four temperature-dependent constraints: Si BS, Ca-NBO 

BS, O-Si-O BB, and Si-BO-Si BB constraints. Due to the limitations inherently carried by MD 

simulations, further efforts could be focused on extrapolating and rescaling the results to meet 

those from experimental cooling rates. In addition, whether the methodologies used here would 

work for other glass systems still remains to be substantiated by future works. 
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Chapter 2 Topological Origin of Glass-forming Ability in 

Calcium Silicates 

 

2.1 Introduction 

 It is known that a material can be made glassy or amorphous if it is cooled from its liquid state 

fast enough, even if this material is crystalline. However, in order to be “fast enough”, some 

materials have easily accessible critical cooling rates, while others may require extremely high 

rates. The extent of difficulty in achieving this critical cooling rate is generally believed to be a 

metric characterizing the glass-forming ability of this material1. Nevertheless, the physical 

mechanism behind this has remained not fully understood. 

 

Zachariasen, known as the founding father of glass science, put forward four rules of glass 

formation in his famous 1932 paper2. His work established a cornerstone for glass pioneers who 

later on analyzed and improved the glass forming-ability theory based on his empirical insight of 

both short-range and long-range order of macroscopic disorder network. Following Zachariasen, 

Phillips further developed the concept of constraint calculation in his 1979 paper3 for 

chalcogenides, proposing a model for glass-forming ability as a function of composition. This 

served as a mathematical prototype for the topological constraint theory (TCT) which came out 

later by him and Thorpe. Later in 1990, Gupta and Cooper4 set a mathematical foundation for 

Zachariasen’s first two rules, deriving the existence of infinitely large, d-dimensional and 

topologically disordered networks. Their work generalized the Zachariasen’s criteria to 
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unrestricted dimensional space. To be specific, the polyhedra units in the original three-

dimensional case are extended to polytope units of arbitrary dimensionality5. Based on the result 

of this collaboration, Gupta added a hint of topological viewpoint to the glass-forming ability 

theory in his own work later1. Considering rigidity and connectivity in the network, he 

demonstrated mathematically by calculating degrees of freedom per vertex, f, that a network 

“neither too connected, nor too flexible” corresponds to high glass-forming ability. 

 

On the other hand, experimental results also gave us a glimpse into the origin of glass-forming 

ability. Specifically for CS glasses, within a (CaO)x(SiO2)1-x network , x = 42 – 61% was 

demonstrated to be the range having the best glass-forming ability by Eriksson and Pelton6. 

According to their work, large mole fraction of CaO could cause phase separations, whereas 

lower mole fraction of CaO led to a liquidous that was extremely high for glass to form. Hence 

the compositional window in-between was observed to have the highest glass-forming ability.  

 

All these theories provided solid insights into the nature of glass-forming ability, however, more 

details from a physical aspect, for instance, internal stress, mean-squared displacement of the 

atoms, connectivity, etc., would assist in explaining the long eluded reason why the empirical 

theories worked. The goal here is to decipher the glass-forming ability from the aspects of both 

topological and physical details, focusing on calcium silicate glasses. For simplicity, we perform 

MD simulations of a series of CS glasses using a 3D bond-bending model, which allows us to 

consider networks that are practical in real-life applications. We then analyze the properties of 

the networks, including coordination numbers, constraints calculation, mean-squared 
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displacements and stress calculation, etc. According to the topological constraint theory, we find 

that the optimal glass-forming ability occurs at [CaO] mol% = 50%, which is in accordance with 

previous attempts to analyze phase transitions in CS systems6. Our results of structural details 

and internal stress help explain this critical composition, as it coincides with both rigidity and 

stress transition within the network. 

 

2.2 Results and Discussion 

2.2.1 Structure 

 

Figure 2. 1 Fractions of different types of oxygen atoms as a function of [CaO] mol%. BO: bridging 

oxygen, which connects two Si atoms; NBO: non-bridging oxygen, which connects one Si atom and one 

Ca atom; FO: free oxygen, connected with and only with at least two Ca atoms. The solid lines serve as a 

guide to the eye. The grey area corresponds to the compositional window where CS system demonstrates 

the best glass-forming ability6. 
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We first focus on the identification of the atomic structures within the CS glasses simulated. As 

shown in Figure 2. 1, as more CaO content is added to the system, the number of BO decreases 

and the number of NBO increases. This is expected according to our analytical model (see 

Section 4: Methodology), since theoretically, each Ca atom added to the system would create 

two NBO. However, what is not predicted in the analytical model is the formation of FO, which 

dramatically increases starting at [CaO] mol% = 70 %. The formation of FO is due to the fact 

that an added Ca atom does not necessarily consume a BO first. Instead, it can possibly connect 

to an NBO, thus creating an FO. This has a larger possibility to happen when the concentration 

of CaO is relatively higher or when the system is almost saturated with glass modifier, where 

there are much more NBO than BO. 

 

We then look at the Ca coordination number and the contributions coming from different oxygen 

species to further access the structural details of the glasses. Figure 2. 2 presents the average Ca 

coordination number together with the contributions. The coordination number that comes from 

all oxygen species in total has a steady distribution and is always around 6, which yields 

expected result as it is the usual coordination number of Ca in a crystal lattice. On the other hand, 

the contributions coming from BO, NBO and FO all share the same trend as that of the fraction 

of different species in Figure 2. 1. Both analyses yield expected structural details, which show 

the validity of applying TCT in this glass system and lay a sound foundation for constraints 

enumeration and evaluations of the glass-forming ability of the system. 
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Figure 2. 2 The average coordination number of all Ca atoms as a function of [CaO] mol%. The 

contribution of BO, NBO, and FO are also demonstrated, which is in accordance with the observation in 

Figure 1. The lines serve as a guide to the eye. The grey area corresponds to the compositional window 

where CS system demonstrates the best glass-forming ability6. 

