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ABSTRACT OF THE DISSERTATION

Global Existence of Solutions to Semilinear Klein-Gordon Equations

by

Nina Pikula

Doctor of Philosophy in Mathematics

University of California San Diego, 2019

Professor Ioan Bejenaru, Chair
Professor Jacob Sterbenz, Co-Chair

In this thesis, we prove two main results on nonlinear Klein-Gordon equations.

First, we establish global existence of solutions to general second order semilinear Klein-

Gordon equations for small initial data and n = 3 spatial dimensions. Then, we prove low

regularity well-posedness in n = 2 spatial dimensions and higher for a quadratic power-type

Klein-Gordon system with different masses satisfying a suitable nonresonance condition.

For the first result, our main tool is the Normal Forms Method of Shatah. The key

idea behind this approach is to decompose u into a sum of two functions, U and W , where

ix



W solves a third order system and U is written explicitly as a function of u and its first

order derivatives. The explicit form of U and good behavior of solutions to higher order

systems allows us to gain control of both U and W , and thus u.

For the multiple mass system, we apply a standard duality argument to reduce our

proof of well-posedness to the establishment of a set of trilinear estimates. The proof of

these estimates relies heavily on the special properties of our iteration spaces. In particular,

using these spaces allows us to readily exploit the absence of resonant terms and extend

important bilinear estimates proved for free solutions to more general functions.
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Chapter 1

Introduction

Relativistic wave equations such as the Klein-Gordon equation have been of interest

to theoretical physicists in various branches of physics [24]. In recent decades, there has

been considerable interest among physicists in finding exact solutions to nonlinear Klein-

Gordon equations with various vector and scalar potentials (for example, see [13], [3], [17]).

Our focus in this thesis will be on proving global existence for a broad class of nonlinear

Klein-Gordon equations known as second-order semilinear Klein-Gordon equations. Before

we explain what this means in precise terms, we will first present the reader with a brief

background of the Klein-Gordon equation. The derivation that follows, along with other

relevant material, can be found in Chapters 1 and 9 of [1].

The homogeneous Klein-Gordon equation

(∂
2

∂2
t

−∆ + µ)u = 0 (1.1)

is a wave equation introduced by physicists Oskar Klein and Walter Gordon as a relativistic

alternative to the Schroedinger equation [15].
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From physics we know that the nonrelativistic expression for the energy of a free

particle is given by

E = ~p · ~p
2m , (1.2)

where ~p is the associated momentum and m is the associated mass.

Applying standard Quantum Mechanics theory, we may replace

E → i~
∂

∂t
, ~p→ −i~∇ (1.3)

to obtain the Schroedinger equation for a free particle

i~
∂

∂t
ψ = −~2∆

2m ψ, (1.4)

where ψ : R× Rn → C is a function for which the above operations are well-defined.

In order to produce a relativistic version of the above, it is natural to attempt to

replace the energy equation, (1.2), with the relativistic energy expression

E2 = ~p · ~p+m2, (1.5)

where we have chosen our units so that c, the speed of light, is 1. Once again we may

apply the replacements in (1.3) to obtain

−~2 ∂
2

∂t2
ψ(x, t) = (−~2∆ +m2)ψ(x, t).

Simplifying the above we get

(
�+ m2

~2

)
ψ(x, t) = 0,

where � = ∂2
t −∆ is the D’Alembertian operator. We recognize the above as the homo-

geneous Klein-Gordon equation.
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The discussion above has focused exclusively on the case of a free particle. In reality,

particles typically interact strongly with other particles and fields. In order to develop a

more robust theory, it is useful to study (1.1) with a forcing term, F , added to the right-

hand side. For example, a simplified model of the interaction between a spin-zero meson

and an electromagnetic field with associated electromagnetic four-potential Aα = (φ, ~A)

leads to the following equation ([1], Chapter 9):
(i ∂

∂xµ
− eAµ(x, t)

)2

−m2

u(x, t) = 0, (1.6)

where e is the elementary charge and we have used the summation convention.

We can rewrite (1.6) as

(�+m2)u(x, t) = −ie(∂µAµ(x, t) + Aµ(x, t)∂µ)u(x, t) + e2A(x, t)2u(x, t),

leading us to our first example of an inhomogeneous Klein-Gordon system. In practice, the

four-potential Aµ will often also depend on u and it’s space and time derivatives leading

to more complicated nonlinearities. In this thesis, we will primarily study inhomogeneous

systems of the form

( ∂
2

∂t2
−∆ + µ)u = F (u, ∂u, ∂tu). (1.7)

The equation above is an example of a semilinear Klein-Gordon equation because its

nonlinearity, F , only depends on derivatives of at most first order. Real world phenomena

are often better approximated by nonlinearities that include second order derivatives.

Unfortunately, such systems are significantly more difficult to handle so we focus our

efforts towards fully understanding the semilinear case.

We are finally in a position to to discuss one of the main subjects of this thesis.
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Before we introduce the main theorem, we remind the reader that for s > 0 the L2-based

Sobolev space, Hs, is defined by the following norm

‖u‖Hs(Rn) := ‖〈ξ〉sû‖L2(Rn),

where 〈·〉 := (1 + | · |2) 1
2 .

We say that a nonlinearity F = F (u, ∂tu, ∂u) ∈ C∞ is of order p for some p ∈ Z≥0

if F is a polynomial whose lowest order term has degree p.

In this thesis we will be focusing primarily on second order nonlinearities. As a

physical motivation, consider the Yukawa-coupled Klein-Gordon-Dirac system (see [4] and

10.2 in [1]), given by:

(−iγµ∂µ +M)ψ = φψ (M > 0),

(�+m2)φ = ψ†γ0ψ (m > 0),

where ψ : R1+3 → C4 is the spinor field, φ : R1+3 → C is a scalar field, and the γµ, for

µ = 0, 1, 2, 3, are the Dirac matrices.

This system is a simple model of a proton-proton (or neutron-neutron) interaction

in which one proton is scattered by the meson field produced by another proton. We

remark that the constant M here represents the mass of the proton (M = 938Mev
e2 ) and m

typically represents the mass of a π-meson (m = 140Mev
e2 for π± and m = 135Mev

e2 for π0)

or a K-meson (m = 494Mev
e2 for K± and m = 498Mev

e2 for K0). It is therefore reasonable to

assume in the above model that the constantsm andM satisfy the condition 2M > m > 0.

When we discuss multiple mass second order Klein-Gordon systems later in this thesis,

we will need to impose a similar condition on our masses in order to close our argument.
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Although this condition may seem contrived from a mathematical perspective, it is often

reasonable to assume given the physical motivation behind many of these models.

We now turn our attention to discussing the major results of this thesis. One of

our main goals is to prove global well-posedness of the second order three dimensional

semilinear Klein-Gordon system in Hs for s > 10. That is, we would like to prove the

following theorem

Theorem 1.0.1. Let n = 3, s > 10 and suppose F (u, ∂u, ∂tu) is of order 2. The, there

exists an ε > 0 such that for initial data

(u0, u1) ∈ Hs(Rn)×Hs−1(Rn) , ‖(u0, u1)‖Hs×Hs−1 < ε,

the equation

(�+ µ2)u = F (u, ∂u, ∂tu) (1.8)

has a global solution in C(R, Hs)∩C1(R, Hs−1) which depends continuously on the initial

data (u0, u1).

We remark that the novelty of this result stems from the control of the quadratic

terms, at least for initial data belonging to a natural Hilbert space such as Hs
x. Global

existence in 3 dimensions has already been established for third order nonlinearities (see

[19]).

Previous work on the second order semilinear Klein-Gordon system in Hs
x was

conducted by Delort and Fang in [6]. In contrast to our result where global existence was

established for general second order nonlinearities, Delort and Fang only proved almost

global existence (time of existence has a lower bound Tε ≥ ce1/ε) for a small subclass of
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second order nonlinearities with a special null structure that gives one better control over

the solution.

The standard approach to proving existence for higher order systems is to apply

apriori energy and dispersive estimates. Unfortunately, if F is second order, the standard

techniques fail and a more refined approach must be employed. One such approach, intro-

duced by Shatah in [20], is the Normal Forms method. This method allows us to transform

our second order problem into a third order one, for which global existence has long been

established.

It is important to note that the value of s, also known as the regularity, in Theorem

1.0.1 is not necessarily optimal and further work could be done in the future to lower this

value. For many reasons, lowering the regularity assumptions on the initial data is a goal

among those working on existence problems. For example, many key structural features of

the solution, such as conservation laws (energy, momentum), are typically associated to low

regularities such as L2 and H1. Furthermore, the challenge of working at low regularities

forces us to exploit structural properties of the equation and develop new techniques that

have applications for smooth data.

In Chapter 5, we explore the low-regularity problem in the case where F is a

homogeneous quadratic polynomial in u (e.g. F (u, ∂u, ∂tu) = F (u) := u2). In fact, we

consider a more general system of different masses

(�+m2
i )ui = Fi(u1, ..., uk) i = 1, ..., k

For this problem, we handle the difficult n = 2 case and extend our result to n ≥ 2

dimensions. In particular, we prove the following theorem

6



Theorem 1.0.2. Let n ≥ 2, s ≥ max (1
2+, n−2

2 ), k ∈ N, and let F1, ..., Fk be homogeneous

quadratic polynomials and m1, ...,mk > 0 be such that

2 min ({mj}) > max ({mj})

Then there exists an ε > 0 such that for initial data

(fi, gi) ∈ Hs(Rn)×Hs−1(Rn) , ‖(fi, gi)‖Hs×Hs−1 < ε

the system

(�+m2
i )ui = Fi(u1, ..., uk) i = 1, ..., k

has a global solution in C(R, Hs)∩C1(R, Hs−1) which depends continuously on the initial

data (fi, gi).

We remark that a similar result was obtained by Tobias Schottdorf in [18]. Unfor-

tunately, we have found serious gaps in his proof and we suspect this to be the reason his

work has remained unpublished.

A general outline of this thesis is as follows: Chapter 2 is dedicated to introducing

notation and establishing standard tools from Analysis and PDEs. In Chapter 3 we discuss

general techniques for proving existence results and in Chapter 4 we apply these methods

to prove wellposedness of the third-order semi-linear Klein-Gordon System. In Chapter 5

we employ modern machinery to prove low regularity wellposedness for the multiple mass

second order system discussed above. Finally, Chapters 6 and 7 are dedicated to proving

Theorem 1.0.1.
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Chapter 2

Background Material

In this chapter we introduce notation and well-known results from Analysis and

PDEs that will be referenced repeatedly throughout this thesis.

2.1 Preliminaries

We denote A � B to mean A ≤ dB for some absolute constant 0 < d < 1
N

for

some large N . We denote A . B to mean A ≤ CB for some absolute constant C > 0 and

we define A ∼ B to mean 1
C
A ≤ B ≤ CB.

For completeness, we will present many of the following results in the case of a

general σ−finite measure space (X,M, µ) where X represents the domain we are working

in, µ is the chosen measure, and M is the set of all µ−measurable functions. We begin

with the definition of Lp spaces on (X,M, µ).
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Definition 2.1.1. Given 1 ≤ p <∞ and a measurable function f : X → C, define

‖f‖Lp = [
∫
X
|f |pdµ]

1
p ,

‖f‖L∞ = inf{a ≥ 0 : µ({x : |f(x)| > a}) = 0}.

Definition 2.1.2. For 1 ≤ p ≤ ∞ we define the space Lp(X) as

Lp(Rn) = {f : X → C : f is measurable and ‖f‖Lp <∞}.

It is well-known (see Theorems 6.6 and 6.8 in [8]) that Lp(X) is a Banach space for

each 1 ≤ p ≤ ∞ . We present the following well-known results

Theorem 2.1.1 (Holder’s inequality ([8], pp 198)). Suppose 1 ≤ p, q, r ≤ ∞ are such that

1
p

+ 1
p′

= 1
r
. If f and g are measurable functions on X, then

‖fg‖Lr ≤ ‖f‖Lp‖g‖Lq .

Definition 2.1.3. Given a measure space (X,M, µ), we say that a statement holds true

for almost every (a.e.) x ∈ X if the set on which the statement is false has measure 0 in

X.

Theorem 2.1.2 (Minkowski’s inequality(Theorem 6.19 in [8])). Suppose (X,M, µ) and

(Y,N , ν) are σ−finite measure spaces.If 1 ≤ p < ∞, f(·, y) ∈ Lp(µ) for a.e. y ∈ Y , and

the function y → ‖f(·, y)‖Lp is in L1(Y ), then f(x, ·) ∈ L1(X) for a.e. x, the function

x→
∫
f(x, y)dν(y) is in Lp(X), and

‖
∫
f(x, y)dν(y)‖Lp ≤

∫
‖f(·, y)‖Lpdν(y).

9



Theorem 2.1.3 (The Riesz-Thorin Interpolation Theorem ([8], Theorem 6.27)). Suppose

(X,M, µ) and (Y,N , ν) are σ−finite measure spaces and p0, p1, q0, q1 ∈ [1,∞]. For 0 <

t < 1 define pt and qt by

1
pt

= 1− t
p0

+ t

p1
,

1
qt

= 1− t
q0

+ t

q1
.

If T is a linear map from Lp0(X) + Lp1(X) into Lq0(Y ) + Lq1(Y ) such that ‖Tf‖Lq0 ≤

M0‖f‖Lp0 for f ∈ Lp0(X) and ‖Tf‖Lq1 ≤ M1‖f‖Lp1 for f ∈ Lp1(X), then ‖Tf‖Lqt ≤

M1−t
0 M t

1‖f‖Lpt for f ∈ Lpt(X), 0 < t < 1.

We remark that the above results also hold when X = N and µ is the counting

measure on N. In this case

(∫
|f |pdµ

)1/p
=
( ∞∑
n=1
|f(n)|p

)1/p

.

We now present some important results from Fourier analysis. Recall the definition

of the Fourier transform F on L1(Rn) :

F(f)(ξ) = f̂(ξ) := 1
(2π)n

∫
Rn
eix·ξf(x)dx.

We will assume that the reader is familiar with basic properties of the Fourier transform,

such as its behavior under translation, dilation, conjugation and differentiation.

The following two results are well-known

Theorem 2.1.4 (The Plancherel Theorem ([8], Theorem 8.29)). If f ∈ L1 ∩ L2, then

f̂ ∈ L2, and F|(L1 ∩ L2) extends to a unitary isomorphism on L2.

Definition 2.1.4. For 1 ≤ p ≤ ∞, we define the Holder-conjugate of p, denoted p′ to be

given by 1
p

+ 1
p′

= 1.
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Theorem 2.1.5 (The Hausdorff-Young Inequality ([8], Theorem 8.30)). Suppose that 1 ≤

p ≤ 2. If f ∈ Lp(Rn), then f̂ ∈ Lp′(Rn) and ‖f̂‖Lp′ ≤ ‖f‖Lp.

So far, most our results have been related to Lp spaces. We now turn our attention

to developing the theory of Sobolev Spaces. Before we do so, we must first familiarize the

reader with the definition of a weak derivative.

Definition 2.1.5. A vector of the form α = (α1, ...αn), where each αi is a nonnegative

integer, is called a multiindex with order

|α| =
n∑
i=1

αi.

Definition 2.1.6. We let C∞c (Rn) denote the space of all infinitely differentiable functions

on Rn with compact support.

Definition 2.1.7. We define L1
loc(Rn) to be the space consisting of all functions f : Rn → C

with the property ∫
X
|f |dx <∞

for every compact subset X of Rn.

Definition 2.1.8. Suppose f, g ∈ L1
loc(Rn) and α is a multi-index. We say that g is the

αth−weak partial derivative of f , denoted

Dαf = g,

if for each φ ∈ C∞c (Rn) we have

∫
Rn
f(Dαφ)dx = (−1)|α|

∫
Rn
gφdx.

11



We are finally ready to define Sobolev spaces.

Definition 2.1.9. Suppose 1 ≤ p ≤ ∞ and k is a nonnegative integer. For f ∈ L1
loc(Rn),

we define the norm

‖f‖Wk,p :=
 ∑
|α|≤k
‖Dαf‖pLp

1/p

if p <∞,

‖f‖Wk,∞ :=
∑
|α|≤k
‖Dαf‖L∞ .

Definition 2.1.10. Given 1 ≤ p ≤ ∞ and k ∈ Z≥0, we define the Sobolev space W k,p(Rn)

as

W k,p := {f ∈ Lp(Rn) : ‖f‖Wk,p <∞}.

It is common convention to denote Hk(Rn) := W k,2(Rn).

We next introduce another important space of functions, known as the Schwartz

class

Definition 2.1.11. Let N be a positive integer and α a multiindex of arbitrary length.

Define

‖f‖(N,α) := sup
x∈Rn

(1 + |x|)N |∂αf(x)|.

Definition 2.1.12. Define the Schwartz class S(Rn) as

S(Rn) := {f ∈ C∞ : ‖f‖(N,α) <∞ for all N,α}.

Theorem 2.1.6 ([8], Corollary 8.23). The Fourier transform, F , maps the Schwartz class,

S continuously into itself.

Lemma 2.1.1 ([22], Lemma 23). Suppose p ∈ [1,∞) and k is a nonnegative integer. Then

the space C∞c (Rn) is dense in W k,p(Rn).
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Corollary 2.1.1. If 1 ≤ p < ∞, S(Rn) is dense in W k,p(Rn). In other words, every

function in W k,p(Rn) is in S(Rn) or a limit point of a sequence of functions in S(Rn) with

respect to the ‖ · ‖Wk,p(Rn) norm.

Proof. This follows from the above corollary and the fact C∞c (Rn) ⊆ S(Rn) ⊆ W k,p(Rn).

The preceding lemma demonstrates that for 1 ≤ p <∞,W k,p(Rn) can alternatively

be defined as the closure of S(Rn) with respect to the ‖·‖Wk,p(Rn) norm. This interpretation

will be useful for extending W k,p to the case where k is not necessarily a nonnegative

integer, but a real number r > 0.

Recall from Chapter 1 that 〈·〉 := (1 + | · |2) 1
2 .

Definition 2.1.13. Given r ∈ R, f ∈ S(Rn), we denote by 〈D〉rf the following expression

〈D〉rf(x) := F−1(〈ξ〉rf̂(ξ)) = 1
(2π)n

∫
Rn
eix·ξ〈ξ〉rf̂(ξ)dξ.

Definition 2.1.14. Let 1 < p < ∞ and r be a nonnegative real number. We define the

norm ‖ · ‖[r,p] on S(Rn) as follows

‖f‖[r,p] := ‖〈D〉rf‖Lp .

for all f ∈ S(Rn).

It is well-known (see [23], Appendix) that W k,p where k ∈ Z≥0 and 1 < p <∞ can

alternatively be defined as the closure of the Schwartz space under the ‖ · ‖[k,p] norm. In

fact, this definition can be extended to all k ∈ R≥0.

We will use the following two results repeatedly throughout this thesis
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Theorem 2.1.7 (Sobolev Embedding ([23], Appendix)). Suppose for a given s > 0 we

have

1 < p < q <∞ and 1
p
− 1
q

= s

n
.

Assume f ∈ Lq(Rn), then there exists a constant C = C(p, q, s, n) such that

‖f‖Lq(Rn) ≤ C‖f‖W s,p(Rn).

Theorem 2.1.8 (L∞ Sobolev Embedding ([21], Appendix)). Suppose f ∈ L∞(Rn), then

there exists a C = C(p, s, n) so that

‖f‖L∞(Rn) ≤ C‖f‖W s,p(Rn),

provided p > s
n

We now present the final result of this section: The Hardy-Littlewood Fractional

Integral Inequality. This set of inequalities will be crucial for establishing important dis-

persive estimates.

Theorem 2.1.9 (Hardy-Littlewood Fractional Integral Inequality ([21], Appendix)). Fix

0 < α < 1 and 1 < p < q <∞ satisfying

1− (1/p− 1/q) = α.

Let

Iαf(t) =
∫ ∞
−∞

f(s)|t− s|−αds.

Then there exists a constant C = C(α, p, q) such that

‖Iαf‖Lq(R) ≤ C‖f‖Lp(R).
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We conclude this section by defining the mixed time-space Lebesgue spaces.

Definition 2.1.15. Given a time interval I, define the mixed norm space Lpt (I;Lqx(Rn))

by the norm

‖f‖Lpt (I;Lqx(Rn)) =
(∫

I
‖f(·, t)‖pLqx(Rn)dt

) 1
p

.

When there is no ambiguity regarding the interval I, we will denote the above by LptLqx.

We can define LptW r,q
x in a similar manner.

2.2 Littlewood-Paley Theory

It is often useful in our analysis to decompose functions into low, medium, and high

frequencies. In order to make this classification rigorous, we introduce what is known as

the Littlewood-Paley Theory.

Let X denote a smooth, nonnegative, even function supported in {t : |t| ≤ 2}

such that X (t) = 1 when |t| ≤ 1. Define ψ(t) := X (t) − X (2t) and ψk := ψ(2−k·) for

k ≥ 1. Let ψ0 := Id−∑k≥1 ψk. For k ≥ 1, define ψ̃k = ∑k+1
i=k−1 ψiψk and ψ̃0 = ∑1

i=0 ψiψ0.

Furthermore, define ψ≤K = ∑
0≤k′≤k ψk′

Definition 2.2.1. Given k ≥ 0 define the Fourier multipliers Pk, P≤k, P̃k by

P̂ku(ξ) = ψk(ξ)û(ξ),

P̂≤ku(ξ) = ψ≤k(ξ)û(ξ),

̂̃
Pku(ξ) = ψ̃k(ξ)û(ξ).
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We present the following estimate, known as the Littlewood-Paley inequality, with-

out proof

Proposition 2.2.1 ([23], pp 334). Given p ∈ (1,∞) and f ∈ Lp(Rn), we have

‖f‖Lp(Rn) ∼p,n ‖(
∑
k≥0
|Pkf |2)1/2‖Lp(Rn).

Definition 2.2.2. Let r ≥ 0 and p ∈ [1,∞]. Define the spaces Lp(Rn)[k] and W r,p(Rn)[k]

by the norms

‖f‖Lp[k] =
∑
k≥0

22kr‖Pkf‖2
Lp

 1
2

,

‖f‖W r,p[k] =
∑
k≥0

22kr‖Pkf‖2
Lp

 1
2

.

We denote Hr[k] := W r,p[k].

Observe that if r = 0 then Lp(Rn)[k] = W r,p(Rn)[k]. We also define the analogous

spaces for mixed space-time Sobolev Spaces.

Definition 2.2.3. Define the space LptW r,q
x [k] by the norm

‖u‖LptW r,q
x [k] =

∑
k≥0

22kr‖Pku‖2
LptL

q
x

 1
2

.

The main result of this section will be the following

Proposition 2.2.2. Suppose r ≥ 0 .

If 1 < p ≤ 2,

‖f‖Lp(Rn)[k] .p,n ‖f‖Lp(Rn). (2.1)

If 2 ≤ p <∞,

‖f‖Lp(Rn) .p,n ‖f‖Lp(Rn)[k]. (2.2)
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Furthermore,

‖f‖Hr(Rn) ∼p,n ‖f‖Hr(Rn)[k]. (2.3)

Proof. We first focus on proving (2.2) From the Littlewood-Paley inequality, we know that

‖f‖Lp(Rn) ∼p,n ‖(
∑
k≥0
|Pkf |2)1/2‖Lp(Rn)

= ‖
∑
k≥0
|Pkf |2‖

1
2
Lq(Rn),

provided q = p
2 . As q ≥ 1. Minkowski’s inequality allows us to bound the above by

≤ (
∑
k≥0
‖|Pkf |2‖Lq)1/2

= (
∑
k≥0
‖Pkf‖2

Lp)1/2,

as desired.

