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ABSTRACT OF THE DISSERTATION

Global Existence of Solutions to Semilinear Klein-Gordon Equations

by

Nina Pikula

Doctor of Philosophy in Mathematics

University of California San Diego, 2019

Professor Ioan Bejenaru, Chair
Professor Jacob Sterbenz, Co-Chair

In this thesis, we prove two main results on nonlinear Klein-Gordon equations.
First, we establish global existence of solutions to general second order semilinear Klein-
Gordon equations for small initial data and n = 3 spatial dimensions. Then, we prove low
regularity well-posedness in n = 2 spatial dimensions and higher for a quadratic power-type
Klein-Gordon system with different masses satisfying a suitable nonresonance condition.

For the first result, our main tool is the Normal Forms Method of Shatah. The key

idea behind this approach is to decompose u into a sum of two functions, U and W, where

ix



W solves a third order system and U is written explicitly as a function of u and its first
order derivatives. The explicit form of U and good behavior of solutions to higher order
systems allows us to gain control of both U and W, and thus u.

For the multiple mass system, we apply a standard duality argument to reduce our
proof of well-posedness to the establishment of a set of trilinear estimates. The proof of
these estimates relies heavily on the special properties of our iteration spaces. In particular,
using these spaces allows us to readily exploit the absence of resonant terms and extend

important bilinear estimates proved for free solutions to more general functions.



Chapter 1

Introduction

Relativistic wave equations such as the Klein-Gordon equation have been of interest
to theoretical physicists in various branches of physics [24]. In recent decades, there has
been considerable interest among physicists in finding exact solutions to nonlinear Klein-
Gordon equations with various vector and scalar potentials (for example, see [13], [3], [17]).
Our focus in this thesis will be on proving global existence for a broad class of nonlinear
Klein-Gordon equations known as second-order semilinear Klein-Gordon equations. Before
we explain what this means in precise terms, we will first present the reader with a brief
background of the Klein-Gordon equation. The derivation that follows, along with other
relevant material, can be found in Chapters 1 and 9 of [1].

The homogeneous Klein-Gordon equation

52
(a—g—A—i-u)u:O (1.1)

is a wave equation introduced by physicists Oskar Klein and Walter Gordon as a relativistic

alternative to the Schroedinger equation [15].



From physics we know that the nonrelativistic expression for the energy of a free
particle is given by
N

F=— 1.2
om’ (1.2)

where p'is the associated momentum and m is the associated mass.

Applying standard Quantum Mechanics theory, we may replace

E — z‘hgt, p — —ihV (1.3)

to obtain the Schroedinger equation for a free particle

R2A

o,
iha = =35 —, (1.4)

where ¢ : R x R" — C is a function for which the above operations are well-defined.

In order to produce a relativistic version of the above, it is natural to attempt to

replace the energy equation, (1.2), with the relativistic energy expression
E? =5+ m?, (1.5)

where we have chosen our units so that c, the speed of light, is 1. Once again we may
apply the replacements in (1.3) to obtain

82
—hQ@ (l’, t)

(—R2A + m2)(z, 1).

Simplifying the above we get

where O = 97 — A is the D’Alembertian operator. We recognize the above as the homo-

geneous Klein-Gordon equation.



The discussion above has focused exclusively on the case of a free particle. In reality,
particles typically interact strongly with other particles and fields. In order to develop a
more robust theory, it is useful to study (1.1) with a forcing term, F', added to the right-
hand side. For example, a simplified model of the interaction between a spin-zero meson

and an electromagnetic field with associated electromagnetic four-potential A* = (¢, A)

leads to the following equation ([1], Chapter 9):

{(iai“ — eAF(x, t)>2 - m2] u(z,t) =0, (1.6)

where e is the elementary charge and we have used the summation convention.

We can rewrite (1.6) as
(O -+ m)u(a, 1) = —ie(B,A" (z,8) + A" (z, 0, ulz, £) + € Ae, t)u(x, 1),

leading us to our first example of an inhomogeneous Klein-Gordon system. In practice, the
four-potential A* will often also depend on u and it’s space and time derivatives leading
to more complicated nonlinearities. In this thesis, we will primarily study inhomogeneous
systems of the form

2

0
(@ — A+ p)u = F(u, u, yu). (1.7)

The equation above is an example of a semilinear Klein-Gordon equation because its
nonlinearity, F', only depends on derivatives of at most first order. Real world phenomena
are often better approximated by nonlinearities that include second order derivatives.
Unfortunately, such systems are significantly more difficult to handle so we focus our
efforts towards fully understanding the semilinear case.

We are finally in a position to to discuss one of the main subjects of this thesis.



Before we introduce the main theorem, we remind the reader that for s > 0 the L?-based

Sobolev space, H?, is defined by the following norm

[l sy = () * @l L2y

where (-) := (14 |- [?)z.

We say that a nonlinearity F' = F(u, Oyu, Ou) € C* is of order p for some p € Z>q
if ' is a polynomial whose lowest order term has degree p.

In this thesis we will be focusing primarily on second order nonlinearities. As a
physical motivation, consider the Yukawa-coupled Klein-Gordon-Dirac system (see [4] and

10.2 in [1]), given by:

(=i 0+ M)y = ¢p (M >0),

O+m*)p =% (m>0),

where 1 : R — C* is the spinor field, ¢ : R'*3 — C is a scalar field, and the v*, for
u=0,1,2 3, are the Dirac matrices.
This system is a simple model of a proton-proton (or neutron-neutron) interaction

in which one proton is scattered by the meson field produced by another proton. We

Mev
2

remark that the constant M here represents the mass of the proton (M = 938%%%) and m

typically represents the mass of a m-meson (m = 140 Aggv for 7+ and m = 135 Aﬁg“ for 70)

or a K-meson (m = 494M for K* and m = 49822¢% for K°). It is therefore reasonable to

assume in the above model that the constants m and M satisfy the condition 2M > m > 0.
When we discuss multiple mass second order Klein-Gordon systems later in this thesis,

we will need to impose a similar condition on our masses in order to close our argument.



Although this condition may seem contrived from a mathematical perspective, it is often
reasonable to assume given the physical motivation behind many of these models.

We now turn our attention to discussing the major results of this thesis. One of
our main goals is to prove global well-posedness of the second order three dimensional
semilinear Klein-Gordon system in H® for s > 10. That is, we would like to prove the

following theorem

Theorem 1.0.1. Let n = 3,s > 10 and suppose F(u,u,0uu) is of order 2. The, there

exists an € > 0 such that for initial data

(uo, 1) € H*(R") x H*HR™),  |[(uo, wr) | o < €

the equation

(O + p®)u = F(u, du, Oyu) (1.8)

has a global solution in C(R, H*) N CY(R, H*™') which depends continuously on the initial

data (ug,uq).

We remark that the novelty of this result stems from the control of the quadratic
terms, at least for initial data belonging to a natural Hilbert space such as H;. Global
existence in 3 dimensions has already been established for third order nonlinearities (see
[19])-

Previous work on the second order semilinear Klein-Gordon system in H; was
conducted by Delort and Fang in [6]. In contrast to our result where global existence was
established for general second order nonlinearities, Delort and Fang only proved almost

global existence (time of existence has a lower bound T, > ce!/€) for a small subclass of



second order nonlinearities with a special null structure that gives one better control over
the solution.

The standard approach to proving existence for higher order systems is to apply
apriori energy and dispersive estimates. Unfortunately, if I is second order, the standard
techniques fail and a more refined approach must be employed. One such approach, intro-
duced by Shatah in [20], is the Normal Forms method. This method allows us to transform
our second order problem into a third order one, for which global existence has long been
established.

It is important to note that the value of s, also known as the regularity, in Theorem
1.0.1 is not necessarily optimal and further work could be done in the future to lower this
value. For many reasons, lowering the regularity assumptions on the initial data is a goal
among those working on existence problems. For example, many key structural features of
the solution, such as conservation laws (energy, momentum), are typically associated to low
regularities such as L? and H!. Furthermore, the challenge of working at low regularities
forces us to exploit structural properties of the equation and develop new techniques that
have applications for smooth data.

In Chapter 5, we explore the low-regularity problem in the case where F' is a
homogeneous quadratic polynomial in u (e.g. F(u,du,du) = F(u) := u?). In fact, we

consider a more general system of different masses
(O+mHu; = Fi(ug,...,up) i=1,..k

For this problem, we handle the difficult n = 2 case and extend our result to n > 2

dimensions. In particular, we prove the following theorem



Theorem 1.0.2. Letn > 2,5 > max(%—l—, ”7’2), k € N, and let Fy, ..., F}, be homogeneous

quadratic polynomials and my, ...,my > 0 be such that
2min ({m;}) > max ({m;})
Then there exists an € > 0 such that for initial data
(figi) € H'(R™) x HHR"),  [[(fi gi)llsrssrre—r < e

the system

O+ mIu; = Fi(uy,...,ur) i=1,...k

has a global solution in C(R, H*) N CH(R, H*™') which depends continuously on the initial

data (fi, gi)-

We remark that a similar result was obtained by Tobias Schottdorf in [18]. Unfor-
tunately, we have found serious gaps in his proof and we suspect this to be the reason his
work has remained unpublished.

A general outline of this thesis is as follows: Chapter 2 is dedicated to introducing
notation and establishing standard tools from Analysis and PDEs. In Chapter 3 we discuss
general techniques for proving existence results and in Chapter 4 we apply these methods
to prove wellposedness of the third-order semi-linear Klein-Gordon System. In Chapter 5
we employ modern machinery to prove low regularity wellposedness for the multiple mass
second order system discussed above. Finally, Chapters 6 and 7 are dedicated to proving

Theorem 1.0.1.



Chapter 2

Background Material

In this chapter we introduce notation and well-known results from Analysis and

PDEs that will be referenced repeatedly throughout this thesis.

2.1 Preliminaries

We denote A <« B to mean A < dB for some absolute constant 0 < d < % for
some large N. We denote A < B to mean A < C'B for some absolute constant C' > 0 and
we define A ~ B to mean %A < B < (CB.

For completeness, we will present many of the following results in the case of a
general o—finite measure space (X, M, ) where X represents the domain we are working
in, p is the chosen measure, and M is the set of all y—measurable functions. We begin

with the definition of L? spaces on (X, M, ).



Definition 2.1.1. Given 1 < p < 0o and a measurable function f: X — C, define
p g oad
I ler =] 17y,
X

[fllzee = inffa = 0 p({z - [f(2)] > a}) = 0}.

Definition 2.1.2. For 1 < p < oo we define the space LP(X) as
LP(R™) ={f: X — C: f is measurable and || f||r» < co}.

It is well-known (see Theorems 6.6 and 6.8 in [8]) that LP(X) is a Banach space for

each 1 < p < oo . We present the following well-known results

Theorem 2.1.1 (Holder’s inequality ([8], pp 198)). Suppose 1 < p,q,r < 0o are such that

+ == % If f and g are measurable functions on X, then

1, 1
p p

19l < [ flleellgllze-

Definition 2.1.3. Given a measure space (X, M, u), we say that a statement holds true

for almost every (a.e.) x € X if the set on which the statement is false has measure 0 in

X.

Theorem 2.1.2 (Minkowski’s inequality(Theorem 6.19 in [8])). Suppose (X, M, ) and
(Y,N,v) are o—finite measure spaces.If 1 < p < oo, f(-,y) € LP(u) for a.e. y €Y, and
the function y — || f(-,y)|l» is in LYY, then f(x,-) € LY(X) for a.e. x, the function

x— [ f(x,y)dv(y) is in LP(X), and

| [ £ dv@lis < [ 156 ) lduy).



Theorem 2.1.3 (The Riesz-Thorin Interpolation Theorem ([8], Theorem 6.27)). Suppose
(X, M, ) and (Y,N,v) are o—finite measure spaces and po, p1,qo,q1 € [1,00]. For 0 <
t <1 define p; and q; by

11—t t 1 1-t ¢

?

D Po p1 dt 4o il
If T is a linear map from LP(X) + LP(X) into LL(Y) + LT(Y) such that |Tf||pw <
Mol fllzeo for f € LP(X) and || Tf||lpa < M| fllpe for f € LPY(X), then ||Tf|lpe <

M "M fllpee for f € LP(X),0 <t < 1.

We remark that the above results also hold when X = N and g is the counting

measure on N. In this case

ran) " = (32 1
(Jurae)” = (o)

We now present some important results from Fourier analysis. Recall the definition

1/p

of the Fourier transform F on L!'(R") :

(271r)" /Rn e f(x)de.

We will assume that the reader is familiar with basic properties of the Fourier transform,

F()E) =f(&) =

such as its behavior under translation, dilation, conjugation and differentiation.

The following two results are well-known

Theorem 2.1.4 (The Plancherel Theorem ([8], Theorem 8.29)). If f € L' N L% then

f e L2, and F|(L' N L?) extends to a unitary isomorphism on L?.

Definition 2.1.4. For 1 < p < oo, we define the Holder-conjugate of p, denoted p’ to be

given by%—k;:l.

10



Theorem 2.1.5 (The Hausdorff-Young Inequality ([8], Theorem 8.30)). Suppose that 1 <

p<2. If f € LP(R), then f € LY (R™) and |||l < |-

So far, most our results have been related to LP spaces. We now turn our attention
to developing the theory of Sobolev Spaces. Before we do so, we must first familiarize the

reader with the definition of a weak derivative.

Definition 2.1.5. A wvector of the form a = (aq,...ay,), where each «; is a nonnegative

integer, is called a multiindex with order

n
lal => .
i=1

Definition 2.1.6. We let C°(R™) denote the space of all infinitely differentiable functions

on R™ with compact support.

Definition 2.1.7. We define L},.(R™) to be the space consisting of all functions f : R™ — C

loc

with the property
/ |fldx < o0
X

for every compact subset X of R".

Definition 2.1.8. Suppose f,g € L (R") and « is a multi-index. We say that g is the

loc

h—weak partial derivative of f, denoted

Oét
D*f =gy,

if for each ¢ € C°(R™) we have

| (0 )dz = (1)l [ goda.

Rn

11



We are finally ready to define Sobolev spaces.

Definition 2.1.9. Suppose 1 < p < oo and k is a nonnegative integer. For f € L} (R"),

loc

we define the norm

1/p
[ llwrew = (Z \|D°‘f||’£p) if p < oo,

o<k

[ fllweee = > 1Dl e

o<k

Definition 2.1.10. Given 1 < p < 0o and k € Zsq, we define the Sobolev space W*P(R™)
as

WEP = {f € L (R") « || fllwr» < 00}
It is common convention to denote HF(R™) := Wk2(R").

We next introduce another important space of functions, known as the Schwartz

class

Definition 2.1.11. Let N be a positive integer and o a multiindex of arbitrary length.
Define
1l += sup (1 + [2])¥|0° f (2)].

Definition 2.1.12. Define the Schwartz class S(R™) as
S(R") :={f € C* :[[f|l(na) < o0 for all N,a}.

Theorem 2.1.6 ([8], Corollary 8.23). The Fourier transform, F, maps the Schwartz class,

S continuously into itself.

Lemma 2.1.1 ([22], Lemma 23). Suppose p € [1,00) and k is a nonnegative integer. Then

the space C>*(R™) is dense in WFP(R™).

12



Corollary 2.1.1. If 1 < p < oo, S(R") is dense in WEP(R™). In other words, every
function in WHP(R™) is in S(R™) or a limit point of a sequence of functions in S(R™) with

respect to the || - |[wrrpmny norm.

Proof. This follows from the above corollary and the fact C>°(R") C S(R") C WHP(R™).

]

The preceding lemma demonstrates that for 1 < p < oo, W*P(R™) can alternatively
be defined as the closure of S(R™) with respect to the ||-|[yys»®n) norm. This interpretation
will be useful for extending W*P to the case where k is not necessarily a nonnegative
integer, but a real number r > 0.

Recall from Chapter 1 that () := (14| -]?)2.

Definition 2.1.13. Givenr € R, f € S(R™), we denote by (D)" f the following expression

1
()"

(D) f(2) = F (& F(€) = o5 [ ey f(e)de.

Definition 2.1.14. Let 1 < p < 0o and r be a nonnegative real number. We define the

norm || - ||pp on S(R™) as follows

[ lep) = (D)l o
for all f € S(R™).

It is well-known (see [23], Appendix) that WP where k € Z>o and 1 < p < oo can
alternatively be defined as the closure of the Schwartz space under the || - ||z norm. In
fact, this definition can be extended to all k € Rx.

We will use the following two results repeatedly throughout this thesis

13



Theorem 2.1.7 (Sobolev Embedding ([23], Appendix)). Suppose for a given s > 0 we

have

1 1 s
l<p<g<ooand — —— = —.
p q n

Assume f € LU(R™), then there exists a constant C' = C(p,q,s,n) such that

| fllaeny < C|lflwswmny-

Theorem 2.1.8 (L*> Sobolev Embedding ([21], Appendix)). Suppose f € L>*(R"), then

there exists a C = C(p, s,n) so that

[f Iz @ny < Cllfllwer @y,
provided p > 2

We now present the final result of this section: The Hardy-Littlewood Fractional
Integral Inequality. This set of inequalities will be crucial for establishing important dis-

persive estimates.

Theorem 2.1.9 (Hardy-Littlewood Fractional Integral Inequality ([21], Appendix)). Fiz

O0<a<landl<p<q< oo satisfying

1-(Q1/p=1/q) = o
Let
Lf(t) = [ o)t —s"ds.
Then there ezists a constant C' = C(«, p,q) such that

I afllze® < Cllfllzrm)-

14



We conclude this section by defining the mixed time-space Lebesgue spaces.

Definition 2.1.15. Given a time interval I, define the mized norm space L{(I; LL(R™))

by the norm
1
p
I ez = (f 1FC O gnydt)

When there is no ambiguity regarding the interval I, we will denote the above by LY L.

We can define LYW in a similar manner.

2.2 Littlewood-Paley Theory

It is often useful in our analysis to decompose functions into low, medium, and high
frequencies. In order to make this classification rigorous, we introduce what is known as
the Littlewood-Paley Theory.

Let X denote a smooth, nonnegative, even function supported in {t : |t| < 2}
such that X(¢) = 1 when [t| < 1. Define ¢(t) := X(t) — X(2t) and 1, := ¥(27*.) for
k> 1. Let ¢ := Id — Yy ¥ For k > 1, define ¢ = S5 ¢ty and g = S1_g ity

Furthermore, define ¢¥<x = > o<k Yir

Definition 2.2.1. Given k > 0 define the Fourier multipliers Py, P<y, P, by

Pu(€) = vu(€)a(e),

—

Pou(§) = v<r(§)u(8),

Pru(§) = ¥r(€)a().

15



We present the following estimate, known as the Littlewood-Paley inequality, with-

out proof

Proposition 2.2.1 (23], pp 334). Given p € (1,00) and f € LP(R"), we have

1 llzo@ny ~p 12 1Pef 12) 2 o).

k>0

Definition 2.2.2. Let r > 0 and p € [1,00]. Define the spaces LP(R™)[k] and WP (R™)[k]

[NIE

by the norms

1 fllzepy = (Z 22’“T||Pkf||ip) :

k>0

1
[f lwrrpg = (Z QQkTHPka%p) :

k>0

We denote H"[k| := W"P[k].