 

2.2.2 Topological Constraints Enumeration 

In order to analyze the structural properties of the simulated glasses, we adopt the framework of 

topological constraints theory (TCT) to evaluate the rigidity of the network. TCT has the 

advantage of eliminating the complicated atomic networks of glasses and filtering out the 

chemical details that eventually do not have a critical impact on macroscopic properties, thus 

helps us access the structural information with a simple calculation of mechanical trusses of the 

network5. The main concepts and detailed enumeration methodology are elaborated in Section 

2.4.2.  
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In Figure 2. 3, we calculate the number of BB and BS constraints per atom, respectively, as a 

function of composition. By counting all BB/BS constraints within the glass network at a certain 

composition, we are able to divide that by the total number of atoms (around 3000 for all 

compositions). These normalized values provide a general view of the rigidity condition of the 

network. The number of BB constraints per atom is larger than that of BS constraints per atom at 

first, and after [CaO] mol% exceeds around 35 %, BS constraints gradually dominate as more Ca 

atoms depolymerize the glasses. The sudden drop for BS constraints comes from the formation 

of FO which is demonstrated in Figure 2. 2. We note that the grey area, corresponding to the 

composition window where CS glasses have the best glass-forming ability6, is when BS 

constraints start to outnumber BB constraints.  

 

 

Figure 2. 3 The constraints per atom as a function of [CaO] mol%. BB: bond-bending angular constraint; 

BS: bond-stretching radial constraint. The solid lines serve as a guide to the eye. The grey area 

corresponds to the compositional window where CS system demonstrates the best glass-forming ability6. 
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Figure 2. 4 Number of all constraints per atom (nc) as a function of [CaO] mol% composition. The black 

dashed line is the analytical model, and the black squares show the simulation results. The grey area 

corresponds to the compositional window where CS system demonstrates the best glass-forming ability6. 

 

The total constraints per atom is plotted in Figure 2. 4 as a function of CaO content, where the 

analytical model is compared with the simulated results. The analytical model terminates at x = 

0.67, nc = 2.71, where all the BOs are consumed. As demonstrated in Figure 2. 2, the 

contribution of BS constraints around Ca atoms is also utilized to fill in the gap during 

calculation. The blue line represents the isostatic threshold, where nc = 3. When nc > 3, the 

system is stressed-rigid; when nc < 3, the system is flexible, as indicated by the blue arrows. The 

rigidity of CS glasses decreases as more CaO is added to the system, since Ca atoms 

depolymerize the network due to the formation of NBO (non-bridging oxygen atoms). According 

to the analytical model, CS system has its flexible-to-rigid transition at xiso = 50%, which agrees 

again with where the glass-forming ability is observed to be optimal empirically.  
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2.2.3 Origin of Glass-forming Ability 

 

Figure 2. 5  (a) mean squared displacement (MSD) of all atoms and (b) internal stress per BO as a 

function of [CaO] mol%. The solid lines serve as a guide to the eye. The grey area corresponds to the 

compositional window where CS system demonstrates the best glass-forming ability6. 

After analyzing the MD results utilizing the TCT, we now focus on understanding this window 

of best glass-forming ability from the aspect of physical details, namely internal flexibility and 

the internal stress per BO of the calcium silicate network. 
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(MSD) measurements is elaborated in Section 2.4.3 and thus presented in Figure 2. 5 (a). Note 

that MSD increases when [CaO] mol% increases, and it shows a break of slope at [CAO] mol% 

= 50%, which again corresponds to the composition that has the optimal glass-forming ability 

and indicates the existence of the flexible-to-rigid transition. The physical explanation behind 

this methodology is that, a larger MSD indicates higher atomic mobility, thus flexible glasses (nc 

< 3) demonstrate a noticeable larger value of MSD. As in flexible glasses, relaxation is 

“kinetically-favored” due to the fact that atoms have high mobility, the system can thus relax 

toward its lower-energy configurations. On the other hand, stressed-rigid glasses (nc > 3, [CaO] 

mol% < 50%) have lower MSD, but there exists more internal stress in the network.  

 

To further investigate the origin of the glass-forming ability, we evaluate the internal stress 

within the network. Since NBO and FO are disconnected from the backbone structure, we focus 

on the internal stress of BO. Figure 2. 5 (b) shows the internal stress per BO as a function of the 

glass composition, which is the difference between the reference stress and the stress in bulk 

glasses. With the detailed calculation listed in Section 2.4.4, this internal topological network 

stress comes from the various constraints in the atomic network that mutually depend on each 

other. In general, the internal stress monotonically decreases with the increase of [CaO] mol%. 

Again, there exists a break in slope at 50 % of CaO, which indicates the flexible-to-stressed 

transition. 

 



   

 

42 

2.3 Conclusions 

By conducting MD simulations and analyzing results, we are able to approach an accurate 

description of the structural topology and rigidity of calcium silicate glasses. The topological 

constraint theory confirms a flexible-to-rigid transition (i.e., flexible and rigid at high and low 

CaO content, respectively), which is in accordance with the empirical result of the compositional 

window that shows optimal glass-forming ability. We know that this transition comes from the 

competition between internal atomic mobility and internal stress, providing a glimpse into the 

origin of glass-forming ability. Note that the methodologies used (i.e., TCT analytical model, 

MSD and internal stress, etc.) combined with MD simulations can ultimately be applied to many 

other glass systems and study various properties. For future work, they can also help develop 

fully analytical models that can predict glass properties as a function of composition, which is 

promising to accelerate the design of novel glass applications. 

 

2.4 Methodologies 

2.4.1 Preparation of the Melts 

We first simulate a series of calcium silicate glasses (CaO)x(SiO2)1-x within the range of x = 0 ~ 

80% by molecular dynamics. The potential used to simulate the CS glasses was developed by 

Jakse et al10. This interatomic potential relies on fixed partial charges and a simple two-body 

Buckingham potential formulation. A timestep of 1 fs is used and the Coulombic interactions are 

evaluated with the Ewald summation method, with a convergence criterion factor of 10-5, 9,11–16. 

For the short-range and Coulombic interactions, the cutoffs are 8 and 12 Å17, respectively. This 

potential was demonstrated to provide a sound description of the structural and elasticity 
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properties of CS glasses18. When preparing the melts using LAMMPS package19, the initial 

liquid configurations are generated by randomly allocating around 3000 atoms in a cubic 

simulation box, while at the same time avoiding any unrealistic overlap. Then the system is 

equilibrated at 3000 K for 100 ps in NVT ensemble to ensure the loss of the memory of the initial 

configurations. Following that, the system is relaxed at 3000 K in NPT ensemble (under zero 

pressure) for another 100 ps. Then the glass is ready to be cooled at the rate of 1 K/ps from 3000 

K to room temperature, 300 K, with the cooling increment of 100 K during temperature decrease. 

Finally, the system is subjected to a final relaxation by staying at room temperature for 100 ps.  