We now turn our attention to proving (2.1). Once again, we apply the Littlewood-

Paley inequality

‖f‖Lp(Rn) ∼p,n

∫ (
∑
k≥0
|Pkf |2)p/2

 1
p

=
∫ (

∑
k≥0
|Pkf |pq)1/q

 1
pq

,

provided q = 2
p
. As q ≥ 1 we can again apply Minkowski’s inequality to show that the

above is

≥

∑
k≥0

(
∫
|Pkf |p)q

 1
pq

=
∑
k≥0

(
∫
|Pkf |p)2/p

 1
2

= (
∑
k≥0
‖Pkf‖2

Lp)1/2.

17



Finally, we focus on proving (2.3). Combining (2.1) and (2.2), we see that

‖f‖L2 ∼ ‖f‖L2[k].

Therefore,

‖f‖Hr ∼ ‖〈D〉rf‖L2

∼

∑
k≥0
‖Pk〈D〉rf‖2

L2

1/2

∼

∑
k≥0
‖Pk〈2k〉rf‖2

L2

1/2

∼

∑
k≥0

22k‖Pkf‖2
L2

1/2

.

We conclude with the following result that will greatly simplify our proofs in later

chapters.

Theorem 2.2.1. Assume 1 ≤ pi, p̃i, qi, q̃i ≤ ∞ for i ∈ {1, 2} are such that 1
p

= 1
p1

+ 1
p2

=

1
p̃1

+ 1
p̃2
, 1
q

= 1
q1

+ 1
q2

= 1
q̃1

+ 1
q̃2
. Furthermore, assume r, λ, λ̃ > 0, σ, σ̃ ≥ 0, then

‖vw‖LptW r,q
x [k] . ‖v‖Lp1

t W
r+σ,q1
x [k]‖w‖Lp2

t W
λ−σ,q2
x [k]

+ ‖v‖
L
p̃1
t W

λ̃−σ̃,q̃1
x [k]

‖w‖
L
p̃2
t W

r+σ̃,q̃2
x [k].
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Proof. Let C ≥ 10 be a fixed constant, then

‖vw‖LptW r,q
x [k] =

(∑
k≥0

22kr‖Pk(vw)‖2
LptL

q
x

) 1
2

≤
(∑
k≥0

22kr(
∑
k1≥0

∑
k2≥0
‖Pk(Pk1vPk2w)‖LptLqx)

2
) 1

2

.
(∑
k≥0

22kr(
∑

|k1−k|≤C

∑
k2≤k+C

‖Pk1vPk2w‖LptLqx)
2
) 1

2

+
(∑
k≥0

22kr(
∑

k1≥k−C

∑
|k2−k1|≤C

‖Pk1vPk2w‖LptLqx)
2
) 1

2

+
(∑
k≥0

22kr(
∑

k1≤k+C

∑
|k2−k|+C

‖Pk1vPk2w‖LptLqx)
2
) 1

2

= I + II + III.

We first bound (I). By Holder’s inequality,

(I) .
(∑
k≥0

22kr(
∑

|k1−k|≤C

∑
k2≤k+C

‖Pk1v‖Lp1
t L

q1
x
‖Pk2w‖Lp2

t L
q2
x

)2
) 1

2

.
(∑
k≥0

22kr(
∑

|k1−k|≤C

∑
k2≤k+C

2k1(σ)‖Pk1v‖Lp1
t L

q1
x

2k2(−σ)‖Pk2w‖Lp2
t L

q2
x

)2
) 1

2

≤
(∑
k≥0

22kr(
∑

|k1−k|≤C
2k1(σ)‖Pk1v‖Lp1

t L
q1
x

)2
) 1

2
( ∑
k2≥0

2k2(−σ)‖Pk2w‖Lp2
t L

q2
x

)
.

By Young’s inequality in k and Cauchy-Schwartz in k2, we can bound the above by

≤
(∑
k≥0

22k(r+σ)‖Pkv‖2
L
p1
t L

q1
x

) 1
2
( ∑
k2≥0

22k2(λ−σ)‖Pk2w‖2
L
p2
t L

q2
x

) 1
2
( ∑
k2≥0

2−2k2λ
) 1

2

. ‖v‖
L
p1
t W

r+σ,q1
x [k]‖w‖Lp2

t W
λ−σ,q2
x [k].

We now turn our attention to (II). Again, by Holder’s Inequality and Young’s
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Inequality in k1, we observe that

(II) .
(∑
k≥0

22kr
( ∑
k1≥k−C

∑
|k2−k1|≤C

‖Pk1v‖Lp1
t L

q1
x
‖Pk2w‖Lp2

t L
q2
x

)2
) 1

2

.
(∑
k≥0

22kr
( ∑
k1≥k−C

∑
|k2−k1|≤C

2k1(σ)‖Pk1v‖Lp1
t L

q1
x

2k2(−σ)‖Pk2w‖Lp2
t L

q2
x

)2
) 1

2

.
(∑
k≥0

22kr
( ∑
k1≥k−C

2k1(σ)‖Pk1v‖Lp1
t L

q1
x

)2( ∑
k2≥k−C

2k2(−σ)‖Pk2w‖Lp2
t L

q2
x

)2
) 1

2
.

Applying the Cauchy-Schwartz inequality in both k1 and k2 independently, we conclude

this is

.
(∑
k≥0

22kr
( ∑
k1≥k−C

2−2k1r
)
‖v‖2

L
p1
t W

r+σ,q1
x [k]

( ∑
k2≥k−C

2−2kλ
)
‖w‖2

L
p2
t W

λ−σ,q2
x [k]

) 1
2

.
(∑
k≥0

22k(r−r−λ)
) 1

2‖v‖
L
p1
t W

r+σ,q1
x [k]‖w‖Lp2

t W
λ−σ,q2
x [k]

. ‖v‖Lp1
t W

r,q1
x [k]‖w‖Lp2

t W
λ,q2
x [k].

By interchanging the roles of v and w in the proof of estimate (I), we can conclude that

(III) . ‖v‖
L
p̃1
t W

λ̃−σ̃,q̃1
x [k]

‖w‖
L
p̃2
t W

r+σ̃,q̃2
x [k].

2.3 Strichartz Estimates

We can take advantage of the dispersive nature of the Klein-Gordon equation,

along with interpolation and duality arguments, to obtain a very useful set of mixed norm

Sobolev space estimates known as Strichartz estimates. We dedicate this section to proving

these estimates.
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Suppose k ≥ 0 and ψk is defined as in the previous section, and let φk := F−1(ψk).

We present the following set of estimates without proof.

Proposition 2.3.1 ([2], Theorem 3.2, [10], Appendix). Let n ≥ 2, then

‖eit〈D〉φ0‖L∞x (Rn) . min{1, |t|−n2 }, (2.4)

‖eit〈D〉φk‖L∞x (Rn) . 2nk min{1, (2k|t|)−
n−1

2 }min{1, (2−k|t|)− 1
2} (2.5)

for k ≥ 1.

Theorem 2.3.1 ([16], Lemma 2.1). Suppose f ∈ L2
x(Rn) and let p, q be such that 2 < p ≤

∞, 2 ≤ q < 2σi
σi−1 , and

1
p

+ σi
q

= σi
2 , where σ1 = n

2 , σ2 = n−1
2 , and σi ≥ 1, then

‖eit〈D〉Pkf‖LptLqx . 2kα(q)‖Pkf‖L2
x

(2.6)

,where α(q) = λi(1
2 −

1
q
) for λi = 2σi+2

2 .

Proof. Observe that φ̂k = ∑k+1
j=k−1 φ̂jψ̂k so that φk ∗ eit〈D〉f = ∑k+1

j=k−1 e
it〈D〉φj ∗ (φk ∗ f).

From (2.5), we have

‖eit〈D〉φk‖L∞x . 2λik|t|−σi .

Combining these two facts gives us the bounds

‖φk ∗ (eit〈D〉f)‖L∞x ≤
j+1∑

k=j−1
‖eit〈D〉φj‖L∞x ‖φk ∗ f‖L1

x

. 2λi |t|−σi‖Pkf‖L1
x
.

Unitarity of the operator T := eit〈D〉 in L2 gives us

‖φk ∗ (eit〈D〉f)‖L2
x
≤ ‖Pkf‖L2

x
.
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Interpolating between these two results yields

‖eit〈D〉(Pkf)‖Lqx ≤ 22α(q)k|t|−2σi( 1
2−

1
q

)‖fk‖Lq′x

for 2 ≤ q ≤ ∞. Applying the Hardy-Littlewood-Sobolev theorem of fractional integration

in the time variable results in the estimate

‖
∫ ∞
−∞

ei(t−s)〈D〉Pkfds‖LptLqx . 22α(q)k‖Pkf‖Lp′t Lq′x .

We now apply what is known as a TT ∗ argument.

If we let T := eit〈D〉, then the above expression is equivalent to

‖TT ∗Pkf‖LptLqx . 22α(q)k‖Pkf‖Lp′t Lq′x (2.7)

This gives us our desired result, for

‖T ∗Pkf‖2
L2
x

= 〈T ∗Pkf, T ∗Pkf〉 =
∫
〈TT ∗Pkf, Pkf〉dt

. ‖TT ∗Pkf‖LptLqx‖fk‖Lp′t Lq′x

Therefore, by (2.7), we have

‖T ∗Pkf‖L2
x
. 2α(q)k‖Pkf‖Lp′t Lq′x , (2.8)

which by duality gives us (2.6).

We introduce the following result without proof.

Lemma 2.3.1. (Christ-Kiselev([23], Lemma 2.4)) Suppose 1 ≤ q, q̃ ≤ ∞ and I is a time

interval. Let K ∈ C(I × I;B(Lq̃, Lq)) be a kernel taking values in the space of bounded

linear operators from Lq̃ to Lq and suppose that 1 ≤ p̃ < p ≤ ∞ are such that

‖
∫
I
K(t, s)f(s)ds‖Lpt (I;Lqx) ≤ A‖f‖Lp̃t (I;Lq̃x)
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for all f ∈ Lp̃t (I;Lq̃x) and some A > 0. Then, one also has

‖
∫
s∈I:s<t

K(t, s)f(s)ds‖Lpt (I;Lqx) .p̃,p A‖f‖Lp̃t (I;Lq̃x).

Theorem 2.3.2 ([16], Lemma 2.1). Let σi, λi for i ∈ {1, 2} be as before. Suppose

p1, p2, q1, q2 are such that 2 < pj ≤ ∞, 2 ≤ qj <
2σ
σ−2 for j ∈ {1, 2}, and 2

pi
+ σ

qi
= σ

2 ,

then

‖
∫ t

−∞
ei(t−s)〈D〉PkG(s)ds‖Lp1

t L
q1
x
. 2

λi( 1
q′2
− 1
q′1

)
‖PkG‖

L
p′2
t L

q′2
x

. (2.9)

Proof. As before, define T := eit〈D〉.

From (2.6), we conclude that

‖TPkG(s)‖Lp1
t L

q1
x
≤ 2λi(

1
2−

1
q1

)‖PkG(s)‖L2
x

and

‖TPkG(s)‖Lp2
t L

q2
x
≤ 2λi(

1
2−

1
q1

)‖PkG(s)‖L2
x
.

By duality, it follows that

‖T ∗PkG(s)‖L2 ≤ 2λi(
1
2−

1
q2

)‖PkG‖
L
p′2
t L

q′2
x

= 2
λi( 1

q′2
− 1

2 )
‖PkG‖

L
p′2
t L

q′2
x

.

Combining these two estimates gives

‖TT ∗PkG‖Lp1
t L

q1
x
≤ 2

λi( 1
q′2
− 1
q1

)
‖Gk‖

L
p′2
t L

q′2
x

,

where

TT ∗PkG =
∫ ∞
−∞

ei(t−s)ωPkG(s)ds.

Invoking the Christ-Kiselev lemma from above gives us (2.9).
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Theorem 2.3.3. If n ≥ 4, we have the following estimates

‖eit〈D〉Pkf‖L2
tL
∞
x
. 2k(n−1

2 )‖Pkf‖L2 , (2.10)

‖
∫ t

0
ei(t−s)〈D〉PkG(s)ds‖L2

tL
∞
x
. 2k(n−1

2 )‖PkG‖L1
tL

2
x
. (2.11)

Proof. Let T := eit〈D〉 , then the first estimate above is equivalent to

‖T ∗fk‖L2 . 2k(n−1
2 )‖fk‖L2

tL
1
x
, (2.12)

which is equivalent to

‖TT ∗fk‖L2
tL
∞
x
. 2k(n−1)‖fk‖L2

tL
1
x
. (2.13)

By definition,

TT ∗ =
∫ ∞

0
[F−1(ei(t−s)〈ξ〉ψk(ξ)) ∗ f ](x)ds

= [F−1(eit〈ξ〉ψk(ξ)) ∗ f ](t, x).

By Young’s ineqality, the LHS of (2.13) is bounded by ‖eit〈D〉φk‖L1
tL
∞
x
, so it suffices to

prove that ‖eit〈D〉φk‖L1
tL
∞
x
. 2k(n−1) for all k ≥ 0. We observe that

‖eit〈D〉φk‖L1
tL
∞
x
≤
∫ 2−k

0
‖eitωψk‖L∞x dt+

∫ 2k

2−k
‖eitωψk‖L∞x dt+

∫ ∞
2k
‖eitωψk‖L∞x dt

= I + II + III.
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By estimate (2.5),

I .
∫ 2−k

0
2nkdt = 2nk2−k = 2k(n−1)

II .
∫ 2k

2−k
2nk2−

n−1
2 k|t|−

n−1
2 dt

. 2−
n+1

2 kt−
n−3

2 ]2−k2k

. 2(n−1)k

III .
∫ ∞

2k
2nk2−

n+1
2 k|t|−

n
2 dt

. 22k

. 2(n−1)k.

Combining estimate (2.12) and (2.6) for p =∞, q = 2, we obtain

‖
∫ ∞

0
ei(t−s)〈D〉PkG(s)ds‖L2

tL
∞
x
. 2k(n−1

2 )‖PkG‖L1
tL

2
x
.

invoking the Christ-Kiselev Lemma as in the proof of the previous Theorem, gives us

estimate (2.11).

Theorem 2.3.4. If n = 3, the following estimates hold true

‖eit〈D〉Pkf‖L2
tL
∞
x
. 2k〈k〉

1
2‖Pkf‖L2

x
, (2.14)

‖
∫ t

0
ei(t−s)〈D〉PkG(s)ds‖L2

tL
∞
x
. 2k〈k〉

1
2‖PkG‖L1

tL
2
x
, (2.15)

for k ≥ 0.

Proof. Define

T := eit〈D〉.
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By the TT ∗ argument we used before, (2.14) follows from proving

‖TT ∗Pkf‖L2
tL
∞
x
. 22k〈k〉‖Pkf‖L2

tL
1
x
. (2.16)

We may assume that k ≥ 1 as the estimate for k = 0 will follow by a similar

argument if one replaces estimate (2.5) with (2.4). We observe that

T (Pkf)(t, x) =
∫
R3
ei(x·ξ+t〈ξ〉)ψ̃k(ξ)ψk(ξ)f̂(ξ)dξ

=
k+1∑
j=k−1

∫
R3
Kj(t, x− y)Pkf(y)dy,

where

Kj(t, x) =
∫
R3
eix·ξeit〈ξ〉ψj(ξ)dξ.

Then,

TT ∗Pkf(t, x) =
∫
R
ei(t−s)〈D〉Pkfds

=
k+1∑
j=k−1

∫
R

∫
R2
Kj(t− s, x− y)Pkf(y)dyds

=
k+1∑
j=k−1

Kj ∗ Pkf.

By Young’s inequality, we have

‖TT ∗Pkf‖L2
tL
∞
x
. ‖Kk‖L1

tL
∞
x
‖Pkf‖L2

tL
1
x
,

so we are reduced to proving

‖Kk‖L1
tL
∞
x
. 22k〈k〉. (2.17)

From (2.5), it follows that

|Kk(t, x)| . 23k(1 + 2k|(t, x)|)−1 min(1, (1 + 2k|(t, x)|)−
1
2 2k). (2.18)
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Define

E1 = {|(t, x)| ≤ 2−k}, E2 = {2−k ≤ |(t, x)| ≤ 2k}, E3 = {|(t, x)| ≥ 2k},

then, the left hand side of (2.17) is bounded by

‖Kk‖L1
tL
∞
x (E1) + ‖Kk‖L1

tL
∞
x (E2) + ‖Kk‖L1

tL
∞
x (E3) = I + II + II.

Applying estimate (2.18) to (I), we deduce that

(I) . ‖23k(1 + 2k|(t, x)|)− 1
2‖L1

tL
∞
x (E1)

≤ ‖23k(1 + 2k|t|)− 1
2‖L1

t (E1)

.
∫ 2−k

0
23kdt ≈ 22k.

Applying estimate (2.18) to (III), we obtain

(III) . ‖23k(1 + 2k|(t, x)|)− 3
2 2k‖L1

tL
∞
x (E3)

≤ ‖23k2−3k/2|(t, x)|)− 3
2 2k‖L1

tL
∞
x (E3)

.
∫ ∞

2k
25k/2|t|−3/2dt ≈ 25k/22−k/2 = 22k.

We apply estimate (2.18) to (II) to deduce

(II) . ‖23k(1 + 2k|(t, x)|)−1‖L1
tL
∞
x (E2)

. ‖22k|t|−1‖L1
tL
∞
x (E2)

≈ 22k
∫ 2k

2−k
|t|−1dt ≈ 22kk ln(2) ≈ 22kk.

We conclude that

‖Kk‖L1
tL
∞
x
. 22k(1 + |k|) ≈ 22k〈k〉,
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as desired.

Combining the dual estimate of (2.14) and (2.6) for p =∞, q = 2, we obtain

‖
∫ ∞

0
ei(t−s)〈D〉PkG(s)ds‖L2

tL
∞
x
. 2k〈k〉

1
2‖PkG‖L1

tL
2
x
.

invoking the Christ-Kiselev Lemma gives us estimate (2.15).

Theorem 2.3.5. Suppose n = 3 and ε > 0 is given, then we have the estimates

‖eit〈D〉f‖L2
tL
∞
x [k] .ε ‖f‖H1+ε[k], (2.19)

‖
∫ ∞

0
ei(t−s)〈D〉G(s)‖L2

tL
∞
x [k] .ε ‖G(s)‖L1

tH
1+ε[k]. (2.20)

Proof. From Theorem 2.3.4, we have

‖eit〈D〉Pkf‖L2
tL
∞
x
. 2k〈k〉 1

2‖Pkf‖L2 .

As ‖f‖H1+ε[k] ∼
(∑∞

k=0 2k(1+ε)‖Pkf‖2
L2

)1/2
, (2.19) follows from proving

2k〈k〉 1
2 ≤ c(ε)2k(1+ε).

It suffices to show that

〈k〉
1
2 ≤ c(ε)2kε.

Taking ln of both sides, this is equivalent to proving

1
2 ln〈k〉 ≤ c(ε)kε ln 2. (2.21)

If k = 0, this inequality is obviously valid so assume k ≥ 1. We may bound the LHS of

the above by
1
2 ln〈k〉 ≤ 1

2 ln(1 + k) ≤ 1
2k.
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Letting c(ε) = 2
ε ln 2 gives us the desired result.

We now turn our attention to proving (2.20). From (2.15) we have

‖
∫ t

0
ei(t−s)〈D〉PkG(s)ds‖L2

tL
∞
x
. 2k〈k〉

1
2‖PkG‖L1

tL
2
x
.

Estimate (2.20) then follows from (2.21) and the definition of L1
tH

1+ε[k].

2.4 U p and V p spaces

If we assume the size of our initial data is small, we can view nonlinear PDEs as

small perturbations of linear ones, at least heuristically speaking. It is therefore useful to

study the properties of free solutions, as well as how pairs of free solutions interact with

one another. In order to extend our findings to more general functions, we will need to find

a space rich enough in structure to "record" the behavior we have seen in free solutions.

For this task, we introduce the atomic space Up, as well as its dual (to be defined precisely

later) V p and review their basic properties. We draw our results from [11] where detailed

proofs can be found.

To begin with, let Z denote the set of infinite partitions −∞ = t0 < t1 < ... < tk =

∞ and let Z0 denote the set of finite partitions −∞ < t0 < t1 < ... < tk < ∞. In what

follows we will primarily consider functions whose values belong to L2 := L2(Rd;C) but

the results can be generalized to an arbitrary Hilbert Space.

Definition 2.4.1. Let 1 ≤ p < ∞, {tk}Kk=0 ∈ Z and {φk}K−1
k=0 ⊆ L2

x be such that

∑K−1
k=0 ‖φk‖

p
L2 = 1 and φ0 = 0. We call the function a : R→ L2, given by
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a = ∑K
k=1X[tk−1,tk)φk−1 a Up atom. Furthermore, define the atomic space

Up := {u =
∞∑
j=1

λjaj| aj is a Up-atom, λj ∈ C such that
∞∑
j=1
|λj| <∞, }

with norm,

‖u‖Up := inf{u =
∞∑
j=1
|λj| |u =

∞∑
j=1

λjaj, aj is a Up-atom, λj ∈ C}.

Definition 2.4.2. Let 1 ≤ p <∞. We define V p as the normed space of all functions

v : R→ L2 such that v(∞) := limt→∞ v(t) = 0 and v(−∞) exists and for which the norm

‖v‖V p := sup
{tk}Kk=0∈Z

(
K∑
k=1
‖v(tk)− v(tk−1)‖pL2)1/p

is finite. Likewise, let V p
− denote the normed space of functions v : R → L2 such that

v(−∞) = 0, v(∞) exists, and ‖v‖V p <∞

Definition 2.4.3. Define the closed subspace V p
rc(V

p
−,rc) of all right continuous V p functions

(V p
− functions).

The following two results illustrate the duality relationship between Up and V p′

Theorem 2.4.1 ([11], Theorem 2.8). Let 1 < p <∞ . We have

(Up)∗ = V p′

in the sense that there is a bilinear form B such that the mapping

T : V p′ → (Up)∗, T (v) := B(∗, v)

is an isometric isomorphism.
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Proposition 2.4.1 ([11], Proposition 2.10). Let 1 < p <∞, u ∈ V 1
− be absolutely contin-

uous on compact intervals and v ∈ V p′. Then,

B(u, v) = −
∫ ∞
−∞
〈u′(t), v(t)〉dt.

Definition 2.4.4. Define Up
± by the norm ‖f‖Up± = ‖e∓it〈D〉f‖Up and define V p

± in the

analogous way. In what follows L2 = L2(Rn+1).

Definition 2.4.5. Let M = 2k for some k ∈ Z, then define the multiplier QM by

Fτ,ξ(Q±Mu)(τ, ξ) = ψM(τ ∓ 〈ξ〉)Fτ,ξ(u)(τ, ξ),

Fτ,ξ(Q±≤Mu)(τ, ξ) = ψ≤M(τ ∓ 〈ξ〉)Fτ,ξ(u)(τ, ξ)

Definition 2.4.6. Let u ∈ Up
± and (τ, ξ) ∈ Rn+1, then the value |τ ∓ 〈ξ〉| is called the

modulation of u at (τ, ξ). We say that the modulation is high if |τ ∓ 〈ξ〉| ≥ |ξ|
8 .