Observe that if r = 0 then LP(R")[k] = W™P(R")[k]. We also define the analogous
spaces for mixed space-time Sobolev Spaces.

Definition 2.2.3. Define the space LYWk by the norm

NI

> 22kTHPkUH%ng)

HUHLfvv;’q[k] = (
k>0

The main result of this section will be the following

Proposition 2.2.2. Suppose r >0 .

If1<p<2,
(2.1)

HfHLP(R")[k] S Hf”L”(R”)'

If2 <p< oo,
| fllzr@ry Spin 11 o @mya- (2.2)

16



Furthermore,

Iz @ny ~pon | f || 2 ey - (2.3)

Proof. We first focus on proving (2.2) From the Littlewood-Paley inequality, we know that

1 llzo@ny ~pa 1O [Pef1P)2 ) o)
k>0

1
= 22 [Pef1P 1 oy

k>0

provided ¢ = §. As ¢ > 1. Minkowski’s inequality allows us to bound the above by

< (- NPl

k>0

= (X I1P: 1),

k>0

as desired.

We now turn our attention to proving (2.1). Once again, we apply the Littlewood-

Paley inequality

[un

| £l @) ~pn [/(Z \pkf‘2)p/2]
k>0

- [ /¥ |Pkf|pq>1/q} -

k>0
provided ¢ = =. As ¢ = 1 we can again app Inkowski’'s inequali 0 show tha e
ided 2o Asg>1 gai ly Minkowski’s i lity to show that th

above is

[V
—
a
5

hei
L=
2|

1

= _Z</ \Pkf\pf/pr

| k>0

= (O I1PeflIZe)'.

k>0

17



Finally, we focus on proving (2.3). Combining (2.1) and (2.2), we see that

1fllz2 ~ 1Al 2 -

Therefore,

[l ~ (D) 2

1/2
~ 2 ||Pk<D>TfH%2>

k>0

1/2
~ 12 ||Pk<2’“>’"f\liz>

k>0

1/2
~ > 22kHPka%2) .

k>0

]

We conclude with the following result that will greatly simplify our proofs in later

chapters.

Theorem 2.2.1. Assume 1 < p;, Pi, Gi, Gi < 0o fori € {1,2} are such that % = p% + p% =
L1 L 4+ L Burthermore, assume r,\,\ > 0,0,5 > 0, then
P2'a @ @ @ @

“UwHLszr’q[k} S ||U||Lf1 Wty ||w||Lfg W92y

0l o gy a-ou g 0l o+ -
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Proof. Let C' > 10 be a fixed constant, then

lvwll ppwrang = (Z 2%7|| P(vw) | 3ppa ) *

k>0

N

> 230 3 P PrvPrw) s )?)

k>0 k1>0 ko>0

1
(222’“’" Y Y BPeulge)?)’
k>0 k1 —k|<C ko <k+C

SIS

+

(S Y % IPePwli)?)
k>0

k1>k—C |ko—k1|<C

H(X2"CY X IPuvPLwle)?)
=1+ II+1II.

NI

k>0 k1<k+C |ka—k|+C

We first bound (7). By Holder’s inequality,

ol

D2 (T2 Y S 1Bl Puwl g )?)

k>0 k1 —k|<C k2 <k+C

N

S(Z2C X3 2Rl 2207 | Paullpes))

k>0 |k1—k|<C k2<k+C

1
< <Z22kr( ) 2k HPMUHL“L“)Q)Z( > 2k (- HszwHLP2Lq2>

k>0 k1 —k|<C k2>0

By Young’s inequality in k& and Cauchy-Schwartz in ks, we can bound the above by

1 1 1
= (ZQ%(HU)||PWH%”1L“> 2( > 22k2(A_0)||Pk2w||imL”>2( D 2_2]@) 2
k>0 L k>0 o k2>0

5 ||U||Lf1W;+0’ql K] ||W||Lf2 W;—o,qz K]’

We now turn our attention to (II). Again, by Holder’s Inequality and Young’s
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Inequality in k;, we observe that

[N

2
IDs(T2( £ X IPuvlpmlPuvlpg)’)

k>0 k12>k—C |ka—Fk1|<C
1
B 2\ 2
< (22%7'( Z Z 2k1(0)||Pk1UHLf1L§12k2( U)HszwHLfZL?) )
£>0 k1 >k—C |ko—k1|<C
1
2 2\ 2
S(Z2( X 2ONPelpe)’ (T 220 Pawlpg)’)
k>0 k1>k—C ko>k—C

Applying the Cauchy-Schwartz inequality in both k; and ks independently, we conclude

this is

N|=

5<22W< > 2l (3 Tm)"w”i?wﬁmﬂ[u)

k>0 ki >k—C ko>k—C

1
5 ( Ig 22]6(7‘*7’7)\)) 2 ||UHLf1 W] ||wHLf2 WA=z K]

S ||U||Lf1W$’ql k] ||w||Lf2W$’q2[k}'

By interchanging the roles of v and w in the proof of estimate (I), we can conclude that

(TT1) S 10l oy 5 0 oo

2.3 Strichartz Estimates

We can take advantage of the dispersive nature of the Klein-Gordon equation,
along with interpolation and duality arguments, to obtain a very useful set of mixed norm
Sobolev space estimates known as Strichartz estimates. We dedicate this section to proving

these estimates.
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F(tr).

Suppose k > 0 and 1)y, is defined as in the previous section, and let ¢y, :

We present the following set of estimates without proof.
Proposition 2.3.1 ([2], Theorem 3.2, [10], Appendix). Let n > 2, then
1€ g0l o rny S min{1, [¢]7%}, (2.4)

1) g ooy S 2 min{ 1, (26[¢]) "7 } min{1, (27*[¢]) "2} (2.5)

fork > 1.

Theorem 2.3.1 ([16], Lemma 2.1). Suppose f € L2(R") and let p,q be such that 2 < p <

20; 1 o, __ 0 _n _ n—1
00, 2< ¢ < 7, and ST T =% where 0y = 5,09 = *5=, and 0; > 1, then

1P Pefllrsg S 25O Pef |l e (2.6)

,where a(q) = Ni(3 — %) for \; = 292,

Proof. Observe that ¢y = Zfi,i_l ¢4k so that ¢y, x e(P) f = Z?;iq P (g, * f).
From (2.5), we have

€2 | e S 2Vt

Combining these two facts gives us the bounds

j+1
on * (€2 Pl < 37 1€l ldr * 1
k=j—1
S 28077 | Pef || s

D)

Unitarity of the operator T := P} in L? gives us

lon * (" )22 < || Pz
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Interpolating between these two results yields
A 95, (L 1
PN (P f) | gz < 220K 2= fi|

for 2 < g < oco. Applying the Hardy-Littlewood-Sobolev theorem of fractional integration

in the time variable results in the estimate

” [ ei(t—s)(D)PkdeHLng < 22“(q)k||Pkf||Lf’Lg"

We now apply what is known as a T argument.

If we let T := e™P) | then the above expression is equivalent to
ITT*Pefllizeg S 22O Pef (2.7)
This gives us our desired result, for
IT*PefIy = (T Pf T Puf) = [(TT P, Puf)ae
ST Pefllp el fell o
Therefore, by (2.7), we have

IT*Prf 2 S 2% P £ (2.8)

'y
which by duality gives us (2.6). ]
We introduce the following result without proof.

Lemma 2.3.1. (Christ-Kiselev([23], Lemma 2.4)) Suppose 1 < q,§ < oo and I is a time
interval. Let K € C(I x I; B(L1, L%)) be a kernel taking values in the space of bounded

linear operators from L7 to LY and suppose that 1 < p < p < oo are such that

| [ K1 dslipans) < ANz
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for all f € LX(I; L) and some A > 0. Then, one also has

| /sGI:s<t K, S)f(s)dSHLf(l;LZ) Sk AHf”Lf(I;LZ)'

Theorem 2.3.2 ([16], Lemma 2.1). Let o;,\; for i € {1,2} be as before.

D1, P2, q1, G2 are such that 2 < p; < 00, 2 < ¢; < % for j € {1,2}, and z% +

then

(% =)
| [ PG s)isl e < 2T NRG
t x

Proof. As before, define T := (")
From (2.6), we conclude that
ITPG($) | < 23| BG(s) |z
and
ITPG(5) |l o < 2G| PuG(s) 2.
By duality, it follows that

" i 1_1
1T PiGi(s) 12 < 2473 | PGy o

Xi(or—
L)

l
— 2% pay hosh

Combining these two estimates gives

Xi(r—2-)
HTT*PkGHLflL? <27 n NG| pQLqQa

where
TT*P,G = / ¢it=9 P, ((s)ds.
Invoking the Christ-Kiselev lemma from above gives us (2.9).
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Theorem 2.3.3. If n > 4, we have the following estimates

< 2T || P f |2 (2.10)

~Y

1 Py f] 2 10
| [ eI BGE)dsligrs S 2CNPGg (211)

Proof. Let T := e™P) then the first estimate above is equivalent to
17" fellze € 2°CFN fillpua. (212)

which is equivalent to

ITT* fill czrge S 25 VN fill 2y (2.13)

By definition,

T = [TF O (0)  fl()ds

= [FH (™ (€)) * f](t, ).

By Young’s ineqality, the LHS of (2.13) is bounded by ||e“<D>qkaLt1Lgo, so it suffices to

prove that [P @[l 170 < 2501 for all k > 0. We observe that

. 2=k 2* Rl
||eZt<D>¢k||L}Lgo S/o ||€M1/Jk||Lg°dt+/ﬂ |’€th¢k‘|L%"dt+/zk e 4]l e dt

=1+I11+1I1.
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By estimate (2.5),

27k
0

2k n—1 n—1
IIs | 2w = == dt
-

S 27‘”;1 ktf%]%;k
< 2(n—1)k‘
11 < /k gnko= 51k =5 gt
2

< 22]€
< 2(71—1)]{:.
Combining estimate (2.12) and (2.6) for p = 00, ¢ = 2, we obtain

oo . n—1
| [T eI PG sz S 20T |G sz

invoking the Christ-Kiselev Lemma as in the proof of the previous Theorem, gives us

estimate (2.11). O

Theorem 2.3.4. If n = 3, the following estimates hold true

) 1
162 Befll e S 25(R)E [ Pef e, (2.14)
b itt—s)(D k/p\s
| [ P RGs)dsl iz S 2K) PGy, (2.15)
for k > 0.
Proof. Define
T -— eit(D)
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By the TT* argument we used before, (2.14) follows from proving
ITT* Pufllgaie S 250) | Pefllons. (2.16)

We may assume that & > 1 as the estimate for k = 0 will follow by a similar

argument if one replaces estimate (2.5) with (2.4). We observe that

T(Pf)(tx) = [ DG (o) F(€)de

k+1
= > [ Kitt e =y P (v)dy.
j=k—1 /R
where
Kj(ta) = [ e eetOy;(6)de
R
Then,

TT*Pof(t,z) = / ¢=9D) Py £
R
k+1

= Y [ [ Kt = 50— p)Pef )dyds

j=k—1
k+1

= 2: <K;>kf%f.

j=k—1

By Young’s inequality, we have
| TT*Pefllz2ree S 1Kkl prpoe [ Pefl 2 s

so we are reduced to proving

1Kkl i ree S 2% (). (2.17)
From (2.5), it follows that
- 1
[Kx(t,2)] S 2% (1 + 2% (¢, 2)]) " min(1, (1 + 2%[(t, 2)[)?2"). (2.18)
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Define
Ey={l(t,2)| 27"}, Ey={2"<|(t2)| < 2", By ={|(t,2)| = 2"},
then, the left hand side of (2.17) is bounded by
K5l Lrze ) + 1Bkl 2t poe () + 1Kkl pirge ) = 1 + 11T + 11
Applying estimate (2.18) to (I), we deduce that

1
(1) SN2% (14 28|(t, ))) "2 || 1t poe )
1
<1271+ 251t "2 |2y
92—k
< / 93k g4~ 92k
0

Applying estimate (2.18) to (III), we obtain

_3
(I11) S 112% (1 + 28|(, 2) ) 7228 11 poe ()
< 12322 (8, 2) )22 1 1 )

< /oo 25k/2|t|_3/2dt ~ 25k/22—k/2 — 22k"
We apply estimate (2.18) to (II) to deduce

(I1) S 112°% (1 + 2%t 2) )~ 2 poe )
S ||22k|t|_1||Lt1Lg°(E2)
Qk
~ 22k/ |t 7t & 2%k In(2) ~ 2%
.
We conclude that
Kkl e S 2°5(1 4 |k|) = 22%(k),
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as desired.

Combining the dual estimate of (2.14) and (2.6) for p = 00, ¢ = 2, we obtain

oo 1
| [T eI RGs)ds iz S 2 0 IRG e

invoking the Christ-Kiselev Lemma gives us estimate (2.15).

Theorem 2.3.5. Suppose n = 3 and € > 0 is given, then we have the estimates
1€ Iz rgepy Se 1 lzree,
| [P izrei Se NGO ngmreps
Proof. From Theorem 2.3.4, we have
; 1
1P P fll 2o S 2°(K)2 || Prf | 2.
k(1+e) 2 \1/2 -
As || fllprvepg ~ (Z 2 HPkaLg) , (2.19) follows from proving
2k (k)2 < ()28,

It suffices to show that

(k)2 < c(e)2ke.
Taking In of both sides, this is equivalent to proving

1
5 In(k) < c(€)keln2.

(2.19)

(2.20)

(2.21)

If £ = 0, this inequality is obviously valid so assume £ > 1. We may bound the LHS of

the above by

1

CIn(k) < Sin(14+k) < ok

N | =
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Letting c(e) = 25 gives us the desired result.

We now turn our attention to proving (2.20). From (2.15) we have

~

t 1
| [ P PG(s)dsl iz S 2K) I PGl

Estimate (2.20) then follows from (2.21) and the definition of L} H'*<[k].

2.4 U? and V? spaces

If we assume the size of our initial data is small, we can view nonlinear PDEs as
small perturbations of linear ones, at least heuristically speaking. It is therefore useful to
study the properties of free solutions, as well as how pairs of free solutions interact with
one another. In order to extend our findings to more general functions, we will need to find
a space rich enough in structure to "record" the behavior we have seen in free solutions.
For this task, we introduce the atomic space UP, as well as its dual (to be defined precisely
later) V? and review their basic properties. We draw our results from [11] where detailed
proofs can be found.

To begin with, let Z denote the set of infinite partitions —co =ty < t; < ... <t =
oo and let Zy denote the set of finite partitions —oo < tg < t; < ... < t < 0o. In what
follows we will primarily consider functions whose values belong to L? := L?(R%; C) but

the results can be generalized to an arbitrary Hilbert Space.

Definition 2.4.1. Let 1 < p < oo, {t;,}, € Z and {¢}1—y € L? be such that

S loklB. =1 and ¢o = 0. We call the function a : R — L?, given by
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a= Y1 X 1 10Pk-1 a UP atom. Furthermore, define the atomic space

UP :={u=">_ M\aj|a; is a UP-atom, \; € C such that »_ |\;| < oo, }

J=1 Jj=1

with norm,

ulloe == inf{u=">"|N||u=">_Aaj;, a; is a UP-atom, \; € C}.

j=1 j=1
Definition 2.4.2. Let 1 < p < oco. We define VP as the normed space of all functions

v:R — L? such that v(oo0) := lim; o v(t) = 0 and v(—o0) exists and for which the norm

K
lollve == sup (3 lo(t) — v(te-a)72)""
{tk}i(zoez k=1

is finite. Likewise, let V¥ denote the normed space of functions v : R — L? such that

v(—00) = 0,v(00) exists, and ||v|y» < 00

Definition 2.4.3. Define the closed subspace VE(V?® ) of all right continuous V? functions

(V¥ functions).
The following two results illustrate the duality relationship between U? and V¥’

Theorem 2.4.1 ([11], Theorem 2.8). Let 1 <p < oo . We have
(UPy = v
in the sense that there is a bilinear form B such that the mapping
T:VP — (UP)*,T(v) :== B(*,v)

is an isometric isomorphism.
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Proposition 2.4.1 ([11], Proposition 2.10). Let 1 < p < oo,u € V! be absolutely contin-

uous on compact intervals and v € V¥ . Then,

Blu,v) = — / (! (£), v(t))dt.

Definition 2.4.4. Define UL by the norm ||f|jyr = |eFHP) f|ly» and define VE in the

analogous way. In what follows L? = L?*(R"*1).
Definition 2.4.5. Let M = 2% for some k € Z, then define the multiplier Qur by
Fre(@Qaru)(1,€) = ¥ar (1 F (€)) Fre(u)(7, ),
Fre(QEnu)(7,6) = Yan (T F (€)) Fre(u)(7,€)

Definition 2.4.6. Let u € UL and (1,€) € R, then the value |7 F (§)| is called the

modulation of u at (1,&). We say that the modulation is high if |7 F (§)| > %l.

Proposition 2.4.2 ([11], Corollary 2.18). We have, for M = 2% k € Z,
1Qvulle S M= lullyz,

|QEarullze € M ullve,
lQZaullvy S llullvy  1QZaullvy S llullvy
lQZaulloz S llullvr 1@ aulluz < lulluz
Observe that the simplest type of elements in UY are free solutions and it is therefore
natural to expect that we can extend estimates on free solutions to estimates for more

general functions in U} and its dual Vf. In order to formalize this idea, we will need the

following two results
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Proposition 2.4.3 ([11], Proposition 2.19). Let
Ty: L*x---x L* = L (R";C)
be a non-linear operator. Assume that for some 1 < p,q < 0o

| To(e™ P gy, e P )| oo (o) H il e,
then there exists
T: Uil X - X Uim — LY(R; Lg,y(R"))
satisfying
1T (ur, -5 )”LPRLq (R™)) ~> HHUzHU”

such that T(uy, ..., un)(t)(z,y) = To(ui(t), ..., un(t))(z,y)

We remark that the above result implies that we can apply Strichartz estimates to

general functions in UY.

Proposition 2.4.4 ([11], Proposition 2.20). Let ¢ > 1, E be a Banach space and T :
UL — E be a bounded, linear operator with ||Tullp < Cyllullys for all w € UL . In
addition, assume that for some 1 < p < q there exists C, € (0,C,] such that the estimate

[Tullp < Cyllullyz Then, T' satisfies the estimate

C,
ITulls < Cplog( ) fullyz-

p
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Chapter 3

General Existence Techniques

Our main goal in this section is to introduce a general approach to proving existence

and uniqueness of solutions to
(04 1)u = F(u, Ou, Opu) (3.1)

with initial data

u(0, ) = uy, u (0, 2) = uy, (3.2)

such that ||(ug, u1)]

Haxpz—t < 0 for some sufficiently small 6 > 0.

The main techniques discussed in this chapter will be the contraction method and
the bootstrap argument. In section 3.1, we outline how to apply the contraction method
to prove local existence of solutions to the system presented above. Our argument will

rely primarily on the Banach Fixed Point Theorem

Theorem 3.0.1. Let X be a Banach space and suppose f : X — X is a map such that

1 () = FWlx < Cllz —ylix
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for some 0 < C <1 and all x,y € X. Then f has a unique fixed point in X.