 

2.4.2 Topological Constraints Enumeration 

There are two types of mechanical constraints that the atoms within the system undergo from 

chemical interactions: the 2-body radial bond-stretching (BS) constraints and the 3-body angular 

bond-bending (BB) constraints. According to Maxwell’s criterion of stability for mechanical 

trusses20,21, glassy networks can either be flexible, stressed-rigid, or isostatic, when the number 

of constraints per atom (nc) is lower, higher, or equal, respectively, to 3.  

 

The analytical model is based on several basic assumptions. Firstly, the fraction of each element 

is calculated based on the hypothesis that each Ca atom creates two NBO atoms. Since the 

fraction of Ca, Si and O atoms are known according to (CaO)x(SiO2)1-x, we can simply assume 

the fraction of NBO is twice the fraction of Ca atoms. Based on that, we further assume that 

there are only two types of O atoms, BO and NBO (no FO), which supports the formula: BO = O 

– NBO.  Secondly, when establishing the coordination number (CN) of each element, for Ca 



   

 

44 

atoms, it is assumed that their local environment of oxygen atoms would always obey CN_Ca-O 

= 5. Note that we assume there is no BB constraint of Ca atoms, given that their angular 

configuration is not clearly defined. On the other hand, for Si atoms, it is agreed that the Si 

tetrahedra are very stable, hence CN_Si-O = 4. Thirdly, in general, all BS constraints are fully 

attributed to cations, i.e. Ca and Si atoms, while there is no limitation applied to BB constraints. 

The number of BS constraints is determined according to r, the CN of each element, while the 

number of BB constraints complies with the following formula5: nBB = 2r – 3.  

 

With that said, the calculation of the nc of the simulated glasses is demonstrated in Table 1 and 

the resulting analytical model of nc is the following equation: 

𝑛𝑐 =
11 − 7𝑥

3 − 𝑥
 

 

Eq.  

166 

 

Note that the analytical model terminates at x = 0.67, nc = 2.71, where all BOs are consumed by 

the added Ca atoms, and the assumptions no longer hold true. 

Both the analytical model and simulation results of constraints per atom are shown and compared 

in Figure 2. 4. 
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Table 1. Analytical calculation of constraints per atom. 

 

fraction CN BS BB BS+BB 

Ca x 5 5 0 5 

O 2-x \ \ \ \ 

BO 2-3x 2 \ 1 1 

NBO 2x 1 \ 0 0 

Si 1-x 4 4 5 9 

 

 

2.4.3 Mean Squared Displacement 

To study the effect in atomic mobility, we first prepare a series of CS glass configurations 

corresponding to the previous chemical compositions. Note that the configurations are chosen to 

be relaxed at 0 K, so they are made sure to reach their local minimum within the energy 

landscape without the memory of their inherent configuration. Then, we impose an instantaneous 

energy bump of 3000 K (258.6 meV/Å3), which is achieved by manually attributing kinetic 

energy to the atoms9. The response of the system is then recorded and calculated for 200 ps in 

NVE ensemble. Since this external kinetic energy is equipartitioned, half of it is consumed in 

temperature increase, while the other half contributes to the potential energy of the system 

through atomic displacement. The energy bump is chosen so that the temperature remains 

relatively low compared with the fictive temperature of the glasses, so that they would not melt. 

Then the final mean-squared displacement (MSD) of the atoms after the energy bump is recorded 

to evaluate the extent of atomic mobility. With 200 ps being long enough to observe a plateau in 
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MSD, this value provides an insight into the local curvature of the enthalpy landscape. System 

exhibiting a rough enthalpy landscape with some well-defined energy basins tends to show low 

MSD values, whereas system exhibiting smooth enthalpy landscape is more likely to generate 

high MSD values, due to the fact that it is easier for atoms to overcome smaller energy barriers. 

 

2.4.4 Stress Calculation 

For stress calculation, we utilize the “stress per atom” framework developed by Thompson et 

al22. According to their theory, the following formula defines the stress (σi) of each atom (i) as 

the individual contribution of each atom to the system: 

3𝜎𝑖𝑉𝑖 = 𝑚𝑖𝑣𝑖
2 + 𝑟𝑘⃗⃗  ⃗ ∙ 𝐹𝑘

⃗⃗⃗⃗  Eq.  17 

Where Vi, mi, vi, and 𝑟𝑘⃗⃗  ⃗ are the volume, mass, velocity, and position of the atom i, and 𝐹𝑘
⃗⃗⃗⃗  is the 

resultant force applied on atom i by all other atoms in the system. 

 

Here, we focus on the stress of bridging-oxygen (BO) atoms. There are several concepts that 

need to be introduced. Firstly, we define reference stress as a localized stress that would be 

undergone by an atom inside a cluster. This comes from the observation that even an isolated 

SiO4 unit has some stress within itself due to a competition between Si-O attraction and O-O 

repulsion23,24. With that said, we define bulk stress as the average stress of the glass system 

calculated directly from MD simulations. Based on that, we can finally define internal stress as 

the result of bulk stress subtracting the reference stress.  
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To calculate the reference stress, we first simulate a Q4-Q4 cluster. The initial configuration is 

generated by allocating 39 atoms in a cubic simulation box with the side length of 20 Å, 

including 8 Si atoms, 25 O atoms and 9 Ca atoms, without periodic boundary conditions. Each 

Q4 structure has 4 Si tetrahedra and is connected by three BO atoms. The position of each atom 

is allocated based on the average values of their bond lengths and inter-atomic angles25. The 

system is then equilibrated at 300 K for 100 ps, followed by being cooled from 300 K to 0 K 

with a cooling rate of 1 K/ps, both in NVT ensemble. During this process, the linear and angular 

momentum of the cluster are also fixed to zero to avoid any instability of the system, followed 

with a final energy minimization. After that, the average stress undergone by all BOs is 

evaluated, which is defined as the bulk stress. 99999cx Following that, the reference stress is 

quantified by subtracting the Q4-Q4 reference stress from the average stress of BOs in the 

glasses calculated by LAMMPS. By multiplying BO eigenstress with the number of BOs, and 

then dividing it by the number of all atoms in the glass, we calculate the eigenstress of all BOs 

normalized by the number of atoms. Lastly, the unit is converted to meV/Å3. 
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Chapter 3 Glass Relaxation and Hysteresis of the Glass 

Transition by Molecular Dynamics Simulations 
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3.2 Introduction 