Proposition 2.4.2 ([11], Corollary 2.18). We have, for M = 2k, k ∈ Z,

‖Q±Mu‖L2 .M− 1
2‖u‖V 2

±
,

‖Q±≥Mu‖L2 .M− 1
2‖u‖V 2

±
,

‖Q±<Mu‖V p± . ‖u‖V p± , ‖Q±≥Mu‖V p± . ‖u‖V p±

‖Q±<Mu‖Up± . ‖u‖Up± , ‖Q±≥Mu‖Up± . ‖u‖Up±

Observe that the simplest type of elements in Up
± are free solutions and it is therefore

natural to expect that we can extend estimates on free solutions to estimates for more

general functions in Up
± and its dual V p′

± . In order to formalize this idea, we will need the

following two results
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Proposition 2.4.3 ([11], Proposition 2.19). Let

T0 : L2 × · · · × L2 → L1
loc(Rn;C)

be a non-linear operator. Assume that for some 1 ≤ p, q ≤ ∞

‖T0(e±1it〈D〉φ1, . . . e
±mit〈D〉φm)‖Lpt (R;Lqx,y(Rn)) .

n∏
i=1
‖φi‖L2 ,

then there exists

T : Up
±1 × · · · × U

p
±m → Lpt (R;Lqx,y(Rn))

satisfying

‖T (u1, . . . , um)‖Lpt (R;Lqx,y(Rn)) .
n∏
i=1
‖ui‖Up±

such that T (u1, . . . , um)(t)(x, y) = T0(u1(t), . . . , um(t))(x, y)

We remark that the above result implies that we can apply Strichartz estimates to

general functions in Up
±.

Proposition 2.4.4 ([11], Proposition 2.20). Let q > 1, E be a Banach space and T :

U q
± → E be a bounded, linear operator with ‖Tu‖E ≤ Cq‖u‖Uq± for all u ∈ U q

± . In

addition, assume that for some 1 ≤ p < q there exists Cp ∈ (0, Cq] such that the estimate

‖Tu‖E ≤ Cp‖u‖Up± Then, T satisfies the estimate

‖Tu‖E . Cp log(Cq
Cp

)‖u‖V p± .
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Chapter 3

General Existence Techniques

Our main goal in this section is to introduce a general approach to proving existence

and uniqueness of solutions to

(�+ 1)u = F (u, ∂u, ∂tu) (3.1)

with initial data

u(0, x) = u0, ut(0, x) = u1, (3.2)

such that ‖(u0, u1)‖Hs
x×H

s−1
x

< δ for some sufficiently small δ > 0.

The main techniques discussed in this chapter will be the contraction method and

the bootstrap argument. In section 3.1, we outline how to apply the contraction method

to prove local existence of solutions to the system presented above. Our argument will

rely primarily on the Banach Fixed Point Theorem

Theorem 3.0.1. Let X be a Banach space and suppose f : X → X is a map such that

‖f(x)− f(y)‖X ≤ C‖x− y‖X
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for some 0 ≤ C < 1 and all x, y ∈ X. Then f has a unique fixed point in X.

Section 3.2 is dedicated to a discussion of the bootstrap argument. This approach

takes advantage of what is known as the Bootstrap Principle to establish global existence.

While our discussions will be tailored to the inhomogeneous Klein-Gordon system, we

remark that these approaches can be applied to a wide class of PDEs. For a more general

discussion of these methods, we refer the reader to Chapters 1 and 3 in [23] and Chapter

9 in [7].

3.1 The Contraction Method

Suppose we are given a "nice enough" function w : Rn+1 → R (perhaps belonging

to some mixed norm Sobolev space). It is not difficult to see that the map t → A(w)(t),

given by

A(w) = cos(t〈D〉)u0 + sin(t〈D〉)u1 +
∫ t

0

sin(〈D〉(t− s))
〈D〉

F (w(s), ∂w(s), ∂tw(s))ds (3.3)

solves the system

(�+ 1)u = F (w, ∂w, ∂tw)

with initial data

u(0, x) = u0, ut(0, x) = u1. (3.4)

We therefore seek a function u that satisfies A(u) = u, also known as a fixed point of

the mapping A. From the Banach fixed point theorem, we know that it suffices to find a

suitable Banach space in which we can run our contraction argument. Unfortunately, this

is more easily said than done.
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Let T > 0 be fixed and suppose XT ⊆ L∞t ([0, T ];Hs
x) is a Banach space. Given

δ > 0 we define

ST (δ) := {u ∈ XT : ‖u‖XT ≤ C0δ},

where C0 is a constant that will be determined later.

As ST is a a closed subset of the Banach Space XT , it is also a Banach space.

Suppose we want to show that A is a contraction on ST . We first need to establish that

A is well-defined. In particular, given v ∈ ST , we need to show that

‖A(v)‖XT ≤ C0δ. (3.5)

In order to prove that A is a contraction, it suffices to show that

‖A(v)− A(w)‖XT ≤
1
2‖v − w‖XT (3.6)

for all v, w ∈ ST .

We rewrite equation (3.3) as

A(w) = W (u0, u1) + L(F (w, ∂w, ∂tw)).

Equations (3.5) and (3.6) therefore follow from proving

‖W (u0, u1)‖ST ≤
1
2C0‖(u0, u1)‖Hs

x×H
s−1
x

(3.7)

and

‖L(F (w, ∂w, ∂tw))‖ST ≤
1
2C0δ, (3.8)

‖L(F (v, ∂v, ∂tv))− L(F (w, ∂w, ∂tw))‖ST ≤
1
2‖v − w‖XT (3.9)

for all v, w ∈ ST .

35



Rather than prove estimates (3.8) and (3.9) directly, we construct an auxiliary

space NT and instead show that

‖L(G)‖ST ≤ C‖G‖NT (3.10)

and

‖F (w, ∂w, ∂tw)‖NT ≤ C ′δ, (3.11)

‖F (v, ∂v, ∂tv)− F (w, ∂w, ∂tw)‖NT ≤ C ′′‖v − w‖XT (3.12)

where CC ′ ≤ 1
2C0 and CC ′′ ≤ 1

2 . It is an easy exercise to see that proving the three

estimates above is sufficient to close the argument.

We make a few closing remarks about the solution u obtained by the argument

above. First, notice that the Banach fixed point theorem implies not only existence, but

uniqueness as well. Furthermore, as we have established that u ∈ ST and ST ⊆ L∞t H
s
x, we

may conclude that u ∈ L∞t Hs
x. In fact, from the definition of A in equation (3.3) it is easy

to see that u ∈ C([0, T ];Hs
x).

Finally, we claim that the solution map is continuous with respect to the initial

data. To see why this is the case, consider two sets of initial data (v0, v1) and (w0, w1) in

Hs
x ×Hs−1

x with corresponding solutions v and w. Let (u0, u1) := (v0 − w0, v1 − w1), and

suppose ‖(u0, u1)‖Hs
x×H

s−1
x

< ε for some 0 < ε � 1. By the contraction argument above

we may conclude ‖u‖ST = ‖v − w‖ST ≤ C0ε. Letting ε → 0 implies ‖v − w‖ST → 0, as

desired.
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3.2 Bootstrap and Continuity Methods

The reader may have noticed that the Banach spaces XT and ST introduced in the

previous section were associated with a time T > 0. Often, the contraction argument we

discussed in the previous section will only be valid on time intervals [0, T ] where T < T0

for some fixed T0 ∈ R. This T0 will usually have some type of inverse relationship with

the size of the initial data ‖(u0, u1)‖Hs
x×H

s−1
x

, meaning we can extend the time of existence

by lowering the size of the initial data. Unfortunately, this does not help us prove global

existence as the size of the initial data must be nonzero. In this case, we must apply a

different method to establish global existence. While there are numerous approaches, we

will focus on only one: The continuity method.

Suppose we are able to prove local existence on some time interval [0, T ] using the

contraction argument from the previous section. Repeating the argument using initial data

u(T, x), ut(T, x), we can establish existence on the interval [T, T + ε1], where ε1 depends on

‖(u(T, x), ut(T, x))‖Hs
x×H

s−1
x

. Iterating this process, we can extend the time of existence to

[0, T +∑∞
i=1 εi]. Unfortunately, if t→ ‖u(t, ·), ut(t, ·)‖Hs

x×H
s−1
x

approaches∞ in finite time,

the εi will approach 0 and it is possible that the sum ∑∞
i=1 εi converges to a finite value.

If we can prove that t→ ‖u(t, ·), ut(t, ·)‖Hs
x×H

s−1
x

is bounded, then it will follow that

∑∞
i=1 εi =∞, and thus global existence is established. As ‖u(t, ·), ut(t, ·)‖Hs

x×H
s−1
x
. ‖u‖ST ′ ,

if t ∈ [0, T ′], this follows from showing ‖u‖ST ′ < C for all T ′ > 0. For this task we will

apply what is known as the Bootstrap Principle.

Proposition 3.2.1 (Abstract Bootstrap Principle ([23], Proposition 1.21)). Let I be a

time interval, and for each t ∈ I suppose we have a "hypothesis" H(t) and a "conclusion"
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C(t). Suppose we can verify the following four assertions:

(a)(Hypothesis implies conclusion) If H(t) is true for some t ∈ I, then C(t) is

also true for that time t.

(b)(Conclusion is stronger than hypothesis) If C(t) is true for some t ∈ I, then

H(t) is true for all t′ ∈ I in a neighborhood of t.

(c)(Conclusion is closed) If t1, t2, . . . is a sequence of times in I converging to

another time t ∈ I and C(tn) is true for all tn, then C(t) is true.

(d)(Base case) H(t) is true for at least one time t ∈ I.

Then, C(t) is true for all t ∈ I.

In what follows, assume I = [0,∞) and thatM > 0 is a very large constant. Define

the hypothesis, H(T), to be the assertion that we can find a solution, u, to (3.1)-(3.2) on

[0, T ] using the contraction argument from the previous section, and that u satisfies

‖u‖ST < Mδ. (3.13)

Define the conclusion, C(T), in the same way with estimate (3.13) replaced by

‖u‖ST <
M

2 δ. (3.14)

Suppose we have already proven local existence on some time interval [0, T0] using

the contraction argument from the previous section. By the discussion above, global

existence will be established if we can show that assertions (a)-(d) in Proposition 3.2.1

hold true for the C(T) and H(T) we have defined.

Obviously H(T0) is true so (d) follows immediately. While it is not apparent from

the abstract set-up presented in section 3.1 that (b) and (c) are true, in practice both will
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follow readily from the definitions of ST we use.

It is left to prove assertion (a). Unfortunately, this is a challenging task. In fact,

we dedicate a large portion of this thesis to proving (a) for the third order semilinear

Klein-Gordon system.
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Chapter 4

The Third Order Semilinear

Klein-Gordon Equation

We dedicate this chapter to studying the third order semilinear Klein-Gordon equa-

tion. In section 4.1 we discuss the simpler power type cubic equation and move on to more

general nonlinearities in section 4.2.

4.1 Power-type Nonlinearities

Among the simplest types of semi-linear systems to consider are those with a power-

type nonlinearity. That is,

(�+ 1)u = up (4.1)

with initial data

u(0, x) = u0 ∈ Hs, ∂tu(0, x) = u1 ∈ Hs−1
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where p ≥ 1.

We can invoke structural properties of the above equation to provide restrictions

on the values of s and p. A valuable heuristic to consider is scale invariance. Scaling

heuristics are important because they predict a relationship between the time of existence

and the regularity of the initial data. We observe that the wave equation

�u = up

is invariant under the transformation

u(t, x)→ uλ(t, x) := λ
−2
p−1u( t

λ
,
x

λ
),

where λ ∈ R and λ > 0.

We also remark that that the Schroedinger equation

(i∂t + ∆)u = up

is invariant under the transformation

u(t, x)→ uλ(t, x) := λ
−2
p−1u( t

λ2 ,
x

λ
).

Furthermore, we observe that in both cases ‖u‖Ḣs
x

= ‖uλ‖Ḣs
x
for s = sc := d

2 −
2
p−1 .

The value sc is called the critical regularity. In the low spatial frequency regime

the Klein-Gordon equation resembles the Schroedinger system, and in the high frequency

case, it approximates to the wave equation. It is therefore reasonable to expect that the

critical regularity for these two equations plays an important role for the Klein-Gordon as

well.
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Regularities s > sc are referred to as subcritical, and regularities s < sc are called

supercritical. Higher regularity data is typically better behaved and we therefore expect

subcritical solutions to be better behaved than critical solutions. In general, we expect

problems with supercritical data to be ill-posed. For s > sc we can often trade between

the size of the initial data and the time of existence: for example, if we can prove local

well-posedness on a fixed time interval, [0, T ], for data with small Hs
x norm, then we can

also establish local well-posedness for large data on a smaller time scale.

The scale invariance heuristic discussed above primarily produced restrictions on

the regularity, s. In general, when p is low (say p = 2, 3), it is more difficult to establish

global well-posedness in lower dimensions (n = 2, 3), especially when the initial data is

assumed to have regularity near the critical value.

We will save our discussion on the case p = 2 for the next chapter as our proof will

rely on some higher level machinery. Our primary focus in this section will be to establish

global well-posedness for p = 3 and n = 2, 3. We also remark that in our argument,

the nonlinearity F (u) = u3 can be replaced by F (u) = ui|u|3−i where 0 ≤ i ≤ 3. For

convenience, we consider only the case F (u) = u3 as it will soon be apparent that our

proof extends readily to the other cases. Our aim is to prove the following result

Theorem 4.1.1. Suppose s > 1/2 and n ∈ {2, 3} There exists an ε > 0 such that for

initial data

(u0, u1) ∈ Hs(Rn)×Hs−1(Rn) , ‖(u0, u1)‖Hs×Hs−1 < ε,

the equation

(�+ 1)u = u3 (4.2)
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with initial data

u(0, x) = u0 ∈ Hs, ∂tu(0, x) = u1 ∈ Hs−1 (4.3)

has a unique global solution in C([0,∞), Hs) which depends continuously on the initial

data (u0, u1).

Before embarking on our proof we remark that the critical regularity for p = 3 is 1
2

for n = 3 and 0 for n = 2. The above theorem establishes well-posedness for all subcritical

regularities in n = 3, but falls short in the n = 2 case. This is unsurprising given our

previous discussion on the difficulties associated with lower spatial dimensions.

Proof. Given T > 0, let XT := L∞t ([0, T ];Hs
x)∩L4

t ([0, T ];W s−1/2,4
x [k]) with the correspond-

ing norm

‖u‖XT =
(
‖u‖L∞t Hs

x[k] + ‖u‖
L4
tW

s−1/2,4
x [k]

)

We define the space ST as

ST (ε) := {u ∈ XT : ‖u‖XT ≤ C0ε}

where C0 is a constant that will be determined later.

Finally, we introduce the space NT := L
4/3
t ([0, T ];W s−1/2,4/3

x [k]) with the obvious

corresponding norm. From our discussion in Section 3.1, local well-posedness of the system

(4.2)-(4.3) on [0, T ] will follow from proving that the following four estimates hold true for

all v, w ∈ ST

‖W (u0, u1)‖ST ≤
1
2C0‖(u0, u1)‖Hs

x×H
s−1
x
, (4.4)

‖L(G)‖ST ≤ C‖G‖NT , (4.5)
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‖w3‖NT ≤ C ′ε, (4.6)

‖v3 − w3‖NT ≤ C ′′‖v − w‖XT , (4.7)

where we require CC ′ ≤ 1
2C0, CC ′′ ≤ 1

2 and we recall that

W (u0, u1)(t, ·) = eit〈D〉u0(·) + eit〈D〉u1(·)
〈D〉

and

L(G)(t, ·) :=
∫ t

0

sin(i(t− s)〈D〉)G(s, ·)
〈D〉

ds.

We first turn our attention to proving estimate (4.4). From the definition of ST we

have

‖W (u0, u1)‖ST ≤ ‖eit〈D〉u0‖L∞t Hs
x

+ ‖eit〈D〉u0‖L4
tW

s−1/2,4
x

+ ‖e
it〈D〉u1

〈D〉
‖L∞t Hs

x
+ ‖e

it〈D〉u1

〈D〉
‖
L4
tW

s−1/2,4
x

.

By Theorem 2.3.1 with σ = 1 and p =∞, q = 2 for the first term and p = 4, q = 4 for the

second, we obtain

‖eit〈D〉u0‖L∞t Hs
x
. ‖u0‖Hs

x
; ‖eit〈D〉u0‖L4

tW
s−1/2,4
x

. ‖u0‖Hs
x
.

Similarly,

‖e
it〈D〉u1

〈D〉
‖L∞t Hs

x
. ‖u1‖Hs−1

x
; ‖e

it〈D〉u1

〈D〉
‖
L4
tW

s−1/2,4
x

. ‖u1‖Hs−1
x
.

We see that (4.4) follows if C0 is chosen to be sufficiently large.

We now turn our attention to proving estimate (4.5). From the definition of ST ,

we see that the LHS of (4.5) is

≤ ‖
∫ t

0
ei(t−s)〈D〉G(s, ·)ds‖L∞t Hs−1

x
+ ‖

∫ t

0
ei(t−s)〈D〉G(s, ·)ds‖

L4
tW

s−3/2,4
x

.
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Applying Theorem 2.3.2 with σ = 1, p2 = q2 = 4 and p1 = ∞, q = 2 for the first

term and p1 = 4, q1 = 4 for the second, we can bound the above by

. ‖G‖
L

4/3
t W

s−1/2,4/3
x

= ‖G‖NT .

Rather than prove estimates (4.6) and (4.7) independently and directly, we will

instead show that for all z1, z2, z3 ∈ XT , we have

‖z1z2z3‖NT ≤ K‖z1‖XT ‖z2‖XT ‖z3‖XT . (4.8)

To see that (4.6) follows from (4.8), assume (4.8) is true. Suppose w ∈ ST , then by (4.8)

and the definition of ST , we can conclude

‖w3‖NT ≤ K(C0ε)3

if we assume ε is small enough so that K(C0ε)3 ≤ 1
2C0.

To see that (4.7) also follows from (4.8), suppose that v, w ∈ ST . Taking advantage

of the inequality |v3 − w3| ≤ 2(|v − w|(v2 + w2)) and applying estimate (4.8), we obtain

‖v3 − w3‖NT ≤ 2‖(v − w)v2‖NT + 2‖(v − w)w2‖NT

≤ 2K‖v − w‖XT (‖v‖2
XT

+ ‖w‖2
XT

)

≤ 4K(C0ε)2‖v − w‖XT ,

where the last inequality comes from the definition of ST . If we assume ε is small enough

that 4K(C0ε)2 ≤ C ′′, then estimate (4.7) follows.

We now focus on proving (4.8). Applying Theorem 2.2.1 with (p1, p2, q1, q2, λ, σ) =

(p̃1, p̃2, q̃1, q̃2, λ̃, σ̃) = (4, 2, 4, 2, s− 1/2, 0), we obtain

‖z1z2z3‖NT . ‖z1‖L4
tW

s−1/2,4
x [k]‖z2z3‖L2

tH
s−1/2
x [k].
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Another iteration of Theorem 2.2.1 with (p1, p2, q1, q2, λ, σ) = (p̃1, p̃2, q̃1, q̃2, λ̃, σ̃) = (4, 4, 4,

4, s− 1/2, 0) allows us to bound the above by

‖z1‖L4
tW

s−1/2,4
x [k]‖z2‖L4

tW
s−1/2,4
x [k]‖z3‖L4

tW
s−1/2,4
x [k].

Estimate (4.8) therefore follows from the definition of ‖ · ‖XT .

We have so far managed to prove local well-posedness on [0, T ]. We observe that

‖u‖L∞t ([0,T ];Hs
x) ≤ ‖u‖XT ≤ C0ε.

As T > 0 was chosen arbitrarily and C0 does not depend on T , we can conclude that

‖u‖L∞t ([0,∞);Hs
x) is bounded. Global well-posedness then follows from the discussion in

section 3.2.

4.2 General Third Order Nonlinearities

Having completed our discussion on third order power-type nonlinearities in the

previous section, we now turn our attention towards third order nonlinearities that include

first order time and space derivatives. Because such nonlinearities are more difficult to

deal with, we will only work in n = 3 space dimensions.

The general third order semilinear Klein-Gordon system can be expressed as

(�+ 1)u =
∑
i,j,l=0

Ai,j,l(∂1, ∂2, ∂3)[∂itu][∂jtu][∂ltu]. (4.9)

where Ai,j,l is a polynomial of order 1 − i (respectively 1 − j, 1 − l) in ∂1 (respectively

∂2, ∂3).
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Global well-posedness for this system has long been established (see [19]). The

result in [19] relies on stronger assumptions on the initial data, but also assumes a more

general form for F that involves second order time and space derivatives because the

author considers a general quasilinear system. In general, such systems are more difficult

to deal with and one typically needs extra decay assumptions on the initial data in order

to close the argument. We are able to weaken the assumptions on the initial data precisely

because our nonlinearity only includes first order derivatives.

Rather than prove global well-posedness for the general nonlinearity presented in

(4.9), we will instead work with the special case F (u, ∂tu, ∂u) = (∂tu)u2. It will soon be

apparent that we can extend our argument to the general case in a straightforward, albeit

notationally tedious, manner. Our goal is to prove the following theorem.

Theorem 4.2.1. Suppose s > 2. There exists an ε > 0 such that for initial data

(u0, u1) ∈ Hs(R3)×Hs−1(R3) , ‖(u0, u1)‖Hs×Hs−1 < ε

the equation

(�+ 1)u = (∂tu)u2 (4.10)

with initial data

u(x, 0) = u0 ∈ Hs, ∂tu(0, x) = u1 ∈ Hs−1 (4.11)

has a unique global solution in C([0,∞), Hs)∩C1([0,∞), Hs−1) which depends continuously

on the initial data (u0, u1).

Proof. Let 0 < δ < s− 2 and define XT ⊆ L∞t H
s
x[k] ∩ L2

tW
1+δ,∞
x [k] by the norm

‖u‖XT :=
1∑
i=0

(
‖∂itu‖L∞t Hs−i

x [k] + ‖∂itu‖L2
tW

1+δ−i,∞
x [k]

)
.
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As before, we define the space ST by

ST (ε) := {u ∈ XT : ‖u‖XT ≤ C0ε}

Finally, define the space NT := L∞t H
s−1
x [k] with the obvious corresponding norm.

Recall that we defined

W (u0, u1)(t, ·) = eit〈D〉u0(·) + eit〈D〉u1(·)
〈D〉

and

L(G)(t, ·) :=
∫ t

0

sin((t− s)〈D〉)G(s, ·)
〈D〉

ds.

Applying the argument from the previous section, we know that Theorem 4.2.1

follows from proving the following three estimates

‖W (u0, u1)‖ST . ‖(u0, u1)‖Hs
x×H

s−1
x
, (4.12)

‖L(G)‖ST . ‖G‖NT , (4.13)

‖(∂tz1)z2z3‖NT . ‖z1‖XT ‖z2‖XT ‖z3‖XT , (4.14)

provided ε is chosen sufficiently small and C0 adequately large. From the homogeneous

estimate in Theorem 2.3.5, we can conclude that

‖W (u0, u1)‖L2
tW

1+δ,∞
x

. ‖(u0, u1)‖Hs
x×H

s−1
x
, ‖∂tW (u0, u1)‖L2

tW
δ,∞
x
. ‖(u0, u1)‖Hs

x×H
s−1
x
,

where we have taken advantage of the fact that s− 2− δ > 0.