Section 3.2 is dedicated to a discussion of the bootstrap argument. This approach
takes advantage of what is known as the Bootstrap Principle to establish global existence.
While our discussions will be tailored to the inhomogeneous Klein-Gordon system, we
remark that these approaches can be applied to a wide class of PDEs. For a more general
discussion of these methods, we refer the reader to Chapters 1 and 3 in [23] and Chapter

9 in [7].

3.1 The Contraction Method

Suppose we are given a "nice enough' function w : R"" — R (perhaps belonging
to some mixed norm Sobolev space). It is not difficult to see that the map t — A(w)(¢),
given by

tsin((D)(t — s))
(D)

A(w) = cos(t(D))ug + sin(t(D))u; + /0 F(w(s),0w(s), duw(s))ds (3.3)

solves the system

(O+ 1Du = F(w, 0w, dyw)

with initial data

u(0,x) = uy, (0, ) = uy. (3.4)
We therefore seek a function w that satisfies A(u) = u, also known as a fixed point of
the mapping A. From the Banach fixed point theorem, we know that it suffices to find a

suitable Banach space in which we can run our contraction argument. Unfortunately, this

is more easily said than done.
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Let T > 0 be fixed and suppose Xr C L°([0,T]; H?) is a Banach space. Given

0 > 0 we define

Sr(8) = {u € X : [ullx, < Codl,

where () is a constant that will be determined later.

As St is a a closed subset of the Banach Space X7, it is also a Banach space.

Suppose we want to show that A is a contraction on Sp. We first need to establish that

A is well-defined. In particular, given v € S, we need to show that
[A()]|x, < Cod.
In order to prove that A is a contraction, it suffices to show that
1
1A() = Alw)llxr < Sllv = wllx

for all v,w € Srp.

We rewrite equation (3.3) as
A(w) = W (ug, uy) + L(F(w, 0w, dyw)).

Equations (3.5) and (3.6) therefore follow from proving

1
IW (o, ua)llsz < 5 Coll(uo, wa)l

s—1
HsxHy

and

1
| L(F(w, 0w, Opw))||sy < 50057
1
IL(E (v, v, O)) = L(E (w, Ow, dw)) sy < Fllv = wllxy
for all v,w € Sr.
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Rather than prove estimates (3.8) and (3.9) directly, we construct an auxiliary

space Nt and instead show that

IL(G)] sy < CllGlwz (3.10)

and
| F(w, 0w, Ow) || n, < C'6, (3.11)
| F (v, dv, dpw) — F(w, 0w, dw)||ny < C"||Jv — w||x, (3.12)

where CC" < %CO and CC" < % It is an easy exercise to see that proving the three
estimates above is sufficient to close the argument.

We make a few closing remarks about the solution w obtained by the argument
above. First, notice that the Banach fixed point theorem implies not only existence, but
uniqueness as well. Furthermore, as we have established that v € Sy and Sp C L H?, we
may conclude that u € L H?. In fact, from the definition of A in equation (3.3) it is easy
to see that u € C([0,T]; HE).

Finally, we claim that the solution map is continuous with respect to the initial
data. To see why this is the case, consider two sets of initial data (v, v1) and (wg, w;) in
H? x H*~! with corresponding solutions v and w. Let (ug,u;) := (v — wp, vy — wy), and
suppose || (ug, u1)| mexms—t < € for some 0 < e < 1. By the contraction argument above
we may conclude [jul|s, = ||[v — w||s, < Coe. Letting € — 0 implies ||jv — wl|s, — 0, as

desired.
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3.2 Bootstrap and Continuity Methods

The reader may have noticed that the Banach spaces Xt and Sp introduced in the
previous section were associated with a time T > 0. Often, the contraction argument we
discussed in the previous section will only be valid on time intervals [0, 7] where T' < Tj
for some fixed Ty € R. This Tj will usually have some type of inverse relationship with
the size of the initial data [|(uo, u1)|| s gs-1, meaning we can extend the time of existence
by lowering the size of the initial data. Unfortunately, this does not help us prove global
existence as the size of the initial data must be nonzero. In this case, we must apply a
different method to establish global existence. While there are numerous approaches, we
will focus on only one: The continuity method.

Suppose we are able to prove local existence on some time interval [0, 7| using the
contraction argument from the previous section. Repeating the argument using initial data
u(T, x),u (T, x), we can establish existence on the interval [T, T'+ €;], where €; depends on

H(U(Ta JZ), ut<T’ ZL‘))|

HexHE ! Iterating this process, we can extend the time of existence to

[0,7+3232, €&]. Unfortunately, if ¢ — [Ju(t, ), ue(t, )|l s gz-1 approaches oo in finite time,

the €; will approach 0 and it is possible that the sum > 77, €; converges to a finite value.
If we can prove that ¢t — [lu(Z, ), us(t, ") || s =1 is bounded, then it will follow that

>, €, = 00, and thus global existence is established. As ||u(t, -), w (¢, )|

HsxH:™! S HUHSTH
if t € [0,7"], this follows from showing [jul|s,, < C for all 7" > 0. For this task we will

apply what is known as the Bootstrap Principle.

Proposition 3.2.1 (Abstract Bootstrap Principle ([23], Proposition 1.21)). Let I be a

time interval, and for each t € I suppose we have a "hypothesis” H(t) and a "conclusion”
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C(t). Suppose we can verify the following four assertions:

(a)(Hypothesis implies conclusion) If H(t) is true for some t € I, then C(t) is
also true for that time t.

(b)(Conclusion is stronger than hypothesis) If C(t) is true for some t € I, then
H(t) is true for all t’ € I in a neighborhood of t.

(c¢)(Conclusion is closed) If t1,ts,... is a sequence of times in I converging to
another time t € I and C(ty) is true for all t,, then C(t) is true.

(d)(Base case) H(t) is true for at least one time t € 1.

Then, C(t) is true for allt € I.

In what follows, assume I = [0, 00) and that M > 0 is a very large constant. Define
the hypothesis, H(T), to be the assertion that we can find a solution, u, to (3.1)-(3.2) on

[0, 7] using the contraction argument from the previous section, and that u satisfies
llu|lsp < M. (3.13)

Define the conclusion, C(T), in the same way with estimate (3.13) replaced by

M
lullsy < =70 (3.14)

Suppose we have already proven local existence on some time interval [0, Tp] using
the contraction argument from the previous section. By the discussion above, global
existence will be established if we can show that assertions (a)-(d) in Proposition 3.2.1
hold true for the C(T) and H(T) we have defined.

Obviously H(Ty) is true so (d) follows immediately. While it is not apparent from

the abstract set-up presented in section 3.1 that (b) and (c) are true, in practice both will
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follow readily from the definitions of S7 we use.
It is left to prove assertion (a). Unfortunately, this is a challenging task. In fact,
we dedicate a large portion of this thesis to proving (a) for the third order semilinear

Klein-Gordon system.
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Chapter 4

The Third Order Semilinear

Klein-Gordon Equation

We dedicate this chapter to studying the third order semilinear Klein-Gordon equa-
tion. In section 4.1 we discuss the simpler power type cubic equation and move on to more

general nonlinearities in section 4.2.

4.1 Power-type Nonlinearities

Among the simplest types of semi-linear systems to consider are those with a power-

type nonlinearity. That is,

@O+ u=u” (4.1)

with initial data

u(0,2) = ug € H*, Owu(0,2) =u, € H**
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where p > 1.

We can invoke structural properties of the above equation to provide restrictions

on the values of s and p. A valuable heuristic to consider is scale invariance. Scaling

heuristics are important because they predict a relationship between the time of existence

and the regularity of the initial data. We observe that the wave equation
Uu = uP

is invariant under the transformation

== t x
u(t, ) = up(t,x) := Ap1 U(X’ X)7

where A € R and )\ > 0.

We also remark that that the Schroedinger equation
(10 + A)u = u”

is invariant under the transformation

u(t, ) = up(t,x) := )\p_iu(;, ;)

—d

Furthermore, we observe that in both cases ||ul|g: = [lus| s for s = s :=

2

The value s. is called the critical regularity. In the low spatial frequency regime

the Klein-Gordon equation resembles the Schroedinger system, and in the high frequency

case, it approximates to the wave equation. It is therefore reasonable to expect that the

critical regularity for these two equations plays an important role for the Klein-Gordon as

well.
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Regularities s > s, are referred to as subcritical, and regularities s < s. are called
supercritical. Higher regularity data is typically better behaved and we therefore expect
subcritical solutions to be better behaved than critical solutions. In general, we expect
problems with supercritical data to be ill-posed. For s > s. we can often trade between
the size of the initial data and the time of existence: for example, if we can prove local
well-posedness on a fixed time interval, [0, 7], for data with small H? norm, then we can
also establish local well-posedness for large data on a smaller time scale.

The scale invariance heuristic discussed above primarily produced restrictions on
the regularity, s. In general, when p is low (say p = 2,3), it is more difficult to establish
global well-posedness in lower dimensions (n = 2, 3), especially when the initial data is
assumed to have regularity near the critical value.

We will save our discussion on the case p = 2 for the next chapter as our proof will
rely on some higher level machinery. Our primary focus in this section will be to establish
global well-posedness for p = 3 and n = 2,3. We also remark that in our argument,
the nonlinearity F(u) = u® can be replaced by F(u) = u'|ul*"* where 0 < ¢ < 3. For

3

convenience, we consider only the case F(u) = u° as it will soon be apparent that our

proof extends readily to the other cases. Our aim is to prove the following result

Theorem 4.1.1. Suppose s > 1/2 and n € {2,3} There exists an € > 0 such that for

initial data

(o, u1) € HY(R™) x H*H(R"),  ||(uo, us)|

HsxHs—1 < €

the equation

O+ 1Du = (4.2)
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with initial data

u(0,7) =ug € H*, Ou(0,7) =u; € H! (4.3)

has a unique global solution in C([0,00), H®) which depends continuously on the initial

data (ug,uq).

Before embarking on our proof we remark that the critical regularity for p = 3 is %
for n = 3 and 0 for n = 2. The above theorem establishes well-posedness for all subcritical
regularities in n = 3, but falls short in the n = 2 case. This is unsurprising given our

previous discussion on the difficulties associated with lower spatial dimensions.

Proof. Given T > 0, let Xp := L®([0,T]; H3)NL([0, T); W2~/?4[Kk]) with the correspond-
ing norm
e (o P ———

We define the space St as
Sr(e) :={u e Xr : ||ul|x, < Coe}

where Cj is a constant that will be determined later.

Finally, we introduce the space Ny := L/*([0, T]; Ws=V/24/3[k]) with the obvious
corresponding norm. From our discussion in Section 3.1, local well-posedness of the system
(4.2)-(4.3) on [0, T will follow from proving that the following four estimates hold true for

all v,w € Sy

1
W (o, w1)||sy < §OO||(U07U1)| HsxHS™ ) (4.4)
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[w?||n, < C'e, (4.6)
1v* = w?llny < C" v = wllxy, (4.7)

where we require CC" < %CO, CC"” < = and we recall that

1
2

) it(D) .
W (g, uy)(t, ) = Py (-) + ey ()

D)
and
Fsin(i(t — s)(D))G (s, -)
LG)(t, ) == / ds.
@)t ) = | b ;
We first turn our attention to proving estimate (4.4). From the definition of St we
have

W (o, un) s, < €™ ol gery + lle™ P uoll agyrorya

itDyy, Dy,
+ HWHL Hy T+ Hﬁ”yst 1/2,4.

By Theorem 2.3.1 with 0 = 1 and p = 00, ¢ = 2 for the first term and p = 4, ¢ = 4 for the

second, we obtain

e P uoll sy S Nuollg; Nl P uol| ayyoirza S lluol -
Similarly,
™MDy cit(D)
I ) g ry S Ml gz I\WHL?W;AM S luall gy

We see that (4.4) follows if Cy is chosen to be sufficiently large.
We now turn our attention to proving estimate (4.5). From the definition of Sr,

we see that the LHS of (4.5) is

< ”/ i(t—s) )dSHLOOHé L+ ||/ i(t—s D>G(8,')d3||L;1W;_3/2’4‘
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Applying Theorem 2.3.2 with ¢ = 1,p; = ¢ = 4 and p; = o0, q = 2 for the first

term and p; = 4, ¢; = 4 for the second, we can bound the above by
G rsyyerrnas = (Gl
Rather than prove estimates (4.6) and (4.7) independently and directly, we will
instead show that for all z1, 29, 23 € X7, we have
212223 v < K[ 21 [l x| 22] o Nl 23|, (4.8)

To see that (4.6) follows from (4.8), assume (4.8) is true. Suppose w € Sy, then by (4.8)

and the definition of S7, we can conclude
[w? ]|y < K(Coe)?

if we assume € is small enough so that K (Cpe)® < 3C.
To see that (4.7) also follows from (4.8), suppose that v,w € Sr. Taking advantage
of the inequality |v3 — w?| < 2(Jv — w|(v? + w?)) and applying estimate (4.8), we obtain
Iv* = w?llny < 201 (v =)oy + 20| (v — w)w?||ny
< 2K |l — wllx, ([vllx, + lwlX,)
< 4K (Coe)’[lv — wllx,,
where the last inequality comes from the definition of Sp. If we assume € is small enough
that 4K (Cpe)? < C”, then estimate (4.7) follows.

We now focus on proving (4.8). Applying Theorem 2.2.1 with (p1, p2, ¢1,Go, A, 0) =

(1, P2, G, G2y A\, 0) = (4,2,4,2,5 — 1/2,0), we obtain

HZlZ?Z?)HNT f§ ||Zl||L;1W;—1/2»4[k] ||ZQZ3||L%H‘;—1/2[k]'
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Another iteration of Theorem 2.2.1 with (p1, p2, ¢1, ¢2, X\, 0) = (P1, P2, G15 Go, A, g) = (4,4,4

) Y Y

4,5 —1/2,0) allows us to bound the above by

||Z1 ||L§W;71/2’4[k} ||Z2||L§1W;*1/2»4[k] ||Z3||L?W;71/2,4[k] .

Estimate (4.8) therefore follows from the definition of || - || x,..

We have so far managed to prove local well-posedness on [0,7]. We observe that
[ullge orysrs) < llullx, < Coe.

As T > 0 was chosen arbitrarily and Cj does not depend on T, we can conclude that
[|u]| L2 ([0,00);225) 18 bounded. Global well-posedness then follows from the discussion in

section 3.2. O

4.2 General Third Order Nonlinearities

Having completed our discussion on third order power-type nonlinearities in the
previous section, we now turn our attention towards third order nonlinearities that include
first order time and space derivatives. Because such nonlinearities are more difficult to
deal with, we will only work in n = 3 space dimensions.

The general third order semilinear Klein-Gordon system can be expressed as

O+ Du= > A (01,02, 05)[00][0]u][OLu). (4.9)

i,j,1=0
where A; ;; is a polynomial of order 1 — i (respectively 1 — j,1 — 1) in 0 (respectively

O, 03).
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Global well-posedness for this system has long been established (see [19]). The
result in [19] relies on stronger assumptions on the initial data, but also assumes a more
general form for F' that involves second order time and space derivatives because the
author considers a general quasilinear system. In general, such systems are more difficult
to deal with and one typically needs extra decay assumptions on the initial data in order
to close the argument. We are able to weaken the assumptions on the initial data precisely
because our nonlinearity only includes first order derivatives.

Rather than prove global well-posedness for the general nonlinearity presented in
(4.9), we will instead work with the special case F(u, dyu,0u) = (Ou)u?. Tt will soon be
apparent that we can extend our argument to the general case in a straightforward, albeit

notationally tedious, manner. Our goal is to prove the following theorem.
Theorem 4.2.1. Suppose s > 2. There exists an € > 0 such that for initial data

(w0, u) € HY(R?) x H*H(R?), || (uo, u1)]

Hsx Hs—1 <€

the equation
(O + Du = (u)u? (4.10)

with initial data

u(z,0) =ug € H*, Ou(0,) =u; € H! (4.11)
has a unique global solution in C([0, 00), H*)NC* ([0, 00), H*™1) which depends continuously
on the initial data (ug,u;).

Proof. Let 0 < § < s — 2 and define X7 C L H:[k] N L2WH9°°[k] by the norm

1

[ullx, = E : ||5Zu||L°°H;*i[k} ||51fu”L2W;+5*’F°°k '
¢ 7 k]
=0
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As before, we define the space St by
Sr(e) :={u € Xr : |Jul|x, < Coe}

Finally, define the space Ny := L H5 ![k| with the obvious corresponding norm.

Recall that we defined

_ ,it(D 6it<D>U1(')
W (ug, u)(t,-) = e Plug(-) + )

and

LG)(t,) = /t sin({f - ‘?lgl;»G(s’ Dgs

0

Applying the argument from the previous section, we know that Theorem 4.2.1

follows from proving the following three estimates

W (o, un) sz S 11 (o, wi) | prg s
IL(G)llsr S M1Glines

1(9r21) 2028l v S M2l |22l [ 28]

provided € is chosen sufficiently small and Cj adequately large. From the homogeneous

estimate in Theorem 2.3.5, we can conclude that

IW (uo, ur)ll papresce S H(wos wi) gz, NOW (o, w)l] payyace S (w0, ua)|
tT x t'Vx

where we have taken advantage of the fact that s —2 — 4§ > 0.

Similarly, it is not difficult to see that

HsxHS™ Y

W (uo, un)ll ey S [[(uos un) lgspz—1s 10 (o, wa) || Lge mros—1 S (o, wn) | sz
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Equation (4.12) therefore follows.

To prove (4.13), recall that

LG5, = | [ = HODE )

/t sin((t — s)(D))G(s, -)

d 1 —1,00 .
(D) Slpzweooopg

Applying Theorem 2.3.2 with (p1, p, ¢1,¢5) = (00, 1,2,2), we obtain the estimate

G

H /Ot sin((t — s)(D))G(s, )

L ds| e msig S e ||t mreng = Gl 1 srs—1g.
(D> SHLt Hz[k]N||<D>”LtHz[k] || ||LgHz K]

(4.15)
(4.16)
(4.17)

(4.18)

Taking advantage of the fact that s —2 — ¢ > 0 and applying the inhomogeneous estimate

from Theorem 2.3.5 to (4.16), we see that

tsin((t — s)(D))G(s, ) G

Before we bound (4.17) and (4.18), observe that

dSHLfW;”v"O[k] 5 H <D> ”L,}H;[k] = HGHL%H;*[k]‘

g [ SO NONGle) y S DONGE) | [y sy oy, i

(D) (D)

= [ cos((t = )(D)G (s, s,

Once again we apply Theorems 2.3.2 and 2.3.5 to conclude that

t
||/O cos((t = s)(D))G (s, )ds| e prz—1pg S NGl rmg—1pg

and
t
||/0 cos((t = s)(D)G (s, )ds|| ayresoong S NGl paz-1pg-
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Completing the proof of (4.13)
Finally, we turn our attention towards (4.14). Applying Theorem 2.2.1 with (py, pa,

Q1aQ2,)\>U) = (OO, 172700757 O) and (ﬁ17ﬁ276176275\a5—> = (272700700757 0)7 we obtain

1@ez1) 2228l Ly prz—rpg S 021l Lo g1 12228 pasoepg
1021l oz pgll 22281l L2 51 g
Another iteration of Theorem 2.2.1 allows us to bound the above by
S ”atZlHLQ)OH;*l||Z2||L§W;j»°°[k]||Z3||L§W;jv°°[k]
+ Hatlewajvw[k}HZ2Hwaj’°°[k]Hz3||L§;°H;‘1[k]'

Estimate (4.14) therefore follows from the definition of X7, concluding our proof.
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Chapter 5

Quadratic Systems with Different

Masses

We study the Cauchy problem in dimensions n > 2 for the semi-linear Klein-Gordon
System
O+ m)u; = Fi(uy,..,u) i=1,....k
with initial data

ui(0,7) = f; € H*(R™), 0u;(0,2) = g; € H*1(R"),

for s > max (%+, %‘2), where the masses m; satisfy a suitable nonresonance condition and
the F; are homogeneous quadratic polynomials.