The crystallization of a liquid can be avoided if cooled fast enough.1 At temperatures lower than 

the melting temperature, supercooled liquids are a thermodynamic metastable state.2 With 

decreasing temperature, the viscosity  and the relaxation time to equilibrium 𝛕 tend to 

dramatically increase. At some reference temperature defined in the literature as the glass 

transition temperature Tg,  reaches the value 1012 Pa·s, which roughly corresponds to a 

relaxation time of 100 s.3 At lower temperatures, the very viscous liquid exhibit all the typical 

macroscopic properties of a solid and these properties now depend on the waiting time before the 

realized measurement.4,5 This simply signals that glasses are out-of-equilibrium materials and 

their properties evolve slowly with time.6 

 

A conventional means to measure such effects is to rely on calorimetric methods. As the 

equilibration cannot proceed further upon cooling (because of the rapid increase of the relaxation 

time with decreasing temperature) the enthalpy curve or the volume curve deviates from the 

high-temperature equilibrium line at the fictive temperature Tf—this temperature Tf depending 

explicitly on the cooling rate.3 As a result, the specific heat (Cp) displays an abrupt decrease 

across Tf, which signals that the translational and rotational degrees of freedom of the glass are 

now frozen.7 However, even in the resulting glassy state, the material continues to relax toward 

lower enthalpies, but over timescales that exceed the laboratory timescale by several orders of 

magnitude.2 Upon reheating, the behavior of the specific heat is markedly different from the 

cooling curve and a hysteresis can be evidenced. The extent of hysteresis depends on the heating 

rate, the temperature at which the glass has relaxed and the waiting time before which the 
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calorimetric experiment is performed.3 This heating experiment, furthermore, leads to a heat 

capacity overshoot at the glass transition and this endotherm signals that relaxation has taken 

place due to their intrinsic out-of-equilibrium nature of the glassy state.8 Relaxation effects are 

technologically important as they can cause undesirable variations in the dimensions of glassy 

substrates for displays application during processing, which can eventually result in some pixel 

misalignement.9 In select situations and applications, one is targeting a reduced relaxation 

tendency that can induce a minimal hysteresis in enthalpy or molar volume. However, it is not 

clear which physical and chemical properties drive such “ideal” glasses. Yet, it has recently been 

found that such hysteresis curves are minimized when the liquid reaches a critical mechanical 

state with an optimal reduction of both low-frequency relaxation and bond energy minima of the 

potential energy landscape.10,11 

 

Molecular dynamics (MD) simulations can shed some light on such phenomena by relating the 

thermal or energy behavior with different materials properties such as structure and mechanical 

properties.12 In this respect, the relaxation of glass has been related to the effects of pressure,10 

composition,13 coordination numbers,14 and other factors.15 However, a well-known shortcoming 

of MD simulations is their timescale, which can only extend to the s range—so that the typical 

timescales associated with glassy relaxation at Tg (seconds) are out-of-reach.16 Correspondingly, 

the viscosity range that can be investigated is of about tens or hundreds of Pa·s only. However, 

one has to keep in mind that all the salient features associated with the experimental onset of an 

out-of-equilibrium dynamics can be recovered from simulations—although the associated time 

scale is shifted with respect to experiments.17,18 This timescale difference leads to an 
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overestimation of the glass fictive temperature, which is usually larger in simulations by several 

hundred of degrees when compared to the experimental counterpart due to much larger cooling 

rates (on the order of a few K/ps). Such large values of cooling rates are actually fairly 

compatible with those experienced experimentally in very small samples, wherein surface is 

large as compared to volume—so that surface energy dissipation can occur fast.19 Numerical 

studies have, furthermore, revealed that the relaxation time and the viscosity can be accurately 

investigated from simulations and associated results compare favorably with experimental data 

of high temperature liquids—while being sometimes extrapolated with confidence to lower 

temperatures.20 Similarly, the freezing of density-density correlations in Fourier space at low 

temperature can also be recovered (i.e., the -relaxation plateau associated with the cage-like 

dynamics of supercooled liquids) and the behavior of heat capacities across the glass transition 

region as is rather well-described.15 Having such intrinsic limitations at hand, MD simulations 

represent, still, a powerful technique able to substantiate the notion of glass reversibility and 

connect the behavior with materials properties at large. 

 

In the present contribution, we address this issue of glass reversibility by focusing on numerical 

cooling/heating cycles across the glass transition. We perform MD simulations of three 

archetypal silicate glasses: (i) silica, SiO2, the base system for all silicate glasses,3 (ii) sodium 

silicate, (Na2O)30(SiO2)70, a model for all alkali silicate glasses used for ion-exchange 

treatments,21,22 and (iii) calcium aluminosilicate, (CaO)24(Al2O3)24(SiO2)52, a model for all alkali-

free display glasses used for LCD/OLED glass substrates.9 A novel methodology combining 

thermal cycles and inherent configuration analysis is introduced and serves for the 
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characterization of the features of relaxation in relationship with glass transition reversibility. We 

first show that our simulations reproduce the generic features of the glass transition. Following 

this, we find that, for all the considered glasses, enthalpy relaxation follows a power-law 

dependence as a function of the cooling rate—in agreement with an earlier prediction of mode-

coupling theory. This permits to determine the increase of enthalpy at 0 K due to a finite cooling 

rate with respect to that that would be achieved for a (fictitious) zero cooling rate. Further, we 

demonstrate that enthalpy and volume relaxation are decoupled from each other. Then, we 

perform cooling/heating cycles in order to measure the degree of relaxation visible from the 

extent of the induced hysteresis curve. We find that both the enthalpy relaxation and the range of 

temperature over which it occurs are strongly system-specific, although some general 

conclusions can be drawn. 