Similarly, it is not difficult to see that

‖W (u0, u1)‖L∞t Hs
x
. ‖(u0, u1)‖Hs

x×H
s−1
x
, ‖∂tW (u0, u1)‖L∞t Hxs−1 . ‖(u0, u1)‖Hs

x×H
s−1
x
.
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Equation (4.12) therefore follows.

To prove (4.13), recall that

‖L(G)‖ST = ‖
∫ t

0

sin((t− s)〈D〉)G(s, ·)
〈D〉

ds‖L∞t Hs
x[k] (4.15)

+ ‖
∫ t

0

sin((t− s)〈D〉)G(s, ·)
〈D〉

ds‖L2
tW

1+δ,∞
x [k] (4.16)

+ ‖∂t
∫ t

0

sin((t− s)〈D〉)G(s, ·)
〈D〉

ds‖L∞t Hs−1
x [k] (4.17)

+ ‖∂t
∫ t

0

sin((t− s)〈D〉)G(s, ·)
〈D〉

ds‖L2
tW

1+δ−1,∞
x [k]. (4.18)

Applying Theorem 2.3.2 with (p1, p
′
2, q1, q

′
2) = (∞, 1, 2, 2), we obtain the estimate

‖
∫ t

0

sin((t− s)〈D〉)G(s, ·)
〈D〉

ds‖L∞t Hs
x[k] . ‖

G

〈D〉
‖L1

tH
s
x[k] = ‖G‖L1

tH
s−1
x [k].

Taking advantage of the fact that s− 2− δ > 0 and applying the inhomogeneous estimate

from Theorem 2.3.5 to (4.16), we see that

‖
∫ t

0

sin((t− s)〈D〉)G(s, ·)
〈D〉

ds‖L2
tW

1+δ,∞
x [k] . ‖

G

〈D〉
‖L1

tH
s
x[k] = ‖G‖L1

tH
s−1
x [k].

Before we bound (4.17) and (4.18), observe that

∂t

∫ t

0

sin((t− s)〈D〉)G(s, ·)
〈D〉

ds = sin((t− t)〈D〉)G(t, ·)
〈D〉

+
∫ t

0
cos((t− s)〈D〉)G(s, ·)ds

=
∫ t

0
cos((t− s)〈D〉)G(s, ·)ds.

Once again we apply Theorems 2.3.2 and 2.3.5 to conclude that

‖
∫ t

0
cos((t− s)〈D〉)G(s, ·)ds‖L∞t Hs−1

x [k] . ‖G‖L1
tH

s−1
x [k]

and

‖
∫ t

0
cos((t− s)〈D〉)G(s, ·)ds‖L2

tW
1+δ,∞
x [k] . ‖G‖L1

tH
s−1
x [k].
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Completing the proof of (4.13)

Finally, we turn our attention towards (4.14). Applying Theorem 2.2.1 with (p1, p2,

q1, q2, λ, σ) = (∞, 1, 2,∞, δ, 0) and (p̃1, p̃2, q̃1, q̃2, λ̃, σ̃) = (2, 2,∞,∞, δ, 0), we obtain

‖(∂tz1)z2z3‖L1
tH

s−1
x [k] . ‖∂tz1‖L∞t Hs−1

x
‖z2z3‖L1

tW
δ,∞
x [k]

+ ‖∂tz1‖L2
tW

δ,∞
x [k]‖z2z3‖L2

tH
s−1
x [k].

Another iteration of Theorem 2.2.1 allows us to bound the above by

. ‖∂tz1‖L∞t Hs−1
x
‖z2‖L2

tW
δ,∞
x [k]‖z3‖L2

tW
δ,∞
x [k]

+ ‖∂tz1‖L2
tW

δ,∞
x [k]‖z2‖L2

tW
δ,∞
x [k]‖z3‖L∞t Hs−1

x [k].

Estimate (4.14) therefore follows from the definition of XT , concluding our proof.
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Chapter 5

Quadratic Systems with Different

Masses

We study the Cauchy problem in dimensions n ≥ 2 for the semi-linear Klein-Gordon

system

(�+m2
i )ui = Fi(u1, ..., uk) i = 1, ..., k

with initial data

ui(0, x) = fi ∈ Hs(Rn), ∂tui(0, x) = gi ∈ Hs−1(Rn),

for s ≥ max (1
2+, n−2

2 ), where the masses mi satisfy a suitable nonresonance condition and

the Fi are homogeneous quadratic polynomials.

This particular problem was studied by Tobias Schottdorf in [18], and a scalar

version was considered by Vladimir Georgiev and Atanas Stefanov in [9] for the case n = 2

and H1+
x initial data. In dimension n = 2, Schottdorf was able to prove global existence

with smooth dependence on the initial data by employing a contraction argument in a Up
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type space. He also claims to prove this in dimensions n ≥ 3, but unfortunately there

is a flaw in his proof which we suspect is the reason his paper remains unpublished. In

order to properly close the argument in higher dimensions we find that we must refine the

iteration space.

Our goal then is to provide a complete solution to the Cauchy problem studied in

[18]. We present the proof in n = 2 given by Schottdorf as well as our original argument

for dimensions n ≥ 3. Our aim is to prove Theorem 1.0.2, which we repeat for convenience

below.

Theorem 5.0.1. Let n ≥ 2, s ≥ max (1
2+, n−2

2 ), k ∈ N and let F1, ..., Fk be homogeneous

quadratic polynomials and m1, ...,mk > 0 be such that

2 min ({mj}) > max ({mj})

Then there exists an ε > 0 such that for initial data

(fi, gi) ∈ Hs(Rn)×Hs−1(Rn) , ‖(fi, gi)‖Hs(Rn)×Hs−1(Rn) < ε

the system

(�+m2
i )ui = Fi(u1, ..., uk) i = 1, ..., k

has a global solution in C(R, Hs)∩C1(R, Hs−1) which depends continuously on the initial

data (f,g).

As the generalization to a system with different masses does not require much

additional work provided the required nonresonance condition is met (see section 5.5), we

may reduce to the scalar equation

(�+ 1)u = F (u) (5.1)
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with initial data

u(0, x) = f ∈ Hs, ∂tu(0, x) = g ∈ Hs−1

As before, we will apply a contraction argument to establish global existence.

Rather than run our contraction scheme in a mixed Sobolev space like we did in Chapter 4

we will instead work in Up based spaces. The advantage of working with such spaces is that

their elements enjoy many of the same properties as free solutions, such as bilinear and

trilinear estimates. Another benefit to working with these spaces is that they allow us to

readily exploit the lack of resonant terms. This is because they provide good information

on the Fourier transform properties of their elements.

For both n = 2 and n ≥ 3 dimensions we are able to reduce our contraction

argument to a set of trilinear estimates which we prove in section 5.3. In n = 2 dimensions,

we prove these using Strichartz estimates and a modulation argument. In n ≥ 3 however,

the situation is more difficult and we require a more robust approach.

Fortunately, one can exploit the geometry of the characteristic hypersurface in

order to establish a useful set of bilinear estimates for free solutions. Applying some ba-

sic properties of Up spaces, we can translate these estimates to bilinear estimates from

e±it〈D〉U2 × e±it〈D〉U2 → L2. The error in Shottdorf’s proof for n ≥ 3 lies in his attempt

to upgrade this estimate to one of the form e±it〈D〉U4 × e±it〈D〉U4 → L2 for certain fre-

quency interactions using a flawed orthogonality argument. Without this estimate his

proof of the trilinear estimates discussed above is incomplete. We manage to circumvent

the orthogonality issue by refining our iteration space as we discuss in the next section.
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5.1 Function Spaces

It is useful to translate (5.1) into a first order system. Observe that

�+ 1 = (〈D〉+ i∂t)(〈D〉 − i∂t).

Hence, for sufficiently nice u satisfying

(�+ 1)u = F, u(0, x) = f, ∂tu(0, x) = g,

we define

u± = 〈D〉 ∓ i∂t2〈D〉 u.

Then, u± solves

(〈D〉 ± i∂t)u± = F

2〈D〉 , u
±
0 := u±(0, x) = 1

2(f ∓ i g

〈D〉
)

and u = u+ + u−.

We focus our attention first on the case n = 2. Let Xs
± denote the closure of

C(R, Hs) ∩ U2 with respect to the following norm:

‖u‖Xs
±

= (
∑
k

22ks‖Pku±‖2
U2
±

)1/2,

where

‖u‖U2
±

= ‖e∓it〈D〉u‖U2 .

Define Y s as the corresponding space where U2 is replaced by V 2 = V 2
−,rc and let

Xs = Xs
+ ×Xs

− Y s = Y s
+ × Y s

−.
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Given s ≥ 1
2 , u

±
0 ∈ Bε(0) ⊆ Hs and (u+, u−) ∈ Xs, we wish to solve the operator

equation

u± = e±it〈D〉u±0 ∓ iI±(u),

where u = u+ + u− and

I±(u) =
∫ t

0
e±i(t−s)〈D〉

F (u(s))
2〈D〉 ds.

We can solve this equation by running a contraction argument in Xs similar to the anal-

ogous one for XT in Chapter 3 once we have established the following bounds:

‖e±it〈D〉u±0 ‖Xs
±
. ‖u±0 ‖Hs , ‖I±(u)‖Xs

±
. ‖(u+, u−)‖2

Xs
±
.

The linear part is easy to estimate:

‖e±it〈D〉u±0 ‖2
Xs
±

=
∑
k

22ks‖e±it〈D〉Pk(u±0 )‖2
U2
±

.
∑
k

22ks‖Pk(u±0 )‖2
U2

. ‖u±0 ‖2
Hs .

It remains to prove the bound on the Duhamel term.

Unfortunately we are unable to close the contraction argument in Xs in higher

dimensions. We construct a more refined space X̃s in what follows. We remark that the

special structure of this new space allows us to fix the flaw in Schottdorf’s work.

Let n ≥ 3, then define Ξk = 2k · Zd and let γ(1) : R → [0, 1] be an even smooth

function supported in the interval [−2/3, 2/3] with the property that

∑
d∈Z

γ(1)(ξ − d) = 1 for ξ ∈ R.
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Define γ : Rn → [0, 1] by γ(ξ) = γ(1)(ξ1) · ... · γ(1)(ξn). For d ∈ Ξk, let

γd,k = γ((ξ − d)/2k).

It follows that
∑
d∈Ξk

γd,k(ξ) ≡ 1 for ξ ∈ Rn.

Define Γd,k to be the Fourier multiplication operator with symbol γd,k, and let

Up,±
k be the subspace of L∞t L2

x defined by the following norm:

‖u‖Up,±
k

= (
∑
d∈Ξk
‖Γd,ku‖2

Up±
) 1

2 .

Similarly, for V p,±
k , set

U±k := U2,±
k , V ±k := V 2,±

k

Lemma 5.1.1. Let k1, k2 ∈ Z≥0 be such that k1 ≤ k2. Then, for p > 1, we have

‖u‖Up,±
k1
. ‖u‖Up,±

k2
, (5.2)

‖u‖V p,±
k2
. ‖u‖V p,±

k1
. (5.3)

Proof. We first turn our attention to estimate (5.3). Without changing our argument in

any significant way, we can replace V p,±
k1 , V p,±

k2 with V p
k1 , V

p
k2 , where the spaces V p

k1 , V
p
k2 are

defined in the obvious way.

By definition,

‖u‖V p
k2

= (
∑
d∈Ξk2

‖Γd,k2u‖2
V p)

1
2

We see that

‖Γd,k2u‖V p = sup
{tm}Mm=0∈Z

(
M∑
m=1
‖Γd,k2u(tm)− Γd,k2u(tm−1)‖pL2)1/p

≤ sup
{tm}Mm=0∈Z

(
M∑
m=1

(
∑

d′∈Ξk1

‖Γd,k2Γd′,k1u(tm)− Γd,k2Γd′,k1u(tm−1)‖L2)p)1/p.
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Observe that the terms in the rightmost sum are nonzero for only finitely many

d′. Let Sk1,k2,d denote the index set containing all such d′. Note that the size of Sk1,k2,d

depends only on k1 and k2. Applying Minkowski’s inequality in m and d′ bounds the above

expression by

sup
{tm}Mm=0∈Z

∑
d′∈Sk1,k2,d

(
M∑
m=1
‖Γd′,k1u(tm)− Γd′,k1u(tm−1)‖pL2)1/p

≤
∑

d′∈Sk1,k2,d

‖Γd′,k1u‖V p .

We conclude that

‖u‖V p
k2
≤ (

∑
d∈Ξk2

(
∑

d′∈Sk1,k2,d

‖Γd′,k1u‖V p)2) 1
2

.k1,k2 (
∑

d′∈Ξk1

‖Γd′,k1u‖2
V p)

1
2 = ‖u‖V p

k1
,

giving us estimate (5.3). Estimate (5.2) then follows from (5.3) by a straight forward

duality argument.

Remark 5.1.1. From Lemma 5.1.1, we can conclude that ‖ · ‖U±0 . ‖ · ‖U±k and ‖ · ‖V ±
k
.

‖·‖V ±0 for all k ≥ 0. Furthermore, for compactly supported u ∈ U2
±, we have ‖u‖U±0 . ‖u‖U2

±

and ‖u‖V 2
±
. ‖u‖V ±0 . We will use both of these facts repeatedly in our estimates for n ≥ 3.

Finally, define X̃s
±, Ỹ

s
± by the norms

‖u‖
X̃s
±

= (
∑
k

22ks‖Pku‖2
U±0

) 1
2 ‖u‖

Ỹ s±
= (

∑
k

22ks‖Pku‖2
V ±0

) 1
2

and

X̃s = X̃s
+ × X̃s

− Ỹ s = Ỹ s
+ × Ỹ s

−.
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Similarly to the case n = 2, given s ≥ n−2
2 , u±0 ∈ Bε(0) ⊆ Hs and

(u+, u−) ∈ Xs, we wish to solve the operator equation

u± = e±it〈D〉u±0 ∓ iĨ±(u),

where u = u+ + u− and

Ĩ±(u) =
∫ t

0
e±i(t−s)〈D〉

N(u(s))
2〈D〉 ds.

We can solve this equation by running a standard contraction argument in X̃s once we

have established the following bounds

‖e±it〈D〉u±0 ‖X̃s
±
. ‖u±0 ‖Hs ‖I±(u)‖

X̃s
±
. ‖(u+, u−)‖2

X̃s
±
.

As before, the linear part is easy to estimate:

‖e±it〈D〉u±0 ‖2
X̃s
±

=
∑
k

22ks‖e±it〈D〉Pk(u±0 )‖2
U±0

.
∑
k

22ks‖e±it〈D〉Pk(u±0 )‖2
U2
±

.
∑
k

22ks‖Pk(u±0 )‖2
U2

. ‖u±0 ‖2
Hs .

So, it remains to prove the bound on the Duhamel term. In order to do so we need several

results.

5.2 Bilinear estimates and Modulation Analysis

The proof of the main theorems of this chapter will rely heavily on the bilinear

estimates presented in this section. Note that bounds in Up type spaces will follow directly

from Lp bounds on free solutions due to Proposition 2.4.3.
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Later in this chapter we will repeatedly make use of the n = 2, p = q = 4 Strichartz

estimate proved in Chapter 2. We present it below for convenience.

Proposition 5.2.1 ([18], Proposition 8). Let u0 ∈ L2(R2), then

‖e±it〈D〉u0‖L4
tL

4
x
. ‖〈D〉

1
2u0‖L2

x
.

We will repeatedly make use of the following result

Corollary 5.2.1. Let n = 2 and uk ∈ V 2
± be localized at frequency 2k, then we have

‖uk‖L4
tL

4
x
. 2 k

2 ‖u‖V 2
±
. (5.4)

Proof. Let φ ∈ L2(R2) and define T0(φ) := Pk(φ). By Proposition 5.2.1, we have

‖T0(e±it〈D〉φ)‖L4
tL

4
x
. 2 k

2 ‖φ‖L2
x

Applying Proposition 2.4.3 to T0 we obtain

‖uk‖L4
tL

4
x
. 2 k

2 ‖uk‖U4
±
,

for all u ∈ U4
±. As V 2 ⊆ U4 we may replace U4

± with V 2
± to get the desired bound.

For our estimates in dimensions n ≥ 3, we will need the following key result.

Proposition 5.2.2 ([18], Proposition 7). Let n ≥ 3, O,M,N be dyadic numbers, and

φM , ψN functions in L2(Rn) localized at frequencies M,N respectively. For ±1,±2 ∈

{+,−} define uM = e±1it〈D〉φM , vN = e±2it〈D〉ψN and denote L=min(O,M,N),

H =max(O,M,N). Then,

‖PO(uMvN)‖L2(Rn+1) .


H

1
2L

n−2
2 ‖φM‖L2

x
‖ψN‖L2

x
if M ∼ N

L
n−1

2 ‖φM‖L2
x
‖ψN‖L2

x
otherwise
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Proof. Found in [18]

Applying Proposition 2.4.3 to the above result yields

Corollary 5.2.2. Let n ≥ 3 and L,H be dyadic integers such that L� H. Furthermore,

assume uL ∈ U2
±1 , wH ∈ U2

±2 be localized at frequencies L and H respectively. Then, we

have

‖uLwH‖L2 . L
n−1

2 ‖uL‖U2
±1
‖wH‖U2

±2
.

The following estimate and corresponding proof can also be found in [18]. We

remark that the result we obtain here is stronger than what is possible using just Strichartz

estimates and Bernstein’s inequality.

Proposition 5.2.3 ([18], Proposition 10). Let n ≥ 3 and let φM,N have Fourier support

in a ball of radius M centered at frequency N where M . N . Then, we have

‖eit〈D〉φM,N‖L4 . N
1
4M

n−2
4 ‖φM,N‖L2 .

Proof. For φ := φN,M , it suffices to show

‖eit〈D〉φe−it〈D〉φ̄‖L2 . N
1
2M

n−2
2 ‖φ‖2

L2 .

As the Fourier supports of φ and φ̄ are symmetric through the origin, we conclude that

the sum of the supports lies in a ball of radius . M centered at 0. Therefore, we may

rewrite the inequality above as

‖PM(eit〈D〉φe−it〈D〉φ̄)‖L2 . N
1
2M

n−2
2 ‖φ‖2

L2 ,

and we conclude that the desired bound follows from Proposition 5.2.2
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Combining the above result with Proposition 2.4.3, we obtain the following

Proposition 5.2.4 ([18], Proposition 11). Let n ≥ 3 and let uM,N have Fourier support

in a ball of radius M centered at frequency N where M . N . Then, we have

‖uM,N‖L4 . N
1
4M

n−2
4 ‖uM,N‖U4

±
.

Note that we can replace U4 in the bound above with V 2 as V 2 ⊆ U4.

Corollary 5.2.3. Let n ≥ 3 and L,H be dyadic integers such that L� H. Furthermore,

let uL ∈ U2
±1 , wH ∈ U

2
±2 be localized at frequencies L and H respectively. Then, we have

‖uLwH‖L2 . L
n−1

2 log2 (H
L

)‖uL‖V 2
±1
‖wH‖V 2

±2
.

Proof. Define Tw := uLPH(w). Then,

‖Tw‖L2 . ‖uL‖L4‖wH‖L4 .

By Corollary 5.2.4, this is

. L
n−1

4 ‖uL‖U4
±1
H

n−1
4 ‖wH‖U4

±2
(5.5)

As U2 ⊆ U4, we can replace the above with

. (LH)
n−1

4 ‖uL‖U2
±1
‖w‖U4

±2
.

So, we conclude

‖T‖U4
±2→L2 . (LH)

n−1
4 ‖uL‖U2

±1
.

From Corollary 5.2.2 we see that

‖T‖U2
±2→L2 . L

n−1
2 ‖uL‖U2

±1
.
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We apply Proposition 2.4.4 with p = 2, q = 4 to obtain

‖uLwH‖L2 . L
n−1

2 ln(H
L

)‖uL‖U2
±1
‖wH‖V 2

±2
. (5.6)

We iterate the argument by defining

Su = PL(u)wH .

Applying the fact that V 2 ⊆ U4 to (5.5), we obtain

‖S‖U4
±1→L2 . (LH)

n−1
4 ‖wH‖V 2

±2
.

From (5.6), we observe that

‖S‖U2
±1→L2 . L

n−1
2 ln(H

L
)‖wH‖V 2

±2
.

Applying Proposition 2.4.4 once more gives us the claim

A crucial feature we exploit in the nonlinear analysis is the absence of resonant

terms. In order to formalize this idea, we must first prove an important modulation

bound.

Define 〈ξ〉m :=
√
m2 + |ξ|2.

Lemma 5.2.1. Assume m1,m2,m3 > 0 are such that 2 min{mi} > max{mi}. Let ε1, ε2 ∈

{+,−} and let ξ1 + ξ2 = ξ3. Then, we have

max {〈ξ1〉−1
m1 , 〈ξ2〉−1

m2 , 〈ξ3〉−1
m3} . |〈ξ1〉m1 + ε1〈ξ2〉m2 + ε2〈ξ3〉m3|. (5.7)

Proof. Case 1: ε1 = ε2 = +

This is obvious.

Case 2: ε1 = +, ε2 = −
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Define

Λ := 〈ξ1〉m1 + 〈ξ2〉m2 + 〈ξ1 + ξ2〉m3 .

It suffices to show that

1
Λ . 〈ξ1〉m1 + 〈ξ2〉m2 − 〈ξ1 + ξ2〉m3 ,

which is equivalent to showing

1 . (〈ξ1〉m1 + 〈ξ2〉m2 − 〈ξ1 + ξ2〉m3) · Λ. (5.8)

Expanding the RHS of (5.8), gives us

〈ξ1〉2m1 + 〈ξ2〉2m2 + 2〈ξ1〉m1〈ξ2〉m2 − 〈ξ1 + ξ2〉2m3

= m2
1 +m2

2 −m2
3 + |ξ1|2 + |ξ2|2 − |ξ1 + ξ2|2 + 2〈ξ1〉m1〈ξ2〉m2 .

Applying the law of cosines, this

= (m1 +m2−m3)(m1 +m2 +m3)−2m1m2−2|ξ1||ξ2|cos(< (ξ1, ξ2))+2〈ξ1〉m1〈ξ2〉m2 . (5.9)

Define

Γ := 〈ξ1〉m1〈ξ2〉m2 − (|ξ1||ξ2|+m1m2).

I claim that Γ ≥ 0. Indeed, we see that

Γ = (〈ξ1〉m1〈ξ2〉m2)2 − (|ξ1||ξ2|+m1m2)2

〈ξ1〉m1〈ξ2〉m2 + |ξ1||ξ2|+m1m2

= (m2|ξ1|+m1|ξ2|)2

〈ξ1〉m1〈ξ2〉m2 + |ξ1||ξ2|+m1m2
.
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Therefore, (5.9) is

≥ (m1 +m2 −m3)(m1 +m2 +m3)

≥ min{mi}(2 min{mi} −max{mi})

& 1.

giving us the desired bound

case 3: ε1 = −, ε2 = + (By interchanging the roles of ξ1 and ξ2, we see that the

case ε1 = ε2 = − is identical)

Let η = −ξ1, then the right-hand side of (5.7) can be rewritten as

|〈η〉m1 − 〈η + ξ3〉m2 + 〈ξ3〉m3|,

reducing us to case 2.