This particular problem was studied by Tobias Schottdorf in [18], and a scalar
version was considered by Vladimir Georgiev and Atanas Stefanov in [9] for the case n = 2

and H!T initial data. In dimension n = 2, Schottdorf was able to prove global existence

with smooth dependence on the initial data by employing a contraction argument in a U?
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type space. He also claims to prove this in dimensions n > 3, but unfortunately there
is a flaw in his proof which we suspect is the reason his paper remains unpublished. In
order to properly close the argument in higher dimensions we find that we must refine the
iteration space.

Our goal then is to provide a complete solution to the Cauchy problem studied in
[18]. We present the proof in n = 2 given by Schottdorf as well as our original argument
for dimensions n > 3. Our aim is to prove Theorem 1.0.2, which we repeat for convenience

below.

Theorem 5.0.1. Letn > 2,5 > maX(%Jr, %Q)Jf € N and let FY, ..., F}, be homogeneous

quadratic polynomials and my, ...,my > 0 be such that
2min ({m;}) > max ({m,})
Then there exists an € > 0 such that for initial data

(firg:) € HY(R™) < HHR™), ||(fi, 9:)]

Hs(R?)x Hs—1(R") < €

the system

(O+mAu; = Fi(uy,...,up) i=1,...k

has a global solution in C(R, H*) N C'(R, H*™') which depends continuously on the initial

data (f,q).

As the generalization to a system with different masses does not require much
additional work provided the required nonresonance condition is met (see section 5.5), we

may reduce to the scalar equation
O+ Du= F(u) (5.1)
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with initial data

u(0,2) = f € H*, Ou(0,z) =g € H!

As before, we will apply a contraction argument to establish global existence.
Rather than run our contraction scheme in a mixed Sobolev space like we did in Chapter 4
we will instead work in U? based spaces. The advantage of working with such spaces is that
their elements enjoy many of the same properties as free solutions, such as bilinear and
trilinear estimates. Another benefit to working with these spaces is that they allow us to
readily exploit the lack of resonant terms. This is because they provide good information
on the Fourier transform properties of their elements.

For both n = 2 and n > 3 dimensions we are able to reduce our contraction
argument to a set of trilinear estimates which we prove in section 5.3. In n = 2 dimensions,
we prove these using Strichartz estimates and a modulation argument. In n > 3 however,
the situation is more difficult and we require a more robust approach.

Fortunately, one can exploit the geometry of the characteristic hypersurface in
order to establish a useful set of bilinear estimates for free solutions. Applying some ba-
sic properties of UP spaces, we can translate these estimates to bilinear estimates from
eFHDIU? x P2 5 [2. The error in Shottdorf’s proof for n > 3 lies in his attempt
to upgrade this estimate to one of the form e**P)U* x e+ P)y*t 5 [2 for certain fre-
quency interactions using a flawed orthogonality argument. Without this estimate his
proof of the trilinear estimates discussed above is incomplete. We manage to circumvent

the orthogonality issue by refining our iteration space as we discuss in the next section.
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5.1 Function Spaces
It is useful to translate (5.1) into a first order system. Observe that
O+ 1= (D) +id)((D) —i0).
Hence, for sufficiently nice u satisfying

O+ 1Vu=F, wu,z)=/f 0Jwu(0,z)=yg,

we define
+ (D) Fi0,
Y5
Then, u* solves
. F 1 g
((D) £i0;)u —2<D>,u0 =u"(0,x) 2(f:|Zz<D>)

and v = ut +u".
We focus our attention first on the case n = 2. Let X} denote the closure of

C(R, H*) N U? with respect to the following norm:

lullxg = Q2% || Peu™32) "2,
k

where

lulloz = e ulpe.

Define Y* as the corresponding space where U? is replaced by V? = V_Z’rC and let

X* =X x X5 Y =VY!xY"
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Given s > 1 ug € Bc(0) C H* and (u',u”) € X*, we wish to solve the operator
equation

ut = eﬂt(mug[ Fil*(u),

where © = u™ + v~ and

() = [ i) F;lgiﬂds.

We can solve this equation by running a contraction argument in X* similar to the anal-

ogous one for X7 in Chapter 3 once we have established the following bounds:

e Phag w1 (u)]

x: S l(uhu”) :

< llus |

The linear part is easy to estimate:

=PI Ry = 302 Py
k

< D22 Polug) 17
k

~ ||u0 | Hs*

It remains to prove the bound on the Duhamel term.

Unfortunately we are unable to close the contraction argument in X* in higher
dimensions. We construct a more refined space X* in what follows. We remark that the
special structure of this new space allows us to fix the flaw in Schottdorf’s work.

Let n > 3, then define Z;, = 2 - Z? and let () : R — [0,1] be an even smooth

function supported in the interval [—2/3,2/3] with the property that

Zv (§—d)=1for £ € R.

deZ
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Define 7 : R" — [0,1] by 7(§) = vV(&1) - ... - 7V (€a)- For d € Zy, let

Vd.k = 7((5 - d)/2k)-
It follows that

Z Vd,k(g) =1 for 5 e R".

deEEL

Define I'q to be the Fourier multiplication operator with symbol v4, and let

ur % be the subspace of L¥ L2 defined by the following norm:

1
lull s = (3 ITapullgy)?.

deZ

Similarly, for V;>*, set
Ut =U", ViE =2
Lemma 5.1.1. Let ky, ke € Z>o be such that ky < ky. Then, for p > 1, we have
lellgpe < Nullype 52)
1 2
lllyps < lullype. 53)
2 1
Proof. We first turn our attention to estimate (5.3). Without changing our argument in

. + pE
any significant way, we can replace V,>*, V™ with V[

p P /P
s Vi, Where the spaces Vi ,V; are

defined in the obvious way.
By definition,

1
lullvg = (3 [ITarullvs)?

dGEk2

We see that

M
ITapullve = sup (D ITamt(tn) — Tamtultm_i)|h2)""

{tm }%:062 m=1
M

< sup (D0 Ilamlamultm) — TapLamu(tm1)|z2)")"".

{tm}_0€EZ m=1 d'eEy,
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Observe that the terms in the rightmost sum are nonzero for only finitely many
d'. Let Sk, x,a denote the index set containing all such d’. Note that the size of Sy, x, 4
depends only on k; and ko. Applying Minkowski’s inequality in m and d’ bounds the above

expression by

M
sup S (O Tamultn) — Tagu(tm_)|:)"?

{tm}%:()ez dleskl,kg,d m=1

< > Tamullve.

d'ESky hy.d

We conclude that

lullyy < (>0 C >0 ITawulve)®)?

dEEkQ d’eSkl’k%d

1
§k17k2 ( Z ||1-‘d’,k1u||%/17)2 = ”uHV]fl?
d/EEkl

giving us estimate (5.3). Estimate (5.2) then follows from (5.3) by a straight forward

duality argument. O

Remark 5.1.1. From Lemma 5.1.1, we can conclude that || - [[y+ < | - HUki and || - HVE‘L S
H~||VO¢ forallk > 0. Furthermore, for compactly supported u € U3, we have ||u||U0¢ S llullyz

and [lullyz S ”UHVO:E. We will use both of these facts repeatedly in our estimates for n > 3.

Finally, define X3,V by the norms

1 1
lull g, = (2N PalZ)t  llully, = (3 2% Pul2 )
k k

and

X=X xX*  Yi=YIxY’
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Similarly to the case n = 2, given s > ”T’Q, us € B.(0) C H* and

(ut,u™) € X*, we wish to solve the operator equation
ut = eﬂt(muoi e ifi(u),

where u = ut + v~ and

o Y sy oy N (u(s))
I (u)—/oe (t=s)( >st.

We can solve this equation by running a standard contraction argument in X* once we
have established the following bounds

2

+it(D), £

% St )

e % Slhugllas 175 (w)]

As before, the linear part is easy to estimate:

+it(D) = |
0

e L = 32 P ) s
k
S SO Rl
< 30 Pl |3
k

S Nl

So, it remains to prove the bound on the Duhamel term. In order to do so we need several

results.

5.2 Bilinear estimates and Modulation Analysis

The proof of the main theorems of this chapter will rely heavily on the bilinear
estimates presented in this section. Note that bounds in U? type spaces will follow directly

from LP bounds on free solutions due to Proposition 2.4.3.
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Later in this chapter we will repeatedly make use of the n = 2, p = ¢ = 4 Strichartz

estimate proved in Chapter 2. We present it below for convenience.
Proposition 5.2.1 ([18], Proposition 8). Let ug € L?*(R?), then
i 1
e Prugl pars S (D)2 uoll 2
We will repeatedly make use of the following result
Corollary 5.2.1. Let n = 2 and uy, € V2 be localized at frequency 2%, then we have
k
HukHLj}L‘; S 22 ”UHvi (5.4)
Proof. Let ¢ € L*(R?) and define Ty(¢) := Py(¢). By Proposition 5.2.1, we have
. k
I To (e o) | pars < 22 (19ll 2
Applying Proposition 2.4.3 to Ty we obtain
k
Jurllpars S 22 ||urllus,
for all w € U}. As V? C U* we may replace U} with V to get the desired bound. O

For our estimates in dimensions n > 3, we will need the following key result.

Proposition 5.2.2 ([18], Proposition 7). Let n > 3, O, M, N be dyadic numbers, and
O, N functions in L2(R™) localized at frequencies M, N respectively. For 41,4, €
{+, =} define upr = eB P gy vy = 2P0y and denote L=min(O, M, N),
H =max(O, M,N). Then,

H3L*% ol zllvwllze  if M~ N

| Po(uson) || p2@esry S

—1 .
LT |oul 2l vow]| 2 otherwise
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Proof. Found in [18] O
Applying Proposition 2.4.3 to the above result yields

Corollary 5.2.2. Letn > 3 and L, H be dyadic integers such that L < H. Furthermore,
assume uy € Uil,wH € UiQ be localized at frequencies L and H respectively. Then, we

have

Rt 3
2

1
lurwallre < L ||UL||U§E1 “wHHUiZ-

The following estimate and corresponding proof can also be found in [18]. We
remark that the result we obtain here is stronger than what is possible using just Strichartz

estimates and Bernstein’s inequality.

Proposition 5.2.3 ([18], Proposition 10). Let n > 3 and let ¢y have Fourier support

in a ball of radius M centered at frequency N where M < N. Then, we have
. 1 n—2
" P prrnlle S NTMT gl 2
Proof. For ¢ := ¢y, it suffices to show
e ge™ D)1z S NEMT ).

As the Fourier supports of ¢ and ¢ are symmetric through the origin, we conclude that
the sum of the supports lies in a ball of radius < M centered at 0. Therefore, we may

rewrite the inequality above as
| Par(e" P pe P G)|| 12 S N2MT |6

and we conclude that the desired bound follows from Proposition 5.2.2 O
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Combining the above result with Proposition 2.4.3, we obtain the following

Proposition 5.2.4 ([18], Proposition 11). Let n > 3 and let upyn have Fourier support

in a ball of radius M centered at frequency N where M < N. Then, we have
1. n-2
lunrnl[za S NIMT [upgn|los-
Note that we can replace U? in the bound above with V2 as V2 C U%.

Corollary 5.2.3. Letn > 3 and L, H be dyadic integers such that L < H. Furthermore,

let uy, € Uil,wH € Uiz be localized at frequencies L and H respectively. Then, we have
1 H
lugwrl[r2 S L2 10g2(f)||UL||V§1||wH||v§2'
Proof. Define Tw := uy Py(w). Then,
[Tw|r2 < llur allwm | s
By Corollary 5.2.4, this is
n-1 n-1

S L lugllps, H 7 [wallvs, (5.5)

As U? C U*, we can replace the above with
n—1
S (LH) 7 luglfpz, [[wllys,-

So, we conclude
1Tt 2 S (LH) T [luglluz, .
From Corollary 5.2.2 we see that

n—1

1Ty, 22 S L7 [lucllvz, -

61



We apply Proposition 2.4.4 with p = 2, ¢ = 4 to obtain

n—1

lurwnllzz S L7 () Juluz, lwellv,- (5.6)

We iterate the argument by defining
Su = Pr(u)wgy.
Applying the fact that V2 C U* to (5.5), we obtain
51t 22 € (LH)'T llwallvz,
From (5.6), we observe that
ISllu2, i S 2 () ol
Applying Proposition 2.4.4 once more gives us the claim [

A crucial feature we exploit in the nonlinear analysis is the absence of resonant

terms. In order to formalize this idea, we must first prove an important modulation

bound.
Define (&), := /m? + |£|%.

Lemma 5.2.1. Assume my, mo, mg > 0 are such that 2min{m;} > max{m;}. Let €1, € €

{+,—} and let & + & = &. Then, we have

max {(€1),15 (62)mns (€8s b S 1€ my + €1(62)my + €2(E8) ms)- (5.7)

Proof. Case 1: € = €3 =+
This is obvious.

Case 2: €1 = +,69 = —
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Define

A = <§1>m1 + <§2>m2 + <€1 + €2>m3'
It suffices to show that

1

K S <£1>m1 + <€2>m2 - <€1 + €2>m3’

which is equivalent to showing

LS ((€my 4 (€2)ma — (€1 + E2)my) - A

Expanding the RHS of (5.8), gives us

(€02, + (E)0, + 2(6)mi (E2)ms — (61 + &)1,

=mi+mj—mj + 6"+ |&® — & + & + 2(E)m (62) me-

Applying the law of cosines, this

= (m1+mg—m3)(my+ma+m3) —2mimay —2|&1|[§2]cos(< (1, 82)) +2(81)my (§2)mo-

Define

I = (§1)mi (E2)me — ([61]|E2] + mama).
I claim that I' > 0. Indeed, we see that

((E0)my (€2)ms)? — (I0]IE2] + mamy)?
(€1)ma (§2)my + [E1][&2] + mama
(ma&i] +maléa])?
(&) mi (€2)my + [611E2] +mams’

I' =
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Therefore, (5.9) is
> (mq + mg — mg)(mq + mgy + m3)
> min{m, }(2min{m;} — max{m,})
> 1.
giving us the desired bound
case 3: € = —,e3 = + (By interchanging the roles of £ and &, we see that the

case €; = €5 = — is identical)

Let n = —&;, then the right-hand side of (5.7) can be rewritten as

‘<77>m1 - <77 + £3>m2 + <£3>m3‘7

reducing us to case 2. O

Lemma 5.2.2. Let 1,45, 4+3 € {+,—} and L, H, H', My, My, M3 be dyadic numbers such

that L < H ~ H'. Furthermore, let
ur = QE\/AUL, Ve = Qjﬁvfz?}H, Wy = Qé?wng/
then, if A := max (My, My, M) < CL™" for appropriately chosen C, we will have
//uLvaH/dxdt = 0. (5.10)
Proof. Observe that
//uLvH/de:Udt = (Frpur * Fpvg * Frzwp)(0,0). (5.11)

So we consider only the frequencies satisfying 7 + 7 +m3 = 0, + & + & = 0. By

definition of QZ, we also have |; F; (&)] < A, so that on the nonvanishing set we have
3 3
BA> D miFi (&) =D Ful&) 2 L,
i=1 i=1
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where the last inequality is obvious when the three signs agree and follows from Lemma

5.2.1 otherwise. We conclude that for A < L™!, expression (5.11) must vanish. ]

5.3 Trilinear Estimates

In order to prove the necessary Duhamel bound, we will need to take advantage of
the duality relationship between U? and V2. Because the nonlinearity £ in the Duhamel
term is quadratic, it makes sense that our V2 based estimates will be trilinear in nature.
In order to motivate the precise form of these estimates for dimension n = 2, we present
the following computation from [18].

Let G = then

>

. t_.
1P () [lz = (| Pre™ O 1 (u) o2 = HP,Q/0 T PIG(s)ds| e
By Proposition 2.4.1 and Theorem 2.4.1 we have that the above

t .
= sup [B(B, [ €7 f(s)ds,v)]
0

llvlly2=1

= sup //f )eF D Prodrdt|
llvlly2=1

= sup ]//f(t)mdxdt].
”v”"i:1

It will be evident soon that the estimates we need for the case n = 2 are exactly

those presented in the following theorem

Theorem 5.3.1. [[18], Theorem 3](Trilinear Estimates for n = 2) Let C > 10 be a

fixed constant and ki, ko, ks € Zso be such that |ky — ks| < C. Furthermore, suppose
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s> 3,41, 49, 5 € {+, -}, then

1 1
ﬁl Z //PklukaUPkswdl‘dﬂ 5 ( Z 22k1$||Pk‘1u||%/i2 )2||P/€2U”Vf HPI€3w||Vj[2 .
k1<ks+C k1 <ks+C L 2 3

(5.12)

Furthermore, we have

- S 1 S S
(¥ o swp | [ [ PouboReded ) S 2 Pl 29 Pvll,

k1<ks3+C HPkleVQ =1
+3

(5.13)

Proof. We denote I(ky) := [ [ Py, uPy,v Py, wdzdt, then we can decompose
I(k‘l) — Io(kl) + Il(kl) + Ig(kil)

where

Lik)= Y / / Q) PouQ3, PovQEs,, Py wdzdt

M122_k1

Lk)= Y / / QE, Pou Qi PovQEs, Py wdzdt

M2527k1

Lk)= Y / / Q4 P uQE3,, Pryv Qi Py wdzdt.