 

3.3 Simulation Details 

3.3.1 Preparation of the Melts 

To establish our conclusions, three archetypal silicate glasses are simulated with MD: (i) silica 

(S), SiO2, (ii) sodium silicate (NS), (Na2O)30(SiO2)70, and (iii) calcium aluminosilicate (CAS), 

(CaO)24(Al2O3)24(SiO2)52. All simulations were carried out with the LAMMPS package.23 The 

initial liquid configurations were generated by (i) randomly placing around 3000 atoms in a 

cubic simulations box while ensuring the absence of any unrealistic overlap, (ii) melting the 

system at 4000 K for 100 ps (NVT ensemble) to ensure the loss of the memory of the initial 

configuration, and (iii) relaxing the system at 4000 K under zero pressure (NPT ensemble) for 

100 ps. For all systems, a timestep of 1 fs is used, while temperature and pressure are imposed 
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via a Nosé–Hoover thermostat and barostat, using some damping parameter of 100 and 1000 fs, 

respectively.24,25 

 

Since empirical force-fields have a limited transferability over varying configurations, a specific 

interatomic potential was chosen for each system. However, although each potential relies on a 

system-specific parametrization, they all rely on fixed partial charges and a simple two-body 

Buckingham potential formulation. In all cases, the Coulombic interactions were evaluated with 

the Ewald summation method—with a convergence criterion factor of 10-5. First, the well-

established potential developed by van Beest, Kramer, and van Santen (BKS) was used to 

simulate silica.26 The cutoff was fixed at 5.5 and 10 Å for the short-range and Coulombic 

interactions, respectively—as this specific choice has shown to yield an improved description of 

the glass density.27 The BKS potential has shown to offer a very good description of the 

structural, dynamical, and mechanical properties of silica.27–30 Second, we relied on the potential 

parameterized by Teter to simulate the NS glass.31 The cutoff was fixed at 8 and 12 Å for the 

short-range and Coulombic interactions, respectively. This potential has been extensively studied 

and has been found to offer an excellent description of the structural, dynamical, vibrational, and 

thermodynamical properties of NS glasses.10,17,29,31–39 Finally, the potential developed by Jakse et 

al. was used to simulate the CAS glass.40,41 The cutoff was fixed at 8 and 12 Å for the short-

range and Coulombic interactions, respectively. This potential has shown to yield an excellent 

description of the structural, mechanical, and vibrational properties of CAS glasses.29,42 
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3.3.2 Thermal Cycling Methodology 

To assess the degree of reversibility of the glass transition of these systems, all the three glasses 

were subjected to a thermal cycle, details of which are as follows.11,43 Starting from well-relaxed 

liquid configurations, the systems were cooled and subsequently reheated at varying 

cooling/heating rates (from 100 to 0.1 K/ps, with temperatures steps of 100 K) in the NPT 

ensemble and zero pressure. To filter out any thermal effect, 16 independent configurations were 

extracted every 1 ps at the end of each temperature step. All configurations were then subjected 

to an energy minimization in order to compute the enthalpy of their inherent configuration (local 

ground-state enthalpy).17,44 All the results presented below are averaged over these 16 

configurations. We ensured that the results of the thermal cycling simulations are not affected by 

any spurious effect of the thermostat and barostat (see Appendices).45 

 

3.4 Results and Discussion 

3.4.1 Features of the Glass Transition 

Figure 3. 1 represents the local ground state enthalpy H as a function of the temperature T (i.e., 

the enthalpy of the inherent configuration for each temperature). For all systems, H decreases 

monotonically with decreasing temperature. We note that silica (S) has the lowest ground-state 

enthalpy, which is found between –5515 and –5500 kJ/mol for the studied cooling rates, whereas 

NS has the highest ground-state enthalpy. Since the enthalpy also reflects at the atomic scale a 

bond energy density, this result agrees with the fact that S is more polymerized and NS is less 

polymerized due to the formation of non-bridging oxygen species caused by sodium atoms.31 
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At a certain temperature (the fictive temperature46 called Tf hereafter), the salient features of the 

glass transition are recovered and a break in the slope of H(T) is observed for the three glasses. 

This is an indication that the system can no longer equilibrate over the imposed computational 

timescale. We, furthermore, note that S and CAS glasses have a sharper transition (given the 

obvious larger changes in dH(T)/dT across the glass transition), whereas NS exhibits a more 

gradual transition. When the position of the break in slope is considered (i.e., the fictive 

temperature), we find that Tf(S) > Tf(CAS) > Tf(NS), in agreement with experimental results.47–

49 Further, the fictive temperature decreases with decreasing cooling rate for the three glasses.46 

Overall, the simulations reproduce the generic features of the effect of the cooling rate on the 

enthalpy across the glass transition. 

 

For S and CAS glass, the local ground state enthalpy H(T) shows a plateau at low temperature 

and H(T) barely depends on temperature. This signals a weak temperature-dependence of the 

specific heat. The zero-temperature ground-state enthalpy decreases monotonically with 

decreasing cooling rate for the three glasses, which is in line with experimental results10,50 and is 

simply the indication that the glasses achieved with a lower cooling rate have relaxed toward 

lower energy values. Conversely, there is no such plateau for the NS glass and a continuous 

decrease upon decreasing temperature is observed. The suggests that, unlike S and CAS glasses, 

NS exhibits some more pronounced structural relaxation that lead to a larger enthalpic evolution 

below Tf. This effect likely results from the higher mobility of the Na atoms, even at low 

temperature.51 For instance, we find that, at 800 K (i.e., below Tf), the mobility of the Na atoms 
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is nearly two orders of magnitude higher than that of all the other species (including Ca atoms, 

see Appendices).45 

 

Figure 3. 1 Local ground-state enthalpy H(T) (i.e., enthalpy of the inherent configuration) as a function of 

temperature T under select cooling rates for (a) silica (S), (b) sodium silicate (NS), and (c) calcium 

aluminosilicate (CAS). Note that each panel has a different y-axis. 

 

We next focus on the variations in the molar volume Vm (Figure 3. 2). For the NS and CAS 

glasses, the molar volume decreases monotonically with decreasing temperature52 and a break of 

slope is also observed around the fictive temperature—although the break of slope is not as sharp 

as that observed in the case of the local ground-state enthalpy. Note that the break of slope leads 

to a change in the thermal expansion coefficient at the glass transition.53 For silica, one notices 

that the molar volume exhibits an anomalous behavior, that is, a minimum at  around 5000 K—in 

agreement with previous simulations that point to the existence of a liquid-liquid transition in 

high temperature liquids and their thermodynamic anomalies.28,54–57 Note that the location of 

such transitions might be not be directly comparable to our results because of the sensitivity of 

such transitions to the employed force field. We note that, once in the glassy state, silica exhibits 
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the lowest extent of thermal expansion, in agreement with experimental results.3 In general, 

slower cooling rates result in more compact glasses with lower molar volumes, with the notable 

exception of silica.58 NS has the lowest molar volume in general (i.e., more compact), which 

arises from the fact that Na atoms efficiently fill the empty space within the silicate network.3 

We also note that the cooling rate primarily affects the coefficient of thermal expansion of 

silica,54 whereas those of the NS and CAS glasses largely unaffected.17 

 

Figure 3. 2 Molar volume as a function of temperature upon select cooling rates for (a) silica (S), (b) 

sodium silicate (NS), and (c) calcium aluminosilicate (CAS).  Note that each panel has a different y-axis. 