Lemma 5.2.2. Let ±1,±2,±3 ∈ {+,−} and L,H,H ′,M1,M2,M3 be dyadic numbers such

that L� H ∼ H ′. Furthermore, let

uL = Q±1
≤M1uL, vH = Q±2

≤M2vH , wH′ = Q±3
≤M3wH′

then, if Λ := max (M1,M2,M3) ≤ CL−1 for appropriately chosen C, we will have
∫ ∫

uLvHwH′dxdt = 0. (5.10)

Proof. Observe that
∫ ∫

uLvH′wHdxdt = (FtxuL ∗ FtxvH′ ∗ FtxwH)(0, 0). (5.11)

So we consider only the frequencies satisfying τ1 + τ2 + τ3 = 0, ξ1 + ξ2 + ξ3 = 0 . By

definition of Q±≤, we also have |τi ∓i 〈ξi〉| ≤ Λ, so that on the nonvanishing set we have

3Λ ≥ |
3∑
i=1

τi ∓i 〈ξi〉| = |
3∑
i=1
∓i〈ξi〉| & L−1,

64



where the last inequality is obvious when the three signs agree and follows from Lemma

5.2.1 otherwise. We conclude that for Λ . L−1, expression (5.11) must vanish.

5.3 Trilinear Estimates

In order to prove the necessary Duhamel bound, we will need to take advantage of

the duality relationship between U2 and V 2. Because the nonlinearity F in the Duhamel

term is quadratic, it makes sense that our V 2 based estimates will be trilinear in nature.

In order to motivate the precise form of these estimates for dimension n = 2, we present

the following computation from [18].

Let G = F (u)
2〈D〉 , then

‖PkI±(u)‖U2
±

= ‖Pke∓it〈D〉I±(u)‖U2 = ‖Pk
∫ t

0
e∓is〈D〉G(s)ds‖U2 .

By Proposition 2.4.1 and Theorem 2.4.1 we have that the above

= sup
‖v‖V 2=1

|B(Pk
∫ t

0
e∓is〈D〉f(s)ds, v)|

= sup
‖v‖V 2=1

|
∫ ∫

f(t)e±it〈D〉Pkvdxdt|

= sup
‖v‖

V 2
±

=1
|
∫ ∫

f(t)Pkvdxdt|.

It will be evident soon that the estimates we need for the case n = 2 are exactly

those presented in the following theorem

Theorem 5.3.1. [[18], Theorem 3](Trilinear Estimates for n = 2) Let C ≥ 10 be a

fixed constant and k1, k2, k3 ∈ Z≥0 be such that |k2 − k3| ≤ C. Furthermore, suppose
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s > 1
2 ,±1,±2,±3 ∈ {+,−}, then

1
2k3
|

∑
k1≤k3+C

∫ ∫
Pk1uPk2vPk3wdxdt| . (

∑
k1≤k3+C

22k1s‖Pk1u‖2
V 2
±1

) 1
2‖Pk2v‖V 2

±2
‖Pk3w‖V 2

±3
.

(5.12)

Furthermore, we have

(
∑

k1≤k3+C
2−2k122k1s sup

‖Pk1w‖V 2
±3

=1
|
∫ ∫

Pk2uPk3vPk1wdxdt|2) 1
2 . 2k2s‖Pk2u‖V 2

±1
2k3s‖Pk3v‖V 2

±2
.

(5.13)

Proof. We denote I(k1) :=
∫ ∫

Pk1uPk2vPk3wdxdt, then we can decompose

I(k1) = I0(k1) + I1(k1) + I2(k1)

where

I0(k1) =
∑

M1&2−k1

∫ ∫
Q±1
M1Pk1uQ

±2
≤M1Pk2vQ

±3
≤M1Pk3wdxdt

I1(k1) =
∑

M2&2−k1

∫ ∫
Q±1
≤M2Pk1uQ

±2
M2Pk2vQ

±3
≤M2Pk3wdxdt

I2(k1) =
∑

M3&2−k1

∫ ∫
Q±1
≤M3Pk1uQ

±2
≤M3Pk2vQ

±3
M3Pk3wdxdt.

Here, the lower bound in the summands comes from Lemma 5.2.2, as the integral vanishes

for terms where max(M1,M2,M3) . max(2−k1 , 2−k2 , 2−k3) = 2−k1 . We can therefore bound

the LHS of (5.12) by

1
2k3

∑
k1≤k3+C

|I0(k1)|+ 1
2k3

∑
k1≤k3+C

|I1(k1)|+ 1
2k3

∑
k1≤k3+C

|I2(k1)| = I + II + III.

We first turn our attention to bounding (I). It isn’t difficult to see that

(I) ≤ 1
2k3

∑
k1≤k3+C

(
∑

M1&2−k1

‖Q±1
M1Pk1u‖L2) sup

M1&2−k1
‖Q±2
≤M1Pk2vQ

±3
≤M1Pk3w‖L2 .
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Applying the first estimate from Proposition 2.4.2 to the high modulation term, we bound

the above by

.
1

2k3

∑
k1≤k3+C

(
∑

M1&2−k1

M1
− 1

2‖Pk1u‖V 2
±1

) sup
M1&2−k1

‖Q±2
≤M1Pk2vQ

±3
≤M1Pk3w‖L2

.
1

2k3

∑
k1≤k3+C

2
k1
2 ‖Pk1u‖V 2

±1
sup

M1&2−k1
‖Q±2
≤M1Pk2vQ

±3
≤M1Pk3w‖L2

Applying Cauchy-Schwartz in k1 allows us to bound this by

≤ 1
2k3

(
∑

k1≤k3+C
22k1s‖Pk1u‖2

V 2
±1

) 1
2 (

∑
k1≤k3+C

2(1−2s)k1 sup
M1&2−k1

‖Q±2
≤M1Pk2vQ

±3
≤M1Pk3w‖2

L2) 1
2 .

We use the fact that 1− 2s < 1 to bound

∑
k1≤k3+C

2(1−2s)k1 sup
M1&2−k1

‖Q±2
≤M1Pk2vQ

±3
≤M1Pk3w‖2

L2 ≤ sup
M1&2−k3

‖Q±2
≤M1Pk2vQ

±3
≤M1Pk3w‖2

L2

≤ sup
M1&2−k3

‖Q±2
≤M1Pk2v‖2

L4‖Q±3
≤M1Pk3w‖2

L4 .

Using Corollary 5.2.1, we can bound this by

. 22k3 sup
M1&2−K3

‖Q±2
≤M1Pk2v‖2

V 2
±2
‖Q±3
≤M1Pk3w‖2

V 2
±3
.

Applying Proposition 2.4.2, this is

. 22k3‖Pk2v‖2
V 2
±2
‖Pk3w‖2

V 2
±3
,

which is the desired bound.

Next we turn our attention to bounding (II) (the argument for bounding (III) will

be nearly identical). As before, we place the high modulation term in L2 to bound (II)

by

2−k3
∑

k1≤k3+C
(

∑
M2&2−k1

‖Q±2
M2Pk2v‖L2) sup

M2&2−k1
‖Q±1
≤M2Pk1uQ

±3
≤M2Pk3w‖L2 .
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Once again we apply Proposition 2.4.2 and Corollary 5.2.1 to bound this by

. 2−k3
∑

k1≤k3+C
(

∑
M2&2−k1

M
− 1

2
2 ‖Pk2v‖V 2

±2
) sup
M2&2−k1

‖Q±1
≤M2Pk1uQ

±3
≤M2Pk3w‖L2

. 2−k3
∑

k1≤k3+C
2
k1
2 2

k1
2 2

k3
2 sup
M2&2−k1

‖Pk2v‖V 2
±2
‖Q±1
≤M2Pk1u‖V 2

±1
‖Q±3
≤M2Pk3w‖V 2

±3
.

Applying Cauchy-Schwartz in k1 and Proposition 2.4.2, this is

≤ 2−
k3
2 (

∑
k1≤k3+C

22k1s‖Pk1u‖2
V 2
±1

) 1
2 (

∑
k1≤k3+C

2(1−2s)k12k1) 1
2‖Pk2v‖V 2

±2
‖Pk3w‖V 2

±3
,

As s ≥ 1
2 , we have

∑
k1≤k3+C

2(1−2s)k12k1 .
∑

k1≤k3+C
2k1 . 2k3 ,

giving us the desired bound.

We now turn to estimate (5.13). We denote J(k1) :=
∫ ∫

Pk2uPk3vPk1wdxdt, then

we can decompose

J(k1) = J0(k1) + J1(k1) + J2(k1),

where

J0(k1) =
∑

M1&2−k1

∫ ∫
Q±1
M1Pk2uQ

±2
≤M1Pk3vQ

±3
≤M1Pk1wdxdt

J1(k1) =
∑

M2&2−k1

∫ ∫
Q±1
≤M2Pk2uQ

±2
M2Pk3vQ

±3
≤M2Pk1wdxdt

J2(k1) =
∑

M3&2−k1

∫ ∫
Q±1
≤M3Pk2uQ

±2
≤M3Pk3vQ

±3
M3Pk1wdxdt.

We can therefore bound the LHS of (5.13) by

2∑
i=0

(
∑

k1≤k3+C
2−2k122k1s sup

‖Pk1w‖V 2
±3

=1
|Ji(k1)|2) 1

2 = I + II + III.
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We first focus on estimating (III). We see that

(III)2 ≤
∑

k1≤k3+C
2−2k122k1s

sup
‖Pk1w‖V 2

±3
=1

(
∑

M3&2−k1

‖Q±3
M3Pk1w‖L2)2( sup

M3&2−k1
‖Q±1
≤M3Pk2uQ

±2
≤M3Pk3v‖L2)2.

Applying Proposition 2.4.2 and Corollary 5.2.1 once again, allows us to bound the above

by

.
∑

k1≤k3+C
2−2k122k1s

× sup
‖Pk1w‖V 2

±3
=1

(
∑

M3&2−k1

M
− 1

2
3 ‖Pk1w‖V 2

±3
)2 sup

M3&2−k1
(2k2‖Q±1

≤M3Pk2u‖2
V 2
±1

2k3‖Q±2
≤M3Pk3v‖2

V 2
±2

)

.
∑

k1≤k3+C
2−2k122sk12k1 sup

M3&2−k1
(2k2‖Q±1

≤M3Pk2u‖2
V 2
±1

2k3‖Q±2
≤M3Pk3v‖2

V 2
±2

).

Applying Proposition 2.4.2 and summing over k1, we bound the above by

. 2(2s−1)k32k2‖Pk2u‖2
V 2
±1

2k3‖Pk3v‖2
V 2
±2
.

As s ≥ 1
2 , this is

. 22k2s22k3s‖Pk2u‖2
V 2
±1
‖Pk3v‖2

V 2
±2
,

as desired.

We now focus on bounding I (the argument for bounding II is the same). We

observe that

(I)2 ≤
∑

k1≤k3+C
22k1(s−1) sup

‖Pk1w‖V 2
±3

=1
(

∑
M1&2−k1

‖Q±1
M1Pk2u‖L2)2 sup

M1&2−k1
‖Q±2
≤M1Pk3vQ

±3
≤M1Pk1w‖2

L2
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As before, we apply Proposition 2.4.2 and Corollary 5.2.1 to obtain

(I)2 ≤
∑

k1≤k3+C
22k1(s−1) sup

‖Pk1w‖V 2
±3

=1
(

∑
M1&2−k1

M
− 1

2
1 ‖Pk2u‖V 2

±1
)2

× sup
M1&2−k1

2k3‖Q±2
≤M1Pk3v‖2

V 2
±2

2k1‖Q±3
≤M1Pk1w‖2

V 2
±3
.

Applying Proposition 2.4.2 once again, this is

.
∑

k1≤k3+C
22sk12k2‖Pk2u‖2

V 2
±1

2k3‖Pk3v‖2
V 2
±2
,

which we can bound by

. 22sk222sk3‖Pk2u‖2
V 2
±1
‖Pk3v‖2

V 2
±2
,

as desired.

Next, we turn to the higher dimensional case

Theorem 5.3.2. (Trilinear Estimates for n ≥ 3) Let s ≥ n−2
2 ,±1,±2,±3 ∈ {+,−},

C ≥ 10 and k2, k3 ∈ Z≥0 be such that |k2 − k3| ≤ C, then

1
2k3
|

∑
k1≤k3+C

∫ ∫
Pk1uPk2vPk3wdxdt| . (

∑
k1≤k3+C

22k1s‖Pk1u‖2
V 2
±1

) 1
2‖Pk2v‖V ±2

0
‖Pk3w‖V ±3

0

(5.14)

( ∑
k1≤k3+C

2(2s−2)k1 sup
‖Pk1w‖V±3

0
=1

(|
∑

k1≤k3+C

∫ ∫
Pk2uPk3vPk1wdxdt|2)

) 1
2

. 2k2s2k3s‖Pk2u‖V ±0 ‖Pk3v‖V ±0 . (5.15)

Proof. We can bound the left-hand side of (5.14) by

.
1

2k3

∑
k1≤k3+C

∑
d∈Ξk1

∑
d′∈Ξk1

∣∣∣∣∫ ∫
Pk1uΓd′,k1Pk2vΓd,k1Pk3wdxdt

∣∣∣∣ . (5.16)
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Observe that ∫
Pk1uPk2vPk3wdx = (P̂k1u ∗ P̂k2v ∗ P̂k3w)(0)

=
∫
P̂k1u(−ξ3)

∫
ξ1+ξ2=ξ3

P̂k2v(ξ1) ∗ P̂k3w(ξ2)

As Pk1u is supported at frequency 2k1 we can conclude that

Pk2vPk3w = Pk1(Pk2vPk3w)

Therefore, (5.16) can be bounded by

1
2k3

∑
k1≤k3+C

∑
d∈Ξk1

∑
|d+d′|.2k1

∣∣∣∣∫ ∫
Pk1uΓd′,k1Pk2vΓd,k1Pk3wdxdt

∣∣∣∣ (5.17)

We denote I0(k1) :=
∫ ∫

Pk1uΓd′,k1Pk2vΓd,k1Pk3wdxdt, then, we decompose

I(k1) = I00(k1) + I01(k1) + I02(k1),

where

I0(k1, d, d
′) =

∑
M1&2−k1

∫ ∫
Q±1
M1Pk1uQ

±2
≤M1Γd′,k1Pk2vQ

±3
≤M1Γd,k1Pk3wdxdt

I1(k1, d, d
′) =

∑
M2&2−k1

∫ ∫
Q±1
≤M2Pk1uQ

±2
M2Γd′,k1Pk2vQ

±3
≤M2Γd,k1Pk3wdxdt

I2(k1, d, d
′) =

∑
M3&2−k1

∫ ∫
Q±1
≤M3Pk1uQ

±2
≤M3Γd′,k1Pk2vQ

±3
M3Γd,k1Pk3wdxdt.

We can therefore bound the LHS of (5.14) by

1
2k3

2∑
i=0

∑
k1≤k3+C

∑
d∈Ξk1

∑
|d+d′|.2k1

|Ii|

We first turn our attention to bounding (I). We observe that (I) is bounded by

1
2k3

∑
k1≤k3+C

∑
d∈Ξk1

∑
|d′+d|.2k1

(
∑

M1&2−k1

‖Q±1
M1Pk1u‖L2) sup

M1&2−k1
‖Q±2
≤M1Γd′,k1Pk2vQ

±3
≤M1Γd,k1Pk3w‖L2 .
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Applying Proposition 2.4.2 allows us to bound the above by

.
1

2k3

∑
k1≤k3+C

(( ∑
M1&2−k1

M
− 1

2
1 ‖Pk1u‖V 2

±1

)

×
∑
d∈Ξk1

∑
|d′+d|.2k1

sup
M1&2−k1

‖Q±2
≤M1Γd′,k1Pk2v‖L4‖Q±3

≤M1Γd,k1Pk3w‖L4

)

.
1

2k3

∑
k1≤k3+C

(2
k1
2 ‖Pk1u‖V 2

±1

∑
d∈Ξk3

∑
|d′+d|.2k1

sup
M1&2−k1

‖Q±2
≤M1Γd′,k1Pk2v‖L4‖Q±3

≤M1Γd,k1Pk3w‖L4).

Applying the Cauchy-Schwartz inequality, can conclude that the above is

.
1

2k3
(

∑
k1≤k3+C

22k1s‖Pk1u‖2
V 2
±1

) 1
2

× (
∑

k1≤k3+C
2k1(1−2s)(

∑
d∈Ξk1

∑
|d′+d|.2k1

sup
M1&2−k1

‖Q±2
≤M1Γd′,k1Pk2v‖L4‖Q±3

≤M1Γd,k1Pk3w‖L4)2) 1
2 .

By Proposition 5.2.4, we can bound the 2nd term in parentheses above by

( ∑
k1≤k3+C

2(1−2s)k1(
∑
d∈Ξk1

∑
|d′+d|.2k1

2
(n−2)k1

2 2
k2
4 2

k3
4

× sup
M1&2−k1

‖Q±2
≤M1Γd′,k1Pk2v‖U4

±2
‖Q±3
≤M1Γd,k1Pk3w‖U4

±3
)2
) 1

2 .

By Proposition 2.4.2 and Holder’s inequality in d this is

. (
∑

k1≤k3+C
2(1−2s)k12(n−2)k12k3(

∑
d∈Ξk1

‖Γd,k1Pk3w‖2
U4
±3

)(
∑
d∈Ξk1

(
∑

|d′+d|.2k1

‖Γd′,k1Pk2v‖U4
±2

)2) 1
2 .

Applying Young’s inequality in d to the term on the far right allows us to bound this by

. (
∑

k1≤k3+C
2(n−1−2s)k12k3‖Pk2v‖2

U4,±2
k1
‖Pk3w‖2

U4,±3
k1

) 1
2

. (
∑

k1≤k3+C
2(n−2s−1)k12k3) 1

2 sup
k1≤k3+C

‖Pk2v‖V ±2
k1
‖Pk3w‖V ±3

k1

. (
∑

k1≤k3+C
2(n−2s−1)k12k3) 1

2 sup
k1≤k3+C

‖Pk2v‖V ±2
0
‖Pk3w‖V ±3

0
,
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where
∑

k1≤k3+C
2(n−2s−1)k1 . 2(n−1−2s)k3 . 2k3 ,

provided n− 1− 2s ≤ 1 or equivalently s ≥ n−2
2 .

We now turn our attention to bounding (II) (the argument for bounding (III) is

identical). By placing the high modulation term in L2 and applying Proposition 2.4.2, we

can conclude that

(II) ≤ 1
2k3

∑
k1≤k3+C

∑
d∈Ξk1

∑
|d+d′|.2k1

(
(

∑
M2&2−k1

‖Q±2
M2Γd′,k1Pk2v‖L2)

× sup
M2&2−k1

‖Q±3
≤M2Γd,k1Pk3wQ

±1
≤M2Pk1u‖L2big)

.
1

2k3

∑
k1≤k3+C

∑
d∈Ξk1

∑
|d+d′|.2k1

(
(

∑
M2&2−k1

M
− 1

2
2 ‖Γd′,k1Pk2v‖V 2

±2
)

× sup
M2&2−k1

‖Q±3
≤M2Γd,k1Pk3wQ

±1
≤M2Pk1u‖L2

)

.
1

2k3

∑
k1≤k3+C

∑
d∈Ξk1

∑
|d+d′|.2k1

2
k1
2 ‖Γd′,k1Pk2v‖V 2

±2
sup

M2&2−k1
‖Q±3
≤M2Γd,k1Pk3w‖L4‖Q±1

≤M2Pk1u‖L4 .

Applying Proposition 5.2.4 to the two terms on the right and using the fact that

V 2 ⊆ U4, we may bound the above by

.
1

2k3

∑
k1≤k3+C

∑
d∈Ξk1

∑
|d′+d|≤2k1

2
k1
2 2

(2n−3)k1
4 2

k3
4 ‖Pk1u‖V 2

±1
‖Γd′,k1Pk2v‖V 2

±2
‖Γd,k1Pk3w‖V 2

±3
.

Applying the Cauchy-Schwartz inequality in k1 and d, and applying Young’s inequality in

d we see that this is

.
1

2k3
(

∑
k1≤k3+C

22sk1‖Pk1u‖V 2
±1

) 1
2 (

∑
k1≤k3+C

2
(2n−3)k1

2 2
k3
2 2k1(1−2s)‖Pk2v‖2

V 2,±2
k1
‖Pk2w‖2

V 2,±3
k1

) 1
2

.
1

2k3
(

∑
k1≤k3+C

22sk1‖Pk1u‖V 2
±1

) 1
2 (

∑
k1≤k3+C

2
(2n−3)k1

2 2
k3
2 2(1−2s)k1) 1

2‖Pk2v‖V ±2
0
‖Pk3w‖V ±3

0
.
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The second term in parenthesis is

.
∑

k1≤k3+C
2(n− 1

2−2s)k12
k3
2 . 2(n− 1

2−2s)k32
k3
2 . 22k3 .

provided n− 1
2 − 2s ≤ 3

2 or equivalently s ≥ n−2
2 , giving us our desired result.

Our next task is to prove inequality (5.15). We may bound the LHS of (5.15) by

(
∑

k1≤k3+C
2(2s−2)k1 sup

‖Pk1w‖V±3
0

=1
(|

∑
k1≤k3+C

∑
d∈Ξk1

∑
|d′+d|.2k1

∫ ∫
Γd,k1Pk2uΓd′,k1Pk3vPk1wdxdt|2) 1

2 .

(5.18)

We denote J(k1) :=
∫ ∫

Γd,k1Pk2uΓd′,k3Pk3vPk1wdxdt, then we can decompose

J(k1) = J0(k1) + J1(k1) + J2(k1)

where

J0(k1) =
∑

M1&2−k1

∫ ∫
Q±1
M1Γd′,k1Pk3vQ

±2
≤M1Γd,k1Pk2uQ

±w
≤M1Pk1wdxdt

J1(k1) =
∑

M2&L−k1

∫ ∫
Q±1
≤M2Γd′,k1Pk3vQ

±2
M2Γd,k1Pk2uQ

±w
≤M2Pk1wdxdt

J2(k1) =
∑

M3&L−k1

∫ ∫
Q±1
≤M3Γd′,k1Pk3vQ

±2
≤M3Γd,k1Pk2uQ

±w
M3Pk1wdxdt.

We can therefore bound the LHS of (5.18) by

2∑
i=0

(
∑

k1≤k3+C
2(2s−2)k1 sup

‖Pk1w‖V±3
0

=1
|
∑
n∈Ξk1

∑
|d′+d|.2k1

Ji(k1)|2) 1
2 = I + II + III.

We first focus on estimating (III). We can bound (III) by

(
∑

k1≤k3+C
2k1(2s−2) sup

‖Pk1w‖V±3
0

=1
(

∑
M3&2−k1

‖Q±3
M3Pk1w‖L2)2

× (
∑
d∈Ξk1

∑
|d′+d|.2k1

sup
M3&2−k1

‖Q±1
≤M3Γd,k1Pk2u‖L4‖Q±2

≤M3Γd′,k1Pk3v‖L4)2) 1
2 .
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By Proposition 2.4.2, this is

. (
∑

k1≤k3+C
2(2s−2)k1 sup

‖Pk1w‖V±3
0

=1
(

∑
M3&2−k1

‖Pk1w‖V 2
±3

)2

× (
∑
d∈Ξk1

∑
|d′+d|.2k1

sup
M3&2−k1

‖Q±1
≤M3Γd′,k1Pk3v‖L4‖Q±2

≤M3Γd,k1Pk2u‖L4)2) 1
2

. (
∑

k1≤k3+C
2(2s−2)k1 sup

‖Pk1w‖V±3
0

=1
2k1‖Pk1w‖2

V 2
±3

× (
∑
d∈Ξk1

∑
|d′+d|.2k1

sup
M3&2−k1

‖Q±1
≤M3Γd′,k1Pk3v‖L4‖Q±2

≤M3Γd,k1Pk2u‖L4)2) 1
2 .