Ms3>2-k1
Here, the lower bound in the summands comes from Lemma 5.2.2, as the integral vanishes

for terms where max (M, My, M3) < max(27%, 272 27%) = 27%_ We can therefore bound

the LHS of (5.12) by

1 1 1
o o Mokl + o 30 Ih(k)l+ o D ekl =1+ 1T+ 111
k1<ks+C k1<k3+C k1<k3+C

We first turn our attention to bounding (). It isn’t difficult to see that

(D<o > (X v Paulr) sup [1QZ5, PuvQZiy, Puwlre.

ki<ks+C M z2-k1 Miz2~h
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Applying the first estimate from Proposition 2.4.2 to the high modulation term, we bound

the above by

1

_1
Som 2 (X M7E|Puullz ) sup [|QZ, PrvQZiy, Prowl e
2 k1<ks+C M;>2-k1 LMy z2k
1
5% Z 22 ”PMUHV2 sup ||Q<M1PkQUQ§?\/[1Pk3wHL2
k’1<k‘3+C M1227 1

Applying Cauchy-Schwartz in k; allows us to bound this by

1
< —
A

L 1
(> 2%18HP1<1U||V2 ()] 207200 sup HQ<M1PkQUQ§?\/[1Pk3w||2L2)§'
k1<k3+C k1<ks3+C M122_k1

We use the fact that 1 — 2s < 1 to bound

Z gl=29)k sup HQ<M1Pk2UQ<M1Pk3w“%2§ sup HQ<M1P]€21}Q<M1P]€3UJ||%2
k1<ks+C Myz27F1 My >2-k3

< suwp QT Pl Qi Prwlls
M122_3

Using Corollary 5.2.1, we can bound this by

N 2°%hs sSup ||Q<M1szvHV2 ||Q<M1Pk3w||%/£ .
M;>2-K3 3

Applying Proposition 2.4.2; this is
S 2 Poullve | Peswllyz

which is the desired bound.

Next we turn our attention to bounding (/1) (the argument for bounding (I17) will
be nearly identical). As before, we place the high modulation term in L? to bound (I7)
by

27 37 (2 QR Pevllze) sup Q2 PouQShy, Prwl 2.

k1<ks+C Mp>2-F1 Myz27+1

67



Once again we apply Proposition 2.4.2 and Corollary 5.2.1 to bound this by

S 27k Z Z M2 HszUHv? ) sup ||Q<M2Pk1UQj§[?\42Pk3w||L2
k1<ks+C My>2—%1 M2z2~F1

<27k M 27397 9% sup || P, vllvz HQ<M2Pk1“HVi2 HQEJQP’“SILU“VE'
ky<k3+C Myz27%1 1 3

Applying Cauchy-Schwartz in k; and Proposition 2.4.2; this is

<273 (> 2%15HPI€1UHV2% (Y 2Urkighys 2|| Peyvllvz [[Prswllvz
k1 <kg+C 1 SO 2 3

As s > %, we have

Z 2(1728)]612]61 S Z 2k1 S 2]4:3’
k1<ks+C k1 <ks+C

giving us the desired bound.
We now turn to estimate (5.13). We denote J(k1) := [ [ Py,uPg,v Py wdzdt, then
we can decompose

J(k’l) - Jg(kl) + Jl(k’l) + Jg(kl),

where

Wk) = 3 [ [ @ PauQEy, PrvQEy, P wdadt

My1>2"F1

Sk)= / / Q4 PouQE2 PoyvQE,, Powdzdt

My>2-k1

L) = % / / Q4 PouQE3, PoyvQit P wdadt.

M3z227Fk1
We can therefore bound the LHS of (5.13) by

2

Z( Z 2—2k122k15 sup |Jl(k1)|2)

=0 k1<k3+C ”Pklw“Vi =1
3

[SIE

=1+ 114111
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We first focus on estimating (/11). We see that

(I]I)2 S Z 2—2k122k1s

k1<k3+C
sup (Y Qi Pawlr2)?( sup  [|QEh, Po,uQZiy, Pryvl r2)”.
HPIquVf:g:l M3>2-F1 Ms3>2-F1

Applying Proposition 2.4.2 and Corollary 5.2.1 once again, allows us to bound the above

by

< Z 2—2k1 22/€1$

~Y

k1<k3+C
X sup Z M > ||Pk1w||v2 ) sup (2k2HQ<M3P’€2u”V2 2kd||Q<M3Pk3UH%/3§ )
HPkl“’Hv? =1 M3z>2-F1 M3>2~F1 2

N Z 22k g2skigh sSup (2k2|‘Q<M3szqu2 2k3HQ<M3Pk3UHV2 ).
k1<k3+C Msz2~k1

Applying Proposition 2.4.2 and summing over ki, we bound the above by
< 227D Pyully 2 Pyl

As s > %, this is
S 277202289 P,ullye || Prsvll Ve
+1 +o
as desired.

We now focus on bounding [ (the argument for bounding I/ is the same). We

observe that

(?< >0 22070 sup (Y0 @ Poullie)® sup  [|QZ5, PrvQZiy, Prwllz:

k1<ks+C ||Pk1w||vi3:1 My >2-k1 My z27k1

69



As before, we apply Proposition 2.4.2 and Corollary 5.2.1 to obtain

_1
(D*< 30 20T sup (3 M| Peullyz )?
k1<ks+C ”Pklw”\/i?):l My>2-F1 !

x sup  2MQZ, Puvllte 2M Q% Pawlls -
M1227k1 2 3

Applying Proposition 2.4.2 once again, this is

~

S D0 27M2%|| Pyullfs 2% Pyoll?s
k1<k3+C 1 2

which we can bound by
5 228k2228k3||1 k‘2u||%/2 ”l kavH%ﬂ )
1 i

as desired. ]

Next, we turn to the higher dimensional case

Theorem 5.3.2. (Trilinear Estimates for n > 3) Let s > "7_2, +q, 49,13 € {+,—},

C > 10 and ko, ks € Z>o be such that |ky — k3| < C, then

1 1
ol X [ [ PauPuoPududt S (3 2Py ulite )Pl | Pl

k1§k3+c k1§k3+C

(5.14)

( > 2=k qup (| > //PkQUPkgkalwdxdt|2)>2

k1 <ks+C ”Pklwuvoig:l k1 <ks+C
S 2995 Pl s [Pl (5.15)
Proof. We can bound the left-hand side of (5.14) by
1

S % Z Z Z ‘//PkluFdr,kIP@de,klPkSwd:cdt . (516)

k1<k3+C dEEkl dlEEkl
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Observe that
/ Po,uPovPowdz = (Pou % Pov  Brw)(0)

- / ]D/kl\u<_£3> /51+E2§3 P/k;v(gl) ’ @(52)

As Py, u is supported at frequency 2! we can conclude that
Pk2ka3w = Pkl (Pk2vpk3w)

Therefore, (5.16) can be bounded by

1

S DD S

k1<k3+C d€Ey, |d+d’'|<2F1

// Pkluljd@hszvfdyklPkglwdxdt (517)

We denote Iy(k1) := [ [ Pi,ul’ar g, Pe,vT g, Prswdzdt, then, we decompose
I(k1) = Loo(k1) + Lo1 (k1) + Toa2(Kr),
where
Lk, dd)= / / QL1 PouQE Do iy PoyvQEsy, T Poywdadt

M122_k1

Lk dd)= Y / / QEs, Pt Q2 T gy PoyvQE3y, T, Prywdadt

M2227k1

Lky,dd)= 3 / / Q. P Q3. T o Pyt QL2 T, Py wiladt.

Mzz2~k1
We can therefore bound the LHS of (5.14) by
1 2
Ly y oy oy o
i=0 k1 <ha+C d€y, |dtd<2h

We first turn our attention to bounding (I). We observe that (I) is bounded by

1
— > > S (Y Qi Paullre) sup  [|QZ3 Dare PryvQEy, Ty Pryw]| 2

k3
2 k1<k3+C d€Ey, |d'+d|<2F1 M >27F1 Myz27k1

71



Applying Proposition 2.4.2 allows us to bound the above by

1 .
S X (0T mtimag)

3
k1<ks+C Mi22-k1

Y Y s H@ffwlrd/klpbvumHQ<M1Fd,k1Pk3wHL4)

d€~k1 |d’—|—d|<2k1 M1>2

1
Som 2 (2||1chlu||vi > > sw ||Q§wlrd',klpk2v“mHQihrd,klPkaL‘l)-
k1<k3+C d€Ey, |d'+d|S2k M1227"

Applying the Cauchy-Schwartz inequality, can conclude that the above is

1 1
ol X 20 Bl )t

A Tite
Z 2’“(1*28) Z Z Sup ’|Qj<EM1Fd/klpkg’UHM\|Q<M1Fd,k1Pk3w”L4)2)%-

k1<k3+C €Sy, |d/+d|<2k1 M1z27M

By Proposition 5.2.4, we can bound the 2nd term in parentheses above by

(n—2)ky ko k3

PPA i () D W A

k1<k3+C d€Eg, |d'+d|<2k1

[N

xsup QT b Poyvllus 1QE8, Ty Prgwllrs,)?)
M1>2 k1

By Proposition 2.4.2 and Holder’s inequality in d this is

SO 2Rt Bhah (3 Il Pwllfa )X (30 Tam Puollus,)?)?.

Y
k1<k3+C d€Eg, d€Eg, |d'4d|<2k1

Applying Young’s inequality in d to the term on the far right allows us to bound this by

Z 2(n 1-2s) k12k3||Pk2?}“24i2||Pk3w||U4i3)%
k1<k3+C

Z Q(n—zs—l)hg’%)% sup HPkQUHVki2||Pk3w||Vki3
1 1

k1<ks+C Lshet
(Y 202-Dkigky sup HPkQUHVi?HPlcgw”Vﬂ
k1<k3+C 1=kt

72



where

§ : 2(n—28—1)k1 < 2(n—1—28)k3 < 2k:3
~Y ~Y Y
k1<k3+C

provided n — 1 — 25 < 1 or equivalently s > ?2

We now turn our attention to bounding (/I) (the argument for bounding (III) is

identical). By placing the high modulation term in L? and applying Proposition 2.4.2, we

can conclude that

1
(1) = 55 > > (CX 1@ ak Povlee)
k1<k3+C d€Ey, |d+d'|<2F1  Ma>27F1
8 Tk, P, wQEy, P bi
X sup Q5 Ly Pres Q< g, Py | £2big)
1
Som 2 2 X (> M |’Fd'klpk2v“V2)

k1<k3+C d€Ek, |d+d'|<2F1  Mpz27F1

+ +
X sup ||Q§?\/12Fd,k1 PkSwQS}Wz‘PkluHLQ)
M2227k1

1

3
2 k1<k3+Cd

k
N S Y 27 |Taw, Povllvz, sup [|QE%, Tk Prywl 2o |QZhy, Py ull o
€2k, |dtd'|S2k Mpz2~ k1

Applying Proposition 5.2.4 to the two terms on the right and using the fact that

V2 C U*, we may bound the above by

1 (2n— 3)k1 k3
Som 2 2 2 27 T [Py ullvz, 1T ey Pro vl vz, 1T ey Prswllvz, -
k1<k3+C d€Ey, |d'+d|<2*1

Applying the Cauchy-Schwartz inequality in k£ and d, and applying Young’s inequality in

d we see that this is

1

s 1 s 1
Sonl X 2R Pl Y 25723000 Pyl | Pwlfps0)?
k1<k3+C k1<ks3+C
1 . , s
Sonl 2 2 Paullvz)? (X 9 9 g(1-29)k ) § | Peyvlly 22| Pl .

k1<ks+C k1<ks+C
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The second term in parenthesis is

S Z 2(n7%723)k‘12k73 5 2(717%725)]632% S 22]4:3'

k1<ks+C

provided n — % —2s < % or equivalently s > "7_2, giving us our desired result.

Our next task is to prove inequality (5.15). We may bound the LHS of (5.15) by

( Z 2(2572)]61 sup (’ Z Z Z //del P]wurd”ﬂP]gSUPkl'lUdl'dtP)%.

k1<ks+C HPkleVOﬂtgzl k1<ks+C dEEk, |d/+d|<2k1
(5.18)
We denote J(k1) := [ [ Ty, Peyul i oy Py Py wdxdt, then we can decompose
J(k1) = Jo(k1) + J1(k1) + J2(ky)

where

Jo(k‘l) == Z //Qf/[llFd/7k1PkSUQéﬁ\/[lFd7klpk2UQ:§t1]‘\’41Pklwd$dt

Myz27k1
)= 3 / / Q4T PoyvQ 2 T gy PoyuQEw,. P wdadt
MQRL_kl
D)= Y / / Q4T o Py 0QE, Ty PeyuQy P wdadt.
Ms>L~Fk1

We can therefore bound the LHS of (5.18) by

2
SIS 2@ gy [ S Lk =T+ T+

i=0 k1 <ks+C ”Pklw”VO:l:;g:l nEEk, |d/+d|<2k1

We first focus on estimating (/11). We can bound (/1) by

(Y M g (Y |QE Prwle)?

k1 <kz+C 1Py lly s =1 gy 221

1
(Y Y sup (| QZ4 Tk, Peoull 14| Q230D oy Pl 14)) 2.

€Sy, |d/+d|<2k1 Msz27M
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By Proposition 2.4.2, this is

SO 29 sup (X [Baywlhve )?
k1<k3+C 1Py lly s =1 gy 2211 ’

1
(> Y sup Q8 Tar Provl| 1| Q23 Ty Prottl £4)?) 2

d€Sk, |d'+d|<2k1 M3z2~k1

SOY 29wy 2Rl
k1<ks+C ||Pk1w||voi3:1 3

(Y Y sup (| Q24 Tk Pryvl| 24 | Q23 T, Proull14)?) 2.

d€Eg, |d/+d|<21 M3>2-F1
Recall that

1Pl S Pl

so we can bound the expression above by
1
Soo2uENT N sup [|QEh, Tk Proulls| QS T, Prgvlle)?)?.
k1<ks+C €Sy, |d/+d|<2k MaR2™M

Applying Proposition 5.2.4 and Proposition 2.4.2 we see that this is

_ Dby _kp k3 1
S eSS ST 2 2w 2 [Ty, Proyullvz | Ta iy Prvllvz)?)2.

Y
k1<k3+C d€EBg, |d'+d|<2k1
By Holder’s and Young’s inequality in d, this is
1
(Y olsmdhgFeR | Peyullie 1 Prsv )2
k1<ks+C

Z 2(28+n 3)’“2 ) 273) HPkQU”ViHPkSUHVi'
k1<ks+C i 0

The term in parentheses is < 22%2225%s provided s > ”7_2 so we have our desired result.

We now turn our attention to bounding (I) (the argument for bounding (II) is the

1)



same). It is not difficult to see that

k
(S > 272 sup (> Y 271|’Fd,klpk2uuvi21

k1<k3+C ||Pk1w||v0i3:1 d€Zk, |d/+d|<2*1

1
x sup  [|QZ3y, Loy Pro0l 14 |QZ3, Peyw]|14)?) 2.
M152—’“1

Applying Proposition 5.2.4 and Proposition 2.4.2 once again

SO 2 sp (Y% Q%HFd,klPkang

k1 <kz+C IIPkleVOig =L de=Zy, |d'+d|<2k1
(2n—3)ky k3 1
x 27 27 ||Tar e, Pryvllvz | Prwlly2)?) .

Again we use the fact that || Py, wlly2 S |[Prwllyz =1 to bound the expression above by

k: 1
S bty 3 Hrd,klpkguﬂvigHFd',klPngHv;)Q)é-
k1<k3+C dE€Ey, |d'+d|<2k1

Applying Holder’s and Young’s inequalities in d, we get

,S ( Z 22k152(n—2)k3 HszuH%/ki ”Pksvl‘%/ki)%
k1<k3+C 1 1

_ 1
SO>S 220203 Pl || Payollye
k1<k3+C

But the sum on the left is < 22%252%k38 provided s > 22 so we have our desired result.
~ 2

5.4 Proof of Main Theorem

We now apply the trilinear estimates from the previous theorem to prove the bound

on the Duhamel term for n > 3 (the case n = 2 is similar):

17 ()]

o S It )%,
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It is not difficult to see that the bound follows from proving the following theorem.

Theorem 5.4.1. Let n > 3,5 > "7’2 For any £1, 45 € {+, —} we have

I:tl,:l:g =1 }78 X ?S — st

where

I((u+’u_)’ (U+,U_)) = (I+(U’i17U:b)?I_(uilvviQ))v

t .
I*(u,v) :/0 eFilt=a)(D) 2?;;) ds.

In other words, for a constant C = C(n)

1w, )|z < Cllullg.llvlly
In particular, since X5 C Y, we also have
[:X°xX*— X
and
[:YxY* =Y
Proof. We will only show that
17 o)z, S el ol

as the argument for /= will be nearly identical.

7



Let C > 10 be fixed. We observe that

1 (u, )

o0 3
o = (S Inr ol )

k=0

[N

< (Z 22| P, Z Z I (Py,u, Pyyv )”Ui)

k1<k+C |k—ko|<C

N|=

+ 132 |p > S IN(Pru, Pyo) |-
) k1 >k—C ka1 |<C 0

N

(ZQ%S\P > Y If(Pyu, Py )HUi)

ko <k+C |k—ky|<C

- Sl + SQ -+ Sg.
It suffices to consider only S; and S,.

We first handle the term S;. By a duality argument and estimate (5.14) from

Theorem 5.3.2, we see that

1
1P > > IT(Puu, Puo)llye S Y sup

k1<k+C |k—ko|<C lka—k|<C 2¢ 1Pewlly =1

//PklquQUPkw

1
S 22]“18!\Pk1u|‘%/i21)2HPkQUHVOiQ

lky—k|<C' k1 <k+C

S ||UH§~/£ Z HpszHVOi?'
Y ky—k|<C

k1<k+C

It follows that

S1 S

We now turn our attention towards bounding S,. We observe that

SQ S Z Z ( Z 22kSHP]€[+<P]€1u, PkQU)”)

klzo |k27k1|§C kSk1+C

By duality and estimate (5.15), we conclude that this is

> > 2R Pulye| B
k120 |ke—k1|<C ’

v i;is
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With a similar argument, we can prove the analogous result for n = 2 given by

Theorem 5.4.2. Letn=2,5 > 3. For any £, 45 € {+, —} we have

[il,ig =1:Y*xY*®— XS,

where

I((w",u”), (vh,07)) = (T (u™, 0™2), I (), v™2)),

b
I*(u,v) :/0 eFit=e)(D) 21{2) ds.

In other words, for a constant C' = C(n),

1 (w, 0)l[xs < Cllullys [Jvllys.

In particular, since X° C Y?®, we also have
I:X°xX°— X°?

and

I[:Y°xY® =YY"

We are finally ready to prove Theorem 5.0.1. We first consider the case n = 2.
Using standard contraction mapping techniques we will find a fixed point of the operator
equation

T:t(u:t) _ 6:i:it(D)u(:)l: ¥ ]:t(u)’
where u = ut +u~ and uy = 3(f F ).

(D)
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We run our contraction argument in the closed disk

Ds ={ue X*:||ul

Xs S 5}7

for appropriately chosen §.
From Theorem 5.4.2 it is not difficult to see that T : Ds — Dy is well-defined. In

particular, we have that

=" Phug + il ()| xe S e+ 6 <6,

for 0 small enough.
It is left to show that T is a contraction. Since the nonlinearity in I* is quadratic,

we make use of the factorization a? — * = a(a — b) + b(a — b) to conclude that

1T () = T (v)llx= = I (u) — I*(v)]

xo S ([Jul

xs + |||

Xs) U_U|XS

S Ollu — v

Xs.

Therefore T+ is a contraction for appropriately chosen .

The argument for n > 3 is identical with X* replaced by Xe.