3.4.2 Effect of the Cooling Rate on the Glass Properties 

We now turn our attention to the effect of the cooling rate on the glass properties at zero 

temperature. A log-log plot of the zero-temperature ground-state enthalpy H as a function of the 

cooling rate 𝛾 suggests a power law dependence, as predicted by mode-coupling theory:17,59 

𝐻(𝛾) = 𝐻(𝛾 = 0) + (𝐴𝛾)1 𝛿⁄     Eq. 18 

where A and 𝛿 are some fitting parameters, and H(𝛾 = 0) is the enthalpy that would be achieved for 

a (fictitious) zero cooling rate, i.e., after infinitely slow cooling. Note that, in practice, the glass 
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would necessarily crystalize if cooled infinitely slowly.2 We find 𝐻(𝛾 = 0) = –5521, –3731, and 

–4711 kJ/mol for S, NS, CAS, respectively, which scales well with the degree of polymerization 

(that is, the higher the glass connectivity, the more energetically stable the glass is). 

 

These parameters are used to calculate the residual enthalpy ΔH(𝛾) = H(𝛾) – H(𝛾 = 0) of the 

glass at zero temperature as a function of the cooling rate, that is, the increase in enthalpy at 0 K 

due to a finite cooling rate 𝛾 with respect to the one that would be achieved at zero cooling rate. 

As shown in Figure 3. 3(a), we find that, although the ground-state enthalpy of the three glasses 

considered herein strongly depends on composition, the dependence on the cooling rate appears 

to be fairly similar—we find  = 4.3, 4.7, and 4.1 for the S, NS, and CAS glasses, respectively. 

 

Similarly, we represent in Figure 3. 3(b) the molar volume at 0 K, which slightly decreases with 

decreasing cooling rate for NS and CAS glass. Both systems display an opposite behavior to 

silica, which exhibits an increase in the molar volume with decreasing cooling rate due its 

anomalous behavior.18,54 Overall, we note that the room-temperature molar volume of NS 

exhibits the lowest dependence on the cooling rate. This likely arises from that, thanks to the 

high mobility of Na atoms (see Sec. 3a and Supplementary Material),45 the NS glasses are able to 

partially continue to relax below their fictive temperature—so that the shift of its fictive 

temperature upon varying cooling rate only has a limited effect on its final volume. This suggests 

that such low-temperature volume relaxation might not be controlled by the viscosity of the 

glass.60 
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Figure 3. 3 (a) Residual enthalpy ΔH(𝛾) = H(𝛾) – H(𝛾 = 0) at 0 K for the silica (S), sodium silicate (NS), 

and calcium aluminosilicate (CAS) glasses as a function of the cooling rate γ, where H(γ = 0) is obtained 

by fitting H(γ) with a power law 𝐻(𝛾) = 𝐻(𝛾 = 0) + (𝐴𝛾)1 𝛿⁄ . The solid lines are power law fits (see Eq. 

18). (b) Molar volume at 0 K of the three glasses considered herein as a function of the cooling rate. The 

solid lines are to guide the eye. 

3.4.3 Decoupling between Enthalpy and Volume Relaxation 

A linear fitting of the high- and low-temperature domains of H(T) or Vm(T) permits one to 

determine the glass fictive temperature Tf (i.e., as the temperature at which the two linear 

functions intercept), which, in turn, allows us to substantiate the relationship between Tf and the 

cooling rate  (see Figure 3. 4). In the case of silica, the fictive temperature is defined as the 

point at which the molar volume starts to decrease with decreasing temperature. As expected, we 

note that Tf decreases with decreasing cooling rate . This arises from the fact that, upon 

decreasing cooling rate, the threshold at which the relaxation time of the supercooled liquid 

exceeds the simulation time (i.e., the point at which the system goes out-of-equilibrium) shifts 
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toward lower temperatures.3 However, we note that the fictive temperature determined from the 

break in slope in Vm(T) is systematically higher than that obtained from the break in slope in 

H(T) (see Figure 3. 4), which is in line with previous simulations conducted for a Lennard-Jones 

glass.61 This suggests the existence of a decoupling between enthalpy and volume relaxation, as 

further discussed below. 

Figure 3. 4 Fictive temperature Tf as a function of the cooling rate  for the (a) silica (S), (b) sodium 

silicate (NS), and (c) calcium aluminosilicate (CAS) glasses (calculated from the break in slope of the 

ground-state enthalpy and molar volume vs. temperature curves, see Figures 3. 1 and 3. 2). The dashed 

lines are to guide the eye.  Note that each panel has a different y-axis. 

 

We now further investigate the distinct features of enthalpy and volume relaxation. Although its 

applicability has been questioned,62–64 the Kissinger equation65,66 can be conveniently used to 

estimate the apparent activation energy ∆ℎ∗ of glass transition or structural relaxation: 

ln (
𝛾

𝑇f
2) =

−∆ℎ∗

𝑅𝑇f
+ const    Eq. 19 
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where γ is the cooling rate, Tf the fictive temperature, and R the perfect gas constant. Figure 5 

shows the Kissinger plots capturing the dependence of the fictive temperature on the cooling rate 

for the three glasses considered herein. Overall, we note that, despite the statistical fluctuations 

that are inherent to small simulated systems, the Tf data can be fairly well fitted by the Kissinger 

equation—both in the case of enthalpy and volume relaxation. Table 2 presents the apparent 

activation energy values resulting for the fits (performed by linear regression of the data 

presented in Figure 3. 5). These values are of the same order of magnitude than the apparent 

activation energy of volume relaxation previously reported for a soda-lime silicate (309 kJ/mol)66 

and a borosilicate glass (615 kJ/mol).46 Overall, we observe that the apparent activation energy 

of silica is significantly larger than those of the sodium silicate and calcium aluminosilicate 

glasses—both for enthalpy and volume relaxation. This is in line with the fact that the NS and 

CAS glasses are more depolymerized than silica, which facilitates relaxation. 

Figure 3. 5 Kissinger plots for the (a) silica (S), (b) sodium silicate (NS), and (c) calcium aluminosilicate 

(CAS) glasses. The lines are Kissinger fits (Eq. 19), which allow us to estimate an apparent activation 

energy of enthalpy and volume relaxation (see Table 2). 
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However, we note that, interestingly, the apparent activation energy associated to volume 

relaxation is systematically higher than that associated to enthalpy relaxation (by 43-to-65%). 