Recall that

‖Pk1w‖V 2
±
. ‖Pk1w‖V ±0 ,

so we can bound the expression above by

(
∑

k1≤k3+C
2k1(2s−1)(

∑
d∈Ξk1

∑
|d′+d|.2k1

sup
M3&2−k1

‖Q±1
≤M3Γd,k1Pk2u‖L4‖Q±2

≤M3Γd′,k1Pk3v‖L4)2) 1
2 .

Applying Proposition 5.2.4 and Proposition 2.4.2 we see that this is

. (
∑

k1≤k3+C
2k1(2s−1)(

∑
d∈Ξk1

∑
|d′+d|.2k1

2
(n−2)k1

2 2
k2
4 2

k3
4 ‖Γd,k1Pk2u‖V 2

±
‖Γd′,k1Pk3v‖V 2

±
)2) 1

2 .

By Holder’s and Young’s inequality in d, this is

. (
∑

k1≤k3+C
2(2s+n−3)k12

k2
2 2

k3
2 ‖Pk2u‖2

V ±
k1
‖Pk3v‖2

V ±
k1

) 1
2

. (
∑

k1≤k3+C
2(2s+n−3)k12

k2
2 2

k3
2 ) 1

2‖Pk2u‖V ±0 ‖Pk3v‖V ±0 .

The term in parentheses is . 22sk222sk3 provided s ≥ n−2
2 so we have our desired result.

We now turn our attention to bounding (I) (the argument for bounding (II) is the
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same). It is not difficult to see that

(I) .(
∑

k1≤k3+C
2k1(2s−2) sup

‖Pk1w‖V±3
0

=1
(
∑
d∈Ξk1

∑
|d′+d|≤2k1

2
k1
2 ‖Γd,k1Pk2u‖V 2

±1

× sup
M1&2−k1

‖Q±2
≤M1Γd′,k1Pk3v‖L4‖Q±3

≤M1Pk1w‖L4)2) 1
2 .

Applying Proposition 5.2.4 and Proposition 2.4.2 once again

.
( ∑
k1≤k3+C

2(2s−2)k1 sup
‖Pk1w‖V±3

0
=1

(
∑
d∈Ξk1

∑
|d′+d|.2k1

2
k1
2 ‖Γd,k1Pk2u‖V 2

±2

× 2
(2n−3)k1

4 2
k3
4 ‖Γd′,k1Pk3v‖V 2

±
‖Pk1w‖V 2

±
)2
) 1

2 .

Again we use the fact that ‖Pk1w‖V 2
±
. ‖Pk1w‖V ±0 = 1 to bound the expression above by

. (
∑

k1≤k3+C
2k1(2s+n− 5

2 )2
k3
2 (

∑
d∈Ξk1

∑
|d′+d|≤2k1

‖Γd,k1Pk2u‖V 2
±2
‖Γd′,k1Pk3v‖V 2

±
)2) 1

2 .

Applying Holder’s and Young’s inequalities in d, we get

. (
∑

k1≤k3+C
22k1s2(n−2)k3‖Pk2u‖2

V ±
k1
‖Pk3v‖2

V ±
k1

) 1
2

. (
∑

k1≤k3+C
22k1s2k2(n−2)) 1

2‖Pk2u‖V ±0 ‖Pk3v‖V ±0 .

But the sum on the left is . 22k2s22k3s provided s ≥ n−2
2 so we have our desired result.

5.4 Proof of Main Theorem

We now apply the trilinear estimates from the previous theorem to prove the bound

on the Duhamel term for n ≥ 3 (the case n = 2 is similar):

‖I±(u)‖
X̃s
±
. ‖(u+, u−)‖2

X̃s
±
.
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It is not difficult to see that the bound follows from proving the following theorem.

Theorem 5.4.1. Let n ≥ 3, s ≥ n−2
2 . For any ±1,±2 ∈ {+,−} we have

I±1,±2 := I : Ỹ s × Ỹ s → X̃s,

where

I((u+, u−), (v+, v−)) = (I+(u±1 , v±2), I−(u±1 , v±2)),

I±(u, v) =
∫ t

0
e±i(t−s)〈D〉

uv

2〈D〉ds.

In other words, for a constant C = C(n)

‖I(u, v)‖
X̃s ≤ C‖u‖

Ỹ s
‖v‖

Ỹ s

In particular, since X̃s ⊆ Ỹ s, we also have

I : X̃s × X̃s → X̃s

and

I : Ỹ s × Ỹ s → Ỹ .

Proof. We will only show that

‖I+(u, v)‖
X̃s
±
. ‖u‖

Ỹ s±1
‖v‖

Ỹ s±2

as the argument for I− will be nearly identical.
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Let C ≥ 10 be fixed. We observe that

‖I+(u, v)‖
X̃s
±

=
( ∞∑
k=0

22ks‖PkI+(u, v)‖2
U±0

) 1
2

≤

 ∞∑
k=0

22ks‖Pk
∑

k1≤k+C

∑
|k−k2|≤C

I+(Pk1u, Pk2v)‖2
U±0

 1
2

+
 ∞∑
k=0

22ks‖Pk
∑

k1≥k−C

∑
|k2−k1|≤C

I+(Pk1u, Pk2v)‖2
U±0

 1
2

 ∞∑
k=0

22ks‖Pk
∑

k2≤k+C

∑
|k−k1|≤C

I+(Pk1u, Pk2v)‖2
U±0

 1
2

= S1 + S2 + S3.

It suffices to consider only S1 and S2.

We first handle the term S1. By a duality argument and estimate (5.14) from

Theorem 5.3.2, we see that

‖Pk
∑

k1≤k+C

∑
|k−k2|≤C

I+(Pk1u, Pk2v)‖U±0 .
∑

|k2−k|≤C

1
2k sup
‖Pkw‖V∓0

=1

∣∣∣∣∣∣
∑

k1≤k+C

∫ ∫
Pk1uPk2vPkw

∣∣∣∣∣∣
∑

|k2−k|≤C
(
∑

k1≤k+C
22k1s‖Pk1u‖2

V 2
±1

) 1
2‖Pk2v‖V ±2

0

. ‖u‖
Ỹ s±1

∑
|k2−k|≤C

‖Pk2v‖V ±2
0
.

It follows that

S1 . ‖u‖Ỹ s±1
‖v‖

Ỹ s±2
.

We now turn our attention towards bounding S2. We observe that

S2 ≤
∑
k1≥0

∑
|k2−k1|≤C

 ∑
k≤k1+C

22ks‖PkI+(Pk1u, Pk2v)‖
 1

2

By duality and estimate (5.15), we conclude that this is

∑
k1≥0

∑
|k2−k1|≤C

22k1s22k2s‖Pk1u‖V ±0 ‖Pk2v‖V ±0 . ‖u‖Ỹ s±‖v‖Ỹ s± .
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With a similar argument, we can prove the analogous result for n = 2 given by

Theorem 5.4.2. Let n = 2, s > 1
2 . For any ±1,±2 ∈ {+,−} we have

I±1,±2 := I : Y s × Y s → Xs,

where

I((u+, u−), (v+, v−)) = (I+(u±1 , v±2), I−(u±1 , v±2)),

I±(u, v) =
∫ t

0
e±i(t−s)〈D〉

uv

2〈D〉ds.

In other words, for a constant C = C(n),

‖I(u, v)‖Xs ≤ C‖u‖Y s‖v‖Y s .

In particular, since Xs ⊆ Y s, we also have

I : Xs ×Xs → Xs

and

I : Y s × Y s → Y s.

We are finally ready to prove Theorem 5.0.1. We first consider the case n = 2.

Using standard contraction mapping techniques we will find a fixed point of the operator

equation

T±(u±) = e±it〈D〉u±0 ∓ I±(u),

where u = u+ + u− and u±0 = 1
2(f ∓ g

〈D〉).
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We run our contraction argument in the closed disk

Dδ = {u ∈ Xs : ‖u‖Xs ≤ δ},

for appropriately chosen δ.

From Theorem 5.4.2 it is not difficult to see that T : Dδ → Dδ is well-defined. In

particular, we have that

‖e±it〈D〉u±0 + iI±(u)‖Xs . ε+ δ2 ≤ δ,

for δ small enough.

It is left to show that T± is a contraction. Since the nonlinearity in I± is quadratic,

we make use of the factorization a2 − b2 = a(a− b) + b(a− b) to conclude that

‖T±(u)− T±(v)‖Xs = ‖I±(u)− I±(v)‖Xs . (‖u‖Xs + ‖v‖Xs)‖u− v‖Xs

. δ‖u− v‖Xs .

Therefore T± is a contraction for appropriately chosen δ.

The argument for n ≥ 3 is identical with Xs replaced by X̃s.

5.5 Systems of Different Masses

We would like to extend our results for the scalar equation to the system of multiple

masses

(�+m2
i )ui = Fi(u1, ..., uk) i = 1, ..., k.

80



Fortunately our results transfer quite readily to this generalized system provided we impose

the condition

2 min{mi} > max{mi} (5.19)

We must first alter our iteration spaces slightly: Instead of using Up
±, V

p
± based spaces, we

instead work with the spaces Up
±〈D〉m , V

p
±〈D〉m defined by the norms

‖u‖Up±〈D〉m = ‖e∓〈D〉mu‖Up , ‖u‖V p±〈D〉m = ‖e∓〈D〉mu‖V p ,

where we recall that 〈·〉m =
√
m2 + | · |2.

It is straightforward, albeit tedious, to show that our estimates for Up
±, V

p
± transfer

to our new spaces with implicit constants depending on the mi.

The remaining part of the argument we are left to deal with is the modulation

analysis which guarantees the lack of resonant terms. Fortunately, the generality of Lemma

5.2.1, which imposes condition (5.19), allows us to extend our modulation arguments to

the multiple mass system.
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Chapter 6

The Normal Forms Method

6.1 Motivation

In Chapter 4 we established global well-posedness of the third order semilinear

Klein-Gordon system by using Strichartz estimates to run a standard contraction argu-

ment. Unfortunately, this approach fails for second order nonlinearities as no combination

of Strichartz exponents will allow us to put a quadratic nonlinearity into the needed func-

tion spaces. Furthermore, the Up, V p approach discussed in Chapter 5 would result in too

much derivative loss to allow one to close the contraction argument. Fortunately, we are

able to circumvent these issues by applying the Normal Forms transform introduced by

Shatah in [20] to reduce our second order system to a third order one.

The basic idea behind the Normal Forms transform is as follows. Suppose we are

given a second order system

(�+ 1)u = F (u, ∂tu, ∂u).
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We aim to find a decomposition u = U+W where U is given explicitly in terms of u, ∂tu, ∂u

and W solves a third order or higher system. The explicit form of U and our knowledge

on solutions to higher order systems will in turn allow us to gain control over u.

To see how this method works in practice, we consider the ODE

∂2
t u+ u = α1u

2 + α2u∂tu+ α3(∂tu)2,

where the αi are arbitrary constants. Let

U = au2 + bu∂tu+ c(∂tu)2,

where a, b, c are constants that will be determined later.

We compute

∂tU = 2au∂tu+ b((∂tu)2 + u∂2
t u) + 2c(∂tu∂2

t u)

and

∂2
tU = 2a((∂tu)2 + u∂2

t u) + b(3∂tu∂2
t u+ u∂3

t u) + 2c((∂2
t u)2 + ∂tu∂

3
t u).

Observe that

∂2
t u = α1u

2 + α2u∂tu+ α3(∂tu)2 − u

and

∂3
t u = Q(u, ∂tu)− ∂tu,

where Q(·, ·) is a polynomial whose lowest order term is quadratic.

Substituting in these expressions into our formula for ∂2
tU , we obtain

∂2
tU = 2a((∂tu)2−u2 +C1(u, ∂tu)) + b(−4u∂tu+C2(u, ∂tu)) + 2c(u2− (∂tu)2 +C3(u, ∂tu)),
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where the Ci(·, ·) are linear combinations of nonlinearities of cubic order or higher. We

conclude that

∂2
tU + U = (2c− a)u2 − 3b(u∂tu) + (2a− c)(∂tu)2 + C(u, ∂tu),

where C := 2aC1 + bC2 + 2cC3.

Let W := u− U . We would like to choose a, b, c so that

(�+ 1)W = (�+ 1)u− (�+ 1)U = −C(u, ∂tu). (6.1)

Then, our decomposition u = U +W will have the desired properties.

We compute

(∂2
t u+u)− (∂2

tU +U) = (α1 +a−2c)u2 +(α2 +3b)(u∂tu)+(α3 + c−2a)(∂tu)2−C(u, ∂tu).

Equation (6.1) will hold true provided

α1 + a− 2c = 0,

α2 + 3b = 0,

α3 + c− 2a = 0.

When we apply this method to nonlinear PDEs, our constants a, b, c, αi will be replaced

by distributions involving differential operators that will act on u and its time derivatives.

6.2 The Normal Forms Transform of Shatah

We now turn our attention to the three dimensional case. We will closely follow

the construction and computations presented in section 7.8 of [12]. Before we proceed any
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further, we first introduce some notation. Given v, w ∈ S(R3), we define B(∂′, ∂′′)[v][w] to

be the function whose Fourier transform evaluated at ξ is given by

(2π)−3
∫
B(iξ − iη, iη)v̂(ξ − η)ŵ(η)dη.

It is not difficult to see from the above that ∂′ acts by differentiating v, whereas ∂′′ acts

by differentiating w. With the above definition in mind, we can write the general form of

a second order semilinear Klein-Gordon equation as

(�+ 1)u = F (u, u′) =
1∑

j,k=0
Ajk(∂

′
, ∂
′′)[∂jtu][∂kt u], (6.2)

where Ajk is a polynomial of degree at most 1− j in ∂′ and 1− k in ∂′′.

Our goal is to prove global existence for this system given initial data

u(0, x) = f ∈ Hs, ∂tu(0, x) = g ∈ Hs−1

where

‖(f, g)‖Hs×Hs−1 < δ � 1,

for s > 10.

Let D′ := −i∂′ and D′′ := −i∂′′. We would like to construct

U :=
1∑

j,k=0
Bjk(D′, D′′)[∂jtu][∂kt u],

where the Bjk are chosen so that if W = u−U , then �W = F (u, u′)− (�+ 1)U is of third

order in u.

In order to appropriately choose the Bjk, we first compute (�+ 1)U . We see that

(1−∆)U =
1∑

j,k=0
((1 + |D′|2) + (2〈D′, D′′〉 − 1) + (1 + |D′′|2))Bjk(D′, D′′)[∂jtu][∂kt u],
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∂2
tU =

1∑
j,k=0
Bjk(D′, D′′)([∂j+2

t u][∂kt u] + 2[∂j+1
t u][∂k+1

t u] + [∂jtu][∂k+1
t u])

Observe that

∂j+2
t u = ∂jt (∆− u+ F (u, u′)) = −(|D|2 + 1)∂jtu+ ∂jtF (u, u′).

Applying this substitution, we can conclude that

(�+ 1)U = (2〈D′, D′′〉 − 1)B00(D′, D′′)[u][u] + 2B00(D′, D′′)[∂tu][∂tu] +R1

+ (2〈D′, D′′〉 − 1)B10(D′, D′′)[∂tu][u]− 2(1 + |D′|2)B10(D′, D′′)[u][∂tu] +R2

+ (2〈D′, D′′〉 − 1)B01(D′, D′′)[u][∂tu]− 2(1 + |D′′|2)B01(D′, D′′)[∂tu][u] +R3

+ (2〈D′, D′′〉 − 1)B11(D′, D′′)[∂tu][∂tu] + 2(1 + |D′|2)(1 + |D′′|2)B11(D′, D′′)[u][u] +R4,

where

R1 = B00(D′, D′′)([F (u, u′)][u] + [u][F (u, u′)])

R2 = B10(D′, D′′)([∂tF (u, u′)][u] + 2[F (u, u′)][∂tu] + [∂tu][F (u, u′)])

R3 = B01(D′, D′′)([u][∂tF (u, u′)] + 2[∂tu][F (u, u′)] + [F (u, u′)][∂tu])

R4 = B11(D′, D′′)([∂tF (u, u′)][∂tu] + 2[F (u, u′)][F (u, u′)]− 2(|D′′|2 + 1)[F (u, u′)][u]

− 2(|D′|2 + 1)[u][F (u, u′)] + [∂tu][∂tF (u, u′)]).

Let R := R1 +R2 +R3 +R4. We would like to choose Bjk so that (� + 1)U =

F (u, u′) +R. This will imply that (�+ 1)W = −R is third order in u. From (6.2), we see
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that

B00(ξ, η)(2〈ξ, η〉 − 1) + 2B11(ξ, η)(1 + |ξ|2)(1 + |η|2) = A00(iξ, iη),

B11(ξ, η)(2〈ξ, η〉 − 1) + 2B00(ξ, η) = A11(iξ, iη),

B10(ξ, η)(2〈ξ, η〉 − 1)− 2B01(ξ, η)(1 + |η|2) = A10(iξ, iη),

B01(ξ, η)(2〈ξ, η〉 − 1)− 2B10(ξ, η)(1 + |ξ|2) = A01(iξ, iη).

Solving this system for Bjk, we obtain

B00(ξ, η) =((1− 2〈ξ, η〉)A00(iξ, iη) + 2(1 + |ξ|2)(1 + |η|2)A11(iξ, iη))K(ξ, η),

B11(ξ, η) =((1− 2〈ξ, η〉)A11(iξ, iη) + 2A00(iξ, iη))K(ξ, η),

B01(ξ, η) =((1− 2〈ξ, η〉)A01(iξ, iη)− 2(1 + |ξ|2)A10(iξ, iη))K(ξ, η),

B10(ξ, η) =((1− 2〈ξ, η〉)A10(iξ, iη)− 2(1 + |η|2)A01(iξ, iη))K(ξ, η).

where

K(ξ, η) = (4(|ξ|2|η|2 − 〈ξ, η〉2 + |ξ|2 + |η|2 + 〈ξ, η〉) + 3)−1

6.3 The Multiplier Class S(a,b,c,d)

Rather than prove bounds on Bjk directly, we will instead establish estimates for a

special class of Fourier multipliers. We define this class as follows

Definition 6.3.1. Let a, b, c, d ∈ Z be given. We define the multiplier class S(a, b, c, d) as

follows: Given m(ξ, η) ∈ C∞(R3+3), we say m ∈ S(a, b, c, d) if for every k1, k2 ∈ Z ≥ 0 we

have

‖F−1(Pk1(ξ)Pk2(η)m(ξ, η))(x, y)‖L1(R3+3) ≤ C2ak12bk22ck2dk′ , (6.3)

87



where k := max(k1, k2), k′ = min(k1, k2) and C does not depend on our choice of k1 and

k2

In order to prove some important results regarding elements of S(a, b, c, d) we will

need the following generalized version of Holder’s inequality.

Lemma 6.3.1. ([12], section 7.8) Suppose P ∈ L1(R3+3) and P := P̂ . Let 1 ≤ p, q, r ≤ ∞

be such that 1
p

+ 1
q

= 1
r
, then

‖P(D′, D′′)[u][v]‖Lr . ‖P‖L1‖u‖Lp‖v‖Lq ,

for any u, v ∈ S(R3)

Proof. We will first prove this for two cases: (p, q, r) = (∞,∞,∞) and (p, q, r) = (p, p′,∞)

where p′ denotes the Holder conjugate of p.

Case 1: (p, q, r) = (∞,∞,∞)

We have that

|P(D′, D′′)[u][v](x)| =
∣∣∣∣∫ ∫

P (y, z)u(x− y)v(x− z)dydz
∣∣∣∣ .

We can bound this by

‖u‖L∞‖v‖L∞
∫ ∫

|P (y, z)|dydz, (6.4)

giving us the desired bound.

Case 2: (p, q, r) = (p, p′, 1)

Observe that

∣∣∣∣∫ ∫
P (y, z)u(x− y)v(x− z)dydz

∣∣∣∣ ≤ ∫ ∫
|P (y, z)||u(x− y)||v(x− z)|dydz.
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Integrating over x and applying Tonelli’s theorem, we see that

‖P(D′, D′′)[u][v](x)‖L1 ≤
∫ ∫

|P (y, z)|
∫
|u(x− y)||v(x− z)|dxdydz.

Applying Holder’s inequality, we may bound this by

∫ ∫
|P (y, z)|dydz‖u‖Lp‖v‖Lp′ , (6.5)

giving us the desired inequality.

Given v ∈ S(R3) define T v : L1 +L∞ → L1 +L∞ by T v(u) = P(D′, D′′)[u][v]. Then

from (6.4) and (6.5) we have

‖T v(u)‖L∞ ≤ ‖P‖L1‖u‖L∞‖v‖L∞

and

‖T v(u)‖L1 ≤ ‖P‖L1‖u‖L1‖v‖L∞ .

Let 1 < p < ∞, then we can apply the Riesz-Thorin Interpolation theorem and

deduce from the bounds above that

‖T v(u)‖Lp ≤ ‖P‖L1‖u‖Lp‖v‖L∞ . (6.6)

Given u ∈ S(R3), define T u : Lp′ + L∞ → Lp
′ + L∞ by T u(v) = P(D′, D′′)[u][v].

From (6.5) we have the inequality

‖T v(u)‖L1 ≤ ‖P‖L1‖u‖Lp‖v‖Lp′ ,

and from (6.6) we have

‖T u(v)‖Lp ≤ ‖P‖L1‖u‖Lp‖v‖L∞ .

89



Interpolating between these two inequalities we get

‖T u(v)‖Lr ≤ ‖P‖L1‖u‖Lp‖v‖Lq ,

Where 1
r

= 1
p

+ 1
q
.

We apply the preceding Lemma to prove the following set of dyadic estimates.

Lemma 6.3.2. Let m ∈ S(a, b, c, d) with a, b, c, d ∈ Z and let M be the operator whose

Fourier multiplier is m. Then for all 1 ≤ p, q, r ≤ ∞ with 1
p

+ 1
q

= 1
r
and k1, k2 ∈ Z≥0 we

have the uniform family of bounds

‖M(D′, D′′)[Pk1v][Pk2w]‖Lr . (2ck2dk′)2k1a‖Pk1v‖Lp2k2b‖Pk2w‖Lq , (6.7)

where k := max(k1, k2), k′ = min(k1, k2).

Proof. Let vk1 = Pk1v, wk2 = Pk2w and fix x ∈ R3. Then

M(D′, D′′)[Pk1v][Pk2w](x) = 1
(2π)6

∫ ∫
eix(ξ+η)m(ξ, η)v̂k1(ξ)ŵk2(η)dξdη.

Define mk1,k2(ξ, η) = P̃k1(ξ)P̃k2(η)m(ξ, η) andMk1,k2 = F−1(mk1,k2), then we can replace

the above expression with

M(D′, D′′)[Pk1v][Pk2w](x) = 1
(2π)6

∫ ∫
eix(ξ+η)mk1,k2(ξ, η)v̂k1(ξ)ŵk2(η)dξdη

=Mk1,k2(D′, D′′)[Pk1v][Pk2w](x).

From Lemma 6.3.1 we see that (6.7) follows from proving

‖Mk1,k2(D′, D′′)‖L1(R3+3) ≤ C2ak12bk22ck2dk′ ,
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where C does not depend on our choice of k1 and k2. But this is an immediate consequence

of our definition of S(a, b, c, d).