5.5 Systems of Different Masses

We would like to extend our results for the scalar equation to the system of multiple
masses

(O+m?)u; = Fi(ug,...,up) i=1,..k
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Fortunately our results transfer quite readily to this generalized system provided we impose
the condition

2min{m;} > max{m;} (5.19)

We must first alter our iteration spaces slightly: Instead of using U%, V{ based spaces, we
instead work with the spaces U} (DY |4 p),, defined by the norms

= [leF e, ullvr = 1Tl

HuHinm +(D)m

where we recall that (-),, = /m? + |- |2.

It is straightforward, albeit tedious, to show that our estimates for U}, V¥ transfer
to our new spaces with implicit constants depending on the m;,.

The remaining part of the argument we are left to deal with is the modulation
analysis which guarantees the lack of resonant terms. Fortunately, the generality of Lemma
5.2.1, which imposes condition (5.19), allows us to extend our modulation arguments to

the multiple mass system.
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Chapter 6

The Normal Forms Method

6.1 Motivation

In Chapter 4 we established global well-posedness of the third order semilinear
Klein-Gordon system by using Strichartz estimates to run a standard contraction argu-
ment. Unfortunately, this approach fails for second order nonlinearities as no combination
of Strichartz exponents will allow us to put a quadratic nonlinearity into the needed func-
tion spaces. Furthermore, the UP, VP approach discussed in Chapter 5 would result in too
much derivative loss to allow one to close the contraction argument. Fortunately, we are
able to circumvent these issues by applying the Normal Forms transform introduced by
Shatah in [20] to reduce our second order system to a third order one.

The basic idea behind the Normal Forms transform is as follows. Suppose we are

given a second order system

(O+ Vu = F(u, Opu, Ou).
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We aim to find a decomposition u = U+W where U is given explicitly in terms of u, d,u, du
and W solves a third order or higher system. The explicit form of U and our knowledge
on solutions to higher order systems will in turn allow us to gain control over w.

To see how this method works in practice, we consider the ODE

Otu +u = aqu® + apudyu + az(du)?,

where the «; are arbitrary constants. Let

U = au® + budyu + c(0u)?,

where a, b, ¢ are constants that will be determined later.

We compute
OU = 2audyu + b((0,u)* + ud?u) + 2¢(0yud?u)
and
OPU = 2a((0pu)? + ud?u) + b(30,ud?u + udiu) + 2¢((9}u)? + Oyud;u).

Observe that

OPu = ayu® + apudiu + as(Ou)? — u

and

OPu = Q(u, Oyu) — Oy,

where Q(+, ) is a polynomial whose lowest order term is quadratic.

Substituting in these expressions into our formula for 92U, we obtain

OIU = 2a((0pu)? —u* + C1(u, Opu)) + b(—4udyu + Co(u, dyu)) + 2¢(u? — (9,u)* + Cs(u, Oyu)),
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where the Cy(+,-) are linear combinations of nonlinearities of cubic order or higher. We

conclude that
OU + U = (2¢ — a)u® — 3b(udyu) + (2a — ¢)(0yu)? + C(u, Oyu),

where C' := 2aC; + bCs + 2¢Cs.

Let W :=u — U. We would like to choose a, b, ¢ so that
O+H)W =0+ 1u—- (04 1)U = =C(u, Oyu). (6.1)

Then, our decomposition u = U + W will have the desired properties.

We compute
(O*u+u) — (OPU +U) = (a1 +a—2c)u* + (o + 3b) (udu) + (a3 + ¢ — 2a) (9u)* — C(u, Oyu).
Equation (6.1) will hold true provided

ay+a—2c=0,
042+3b:0,

as +c—2a=0.

When we apply this method to nonlinear PDESs, our constants a, b, ¢, a; will be replaced

by distributions involving differential operators that will act on u and its time derivatives.

6.2 The Normal Forms Transform of Shatah

We now turn our attention to the three dimensional case. We will closely follow

the construction and computations presented in section 7.8 of [12]. Before we proceed any
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further, we first introduce some notation. Given v,w € S(R?), we define B(d',9")[v][w] to

be the function whose Fourier transform evaluated at £ is given by

(2m)™* [ Blig — in, in)(¢ — )i (n)d,

It is not difficult to see from the above that ¢’ acts by differentiating v, whereas 9" acts
by differentiating w. With the above definition in mind, we can write the general form of

a second order semilinear Klein-Gordon equation as
1 / U y
O+ Du=Flud)= > Ap(@,0)[0]u][0fu], (6.2)
j,k=0

where Aj;, is a polynomial of degree at most 1 — j in 0" and 1 — k in 0".

Our goal is to prove global existence for this system given initial data
u(0,7) = f € H*, Owu(0,7) =g H!

where

1Cf, ) lrrsxmsr < 0 <1,

for s > 10.

Let D' ;= —id" and D" := —i0”. We would like to construct
1 .
U:= Z Bjk(D',D”)[ﬁtju][ﬁfu],
k=0
where the Bjj are chosen so that if W = u— U, then OW = F(u,u') — (O+ 1)U is of third

order in u.

In order to appropriately choose the Bj;, we first compute (0 + 1)U. We see that
1

(1=2A)U = > (L+ D)+ (2D, D") = 1) + (L + |[D"*)Biu(D', D")[8] ][0} u],

7,k=0
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ORU = 37 B, D) ([0F 2l 0] + 2008 w0 ] + (0]l 0 )

7,k=0

Observe that
Nu=0l(A —u+ F(u,u)) = —(|D|* + 1)d)u + 8 F(u, ).
Applying this substitution, we can conclude that
(O+ 1)U = (2(D',D") = 1)Boo (D', D" [u][u] + 2Boo(D’, D")[0u][0pu] + R4
+(2(D', D"y — 1)Bio(D', D")[0pu][u] — 2(1 + | D'1*)Bio(D', D")[u][0pu] + R
+ (2(D', D"y — 1)Boy1 (D', D")[u][0yu] — 2(1 + | D"|*)Boy (D', D")[Ou][u] + R
+ (2(D’, D"y — 1)B11 (D', D")[0,u][0yu] + 2(1 + |D'|*)(1 + | D" |*) Bi1 (D', D")[u][u] + R,
where
R = Boo(D', D)([F(u, u)][u] + [W][F(u, w)])
Ra = Bio(D', D")([0:F (u, u)][u] + 2[F (u, uw')][Ou] + [Opu][F (u, u')])
Rs = Bor(D', D")([u][0:F (u, )] + 2[0u] [ (u, u)] + [F(u, u)][Opu])
Ra = Bua(D', D")([0cF (u, w)][0pu] + 2[F (w, )] [F (u, )] — 2| D"[* + 1)[F (u, )] [u]
= 2(|D']* + D[] [F (u, w)] + [Ou] [0F (u, w')]).

Let R := R1 + R2 + R3 + R4. We would like to choose Bji, so that (O + 1)U =

F(u,u)+R. This will imply that (O+1)W = —R is third order in u. From (6.2), we see
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that

Boo(&,m)(2(&,m) — 1) +2Bu (&, ) (1 + [€12) (1 + In]*) = Ano(i€, in),
Bll(ga 77)(2<5»77> - 1) + 2800(&7 77) = All(igain)a
Bio(&,m)(2(€,m) — 1) — 2Bou (&, n)(1 + [n]*) = Awo (i€, in),

Solving this system for Bj;, we obtain

Boo(&,m) =((1 = 2(&m)) Ao (€, in) + 2(1 + [€*)(1 + |n[*)An (€, in))K(E, n),
Bui1(§,m) =((1 = 2§, m) A (i€, in) + 2A00 (i€, in) )K(E, ),

Boi(&m) =((1 = 2(€,m)) Ao (i€, i) — 2(1 + €]*) Aro (i€, n))K(€, n),

Bio(€, 1) =((1 = 2(&, m)) Ao (i€, in) — 2(1 + [n]*) A1 (i€, in) ) (€, ).

where

K(&,m) = (4(EP > = € m? + €7 + Inl> + (& n) +3)~"

6.3 The Multiplier Class S(a,b,c,d)

Rather than prove bounds on B;, directly, we will instead establish estimates for a

special class of Fourier multipliers. We define this class as follows

Definition 6.3.1. Let a,b,c,d € Z be given. We define the multiplier class S(a,b,c,d) as
follows: Given m(&,n) € C®(R3*™3), we say m € S(a,b,c,d) if for every ky, ko € Z > 0 we
have

| F (P (&) Py (0)m(&,m)) (, y) || o1 msrsy < C20F12bk29¢kodk” (6.3)
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where k := max(ky, ko), k' = min(ky, k2) and C' does not depend on our choice of ki and

ks

In order to prove some important results regarding elements of S(a, b, ¢, d) we will

need the following generalized version of Holder’s inequality.

Lemma 6.3.1. ([12], section 7.8) Suppose P € L'(R**3) and P := P. Let 1 < p,q,7 < o0

be such that % + % = %, then
1P, D) ]l S Pl llullze [0l s,
for any u,v € S(R?)

Proof. We will first prove this for two cases: (p,q,r) = (00, 00,00) and (p,q,r) = (p,p’, 0)
where p’ denotes the Holder conjugate of p.
Case 1: (p,4,7) = (00, 00,00)
We have that
|P(D', D")[u][v](x)| = ’//P Y, 2 —y)(r — 2)dydz| .
We can bound this by

lulle=llwlle= [ [ 1Py, 2)ldydz, (6.4)

giving us the desired bound.

Case 2: (p,q,7) = (p,p',1)

Observe that

‘//P Y, 2 —y)v(r — z)dydz| <

< [ [ 1P 2)lluz = y)lloe — 2)ldyd=.
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Integrating over x and applying Tonelli’s theorem, we see that

1P, D)@l < [ [ 1P@.2)] [ lu@ = y)llo(e - 2)ldedyd=.

Applying Holder’s inequality, we may bound this by

| [ 1P 2)ldydzlules o] (6.5)

giving us the desired inequality.
Given v € S(R3) define TV : L'+ L>* — L'+ L>® by T"(u) = P(D’, D")[u][v]. Then

from (6.4) and (6.5) we have
1T ()l 2o < 1P|t llull e f[oll

and

1T (u)ller < (1Pl [lul[ o [[o] s

Let 1 < p < oo, then we can apply the Riesz-Thorin Interpolation theorem and

deduce from the bounds above that
1T (u)||e < [Pl lfwllce o]l 2o (6.6)

Given u € S(R?), define T% : L + L® — LY 4+ L™ by T%(v) = P(D’, D")[u][v].

From (6.5) we have the inequality
1T ()l < NIPleallellee o] 2

and from (6.6) we have

[T () e < 1P|zl ze V]l e
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Interpolating between these two inequalities we get

17 ()ler < [Pl el zel[v]] 2o,

We apply the preceding Lemma to prove the following set of dyadic estimates.

Lemma 6.3.2. Let m € S(a,b,c,d) with a,b,c,d € Z and let M be the operator whose

Fourier multiplier is m. Then for all 1 < p,q,r < oo with % + % =L and ki, ky € Z>o we

T

have the uniform family of bounds
IM(D', D") [Py 0] [Pryw)|[ e S (272%) 28| Py | 022" || Py | o, (6.7)
where k := max(ky, kg), k' = min(ky, k2).

Proof. Let vy, = Py,v, wp, = Pr,w and fix z € R3. Then

MDDyl Po(@) = 5z [ [ € m(€m)on, (€, ().

Define my, 1,(€,1) = Py, (€) Py (n)m(&,1) and My, g, = F (Mg, 1,), then we can replace

the above expression with

1

M(D, D) [Pel[Prwl(e) = (55 [ e mi o (€ m)on, € () decn

= M/ﬁ,kz(D/’ D//)[Plﬂv] [Py, w] ().
From Lemma 6.3.1 we see that (6.7) follows from proving

HMkl,lm(Dla DH)HLI(R3+3) S CQakIZbk22Ck2dk/,
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where C' does not depend on our choice of ki and ko. But this is an immediate consequence

of our definition of S(a,b,c,d).

]

We close this section with an important result that will be used repeatedly to prove
our main estimates in Chapter 7. We remark that this result is a generalized version of

Theorem 2.2.1.

Proposition 6.3.1. Assume M € S(a,b,c,d) and 1 < p,p1, i, q, G, G; < 00 are such that

L — L L Pyrthermore, assume r,\,\ > 0,0,5 > 0,
q2 q1 q2

||M(D/, D//) [U] [U)] HLfW;’q[k] 5 ||U||Lf1 W;""—""'(“"'C)»ql (4 ||U}||L?2 W3—0+(b+d),q2 K]

+ HUHLfl Wi\7&+(a+d)’ql [k] Hw H Lf2 W;+5’+(b+c),§2 [k} .

Proof. Let C' > 10 be a fixed constant.

M, D) felfellapwzapg = (3 271 BM(D, D)ol )

k>0
1

< (T2(X X IBMD', D" [Pl Powllzgrs)?)
k>0 k1>0 k2>0

S(Z2C Y8 IMWLD)[ Bl Paullizg)?)
k>0 |k1—k|<C ka<k+C

HE (S X MO D[Pyl Pl lee)?)
k>0 k1>k—C |ky—k1|<C

HE (XS MO D PPl i)
k>0 ker <k+C |ko—k|+C

=1+ 11+1I1.
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We first bound (/). By Lemma 6.3.2

N

(I) 5 (Z 22”( Z Z 2k1(a+C)HPk1“HLf1Lgl 2k2(b+d)HpkszLf?L?)Q)
k>0 |k1—k|<C ka<k+C

1
_ 3
S (Z 22kr( Z Z zkl(a+c+0)||Pk1U||L§’1Lzl gka(b+d 0)||szw||Lf2Lg2>2)
k>0 k1 —k|<C ko <k+C

1
< (Z 22kr( Z 2kl(a+c+g)||Pk1UHLf1Lgl)2) 2 ( Z 2k2(b+da)HszwﬂLf%g?)-

k>0 k1 —k|<C k2>0

By Young’s inequality in k& and Cauchy-Schwartz in ky we can bound the above by

1
2
S ( Z 22k(r+a+c+0) ||ka||%f1 Lg1) ( Z

1 1
2k (A—o+b+d) 2 2 —2ko) | 2

2 HPkaHLf?LgZ Z 2

k>0 k2>0 k2>0

S H’U HLfl Wzr+a+c+0,q1 K] H'U)HLiQ W;\—a+b+d,qz [k] .

We now turn our attention to (II). Once again, by Lemma 6.3.2 and Young’s in-

equality in ki, we see that

NG

2
(T2 £ % 2Pl 20| Pwl )

k>0 k1>k—C |ky—Fk; |<C

N

2
< ( Z 22kr( Z Z ok1(ateto) ||P'I€1U||L1:1 L oka(b+d—o) ||Pk2w||Lf2LZQ> >
k>0 ke >k—C |ko—ky|<C

2 2
S(ZQ%T( Z 2k1(a+c+o)||Pk1U||Lf1Lgl)( Z 2k2(b+d—0’)||Pk2w||L1t02ng))2.

k>0 k1>k—-C ko>k—C

Applying the Cauchy-Schwartz inequality in both k; and ks independently, we conclude

that the above is

1
(T2 ( 8 ) g S 2 0l ey

k>0 k1>k—-C ko>k—C

1
5 ( ];) 22]4?(7"—7’—)0) 2 ||’U || Liq W;+a+c+a,q1 [k] ||w || L$2 Wz)\fa+b+d,q2 [k]

S HUHLfl W;+a+c’q1 K] HwHLfQ W$+b+d,q2 K"
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By interchanging the roles of v and w in the proof of estimate (I), we can conclude that

(1) 5 HUHL?W;*&JWH@ [k]Hw’|LfQW£+b+C+5’q2 ]

6.4 Dyadic Kernel Bounds

Recall that

Boo(€,m) =((1 = 2(&,m)) Ao (i€, in) + 2(1 + [€]*)(1 + [n|*) Au (€, i) K (€, m)
Bui(§,m) =((1 = 2(6,m)An (i€, in) + 2A00 (i€, in))K(E, n)

Boi (&, m) =((1 = 2(& m)) A1 (i€, in) — 2(1 + [€]*) Aro (i€, in) )K (€, )

Bio(&§,m) =((1 = 2(¢, m))Aw (i€, in) — 2(1 + [nf*) Ao (i€, i) K (&, ),

where A;;(€,n) is a polynomial of degree at most 1 —4 in £ and 1 — j in n and

K(&,m) = 4(EPPP — (& n)* + P + nl* + (& m) +3) 7" =

H(&,n)

Our main goal in this section is to prove the following result.
Proposition 6.4.1. A, € S(1—4,1—k,0,0) and Bj, € S(2—7j,2—k,—2,6)

It is not difficult to see that if f € S(ay,b1,c¢1,dq) and g € S(ag, by, co,dy), then fg €
S(ay 4 ag, by + by, ¢1 + co, dy + ds). Tt therefore suffices to show that IC € S(0,0,—2,6), and
that if P;;(£,n) is a polynomial of degree ¢ in £ and j in ), then we have P,; € S(i,7,0,0).
In order to streamline our argument, we aim to find a condition that guarantees

that an operator M with symbol m(§,n) is in S(Ny, Na, N3, Ny). Let
1 .
M ao(D D" yy) = (50 [ [ e (e, ) P (€) Pey () el
7w’ Jrs Jr3
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Then, by definition of S(-,-, -, -) it suffices to find a condition that guarantees the estimate
My, 1, (D' D" (2, y)|| 1 rarsy < C2N1F1gN2kzgNakgNak! 6.8
1,R2 y ( )

where k = max{ky, ko}, k' = min{k, k2} and C does not depend on our choice of ki, ks.

We present the following result.
Proposition 6.4.2. Let ky, ks € Z>o and l,p € {1,2,3}. Define
al a
mizy (& m) = 05,08, m(&,m).

If

| P (6) Py (mym ) (6, mll s vy S 20V OMagNe-DikagNakgNekighugihe - (6.9)
for all a,b € {0,1,2,3,4} and p,l € {1,2,3}, then estimate (6.8) holds.
Proof. We will decompose R33 as follows: define the sets
By = {(z,y) e R7: o] <270 [y <277},
By :={(z,y) R i fa| 2271}, Byo={(z,y) e R7: [y > 27"}
By symmetry, we only need to show
Moy 1y (D', D") (i, y) || 1 i) S 2712 Nk2 Vs Nak,

||Mk:1,k;2 (D/, D/,)(l'yy)HLl(Eg) 5 2N1k12N2k22N3k2N4k/

Observe that

[ Mo (@, Y L2 (1) < B[ My (2, )| oo
From the definition of E;, we see that
|E1| 5 2—3k12—3k2
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Furthermore,

Mo (D D)l S [ [ m(&m) Pry (§) P () el

S 1Py () Py (M)muo,0) (€, m) |1 re2

S 2N1k’1 2N2k2 2N3/<:2N4k’/23k1 23](:2 ’

where the last inequality comes from (6.9).