This demonstrates the existence of a bifurcation between enthalpy and volume relaxation and 

suggests they occur via distinct mechanisms. Specifically, our results suggest that volume 

relaxation is associated to larger energy barriers and, hence, is less kinetically favored than 

enthalpy relaxation. These observations are in agreement with previous results suggesting that 

volume relaxation is significantly slower than enthalpy relaxation.60,67 This was explained from 

the fact that volume relaxation occurs through long-range reorganizations of the network, 

whereas enthalpy relaxation occurs through short-range reorganizations.60,68,69 

 

Table 2  Apparent activation energies associated to the enthalpy and volume relaxation in the silica, 

sodium silicate, and calcium aluminosilicate glasses, as obtained by fitting the curves presented in Figure 

3. 5 by Eq. 19. 

Glass Enthalpy relaxation Volume relaxation 

Silica (S) 1200 kJ/mol 1980 kJ/mol 

Sodium silicate (NS) 165 kJ/mol 239 kJ/mol 

Calcium aluminosilicate (CAS) 181 kJ/mol 259 kJ/mol 

 

3.4.4 Reversibility of the Glass Transition 

We now focus on the question of the glass reversibility. Once the glasses have been obtained, we 

heat the systems back up with the same absolute rate as during the cooling protocol (see Section  

3.3.2). Figure 3. 6 represents such cooling/heating cycles across the glass transition. We note 
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that, upon reheating, the local ground-state enthalpy differs from that obtained upon cooling, 

which signals the onset of enthalpic relaxation—as observed experimentally or also evidenced 

from kinetic constraint models.70 More specifically, the decrease in the local ground-state 

enthalpy explored upon reheating indicates that the glass has, indeed, relaxed toward a lower 

energy state. This feature is compatible with the “overshoot” that is typically observed in 

calorimetry experiments.71 However, it is seen that such a behavior is strongly system-

dependent. For instance, for a given heating/cooling rate (e.g., 1 K/ps), silica (S) displays a larger 

hysteresis curve when compared to the NS or CAS systems.  

 

Figure 3. 6 Local ground-state enthalpy H(T) (i.e., enthalpy of the inherent configuration) as a function of 

temperature under select cooling/reheating rates for (a) silica (S), (b) sodium silicate (NS), and (c) 

calcium aluminosilicate (CAS) glasses. The solid (same as Figure 3. 1) and dashed curves refer to the 

cooling and heating simulations, respectively.  Note that each panel has a different y-axis. 
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3.4.5 Glass Relaxation at the Vicinity of the Glass Transition 

In order to further quantify the enthalpy relaxation as a function of temperature, we calculate the 

enthalpy relaxation H = Hcool(T) – Hheat(T), which is here defined, at fixed cooling/reheating 

rate, as the ground-state enthalpy difference between the cooling and the heating curves. Figure 

3. 7 represents such quantity for the three systems at different cooling/heating cycles. It is 

interesting to note that the temperature at which enthalpic relaxation is maximum (i.e. the 

maximum of H in Figure 3. 7) is close to the fictive temperature and this typical temperature 

exhibits qualitatively the same dependence on the cooling rate as that of Tf, i.e., it decreases with 

decreasing cooling rate. This can be understood from the following. At high temperature (𝑇 ≫ 

Tf), no relaxation is observed since the typical relaxation time is several orders of magnitude 

lower (picoseconds) than the typical simulation time. As such, the system is at (metastable) 

equilibrium with no thermodynamic driving force for relaxation. Therefore, the liquid tracks the 

imposed temperature variation (i.e., H = 0). On the other hand, at low temperature (𝑇 ≪ Tf), 

relaxation is barely observed because the dynamics is too slow with a large viscosity and 

relaxation that is kinetically frozen. This is related to the fact that the glass is trapped in some 

local minimum in the enthalpy landscape (characterized by Hcool(𝛾)) and, as a result, the system 

follows instantaneously the imposed temperature change (i.e., H = 0). Eventually, relaxation 

can only occur around 𝑇 = Tf, that is, when the relaxation time becomes comparable to the 

typical observation time. 
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Figure 3. 7 Relaxation enthalpy (i.e., difference of ground-state enthalpy upon cooling and reheating) as a 

function of temperature for (a) silica (S), (b) sodium silicate (NS), and (c) calcium aluminosilicate (CAS) 

glasses. The solid lines are Gaussian fits. The values are vertically shifted for clarity. The 

cooling/reheating rates are (from top to bottom) 100, 10, 1, and 0.1 K/ps. 

 

We further describe the relaxation dynamics by fitting the decrease in enthalpy induced by 

relaxation with a Gaussian function: 

∆𝐻 = ∆𝐻max exp [
–(𝑇−𝑇max)

2

2∆𝑇2 ]    Eq. 20 

wherein Tmax represents the temperature where relaxation is maximum, ∆𝐻max the maximum 

extent of enthalpy relaxation, and ∆𝑇 the typical temperature range over which relaxation 

occurs. Note that ∆𝐻(𝑇) is not fully symmetric with respect to Tmax so that a Gaussian function 

may not offer the best fit (and may not have a clear physical origin). However, the goal of the 

present fit is only to extract these three relevant fitting parameters. To avoid any spurious effect 

of the high-temperature fluctuations observed in Figure 3. 7 on the outcome of the fit, we apply 

on the data a weighting factor w = 1/T (where T is the temperature) during the fitting procedure. 

This allows us to place more emphasis on the low-temperature data (which exhibit lower 
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uncertainty). At the highest cooling/heating rate (100 K/ps), we obtain ∆𝐻max = 2.1, 1.8, and 2.9 

kJ/mol for the S, NS, and CAS glasses, respectively. The dependence of the three metrics yielded 

by the fit on the cooling/heating rate is described in the following (Figure 3. 8). 