We close this section with an important result that will be used repeatedly to prove

our main estimates in Chapter 7. We remark that this result is a generalized version of

Theorem 2.2.1.

Proposition 6.3.1. AssumeM∈ S(a, b, c, d) and 1 ≤ p, p1, p̃i, q, qi, q̃i ≤ ∞ are such that

1
p

= 1
p1

+ 1
p2

= 1
p̃1

+ 1
p̃2
, 1
q

= 1
q1

+ 1
q2

= 1
q̃1

+ 1
q̃2
. Furthermore, assume r, λ, λ̃ > 0, σ, σ̃ ≥ 0,

then

‖M(D′, D′′)[v][w]‖LptW r,q
x [k] . ‖v‖Lp1

t W
r+σ+(a+c),q1
x [k]‖w‖Lp2

t W
λ−σ+(b+d),q2
x [k]

+ ‖v‖
L
p̃1
t W

λ̃−σ̃+(a+d),q̃1
x [k]

‖w‖
L
p̃2
t W

r+σ̃+(b+c),q̃2
x [k].

Proof. Let C ≥ 10 be a fixed constant.

‖M(D′, D′′)[v][w]‖LptW r,q
x [k] =

(∑
k≥0

22kr‖PkM(D′, D′′)[v][w]‖2
LptL

q
x

) 1
2

≤
(∑
k≥0

22kr(
∑
k1≥0

∑
k2≥0
‖PkM(D′, D′′)[Pk1v][Pk2w]‖LptLqx)

2
) 1

2

.
(∑
k≥0

22kr(
∑

|k1−k|≤C

∑
k2≤k+C

‖M(D′, D′′)[Pk1v][Pk2w]‖LptLqx)
2
) 1

2

+
(∑
k≥0

22kr(
∑

k1≥k−C

∑
|k2−k1|≤C

‖M(D′, D′′)[Pk1v][Pk2w]‖LptLqx)
2
) 1

2

+
(∑
k≥0

22kr(
∑

k1≤k+C

∑
|k2−k|+C

‖M(D′, D′′)[Pk1v][Pk2w]‖LptLqx)
2
) 1

2

= I + II + III.
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We first bound (I). By Lemma 6.3.2

(I) .
(∑
k≥0

22kr(
∑

|k1−k|≤C

∑
k2≤k+C

2k1(a+c)‖Pk1v‖Lp1
t L

q1
x

2k2(b+d)‖Pk2w‖Lp2
t L

q2
x

)2
) 1

2

.
(∑
k≥0

22kr(
∑

|k1−k|≤C

∑
k2≤k+C

2k1(a+c+σ)‖Pk1v‖Lp1
t L

q1
x

2k2(b+d−σ)‖Pk2w‖Lp2
t L

q2
x

)2
) 1

2

≤
(∑
k≥0

22kr(
∑

|k1−k|≤C
2k1(a+c+σ)‖Pk1v‖Lp1

t L
q1
x

)2
) 1

2
( ∑
k2≥0

2k2(b+d−σ)‖Pk2w‖Lp2
t L

q2
x

)
.

By Young’s inequality in k and Cauchy-Schwartz in k2 we can bound the above by

≤
(∑
k≥0

22k(r+a+c+σ)‖Pkv‖2
L
p1
t L

q1
x

) 1
2
( ∑
k2≥0

22k2(λ−σ+b+d)‖Pk2w‖2
L
p2
t L

q2
x

) 1
2
( ∑
k2≥0

2−2k2λ
) 1

2

. ‖v‖
L
p1
t W

r+a+c+σ,q1
x [k]‖w‖Lp2

t W
λ−σ+b+d,q2
x [k].

We now turn our attention to (II). Once again, by Lemma 6.3.2 and Young’s in-

equality in k1, we see that

(II) .
(∑
k≥0

22kr
( ∑
k1≥k−C

∑
|k2−k1|≤C

2k1(a+c)‖Pk1v‖Lp1
t L

q1
x

2k2(b+d)‖Pk2w‖Lp2
t L

q2
x

)2
) 1

2

.
(∑
k≥0

22kr
( ∑
k1≥k−C

∑
|k2−k1|≤C

2k1(a+c+σ)‖Pk1v‖Lp1
t L

q1
x

2k2(b+d−σ)‖Pk2w‖Lp2
t L

q2
x

)2
) 1

2

.
(∑
k≥0

22kr
( ∑
k1≥k−C

2k1(a+c+σ)‖Pk1v‖Lp1
t L

q1
x

)2( ∑
k2≥k−C

2k2(b+d−σ)‖Pk2w‖Lp2
t L

q2
x

)2
) 1

2
.

Applying the Cauchy-Schwartz inequality in both k1 and k2 independently, we conclude

that the above is

.
(∑
k≥0

22kr
( ∑
k1≥k−C

2−2k1r
)
‖v‖2

L
p1
t W

r+σa+c,q1
x [k]

( ∑
k2≥k−C

2−2kλ
)
‖w‖2

L
p2
t W

λ−σ+b+d,q2
x [k]

) 1
2

.
(∑
k≥0

22k(r−r−λ)
) 1

2‖v‖
L
p1
t W

r+a+c+σ,q1
x [k]‖w‖Lp2

t W
λ−σ+b+d,q2
x [k]

. ‖v‖
L
p1
t W

r+a+c,q1
x [k]‖w‖Lp2

t W
λ+b+d,q2
x [k].
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By interchanging the roles of v and w in the proof of estimate (I), we can conclude that

(III) . ‖v‖
L
p̃1
t W

λ̃−σ̃+a+d,q̃1
x [k]

‖w‖
L
p̃2
t W

r+b+c+σ̃,q̃2
x [k].

6.4 Dyadic Kernel Bounds

Recall that

B00(ξ, η) =((1− 2〈ξ, η〉)A00(iξ, iη) + 2(1 + |ξ|2)(1 + |η|2)A11(iξ, iη))K(ξ, η)

B11(ξ, η) =((1− 2〈ξ, η〉)A11(iξ, iη) + 2A00(iξ, iη))K(ξ, η)

B01(ξ, η) =((1− 2〈ξ, η〉)A01(iξ, iη)− 2(1 + |ξ|2)A10(iξ, iη))K(ξ, η)

B10(ξ, η) =((1− 2〈ξ, η〉)A10(iξ, iη)− 2(1 + |η|2)A01(iξ, iη))K(ξ, η),

where Aij(ξ, η) is a polynomial of degree at most 1− i in ξ and 1− j in η and

K(ξ, η) = (4(|ξ|2|η|2 − 〈ξ, η〉2 + |ξ|2 + |η|2 + 〈ξ, η〉) + 3)−1 := 1
H(ξ, η) .

Our main goal in this section is to prove the following result.

Proposition 6.4.1. Ajk ∈ S(1− j, 1− k, 0, 0) and Bjk ∈ S(2− j, 2− k,−2, 6)

It is not difficult to see that if f ∈ S(a1, b1, c1, d1) and g ∈ S(a2, b2, c2, d2), then fg ∈

S(a1 +a2, b1 + b2, c1 + c2, d1 +d2). It therefore suffices to show that K ∈ S(0, 0,−2, 6), and

that if Pij(ξ, η) is a polynomial of degree i in ξ and j in η, then we have Pij ∈ S(i, j, 0, 0).

In order to streamline our argument, we aim to find a condition that guarantees

that an operatorM with symbol m(ξ, η) is in S(N1, N2, N3, N4). Let

Mk1,k2(D′, D′′)(x, y) = ( 1
2π )6

∫
R3

∫
R3
ei(x·ξ+y·η)m(ξ, η)Pk1(ξ)Pk2(η)dξdη.
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Then, by definition of S(·, ·, ·, ·) it suffices to find a condition that guarantees the estimate

‖Mk1,k2(D′, D′′)(x, y)‖L1(R3+3) ≤ C2N1k12N2k22N3k2N4k′ , (6.8)

where k = max{k1, k2}, k′ = min{k1, k2} and C does not depend on our choice of k1, k2.

We present the following result.

Proposition 6.4.2. Let k1, k2 ∈ Z≥0 and l, p ∈ {1, 2, 3}. Define

m
(p,l)
(a,b)(ξ, η) := ∂bηl∂

a
ξpm(ξ, η).

If

‖P̃k1(ξ)P̃k2(η)m(p,l)
(a,b)(ξ, η)‖L1(R3+3) . 2(N1−a)k12(N2−b)k22N3k2N4k′23k123k2 , (6.9)

for all a, b ∈ {0, 1, 2, 3, 4} and p, l ∈ {1, 2, 3}, then estimate (6.8) holds.

Proof. We will decompose R3+3 as follows: define the sets

E1 := {(x, y) ∈ R3+3 : |x| ≤ 2−k1 , |y| ≤ 2−k2},

E2 := {(x, y) ∈ R3+3 : |x| ≥ 2−k1}, E3 := {(x, y) ∈ R3+3 : |y| ≥ 2−k2}.

By symmetry, we only need to show

‖Mk1,k2(D′, D′′)(x, y)‖L1(E1) . 2N1k12N2k22N3k2N4k′ ,

‖Mk1,k2(D′, D′′)(x, y)‖L1(E2) . 2N1k12N2k22N3k2N4k′

Observe that

‖Mk1,k2(x, y)‖L1(E1) ≤ |E1|‖Mk1,k2(x, y)‖L∞ .

From the definition of E1, we see that

|E1| . 2−3k12−3k2
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Furthermore,

‖Mk1,k2(D′, D′′)(x, y)‖L∞ .
∫
R3

∫
R3
|m(ξ, η)Pk1(ξ)Pk2(η)|dξdη

. ‖P̃k1(ξ)P̃k2(η)m(0,0)(ξ, η)‖L1(R3+3)

. 2N1k12N2k22N3k2N4k′23k123k2 ,

where the last inequality comes from (6.9).

Our next task is to bound ‖Mk1,k2(D′, D′′)(x, y)‖L1(E2). Observe that

∫
E2
|Mk1,k2(D′, D′′)(x, y)|dxdy

=
∫
E2

∣∣∣∣∣(1 + 24k2|y|4)
(1 + 24k2|y|4)

(1 + 24k1|x|4)
(1 + 24k1|x|4)Mk1,k2(D′, D′′)(x, y)

∣∣∣∣∣ dxdy.
Applying the fact that 2k1 |x| ≥ 1 on E2 and Holder’s inequality, we can conclude the above

expression is bounded by

.‖(1 + 24k2 |y|4)(24k1 |x|4)Mk1,k2(D′, D′′)(x, y)‖L∞(E2)

×
∫
R3+3

1
(1 + 24k2|y|4)

1
(1 + 24k1|x|4)dxdy

.2−3k12−3k2‖(1 + 24k2|y|4)(24k1|x|4)Mk1,k2(D′, D′′)(x, y)‖L∞(E2),

so it remains to show that

‖(1 + 24k2|y|4)(24k1|x|4)Mk1,k2(D′, D′′)(x, y)‖L∞(E2) . 2N1k12N2k22N3k2N4k′23k123k2 . (6.10)

We can bound the LHS of the above expression by

. ‖(1 + 24k2
3∑
l=1

y4
l )(24k1

3∑
p=1

x4
p)Mk1,k2(D′, D′′)(x, y)‖L∞(E2)

.
3∑
p=1
‖24k1x4

pMk1,k2(D′, D′′)(x, y)‖L∞ +
3∑

p,l=1
‖24k224k1y4

l x
4
pMk1,k2(D′, D′′)(x, y)‖L∞ ,
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so we are left with showing

‖24k1x4
pMk1,k2(D′, D′′)(x, y)‖L∞ . 2N1k12N2k22N3k2N4k′23k123k2 , (6.11)

‖24k224k1y4
l x

4
pMk1,k2(D′, D′′)(x, y)‖L∞ . 2N1k12N2k22N3k2N4k′23k123k2 , (6.12)

for all l, p ∈ {1, 2, 3}.

We will mainly focus on proving estimate (6.12) as the proof of (6.11) is similar.

By applying basic properties of the Fourier transform, we can conclude tht

24k2yl24k1x4
pMk1,k2(D′, D′′)(x, y)

= C24k124k2
∫
R3

∫
R3
ei(x·ξ+y·η)∂4

ηl
∂4
ξp [m(ξ, η)Pk1(ξ)Pk2(η)]dξdη,

so,

‖24k2yl24k1x4
pMk1,k2(D′, D′′)(x, y)‖L∞

. 24k124k2
∫
R3

∫
R3
P̃k1(ξ)P̃k2(η)

∣∣∣∂4
ηl
∂4
ξp

(
m(ξ, η)Pk1(ξ)Pk2(η)

)∣∣∣ dξdη. (6.13)

We observe that

∣∣∣∂4
ηl
∂4
ξp [m(ξ, η)Pk1(ξ)Pk2(η)]

∣∣∣ . 4∑
a,b=0

∣∣∣m(p,l)
(a,b)(ξ, η)∂4−a

ξp
Pk1(ξ)∂4−b

ηl
Pk2(η)

∣∣∣ ,
≤

4∑
a,b=0

∣∣∣m(p,l)
(a,b)(ξ, η)

∣∣∣ ‖∂4−a
ξp

Pk1(ξ)‖L∞‖∂4−b
ηl

Pk2(η)‖L∞ . (6.14)

As Pk1(ξ) = P0( ξ
2k1 ), we can conclude that

‖∂Mξp Pk1(ξ)‖L∞ ≤ 2−Mk1‖∂Mξp P0(ξ)‖L∞

. 2−Mk1 .

Similarly, we have

‖∂Mηl Pk2(η)‖L∞ . 2−Mk2 .
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Therefore, we can bound the RHS of equation (6.14) by

.
4∑

a,b=0
2(a−4)k12(b−4)k2

∣∣∣m(p,l)
(a,b)(ξ, η)

∣∣∣ .
This allows us to bound the RHS of (6.13) by

.
4∑

a,b=0
2ak12bk2‖P̃k1(ξ)P̃k2(η)m(p,l)

(a,b)(ξ, η)‖L1(R3+3) . 2N1k12N2k22N3k2N4k′23k123k2 ,

where the last inequality comes from (6.9). This concludes the proof of (6.12).

Corollary 6.4.1. If Pij(ξ, η) is a polynomial of degree ≤ i in ξ and ≤ j in η for i, j ∈ Z≥0

then Pij ∈ S(i, j, 0, 0).

Proof. Fix i, j ∈ Z≥0, then for all a, b ∈ Z≥0 it is easy to see that (Pij)(p,l)
(a,b) is a polynomial

of degree ≤ i− a in ξ and ≤ j − b in η, so we have

‖P̃k1(ξ)P̃k2(η)(Pij)(p,l)
(a,b)(ξ, η)‖L1(R3+3) . 2(i−a)k12(j−b)k2‖P̃k1(ξ)P̃k2(η)‖L1(R3+3)

. 2(i−a)k12(j−b)k223k123k2.

By Proposition 6.4.2 it follows that Pij ∈ S(i, j, 0, 0).

We now focus our attention on proving K(ξ, η) ∈ S(0, 0,−2, 6). By Proposition

6.4.2, this will follow from proving

‖P̃k1(ξ)P̃k2(η)K(p,l)
(a,b)(ξ, η)‖L1(R3+3) . 2−ak12−bk22−2k26k′23k123k2 , (6.15)

for all a, b ∈ {0, 1, 2, 3, 4}, p, l ∈ {1, 2, 3}, where we recall that k = max{k1, k2}, k′ =

min{k1, k2} and K(p,l)
(a,b)(ξ, η) = ∂bηl∂

a
ξpK(ξ, η) for some fixed l, p ∈ {1, 2, 3} .

Because K(ξ, η) is symmetric in ξ and η we can assume without loss of generality

that k1 ≥ k2 so that k = k1 and k′ = k2. For convenience we fix p, l ∈ {1, 2, 3} and write
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K(p,l)
(a,b) = K(a,b) and H(p,l)

(a,b) = H(a,b) in which case we can rewrite (6.15) as

‖P̃k1(ξ)P̃k2(η)K(a,b)(ξ, η)‖L1(R3+3) . 2−(2+a)k2(6−b)k′23k23k′ . (6.16)

Fix η ∈ R3 with |η| ∼ 2k′ . Then for any ξ ∈ R3 with |ξ| ∼ 2k we denote θη(ξ) = θ to be

the angle between η and ξ. We observe that (6.16) follows from showing

∫
|η|∼2k′

∫
(A+)η

|K(a,b)(ξ, η)|dξdη . 2−(2+a)k2(6−b)k′23k123k2 , (6.17)

∫
|η|∼2k′

∫
(A−)η

|K(a,b)(ξ, η)|dξdη . 2−(2+a)k2(6−b)k′23k123k2 , (6.18)
∫
|η|∼2k′

∫
(B+)η

|K(a,b)(ξ, η)|dξdη . 2−(2+a)k2(6−b)k′23k123k2 , (6.19)
∫
|η|∼2k′

∫
(B−)η

|K(a,b)(ξ, η)|dξdη . 2−(2+a)k2(6−b)k′23k123k2 , (6.20)

where

(A+)η = {ξ ∈ R3||θη(ξ)| ≤ 2−k′} ∩ {|ξ| ∼ 2k},

(A−)η = {ξ ∈ R3||π − θη(ξ)| ≤ 2−k′} ∩ {|ξ| ∼ 2k},

(B+)η = {ξ ∈ R3|2−k′ ≤ |θη(ξ)| ≤
π

2 } ∩ {|ξ| ∼ 2k},

(B−)η = {ξ ∈ R3|2−k′ ≤ |π − θη(ξ)| ≤
π

2 } ∩ {|ξ| ∼ 2k}.

We will only focus on proving estimates (6.17) and (6.19) as (6.18) and (6.20) can be

proved using a nearly identical argument. Furthermore, we can replace A+ and B+ with

A+ ∩ {θ ≥ 0} and B+ ∩ {θ ≥ 0} respectively. We will first need two results:

Given a, b ∈ Z≥0 with a + b ≥ 1, define D(a, b) to be the set consisting of all

(a+ b)-tuples whose entries are 0, 1, or 2 and recall that

H(ξ, η) := 1
K(ξ, η) = (4(|ξ|2|η|2 − 〈ξ, η〉2 + |ξ|2 + |η|2 + 〈ξ, η〉) + 3). (6.21)

The following result holds true:
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Lemma 6.4.1. Let a, b ∈ Z≥0 with a + b ≥ 1 and D(a, b) be defined as above, then we

have

K(a,b) = 1
Ha+b+1

∑
(α,β)∈D(a,b)2

|α|=a
|β|=b

C(α, β)
a+b∏
i=1

H(αi,βi) (6.22)

where C(α, β) ∈ R.

Proof. We split the proof up into 3 cases.

Case 1: a ≥ 1, b = 0.

We proceed by induction. The base case is a = 1, b = 0. In the case we have

K(1,0) = −H(1,0)

H2 ,

and so estimate (6.22) holds.

Next, assume K(a′,0) satisfies estimate (6.22) for some a′ ≥ 1. We aim to show that

K(a′+1,0) satisfies estimate (6.22). In particular, we would like to show

K(a′+1,0) = 1
Ha′+2

∑
α∈D(a′+1,0)
|α|=a′+1

C(α)
a′+1∏
i=1

H(αi,0). (6.23)

We observe that

K(a′+1,0) = ∂ξpK(a′,0)

=
(
∂ξp

1
Ha′+1

) ∑
α∈D(a′,0)
|α|=a′

C(α)
a′∏
i=1

H(αi,0)

+ 1
Ha′+1∂ξp

 ∑
α∈D(a′,0)
|α|=a′

C(α)
a′∏
i=1

H(αi,0)


= I + II.
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Observe that ∂ξp
(

1
Ha′+1

)
= −H(1,0)

Ha′+2 , therefore

(I) = 1
Ha′+2

∑
α∈D(a′,0)
|α|=a′

C(α)(−H(1,0))
a′∏
i=1

H(αi,0)

= 1
Ha′+2

∑
α̃∈D(a′+1,0)
|α̃|=a′+1

C̃(α̃)
a′+1∏
i=1

H(α̃i,0),

where C̃(α̃) = 0, if α̃a′+1 6= 1.

We now focus our attention on (II). We rewrite (II) as

(II) = 1
Ha′+1

∑
α∈D(a′,0)
|α|=a′

C(α)∂ξp

 a′∏
i=1

H(αi,0)



= 1
Ha′+2

∑
α∈D(a′,0)
|α|=a′

C(α)H(0,0)∂ξp

 a′∏
i=1

H(αi,0)

 .
Observe that

∂ξp

 a′∏
i=1

H(αi,0)

 =
∑

α′∈D(a′,0)
|α′|=a′+1

C(α, α′)
a′∏
i=1

H(α′i,0),

where many of the C(α, α′) are 0. We can therefore conclude that

(II) = 1
Ha′+2

∑
α∈D(a′,0)
|α|=a′

C(α)H(0,0)

 ∑
α′∈D(a′,0)
|α′|=a′+1

C(α, α′)
a′∏
i=1

H(α′i,0)


= 1
Ha′+2

∑
α̃∈D(a′+1,0)
|α̃|=a′+1

C̃(α̃)
a′+1∏
i=1

H(α̃i,0),

where C̃(α̃) = 0 if α̃a′+1 6= 0.

Combining (I) and (II) gives us equation (6.23), completing the proof for case 1.

Case 2: a ≥ 1, b ≥ 0
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We will fix a ≥ 1 and induct on the value of b. The base case b = 0 follows from

case 1. Suppose K(a,b′) satisfies estimate (6.22) for some b′ ≥ 0. We would like to prove

that K(a,b′+1) satisfies estimate (6.22). Our goal then is to show that

K(a,b′+1) = 1
Ha+b′+2

∑
(α,β)∈D(a,b′+1)2

|α|=a
|β|=b′+1

C(α, β)
a+b′+1∏
i=1

H(αi,βi), (6.24)

where C(α, β) ∈ R

We observe that

K(a,b′+1) = ∂ηlK(a,b′)

=
(
∂ηl

1
Ha+b′+1

) ∑
α,β∈D(a,b′)
|α|=a
|β|=b′

C(α, β)
a+b′∏
i=1

H(αi,βi)

+ 1
Ha+b′+1∂ηl


∑

α,β∈D(a,b′)
|α|=a
|β|=b′

C(α, β)
a+b′∏
i=1

H(αi,βi)


= I + II.

Notice that ∂ξp
(

1
Ha+b′+1

)
= − H(0,1)

Ha+b′+2 , therefore

(I) = 1
Ha+b′+2

∑
α,β∈D(a,b′)
|α|=a
|β|=b′

C(α, β)(−H(0,1))
a+b′∏
i=1

H(αi,βi)

= 1
Ha+b′+2

∑
α,β̃,∈D(a,b′+1)

|α|=a
|β̃|=b′+1

C̃(α, β̃)
a+b′+1∏
i=1

H(αi,β̃i),

where C̃(α, β̃) = 0 if β̃b′+1 6= 1.
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We now focus our attention on (II). We rewrite (II) as

(II) = 1
Ha+b′+1

∑
α,β∈D(a,b′)
|α|=a
|β|=b′

C(α, β)∂ηl

a+b′∏
i=1

H(αi,βi)



= 1
Ha+b′+2

∑
α∈D(a,b′)
|α|=a
|β|=b′

C(α, β)H(0,0)∂ηl

a+b′∏
i=1

H(αi,βi)

 .