Our next task is to bound |[Mp, x, (D', D")(x,y)| 1 (). Observe that

[ 1Mis (D D) )l ddy
2

YU LU A
Es

(1+2%2[y[*) (1 + 29 |z|*)
Applying the fact that 2¥'|z| > 1 on F, and Holder’s inequality, we can conclude the above

Mkl,k2 (D/, D//) (:L’, y) dl‘dy

expression is bounded by

S+ 2%y [ @5 |2 ') My g (D', D) (2, )| 0 ()

></ 1 1 dzd
T
moes (1+ 282y ) (1 4 2%z [8) Y

2727 | (1 4 22y 1) (2" |2 [ ) My o (D', D) (2, y) || oo (2.
so it remains to show that
11+ 22 [y [ (2" 2 [) Mg, gy (D, D) (@, y) || ey S 2N HF12N2R22 s Nak g3k 9382 (6.10)
We can bound the LHS of the above expression by

3 3
SN +2% Yy @ Y ) My, 4y (D', D) (@, )| Lo ()
=1 p=1
3 3
S Z H24k1x§Mk1,k2 (Dla D//)(xvy)”Loo + Z ||24k224k1y?x§Mk1,k2(Dl7 D”)(JZ, y)HL"O’

p=1 p,l=1
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so we are left with showing
H24klx§~/\/lk1,k2 (D/, D//) (i[/‘, y)HLOO 5 2N1k’12N2k22N3k2N4k;’23k123k2,

H24k224k1 4Mk; i (D/ D//)(x y)HLOO 2N1k’12N2k22N3k2N4k’23k123]€2
1,R2 9

for all I,p € {1,2,3}.

(6.11)

(6.12)

We will mainly focus on proving estimate (6.12) as the proof of (6.11) is similar.

By applying basic properties of the Fourier transform, we can conclude tht
24k2yl24k1 xéMkl,kg (Dl, D//) (LU, y)
= o2t [ [ D) o) (. n) P () Pey ().
R

S0,

2%y 2% 02 My, o (D', D)2,

< gihigts /R o P (©)Pes(n ) |0,08 (m(&,m) Pe, (&) Py (1)) | dédln.

We observe that

4
0308 [m(& M) P () Pea (]| S D7 [m (&m0 Py (€)0 " Pr ()]
a,b=0
4
<3 mE (& m)] 198 Py ()l ee 195, Py (1) 2.
a,b=0

As Py, (&) = PO(%), we can conclude that

108, Py ()| < 27454 [10g, Po (&)l

< 9 Mk

Similarly, we have

100 Py ()| oo S 27252,
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Therefore, we can bound the RHS of equation (6.14) by

4
Z 2a 4k12(b 4 ko
a,b=0

m) (&)

This allows us to bound the RHS of (6.13) by

4
< Z 2ak12bk2HPk1 (&) P,, (U)mEZZ?)(fa77)HL1(R3+3) < 2N1k12N2k22N3k2N4k’23k123k27
a,b=0

where the last inequality comes from (6.9). This concludes the proof of (6.12). O

Corollary 6.4.1. If P,;(§,m) is a polynomial of degree < i in & and < j inn fori,j € Zx

then P;; € S(i,4,0,0).
Proof. Fix i,j € Z>o, then for all a,b € Zs it is easy to see that (Pij)gz”?) is a polynomial

of degree <7 —ain ¢ and < 7 — b in 7, so we have

1Pis (€) P () (P ) (€ m) 1y S 207120702 By, (€) Py ()| 1 vy

< 2(i—a)k1 Q(j—b)k‘g 23/4:1 23k2.

By Proposition 6.4.2 it follows that P;; € S(¢, j,0,0). O

We now focus our attention on proving KC(&,n) € S(0,0,—2,6). By Proposition

6.4.2, this will follow from proving
| Pr (€ Pry M) (6 M| 3 vy S 27127 Pap koW gshagike, (6.15)

for all a,b € {0,1,2,3,4},p,1 € {1,2,3}, where we recall that k = max{ky, ks }, & =
min{ ki, k2 } and ICEZZQ)(S,U) = 02182‘10/@5,77) for some fixed I,p € {1,2,3} .
Because (€, n) is symmetric in £ and 7 we can assume without loss of generality

that ky > ky so that k = k; and k¥’ = ky. For convenience we fix p,l € {1,2,3} and write
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ICEZZ?) = K(ap) and H(((‘f(l); = Hayp) in which case we can rewrite (6.15) as
1Py (€) Py (0K (0 (. m) || 1 ey S 27 G670 93k 3k, (6.16)

Fix € R? with || ~ 2. Then for any ¢ € R® with |¢| ~ 2% we denote 6, () = 6 to be

the angle between n and £. We observe that (6.16) follows from showing

/ [n]~2*'
/ n|~2k’

/A+
/| k// Ko (& m)ldédn 27 okl pshigsts (6.19)
In|~2%" J (B4 )n

/|77|~2k/ (B-)

() (€, m)|dEdn S 27 CHOkQ(6-DR g3k g3k (6.17)

Kian) (& m)|dédn < 27 Gk gdagie, (6.18)

Ky (&, m)|dedn S 27 R0t gihgihe, (6.20)
where
(Ap)y = {€ € R¥10,(&)] < 27"} N {le] ~ 2},
(Ao)y = {€ € Rl — 0,(¢)| <27} n{le] ~ 2},
o m
(Bi)y = {€ € R727" < 16,(O)] < 5} n{lel ~ 2°,
Lk T
(B)y ={€ e R27" < |m = 0,() < 5} {J¢] ~ 2%

We will only focus on proving estimates (6.17) and (6.19) as (6.18) and (6.20) can be
proved using a nearly identical argument. Furthermore, we can replace A, and B, with
AL N{0 >0} and BL N {0 > 0} respectively. We will first need two results:

Given a,b € Zso with a +b > 1, define D(a,b) to be the set consisting of all

(a + b)-tuples whose entries are 0, 1, or 2 and recall that

H = = (4(I€PIn)* - 2 2 2 3). 6.21
(& m) K& (A€l nl" = (& m™ + &7+ [nl” + (&, m) + 3) (6.21)
The following result holds true:
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Lemma 6.4.1. Let a,b € Zso with a +b > 1 and D(a,b) be defined as above, then we

have

where C(a, f) € R.

1 a+b
K(a,b) = Ja+b+1 Z C(O./, B) H H(aiﬂi) (6'22)
(c,)ED(a,b)? i=1
lal=a
|B|=b

Proof. We split the proof up into 3 cases.

Case 1: a > 1,b=0.

We proceed by induction. The base case is a = 1,b = 0. In the case we have

H1,0)
—

Ko =

and so estimate (6.22) holds.

Next, assume /C(y ¢y satisfies estimate (6.22) for some a’ > 1. We aim to show that

K(ar+1,0) satisfies estimate (6.22). In particular, we would like to show

We observe that

1 a'+1

’C(a/Jrl,U) = W Z C(Oé) H H(ai,O)- (623)
aeD(a'+1,0) i=1
|al=a’+1

K10 = 0, K(ar0)

a/

1
:<9spHa/+1) Y. C@) ] Heo

aeD(a’,0) =1
|a|=a’
1 o
- Ho+1 O, Z C(a) H Hia;,0)
a€D(a’,0) =1
|at|=a’

=1+1I.
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Ha0

Observe that 0, ( e +1) = — o2, therefore
1 «
(1) = Hor2 > Cl@)(~Hau) [T Hewo)
aeD(a’,0) i=1
|a|=a’
1 a’+1
fry 7H(J/+2 Z C H H(al
aeD(a'+1,0)
|&|=a’+1

where C(@) = 0, if dgrqq # 1.

We now focus our attention on (/). We rewrite (I1) as

1 o
(I]> = Ha/+1 Z C( aﬁp (H H(ai,o))

aeD(a’ O) i=1
lal=a
1 o
= a2 > Cl)Hood, | [[Heo | -
aeD(a’ 0) i=1

lo|=a
Observe that
a&) (H H(Oémo)) = Z O(a o ) H (a},0)5
i=1 a’eD(d’,0) =1
|a/|=a’+1

where many of the C(«, o) are 0. We can therefore conclude that

/

1
(I[) Hal+2 Z C( ) 0 0) Z O(Oé (6% ) H a 0)
a€eD(a 0) o’eD(a’,0) 1=1
laj=a lo’|=a’+1
1 a’+1
g X C@) 1
&€D(a’'+1,0)
|&|=a’+1

where C(@) = 0 if a4y # 0.

Combining (I) and (/1) gives us equation (6.23), completing the proof for case 1.

Case 2: a>1,0>0
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We will fix ¢ > 1 and induct on the value of b. The base case b = 0 follows from

case 1. Suppose (4 satisfies estimate (6.22) for some b > 0. We would like to prove

that C(qp+1) satisfies estimate (6.22). Our goal then is to show that

1
Ky = a2 >
(o, B)ED(a,b'+1)?
lo|=a
|B]=b"+1

where C(o, ) € R

We observe that

Kap+1) = 0 Kiay)

C(Oé,ﬁ) H H(%ﬁi)’
=1

a+b'+1
(6.24)

1 a+b/
= (0771 Ha+b/+1> Z C(Oé,/ﬁ) H H(a“ﬁl)
a,B€D(ab’) =1
|or|=a
18]=b
1 a+b
+ Terwrin Y. O B) I] Heups
a,8€D(a,b’) =1
lal=a
|8]=b"
=I1+1I.
Notice that O, (ﬁ) = — HZfé} ), therefore
1 a+b’
() = TJatv+2 Z Cla, B)(—Ho,1)) H Ha, 8,)
a,B8€D(a,b’) i=1
la|=a
18|=b
1 B a+b'+1
- Ha+v'+2 Z C(a, ) H H(aiﬁi)’
a,B,€D(a,b’+1) =1
|a|=a
|Bl=b+1

where Cl(a, ) = 0 if fy4q # 1.
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We now focus our attention on (I1). We rewrite (I1) as

1 a+b’
(1) = vl > Cle, )a"]l<1_{H(aiﬁi))

a,f€D(a,b’)
la|=a
\ﬁ|=b’
1 a+b’
= Ha+b/+2 Z C( /B)H(O 0 H H(az ﬁz
a€D(ab’)
|or|=a
|/3|:b'

Observe that

a+b’ a+b’
am (H H(O‘ivﬁi)) = Z C(avﬁvﬁ/) H H(Oéiﬂ,’-)’
i=1 a,B'€D(a,b’) i=1
|a|=a

18'|=b+1

where many of the C(«, 5, ') are 0. So we can conclude that

1 a+b’
(IT) = Horvez > Cla)Hqy > Cla,of H Hia, p
a,B€D(ab’) a,8'e€D(a’,0)
la|=a lal=a
o =41
1 - a’—i—b’l

= Hatv'+2 Z C(Oé,ﬁ) H H(a¢,/§¢)’
a,BeD(ab'+1) =1
lo|=a
|Bl=b'+1

where C(a, 3) = 0if By41 # 0. Combining (1) and (IT) gives us equation (6.24) completing
the proof for case 2.

Case 3: a=0,0>1
As K is symmetric with respect to & and n this follows from case 1, completing our

proof. O

Lemma 6.4.2. Fiz n € {|n| ~ 2"}, then on [(Ay U By), N {0,(6) > 0}] we have the
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following bounds

- SJ max{Q‘zk, (22k22k’92)—1}7
H(O7O) (gv 77)

Hao(&n)| S max{22k’2k9, 2k1,
Hony(&n)| S maX{Qk/Q%G, 2k1,
Han(&n)| S maX{QkIQkG, 1},
He0)(€,m)| S 2%,

H(0,2)(5,77) S 2%7

Hen(&m)| <25,

Huo(&m)| S 2,

Hpp(m)| S 1.
Proof. Recall that
Ho,0) = 4117 = (&,m)* + [€]° + [n]* + (&,m)) + 3.
After several straightforward computations we obtain
Ho) = 428 [n1* — 20y (€, 1) + 26, + 1],
H0) = 4[2n]° — 207 + 2,
Hpy = A[46m — 48 + 0l

Hpqy = A[dm — 46,mp),

Hppo) = 16[1 — ).
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It is easy to see that |Hn)| < 22K |Hon| S oK' |H2)| S 1 and by symmetry [Hgz)| <

~Y

2% |H(1 2| < 2. It remains to prove the estimates on |H(i . |, [ Ho)ls [H)|, and [ He .

We can rewrite Hg ) as
Ho,0) = (€17 |n|* sin® 0 + [€]* + [n]* + (&, m)) + 3.

As 6% 5 sin® 6 on [0, 5] and [€]* + [n|* + (¢, 1) 2 max([¢[*, [n]*), we see that

min{2% 22F92 921 < |£|2|n|260% 4+ max(|¢]?, |n)?) < | H 0,0)]-

We conclude that

1

- —2k (52ko2K p2y—1
< min{22k, 22k22k G2} = max{2"", (27277 6%) " }.

| 1
Ho,0)

We next attempt to bound |H ¢)|. Recall that

H(LO) = 4[2§p|77|2 - 27717 <£a 77) + 2§p + np],

and observe that
&plnl* = np (€. m) | = |&In]* — mpl€lIn| cos 6]

Define £ := % and 7 := % Then we can rewrite the above expression as

|§p|7i|2 —np(&m) | = H§||77|2(€p — fjp cos 0)]
< ¢l — 7ol + (1 — cos 0)|7j, ]
< [¢lnPl|&p — 7ol + (1 — cos ).
Observe that
16y = Ml> < 1€ = 71> = |€17 + |71 — 2€][7] cos 0

= 2(1 — cos ),
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so we conclude that

[Haol S 1€lnP[(1 = cos )1/ + (1 — cos 0)]| + 2*
< LEllnl?lo] +2*

< max (2722 19|, 2%).
By symmetry, we also have
|Ho,1y| < max(222¥|9],2).
We now attempt to bound |H (i 1)|. Recall that
Hyny = 4[48m — 48 + pi).-

Observe that

‘gpnl - npfl’ < |§ X 77|
= [¢]|n]] sin 6|

~ [€]Inll6],

Allowing us to deduce that
|Ho .y < max{2"'2%6,1}
As desired. O
We are finally ready to prove estimates (6.17) and (6.19).

Proposition 6.4.3. The following holds true:

K. dedn < 9~ (2+a)ko(6-b)k'93ko3k" 6.5
/In~2k’ /(Am{ezo})n| i (& mldedn 3 (6.25)
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Proof. From Lemma 6.4.1, we know we can bound || on Ay N {f > 0} by a sum of

terms of the form

Hio Hgny Hiey Heyo Higo Hign Hi'o Hiz)

e - , (6.26)
H(O-t-o)-‘rl 0
where we have
8
> ni=a+b, (6.27)
i=0
a=n;+n3+ 2714 + 2n6 +n7 + 2”87 (628)
b = n9 + nz + 2ns + ng + 2n7 + 2ng. (6.29)

From Lemma 6.4.2 and the fact that 0 < 8 < 27% on A, N {# > 0} we know we
can bound (6.26) by a product of multiples of 2¥ and 2*'.

We first sum up the powers of 2¥ in the numerator. Using Lemma 6.4.2 we see that

The exponent on 2*
< ny + 2ny + n3 + 2n5 + ny.

in the numerator

The exponent on 2*
>2(a+b+1—ny).

in the denminator
Combining these two facts, we see that the total power of 2F is
<ni+42ny+n3+2n5+n; —2(a+b+1—ng).
By equation (6.27), this
8
=n1 + 20y +n3 +2n5 +n7 — 2(1+ > _ny)
i=1
= —(n1 + n3 + 2n4 + 2n6 + ny + 2ng + 2)

= —(a+2),
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where the last equality comes from equation (6.28).
We now sum up the powers of 2. As # < 2% on A, we can replace the first four

bounds in Lemma 6.4.2 by

H(o,o) (&n)

H(1,0) (fa 77) § 2k ok

Ho(&n)| S 2%

H(1,1)(f, 77) S 2k>

allowing us to conclude

The exponent on 2%
< ny+2n4 + ng.

in the numerator

The exponent on 2%
> 0.

in the denominator

Combining these two facts, we see that the total power of 2% is

< ny +2n4 + ng

<a
=a+b—0
<8 —b,

where the last inequality comes from our assumption that a,b < 4.

So far we have shown that |KC(az) (&, n)| < 2072-9k2E=-0K o
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(AL N {6 > 0}),. Observe that [(Ay N {6 > 0}),| < 23272 Tt follows that

IC dédn < 2(727(1)]{2(871))]6/ A.N{6>0 d
/|77|~2k/ ‘/(AJrﬂ{@ZO})n‘ (’5777)‘ f U |T]\N2k/ ’( + { = })77’ n

< 9~ (2+a)k‘2(6—b)k‘/ 23k: 23k‘/

as desired. O

Proposition 6.4.4. The following holds true:

Ka ,n)|déd < 2_(2*‘0)/62(6—6)1@’23/{23;6/. 6.30
/|77~2k/ /(B+ﬂ{920}),7‘ ( ,b)(f 77)| f ns ( )

Proof. Once again we bound |K(a,b)| by a sum of terms of the form

Hil o) Higny Hiyy H o) Higoy Hizy Hiay Hiz)
Ha+b+1—n0 )
(0.0)

where (6.27), (6.28), and (6.29) are still valid. From Lemma 6.4.2 we know we can bound
this by a product of multiples of 2¥, 2% and #. We first sum up the powers of 2¥ in the

numerator. Using Lemma 6.4.2 we see that

The exponent on 2F
< n1+2n2+n3+2n5—|—n7.

in the numerator

The exponent on 2*
>2(a+b+1—ngp).

in the denminator
Combining these two facts, we see that the total power of 2% is
< n1+2n2+n3+2n5+n7—2(a+b+1—no).
By equation (6.27), this
8
=n1 + 20y +n3 +2n5 +n7 — 2(1+ > ny)
i=1
= —(n1 + n3 + 2n4 + 2n6 + ny + 2ng + 2)

=—(a+2).
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where the last equality comes from equation (6.28).

We now sum up the powers of 2%

The exponent on 2%
S 2711 + N9 + +ng + 2714 + ng.

in the numerator

The exponent on 2%
=2(a+b+1—ny).

in the denminator

Combining these two facts we see that the total power of 2¥ is

<2ny +ng+n3+2ns+ng—2(a+b+1—ng)
:—(n2+n3—|—2n5+n6+2n7+2ng+2)

=—(b+2)

Finally, we compute a bound for the total exponent on #. Once again we use Lemma 6.4.2

to deduce
The exponent on 6

=Ny + N9 + ns.
in the numerator

The exponent on 6
=2(a+b+1—nyp),
in the denominator

so the total exponent is
=n;+ny+ns—2(a+b+1—ng)

=,
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where we note that o < 0. From equations (6.27)-(6.29) we have

a+b:§:ni
=0
and
a+b=mny+no+ 2n3+ 2n4 + 2n5 + 3ng + 3ny + 4nsg.
Solving for ngy, we obtain
ng = N3 + N4 + ns + 2ne + 2n7 + 3ng
so that
a =mny + ng + 3nz + 2ny + 2n5 + 4ng + 4dny + 6ng — 2(a + b+ 1)

=ng+ng+n;+2ng+(a+b)—2(a+b+1)

=ng+ne+ny+2ng — (a+ b+ 2).
It follows that

—(a+2)<a+b<8.