 

For all the glasses considered in the present contribution, Tmax decreases with decreasing 

cooling/reheating rate (Figure 3. 8(a)). The value of Tmax is very close to the fictive temperature 

and exhibits a similar dependence on the cooling rate—as also determined recently.72 We 

furthermore note that, in the case of the sodium silicate glass, an extrapolation of Tmax() toward 

lower cooling rates values (typically 1 K/s) leads to a value that is comparable to the glass 

transition temperature observed experimentally (see Ref. 17). The Tmax of S is overall higher than 

the Tmax of NS and CAS—a result that is also consistent with the experimental observations, i.e., 

S has the highest Tg, which is reduced once depolymerization is produced by the addition of 

modifiers as it is the case for NS and CAS.3 

 

The maximum enthalpy relaxation (∆𝐻max) decreases with decreasing cooling rate for the three 

glasses (Figure 3. 8(b)). The origin of this trend is illustrated in Figure 3. 9 and is explained in 

the following. Slower cooling rates result in more relaxed (i.e., more stable) glasses (see Figures 

3. 1 and 3. 3(a)). However, slower heating rates provide more time to the formed glass to further 

relax upon reheating. Figure 3. 9 shows the typical shape of the stretched-exponential relaxation 

of a glass in isothermal condition. The black arrows indicate the extent of enthalpy relaxation 

that can be achieved upon cooling and, then, reheating. Note that, since the cooling and heating 

rates are equal to each other, the times over which the system is able to relax at a given 
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temperature upon cooling and subsequent reheating are the same. However, due to the stretched-

exponential nature of glass relaxation, the extent of relaxation achieved upon reheating is lower 

than that achieved upon cooling. The red arrows now indicate the relaxation that can be achieved 

upon slower cooling and reheating. It can be observed that, although the observation (simulation) 

time increases, the actual extent of enthalpy relaxation is lower than upon faster 

cooling/reheating. As such, varying the cooling/heating rate can be used to describe the 

relaxation dynamics at different stages, namely, early-stage relaxation for high cooling/heating 

rates and longer-term relaxation for lower cooling/heating rates (see Figure 3. 9). Hence, that 

fact that ∆𝐻max decreases with decreasing cooling/heating rate indicates that most of the 

relaxation occurs at early-stage and that the relaxation dynamics subsequently slows down, 

consistently with the stretched-exponential nature of glass relaxation).15,60,67,68,73,74 Overall, we 

find that NS has the smallest ∆𝐻max. This may arise from the high mobility of the Na atoms, 

which allows some significant relaxation to occur during the cooling phase at T < Tf. 

 

Finally, we place our attention on ∆𝑇 (see Figure 3. 8(c)). ∆T can be considered as being the 

extent of temperature over which relaxation can occur, that is, over which the relaxation time of 

the glass is high enough (i.e., otherwise the system would have already fully relaxed upon 

cooling and would be at equilibrium), but not too high (i.e., otherwise relaxation would be too 

slow to be observed at all within the timescale of our simulation)—i.e., ∆T is the range of 

temperature for which the relaxation time is high enough for the system to be out-of-equilibrium, 

but low enough for relaxation to be kinetically allowed. Hence, relaxation is only observed when 

the relaxation time of the glass becomes comparable to that of our simulation time. Based on 
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this, the extent of temperature over which the relaxation time is comparable to the simulation 

time should be controlled by the derivative of the relaxation time with respect to temperature 

(i.e., the glass fragility).75 Since the viscosity (and relaxation time) increases exponentially with 

decreasing temperature, we would expect, upon decreasing cooling rate, the extent of the 

temperature window over which the relaxation time is comparable to the simulation time should 

decrease. This should result in a more well-defined glass transition (i.e., lower ∆T) upon 

decreasing cooling rate. Although such a trend is partially verified for the NS and CAS glasses 

(see Figure 3. 8(c)), the fluctuations in the data do not allow us to conclusively confirm this 

behavior. The relationship between ∆𝑇 and glass fragility is also in agreement with the fact that 

we find silica to exhibit the largest ∆𝑇, in agreement with its low fragility value.76 

 

Figure 3. 8 (a) Temperature at which the enthalpy relaxation is maximum (Tmax), (b) maximum extent of 

enthalpy relaxation (ΔHmax), and (c) typical range of temperature over which enthalpy relaxation occurs 

(ΔT) as a function of the cooling/heating rate for silica (S), sodium silicate (NS), and calcium 

aluminosilicate (CAS). The lines are to guide the eye. 
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3.5 Conclusions 

In summary, we have studied relaxation and glass transition reversibility in three archetypical 

silicate glasses by means of molecular dynamics simulations. Overall, the simulations reproduce 

the generic features of the glass transition and of its dependence on the cooling rate. This 

analysis confirms that the glass ground-state enthalpy (i.e., the position locally occupied by the 

glass within the enthalpy landscape) exhibits a power-law dependence on the cooling rate, in 

agreement with mode-coupling theory. Based on these simulations, a systematic bifurcation 

between enthalpy and volume relaxation is evidenced, which suggests that they occur via distinct 

mechanisms. Finally, based on a novel methodology combining thermal cycles and inherent 

configuration analysis, we characterize the degree of (ir)reversibility of the glass transition. We 

find that both the extent of irreversibility and the range of temperature over which relaxation 

 

Figure 3. 9 Schematic showing the typical stretched-exponential enthalpy relaxation of a glass in 

isothermal conditions. The arrows indicate the extent of relaxation that can be achieved between 

cooling and subsequent reheating in the case of (black) fast cooling/heating and (red) slow 

cooling/heating. 
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occurs are strongly system-specific. Overall, the present results provide a numerical assessment 

of the calorimetric glass transition using MD simulations, and should permit to investigate in the 

future the effect of composition or pressure on glass relaxation. 
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3.6 Appendices 

  

Figure A 1  Local ground-state enthalpy of a CAS glass as a function of temperature (with a 

cooling/heating rate of 1K/ps) for select (a) thermostat and (b) barostat relaxation times. 
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Figure A 2 Local ground-state enthalpy of a CAS glass as a function of temperature (for a cooling/heating 

rate of 1K/ps) obtained with the Nosé–Hoover and Berendsen thermostat/barostats. 

 

 

Figure A 3 Local ground-state enthalpy of a CAS glass as a function of temperature (for a cooling/heating 

rate of 1K/ps) obtained with the Nosé–Hoover thermostat in the NPT and NVT ensembles. 
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Figure A 4 Local ground-state enthalpy of a NS glass (after cooling at 1K/ps) as a function of time at 

300K. 

 

 

Figure A 5 Mean-square displacement of each element at 750K in (a) NS and (b) CAS glasses. 
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Figure A 6 Ground-state enthalpy H(T) of an NS glass upon cooling at 0.1K/ps. The low- and high- 

temperature domains of H(T) are fitted by some linear functions to identify the fictive temperature. 
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