We can therefore conclude that

2—k

/ / K&, m)|dEdn < 93k93k' 9 —(a+2)kg—(b+2)k’ /g 0“ sin 0df
In|~2*" JBN{6>0} ~

523k23k’2(a+2)k2(b+2)k’/g 0o+ g9

2k

s
2

< 23k23k’27(a+2)k27(b+2)k/ (_60&+2)

2—k

< 23k‘ 23]6’ 2—(a+2)k‘2— (b+2)k’/ 2—k/(a+2)
< 23k’ 23]6’ 2—(a+2)k2— (b+2)K’ 28]6’

— 23k231€’2—ak2—bk‘/2—2k‘26k/ ]
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Chapter 7

The Second Order Semilinear

Klein-Gordon Equation

7.1 Local Existence

We dedicate this chapter to proving well-posedness of the second order semilinear
Klein-Gordon system in H*(R?) for s > 10. Our proof will rely on the bootstrap argument
outlined in section 3.2. The reader may recall that this method requires an established
local theory. For this reason, we dedicate this section to the relatively straightforward task
of proving local existence. In particular, we will employ the contraction method outlined

in section 3.1 to prove the following theorem

Theorem 7.1.1. Given s > 2 and 0 < T < 1, there exists 6 > 0 such that if (ug,uq) €

H® x HV with ||ug| gs-1 < 0, then there exists a unique v € C([0,T); H?)

s+ ||u]
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satisfying
1

O+ Du= Y Aj(9,0")[0/u][0ku], (7.1)

]7k:0

with initial data
u(0,2) = ug € H*(R?), 0u(0,2) = uy € H*H(R?).
Furthermore, the map uy — u is Lipschitz continuous.

Proof. Fix s >2, 1 <s' <s—1,0<T <1, and define X7, S7(§), and Ny by the norms

1

[ullx, = ; (||atiuHLg°([o,T],H;*i)[k] + H3§UI|Lg([O,T],W;/-i,oo)[k]),

[ullsy = {u € Xz : [Jullx, < Cod},
[ullvy = ||u||Lt1([o,T],H;*1)[k]>

where Cj is chosen to be sufficiently large.
From our discussion in Chapter 3, local well-posedness on [0, 7] will follow from

proving the following four estimates

W (o, ur) |, S 11 (uo, wa)l| g a1 (7.2)

1@ lsn £ G e (13

||§0Ajk[azw] 0wl S ol (7.4)

IS (Aloio] o8] — Apfdiul@be)llv, s o — wllx. 7.5

5,k=0
for all v,w € Sp. We recall that

Dy ()

W (ug, u)(t,-) = e Plug(-) + D)
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and

LG)(t,) = /Ot Sn(ilt - 2%))) ) g,

Estimates (7.2) and (7.3) follow from nearly identical arguments to the ones used for the
analogous estimates in section 4.2. It is not difficult to see that estimate (7.4) follows from
proving

M l0F vl [0F e S ol ]l (7.6)

for all j,k € {0,1} and v, w € X7.
As Aj, € S(1—34,1—£,0,0) we can apply 6.3.1 withr=s—1,0=6=0,A=\=

sS—Ipp=pp=@=a=00,p=p=1,¢ =g =2toget

1Ak 0F 0l [0F 0l g s S 1070 e s 11O

L ]

' k
+ 10701 gy o0 |00 e gz g
S lollx T 07wl

” T "‘T1/2H85UHL%W;’—]',OO[I(]HU)HXT

L2Ws K]
S./ Tl/Z”UHXTHwHXT
< [[ollxzllwllxz,

where we used our assumption that 7" < 1.

We now turn our attention to estimate (7.5). Let

J(v,w) = %; Aj[0]0][0Fw)].
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As each Aj; is bilinear, it follows that J is as well so we can conclude

[J(v,0) = J(w, w)|[x; < || J(v,0) = J(v,0)||xp + | (v, 0) = T (w, )| x
< C”UHXTHU - wHXT + CHwHXTHU - wHXT

< 2CCH||v — wl| x,

where the second inequality follows from the bilinearity of J and equation (7.6) and the

last inequality follows from the definition of Sy. [

7.2 Main Estimates

Now that the local theory has been established, we are finally in a position to prove

global well-posedness. Our goal is to prove the following theorem

Theorem 7.2.1. Let s > 10 + € for a given € > 0. There exists 6 > 0 such that if

(ug,uy) € H(R3) x H*YR3) with ||uo

ms + ||ur||gs-r < 0, then there exists a unique
u € Cy([0,00); H?) satisfying
1 / " y
O+ Du=Fu,u) =Y Au(0,0")[0u][0ful, (7.7)

J,k=0

Furthermore, the map ug — u is Lipschitz continuous.

We will take advantage of the Normal forms decomposition © = U + W introduced
in the previous chapter in order to close the bootstrap argument discussed in section 3.2.
Let St be defined by the norm
1
lllsr = 3 (19wl ze oy -0 + ”‘95“||L3<[0,T1,w3*”5’°">[k})’

=0
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and assume

[ullsy < Mb,

for some sufficiently large constant M independent of 7. By the bootstrap argument it

suffices to show that

M
Julls, < %4
As u = U + W, this follows from showing
Wlsr <6+ llullg, + llulls, (7.8)
and
1Ullsy S Mlullg, + lulls,, (7.9)

provided ¢ is chosen sufficiently small and M sufficiently large.
Recall that

O+ 1)W = —R,

where

R = Boo(D', D")([F (u, w)][u] + [u][F(u, )]
+Bio(D', D) ([0 F (u, w)][u] + 2[F (u, w)][Opu] + [Opu] [F (u, u')])
+Boy (D', D) ([] [0, F (u, u')] + 2[0,u] [F (u, /)] + [F(u, u')][0;u))
+B11 (D', D")([0uF (u, )] [Dyud] + 2[F (u, )] [F(u, )]

=2(ID"* + DIF (w, )] [u] — 201D + D[ul[F(u, w)] + [0pu] [0F (u, ).
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and that

We can therefore conclude that

B sin(t(D)) t sin((t — s)(D))
W(t) = cos(t(D))W(0) + == =2 Wi (0) —/0 D) s
and
IWils < 32 (€™ W O) | e prz=spg + 1OW O]y 0-s5 ) + IRl

=0

S [1(w(0), u(0))]

HyxHy ™ + H(U(O), Ut(O))I HsxH:™! + HRHLtlH;—l[k]

S 0+ [[(U(0), U (0))]

HsxHS™! + HRHLgH;—I[k]a

o (7.8) follows from proving

1(U(0), Ue(0))]

wpst T IR S0+ [lulls, + [lulls,.

I claim that ||R(u, w)||p1ps-1pg S |ullg, + llullg,. By symmetry, this follows from proving

the following:

Proposition 7.2.1. Let i,5 € {0,1}, then

1By (D', D")OLF (u, w [0 ulll g rs-r1ay S Null, + Nl (7.10)
1B1o(D', D")[F (u, w)[00u]l| p pry=rag S s, + [l (7.11)

1B11 (D", D) (u, u)][F (, w)] | g ey S Nl (7.12)
1B11(D", D) (w, w)I[(ID"* + Dyl | =gy S Nl - (7.13)
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Proof. As B;; € S(2 —i,2 — j,—2,6), we may apply Proposition 6.3.1 to (7.10) with
a=2-ib=2-jc=-2d=6r=s—1 A= A=50=6=0,p=p=2,q =

27QQ = OO?ﬁl = 17ﬁ2 = 00,61 - OO,C]Q =2to get

LHS(7.10) 5 101F (0,0 | gz g 1Ol 055

+ |0, F (u, U gy -sme g 100l e g

Observe that

107 ul 04§00

<
and

107 ull e prs=1-3g S NOF el e =g S el s

So, it’s left to prove

10 F (u, ') g2 s+ + 10, F (u, )| SR REP ull,. + llulls, (7.14)

LW,

We break this down into two cases.

case 1: 1 =0
In this case O} F(u,u') = F(u,u') = Y5, A1 [0]u][0Fu]. Tt therefore suffices to show that,

for all 4,5 € {0,1}

Mk 0 ) OF )| 2 s + 1A IOT W OF ]y segoe S el (7.15)

8+5,
iWe 27 (K]

As Aj, € S(1—4,1—£,0,0) we can apply Proposition 6.3.1 witha=1—-j,b=1—-k,c=

dzO,T:S—L)\ZS\:%U:fT:O,pl:]52200,2?2:]51:2,%:@2:2,@2:@1:00
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to obtain
. ' )
I Aje[0% ] [afu]HLin‘l[k} S N0Ful e -0 19 uHLsz%ka,OO[k]
100l 501000 100l ez
S lulls,

S5 g Applying Proposition 6.3.1

We now turn to estimating ||.4;.[0]u][0Fu]]| w

i)

Witha:l—j,b:1—k,c:d:0,0:&:O,)\:5\:§,p1:p2:151:}52:2,W€see

that
ARy vy S 10 1By
+ ||at]u||L$W;_j+§’°°[k} ||afu||L$W3_k+§’°°[k}
S Nulls,

case 2: 1 =1

In this case, O} F (u,u') = 8, F (u, u') = S} o A ([0 ] [0F u] + [0]u] [0 u]). By symme-
try we only need to consider the terms A;o[0¢u][0yu] and A, [02u][0Fu] for 7,k € {0,1}.
We first consider A;o[0/u][0;u]. We aim to show that

Mol 0 ullOulll 2 1r;-2pg + Al ul O]l rogie ) S [l

As Ajp € S(1—4,1,0,0), we can apply Proposition 6.3.1 with A = A= 5.0=0=0,p
]52 = 00, P2 :]51 = 2,(]1 :ng = Q,QQ :(jl = 00 to obtain
0 Py - 1 pRe s X S

+ HagUHL%Wz%Jrlfj,oo[k] H(?tuHL?ng_l[k}

S lulls, -
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get

I AlOF Ol 7oy S N0l sy |0l o

+ 107 ul

2wy i ”at“”L%wf*%’”[k}

< llulls,

We next consider the term A [02u][0Fu]. In particular, we aim to show that

AP0k g2y + ARG, oy S Dl (716)

t x

As Ay, € S(0,1 — k,0,0), we can apply Proposition 6.3.1 with A\ = \ = 5.0 =0,0 =

0,p1 = P2 =00,p2 =P1 = 2,1 = @2 = 2,q2 = ¢1 = 00 to obtain

I A 030 08l 31022y S 107l -2 10F )y 00,

+ HatQu” [k]Hafu“Lij_l_k[k]

€
2v172°%°
LW

S (198l -2y + 1080l 5.l

It remains to prove the bound

107 ull e 2 + ”af“”ngﬁm[k} < llullsy + ulls, - (7.17)

For the term ||.A;x[0?u] [8fu]||L1W7+5,oo[k] we once again apply Proposition 6.3.1 with o =
+ W
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2 k 2 k
A3 08I, 5.y S N8y s 1O ks
2 k

Combining the above estimate with equation (7.17), we see that (7.16) follows from

107 ull o pr3=2pg + 107wl S lulls + [lulls, (7.18)

2w
Recall that

O*u = (1 + |D.)*)u+ F(u,u)

The first component is easy to handle as
1L+ 1Da )l oo prz-2pg S Nl ez < Mlullsy

and

11+ [ Dg*)u] | < lull oo S llullsy

7 €
2w, 2 2w, 2K

So it remains to show that

1 oty ) | e a2 + I s @] g S Nl

As F(u,u') = 54— Ajk [07][0F] this follows from proving the bound

A1 (07 ul (07 ull| oo -2 + 140 [0F ] [07 ]| (7.19)

for all j,k € {0,1}
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Because A, € S(1 —j,1—k,0,0), we can apply Proposition 6.3.1 with 0 = ¢ =

ODA=A=epi=p=P1=pa=00,q1 = Go = 2,¢2 = G1 = o0 to get

1Ak 0F u [OF Ul e -2 S 107l e prz=1-5puq 00l ey g

107 ull pgeyr-seeopg IOl o pzr-vpg-

Ass—(1+¢€) > 5 = % we can apply Sobolev embedding to bound the expression above

SN0l o 153 1OF N oo 30

+ ”at]UHLtOOH;—J'[k} HaquLgOH;*l*k[k]

< lulls, .
where the last step follows from the definition of || - || s,..
Finally, we turn our attention towards the term ||.A;.[0]u] [8t";u]HL2W7+§,oo[k}. Ap-
plying Proposition 6.3.1 with 0 =6 = 0,A = A = =P =2,p2 =P1 = 00,q1 = G2 =

g1 = G2 = 00, we get

|44 [0F w] [0 ]|

oyt NWUII o Al

1—k
L2W, Lo, FrEee

(k]

LA — f,w[k]nafun

5 8— k:+2

L°°W L2W, k]

We once again apply Sobolev embedding to bound the expression above by

SN0l 5900 108l 2o g

—k4 g,oo

+ Ha]uHL‘X’H“’ J[k]H@’“UH

L2W K]

< |lulls,
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This completes the proof of estimate (7.10).
We now focus on proving (7.11). As By € S(1,2,—2,6) we may apply Proposition
6.3.1to (7.11) witha=1,b=2,c=-2,d=6,r=s— 1, A=\ A=50=56=0,p; =py =

2,p1=1,pa = 00,1 = G2 = 2,q2 = ¢1 = o0 to obtain

LHS(7.11) S ||F<U>Ul)”Lg’H;*?[k]||atu||L§Wj+§v°°[k] + ||F(UaUl)||Lt1WZ+%»°°[k]HatUHLgOH;*l[k}'

Observe that

90l 5.y S sy

and

HatuHLfon_l[k} S lullsys

so we are left to show

||F(Uaul)||L§H;*2[k} + [ (u, )]

7+§,oo

< 2

k

But the above follows from estimate (7.14).
We now turn our attention to proving estimate (7.12). As By, € S(1,1,—-2,6), we

may apply Proposition 6.3.1 to the LHS of (7.12) witha =b=1,c= —-2,d =6,0 =7 =

Y €

LA=A=spi=p=p1=0D2=2,¢1 =G = 2,q2 = G1 = o0 to conclude

LHS(7.12) S {15 (u, )| g2 g3 g 1 (s )|

7T+ & ,00
L2W, 2

(k]
Recall that F(u,u') = 3}, A [0]u][0Fu]. So it suffices to show that given i,5 € {0,1}
we have

1A [0/ 07 ull| 2 g1 + ||Ajk[8£u][8fu]||L§W;+g,oo[k] S lulls, -

But this follows from estimates (7.15) and (7.19), completing the proof of (7.12).
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Finally, we turn our attention towards estimate (7.13). As By; € S(1,1,—-2,6), we
may apply Proposition 6.3.1 to the LHS of (7.13) with a = b = 1,¢ = —2,d = 6,0 =

176—207)\:5\: p=p2=2,p1=1,p2=00,¢1 =G =2,q0=q = 0 to obtain

N

LHS(7.13) S [|F(u, 0| 2 -1 pg (|1 D" + D]

oo

7+5,
LW, 27K

NGy IOD"E 4 Dl

Liw.
As F(u,u') = X o Ajk [07u][0Fu] and we know from (7.15) that

A0/ 0l 2 gz + !!Ajk[afu][afu]HL%W;%H»OOM S lulls, -
We only need to show that

11D + D)u] g TP P+ Dl e g2 S Ml

LEWZ+%’
but this is obvious from the definition of || - || s,.. O

In order to complete our proof of estimates (7.8) and (7.9), it’s left to prove

Proposition 7.2.2. The following holds true

1T O) 1z < M (0) 7z + 1 (0) 12 (7.21)
1T (Ol g2 S e (O) g1 + e (0) 1751 (7.22)
IU®lsr < Iu®)ls, + lu®)]s, - (7.23)
Proof. Recall that U = 3>} _ B;;[0ju] [07u] and so
1 . .
U zeenz S D2 1By 07l ulll oo - (7.24)

i.j=0
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As B;; € S(2—14,2 — j,—2,6) we can apply Proposition 6.3.1 with A\ = AN=¢€0=05=

0,p1r=p2=D1=DP2=00,¢1 = o= 2,02 = ¢1 = 0 to get

183107l 0] ull| ey S 10yull e s

aguHLtoowf+5*jv°° + HaZuHLthg*E*imHaguHLgoH;’j'
As s — (8 +¢€) > 2 =2 we can apply Sobolev embedding to bound the above by

S HaZU”LtOOH;—iHat]UHLtOOH;‘j

S lulls, -

We remark that the above proof also implies (7.21).

We now turn our attention towards bounding [|U]| , o+5.. It suffices to show that
t Wz

1By (03[0l

L?W3+§1°° S./ HUH%T’

for all 4,5 € {0,1}. Applying Proposition 6.3.1 witha =2—i,b=2—j,c=—-2,d =6, =

5\:6,0:5:0,]91:]32:2,]92:]51:q1:q2:q~1:c]2:ooweseethat

1B (0074l ,

o500 S [1Oful

Wx 9+%7i,oo Hagu”L?QW5+67J’OO

L2W,

+ HaguHLgowarf—i’“”agu“ 9+ § —j,00

2w,

S 1000l gy 8- N0l s

otul|

+ ||3§U||L§°H;—i

J,o0

r2wytE”
S lulls, -
Our next task is to bound [|0;U|| pee gys-1 + HatU||L2WS+%’°°' Observe that
t WV
1 . . . .
U =" By [07 u)[0]u] + Bi;[0)u][0] ).
i,j=0
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By symmetry, it suffices to show that

1845107 ul [0 ull ez + 1183307 (9wl

st S Hullsy + llulls,.

Applying Proposition 6.3.1 witha =2 —-1i,0=2—j,c=—-2,d =6, = A=¢e0=0,6=

ILpr=p2=p1=pP2=00,q1 = G2 = 2,q2 = ¢1 = oo we deduce

18530 ) [0F ulll e =1 S 1107 ] o s

aiuHLtOOWZSJ»efg,oo

+ H(?ZHUHL?OW;*E*"»WHaguHLth;’j'

We once again use the fact that s — (8 +¢) > % to apply Sobolev embedding and bound

the above by

S ||az+1u||L<t>OH;—1—i||8gu||Lg°H;‘j

< 105l 1<l
It remains to show that
10 ull oo g1+ S Nutllsy + [lulls,. (7.25)
When ¢ = 0 this is obvious from the definition of || - ||s, so we only need to consider the

case i = 1. In this case the desired bound follows from (7.18). We remark that the above
proof also implies (7.22).

In order to bound ||By;[0f ™ u][07u]|| , s+5.c, We once again apply Proposition 6.3.1

L2W,

Witha:2—i,b:2—j,c:—2,d:6,)\:5\:§,a:6:0,p1:]51:2,1)2:]32:(11:
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G2 = ¢1 = @2 = 00 to obtain

1B (07 ul (07wl

sigoe SO ull L sigioe || 0Full

8+ 5 —j,00
2[17 2”7 2 ’
t x Lt x

LW,

S0 ull gy s 100 e

SN0 ull 050 [0l

L2W,

So, it’s left to show that

||3§+1U||L§W§+%—w < lullsy + lulls, -
When ¢ = 0 this is obvious from the definition of || - ||, so it remains to consider the case
i = 1. In this case the desired bound again follows from (7.18). O
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