Observe that

∂ηl

a+b′∏
i=1

H(αi,βi)

 =
∑

α,β′∈D(a,b′)
|α|=a
|β′|=b′+1

C(α, β, β′)
a+b′∏
i=1

H(αi,β′i),

where many of the C(α, β, β′) are 0. So we can conclude that

(II) = 1
Ha+b′+2

∑
α,β∈D(a,b′)
|α|=a
|β|=b′

C(α)H(0,0)


∑

α,β′∈D(a′,0)
|α|=a
|β′|=b′+1

C(α, α′)
a+b′∏
i=1

H(αi,β′i)


= 1
Ha+b′+2

∑
α,β̃∈D(a,b′+1)

|α|=a
|β|=b′+1

C̃(α, β̃)
a′+b′1∏
i=1

H(αi,β̃i),

where C̃(α, β̃) = 0 if β̃b′+1 6= 0. Combining (I) and (II) gives us equation (6.24) completing

the proof for case 2.

Case 3: a = 0, b ≥ 1

As K is symmetric with respect to ξ and η this follows from case 1, completing our

proof.

Lemma 6.4.2. Fix η ∈ {|η| ∼ 2k′}, then on [(A+ ∪ B+)η ∩ {θη(ξ) ≥ 0}] we have the
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following bounds

∣∣∣∣∣ 1
H(0,0)(ξ, η)

∣∣∣∣∣ . max{2−2k, (22k22k′θ2)−1},

∣∣∣H(1,0)(ξ, η)
∣∣∣ . max{22k′2kθ, 2k},

∣∣∣H(0,1)(ξ, η)
∣∣∣ . max{2k′22kθ, 2k},

∣∣∣H(1,1)(ξ, η)
∣∣∣ . max{2k′2kθ, 1},

∣∣∣H(2,0)(ξ, η)
∣∣∣ . 22k′ ,

∣∣∣H(0,2)(ξ, η)
∣∣∣ . 22k,

∣∣∣H(2,1)(ξ, η)
∣∣∣ . 2k′ ,

∣∣∣H(1,2)(ξ, η)
∣∣∣ . 2k,

∣∣∣H(2,2)(ξ, η)
∣∣∣ . 1.

Proof. Recall that

H(0,0) = 4(|ξ|2|η|2 − 〈ξ, η〉2 + |ξ|2 + |η|2 + 〈ξ, η〉) + 3.

After several straightforward computations we obtain

H(1,0) = 4[2ξp|η|2 − 2ηp 〈ξ, η〉+ 2ξp + ηp],

H(2,0) = 4[2|η|2 − 2η2
p + 2],

H(1,1) = 4[4ξpηl − 4ηpξl + δpl],

H(2,1) = 4[4ηl − 4δplηp],

H(2,2) = 16[1− δl].
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It is easy to see that |H(2,0)| . 22k′ , |H(2,1)| . 2k′ , |H(2,2)| . 1 and by symmetry |H(0,2)| .

22k, |H(1,2)| . 2k. It remains to prove the estimates on | 1
H(0,0)

|, |H(0,1)|, |H(1,0)|, and |H(1,1)|.

We can rewrite H(0,0) as

H(0,0) = 4(|ξ|2|η|2 sin2 θ + |ξ|2 + |η|2 + 〈ξ, η〉) + 3.

As θ2 . sin2 θ on [0, π2 ] and |ξ|2 + |η|2 + 〈ξ, η〉 & max(|ξ|2, |η|2), we see that

min{22k, 22k22k′θ2} . |ξ|2|η|2θ2 + max(|ξ|2, |η|2) . |H(0,0)|.

We conclude that
∣∣∣∣∣ 1
H(0,0)

∣∣∣∣∣ . 1
min{22k, 22k22k′θ2}

= max{2−2k, (22k22k′θ2)−1}.

We next attempt to bound |H(1,0)|. Recall that

H(1,0) = 4[2ξp|η|2 − 2ηp 〈ξ, η〉+ 2ξp + ηp],

and observe that

|ξp|η|2 − ηp 〈ξ, η〉 | = |ξp|η|2 − ηp|ξ||η| cos θ|

Define ξ̃ := ξ
|ξ| and η̃ := η

|η| . Then we can rewrite the above expression as

|ξp|η|2 − ηp 〈ξ, η〉 | = ||ξ||η|2(ξ̃p − η̃p cos θ)|

≤ |ξ||η|2[|ξ̃p − η̃p|+ (1− cos θ)|η̃p|]

≤ |ξ||η|2[|ξ̃p − η̃p|+ (1− cos θ)].

Observe that

|ξ̃p − η̃p|2 ≤ |ξ̃ − η̃|2 = |ξ̃|2 + |η̃|2 − 2|ξ̃||η̃| cos θ

= 2(1− cos θ),
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so we conclude that

|H(1,0)| . |ξ||η|2[(1− cos θ)1/2 + (1− cos θ)]|+ 2k

. |ξ||η|2|θ|+ 2k

. max(2k22k′ |θ|, 2k).

By symmetry, we also have

|H(0,1)| . max(22k2k′|θ|, 2k).

We now attempt to bound |H(1,1)|. Recall that

H(1,1) = 4[4ξpηl − 4ηpξl + δpl].

Observe that

|ξpηl − ηpξl| ≤ |ξ × η|

= |ξ||η|| sin θ|

∼ |ξ||η||θ|,

Allowing us to deduce that

|H(1,1)| . max{2k′2kθ, 1}

As desired.

We are finally ready to prove estimates (6.17) and (6.19).

Proposition 6.4.3. The following holds true:

∫
|η|∼2k′

∫
(A+∩{θ≥0})η

|K(a,b)(ξ, η)|dξdη . 2−(2+a)k2(6−b)k′23k23k′ . (6.25)
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Proof. From Lemma 6.4.1, we know we can bound |K(a,b)| on A+ ∩ {θ ≥ 0} by a sum of

terms of the form ∣∣∣∣∣∣
Hn1

(1,0)H
n2
(0,1)H

n3
(1,1)H

n4
(2,0)H

n5
(0,2)H

n6
(2,1)H

n7
(1,2)H

n8
(2,2)

Ha+b+1−n0
(0,0)

∣∣∣∣∣∣ , (6.26)

where we have
8∑
i=0

ni = a+ b, (6.27)

a = n1 + n3 + 2n4 + 2n6 + n7 + 2n8, (6.28)

b = n2 + n3 + 2n5 + n6 + 2n7 + 2n8. (6.29)

From Lemma 6.4.2 and the fact that 0 ≤ θ ≤ 2−k′ on A+ ∩ {θ ≥ 0} we know we

can bound (6.26) by a product of multiples of 2k and 2k′ .

We first sum up the powers of 2k in the numerator. Using Lemma 6.4.2 we see that

The exponent on 2k

in the numerator
≤ n1 + 2n2 + n3 + 2n5 + n7.

The exponent on 2k

in the denminator
≥ 2(a+ b+ 1− n0).

Combining these two facts, we see that the total power of 2k is

≤ n1 + 2n2 + n3 + 2n5 + n7 − 2(a+ b+ 1− n0).

By equation (6.27), this

= n1 + 2n2 + n3 + 2n5 + n7 − 2(1 +
8∑
i=1

ni)

= −(n1 + n3 + 2n4 + 2n6 + n7 + 2n8 + 2)

= −(a+ 2),
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where the last equality comes from equation (6.28).

We now sum up the powers of 2k′ . As θ . 2−k′ on A+ we can replace the first four

bounds in Lemma 6.4.2 by

∣∣∣∣∣ 1
H(0,0)(ξ, η)

∣∣∣∣∣ . 2−2k

∣∣∣H(1,0)(ξ, η)
∣∣∣ . 2k′2k

∣∣∣H(0,1)(ξ, η)
∣∣∣ . 22k

∣∣∣H(1,1)(ξ, η)
∣∣∣ . 2k,

allowing us to conclude

The exponent on 2k′

in the numerator
≤ n1 + 2n4 + n6.

The exponent on 2k′

in the denominator
≥ 0.

Combining these two facts, we see that the total power of 2k′ is

≤ n1 + 2n4 + n6

≤ a

= a+ b− b

≤ 8− b,

where the last inequality comes from our assumption that a, b ≤ 4.

So far we have shown that |K(a,b)(ξ, η)| . 2(−2−a)k2(8−b)k′ on
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(A+ ∩ {θ ≥ 0})η. Observe that |(A+ ∩ {θ ≥ 0})η| . 23k2−2k′ . It follows that
∫
|η|∼2k′

∫
(A+∩{θ≥0})η

|K(ξ, η)|dξdη .
∫
|η|∼2k′

2(−2−a)k2(8−b)k′ |(A+ ∩ {θ ≥ 0})η|dη

. 2−(2+a)k2(6−b)k′23k23k′ ,

as desired.

Proposition 6.4.4. The following holds true:
∫
|η|∼2k′

∫
(B+∩{θ≥0})η

|K(a,b)(ξ, η)|dξdη . 2−(2+a)k2(6−b)k′23k23k′ . (6.30)

Proof. Once again we bound |K(a, b)| by a sum of terms of the form∣∣∣∣∣∣
Hn1

(1,0)H
n2
(0,1)H

n3
(1,1)H

n4
(2,0)H

n5
(0,2)H

n6
(2,1)H

n7
(1,2)H

n8
(2,2)

Ha+b+1−n0
(0,0)

∣∣∣∣∣∣ ,
where (6.27), (6.28), and (6.29) are still valid. From Lemma 6.4.2 we know we can bound

this by a product of multiples of 2k, 2k′ and θ. We first sum up the powers of 2k in the

numerator. Using Lemma 6.4.2 we see that

The exponent on 2k

in the numerator
≤ n1 + 2n2 + n3 + 2n5 + n7.

The exponent on 2k

in the denminator
≥ 2(a+ b+ 1− n0).

Combining these two facts, we see that the total power of 2k is

≤ n1 + 2n2 + n3 + 2n5 + n7 − 2(a+ b+ 1− n0).

By equation (6.27), this

= n1 + 2n2 + n3 + 2n5 + n7 − 2(1 +
8∑
i=1

ni)

= −(n1 + n3 + 2n4 + 2n6 + n7 + 2n8 + 2)

= −(a+ 2).
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where the last equality comes from equation (6.28).

We now sum up the powers of 2k′ .

The exponent on 2k′

in the numerator
≤ 2n1 + n2 + +n3 + 2n4 + n6.

The exponent on 2k′

in the denminator
= 2(a+ b+ 1− n0).

Combining these two facts we see that the total power of 2k′ is

≤ 2n1 + n2 + n3 + 2n4 + n6 − 2(a+ b+ 1− n0)

= −(n2 + n3 + 2n5 + n6 + 2n7 + 2n8 + 2).

= −(b+ 2)

Finally, we compute a bound for the total exponent on θ. Once again we use Lemma 6.4.2

to deduce

The exponent on θ

in the numerator
= n1 + n2 + n3.

The exponent on θ

in the denominator
= 2(a+ b+ 1− n0),

so the total exponent is

= n1 + n2 + n3 − 2(a+ b+ 1− n0)

:= α,
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where we note that α < 0. From equations (6.27)-(6.29) we have

a+ b =
8∑
i=0

ni

and

a+ b = n1 + n2 + 2n3 + 2n4 + 2n5 + 3n6 + 3n7 + 4n8.

Solving for n0, we obtain

n0 = n3 + n4 + n5 + 2n6 + 2n7 + 3n8

so that

α = n1 + n2 + 3n3 + 2n4 + 2n5 + 4n6 + 4n7 + 6n8 − 2(a+ b+ 1)

= n3 + n6 + n7 + 2n8 + (a+ b)− 2(a+ b+ 1)

= n3 + n6 + n7 + 2n8 − (a+ b+ 2).

It follows that

−(α + 2) ≤ a+ b ≤ 8.

We can therefore conclude that
∫
|η|∼2k′

∫
B+∩{θ≥0}

|K(ξ, η)|dξdη . 23k23k′2−(a+2)k2−(b+2)k′
∫ π

2

2−k′
θα sin θdθ

. 23k23k′2−(a+2)k2−(b+2)k′
∫ π

2

2−k′
θα+1dθ

. 23k23k′2−(a+2)k2−(b+2)k′(−θα+2)
∣∣∣π2
2−k′

. 23k23k′2−(a+2)k2−(b+2)k′2−k′(α+2)

. 23k23k′2−(a+2)k2−(b+2)k′28k′

= 23k23k′2−ak2−bk′2−2k26k′ .
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Chapter 7

The Second Order Semilinear

Klein-Gordon Equation

7.1 Local Existence

We dedicate this chapter to proving well-posedness of the second order semilinear

Klein-Gordon system in Hs(R3) for s > 10. Our proof will rely on the bootstrap argument

outlined in section 3.2. The reader may recall that this method requires an established

local theory. For this reason, we dedicate this section to the relatively straightforward task

of proving local existence. In particular, we will employ the contraction method outlined

in section 3.1 to prove the following theorem

Theorem 7.1.1. Given s > 2 and 0 < T ≤ 1, there exists δ > 0 such that if (u0, u1) ∈

Hs × Hs−1 with ‖u0‖Hs + ‖u1‖Hs−1 < δ, then there exists a unique u ∈ C([0, T );Hs
x)
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satisfying

(�+ 1)u =
1∑

j,k=0
Ajk(∂

′
, ∂
′′)[∂jtu][∂kt u], (7.1)

with initial data

u(0, x) = u0 ∈ Hs(R3), ∂tu(0, x) = u1 ∈ Hs−1(R3).

Furthermore, the map u0 7−→ u is Lipschitz continuous.

Proof. Fix s > 2, 1 < s′ < s− 1, 0 < T ≤ 1, and define XT , ST (δ), and NT by the norms

‖u‖XT :=
1∑
i=0

(
‖∂itu‖L∞t ([0,T ],Hs−i

x )[k] + ‖∂itu‖L2
t ([0,T ],W s′−i,∞

x )[k]

)
,

‖u‖ST := {u ∈ XT : ‖u‖XT ≤ C0δ},

‖u‖NT := ‖u‖L1
t ([0,T ],Hs−1

x )[k],

where C0 is chosen to be sufficiently large.

From our discussion in Chapter 3, local well-posedness on [0, T ] will follow from

proving the following four estimates

‖W (u0, u1)‖ST . ‖(u0, u1)‖Hs
x×H

s−1
x
, (7.2)

‖L(G)‖ST . ‖G‖NT , (7.3)

‖
1∑

j,k=0
Ajk[∂jtw][∂kt w]‖NT ,. ‖w‖2

XT
(7.4)

‖
1∑

j,k=0
(Ajk[∂jt v][∂kt v]−Ajk[∂jtw][∂kt w])‖NT .δ ‖v − w‖XT , (7.5)

for all v, w ∈ ST . We recall that

W (u0, u1)(t, ·) = eit〈D〉u0(·) + eit〈D〉u1(·)
〈D〉
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and

L(G)(t, ·) :=
∫ t

0

sin(i(t− s)〈D〉)G(s, ·)
〈D〉

ds.

Estimates (7.2) and (7.3) follow from nearly identical arguments to the ones used for the

analogous estimates in section 4.2. It is not difficult to see that estimate (7.4) follows from

proving

‖Ajk[∂jt v][∂kt w]‖NT . ‖v‖XT ‖w‖XT , (7.6)

for all j, k ∈ {0, 1} and v, w ∈ XT .

As Ajk ∈ S(1− j, 1− k, 0, 0) we can apply 6.3.1 with r = s− 1, σ = σ̃ = 0, λ = λ̃ =

s′ − 1, p1 = p̃2 = q2 = q̃1 =∞, p2 = p̃1 = 1, q1 = q̃2 = 2 to get

‖Ajk[∂jt v][∂kt w]‖L1
tH

s−1
x [k] . ‖∂

j
t v‖L∞t Hs−j

x
‖∂kt w‖L1

tW
s′−k,∞
x [k]

+ ‖∂jt v‖L1
tW

s′−j,∞
x [k]‖∂

k
t w‖L∞t Hs−k

x [k]

. ‖v‖XTT 1/2‖∂kt w‖L2
tW

s′−k,∞
x [k] + T 1/2‖∂jt v‖L2

tW
s′−j,∞
x [k]‖w‖XT

. T 1/2‖v‖XT ‖w‖XT

≤ ‖v‖XT ‖w‖XT ,

where we used our assumption that T ≤ 1.

We now turn our attention to estimate (7.5). Let

J(v, w) :=
1∑

j,k=0
Ajk[∂jt v][∂kt w].
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As each Ajk is bilinear, it follows that J is as well so we can conclude

‖J(v, v)− J(w,w)‖XT ≤ ‖J(v, v)− J(v, w)‖XT + ‖J(v, w)− J(w,w)‖XT

≤ C‖v‖XT ‖v − w‖XT + C‖w‖XT ‖v − w‖XT

≤ 2CC0δ‖v − w‖XT ,

where the second inequality follows from the bilinearity of J and equation (7.6) and the

last inequality follows from the definition of ST .

7.2 Main Estimates

Now that the local theory has been established, we are finally in a position to prove

global well-posedness. Our goal is to prove the following theorem

Theorem 7.2.1. Let s ≥ 10 + ε for a given ε > 0. There exists δ > 0 such that if

(u0, u1) ∈ Hs(R3) × Hs−1(R3) with ‖u0‖Hs + ‖u1‖Hs−1 < δ, then there exists a unique

u ∈ C0([0,∞);Hs
x) satisfying

(�+ 1)u = F (u, u′) =
1∑

j,k=0
Ajk(∂

′
, ∂
′′)[∂jtu][∂kt u], (7.7)

Furthermore, the map u0 7−→ u is Lipschitz continuous.

We will take advantage of the Normal forms decomposition u = U +W introduced

in the previous chapter in order to close the bootstrap argument discussed in section 3.2.

Let ST be defined by the norm

‖u‖ST =
1∑
i=0

(
‖∂itu‖L∞t ([0,T ],Hs−i

x )[k] + ‖∂itu‖L2
t ([0,T ],W

9−i+ ε
2 ,∞

x )[k]

)
,
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and assume

‖u‖ST ≤Mδ,

for some sufficiently large constant M independent of T . By the bootstrap argument it

suffices to show that

‖u‖ST ≤
M

2 δ.

As u = U +W , this follows from showing

‖W‖ST . δ + ‖u‖3
ST

+ ‖u‖4
ST

(7.8)

and

‖U‖ST . ‖u‖2
ST

+ ‖u‖3
ST
, (7.9)

provided δ is chosen sufficiently small and M sufficiently large.

Recall that

(�+ 1)W = −R,

where

R = B00(D′, D′′)([F (u, u′)][u] + [u][F (u, u′)])

+B10(D′, D′′)([∂tF (u, u′)][u] + 2[F (u, u′)][∂tu] + [∂tu][F (u, u′)])

+B01(D′, D′′)([u][∂tF (u, u′)] + 2[∂tu][F (u, u′)] + [F (u, u′)][∂tu])

+B11(D′, D′′)([∂tF (u, u′)][∂tu] + 2[F (u, u′)][F (u, u′)]

−2(|D′′|2 + 1)[F (u, u′)][u]− 2(|D′|2 + 1)[u][F (u, u′)] + [∂tu][∂tF (u, u′)]),

115



and that

W (0) = u(0)− U(0), ∂tW (0) = ut(0)− Ut(0).

We can therefore conclude that

W (t) = cos(t〈D〉)W (0) + sin(t〈D〉)
〈D〉

Wt(0)−
∫ t

0

sin((t− s)〈D〉)
〈D〉

Rds

and

‖W‖ST .
1∑
i=0

(
‖eit〈D〉∂itW (0)‖L∞t Hs−i

x [k] + ‖∂itW (0)‖
L2
tW

9−i+ ε
2 ,∞

x [k]

)
+ ‖R‖L1

tH
s−1
x [k]

. ‖(u(0), ut(0))‖Hs
x×H

s−1
x

+ ‖(U(0), Ut(0))‖Hs
x×H

s−1
x

+ ‖R‖L1
tH

s−1
x [k]

. δ + ‖(U(0), Ut(0))‖Hs
x×H

s−1
x

+ ‖R‖L1
tH

s−1
x [k],

so (7.8) follows from proving

‖(U(0), Ut(0))‖Hs
x×H

s−1
x

+ ‖R‖L1
tH

s−1
x
. δ + ‖u‖3

ST
+ ‖u‖4

ST
.

I claim that ‖R(u, u′)‖L1
tH

s−1
x [k] . ‖u‖3

ST
+ ‖u‖4

ST
. By symmetry, this follows from proving

the following:

Proposition 7.2.1. Let i, j ∈ {0, 1}, then

‖Bij(D′, D′′)[∂itF (u, u′)][∂jtu]‖L1
tH

s−1
x [k] . ‖u‖

3
ST

+ ‖u‖4
ST
, (7.10)

‖B10(D′, D′′)[F (u, u′)][∂tu]‖L1
tH

s−1
x [k] . ‖u‖

3
ST

+ ‖u‖4
ST
, (7.11)

‖B11(D′, D′′)[F (u, u′)][F (u, u′)]‖L1
tH

s−1
x [k] . ‖u‖

4
ST
, (7.12)

‖B11(D′, D′′)[F (u, u′)][(|D′′|2 + 1)u]‖L1
tH

s−1
x [k] . ‖u‖

3
ST
. (7.13)
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Proof. As Bij ∈ S(2 − i, 2 − j,−2, 6), we may apply Proposition 6.3.1 to (7.10) with

a = 2 − i, b = 2 − j, c = −2, d = 6, r = s − 1, λ = λ̃ = ε
2 , σ = σ̃ = 0, p1 = p2 = 2, q1 =

2, q2 =∞, p̃1 = 1, p̃2 =∞, q̃1 =∞, q̃2 = 2 to get

LHS(7.10) . ‖∂itF (u, u′)‖L2
tH

s−1−i
x [k]‖∂

j
tu‖

L2
tW

8+ ε
2−j,∞

x [k]

+ ‖∂itF (u, u′)‖
L1
tW

8+ ε
2−i,∞

x [k]
‖∂jtu‖L∞t Hs−1−j

x [k].

Observe that

‖∂jtu‖
L2
tW

8+ ε
2−j,∞

x [k]
. ‖∂jtu‖

L2
tW

9+ ε
2−j,∞

x [k]
. ‖u‖ST

and

‖∂jtu‖L∞t Hs−1−j
x [k] . ‖∂

j
tu‖L∞t Hs−j

x [k] . ‖u‖ST .

So, it’s left to prove

‖∂itF (u, u′)‖L2
tH

s−1−i
x [k] + ‖∂itF (u, u′)‖

L1
tW

8+ ε
2−i,∞

x [k]
. ‖u‖2

ST
+ ‖u‖3

ST
. (7.14)

We break this down into two cases.

case 1: i = 0

In this case ∂itF (u, u′) = F (u, u′) = ∑1
j,k=0Ajk[∂

j
tu][∂kt u]. It therefore suffices to show that,

for all i, j ∈ {0, 1}

‖Ajk[∂jtu][∂kt u]‖L2
tH

s−1
x [k] + ‖Ajk[∂jtu][∂kt u]‖

L1
tW

8+ ε
2 ,∞

x [k]
. ‖u‖2

ST
. (7.15)

As Ajk ∈ S(1− j, 1− k, 0, 0) we can apply Proposition 6.3.1 with a = 1− j, b = 1− k, c =

d = 0, r = s− 1, λ = λ̃ = ε
2 , σ = σ̃ = 0, p1 = p̃2 =∞, p2 = p̃1 = 2, q1 = q̃2 = 2, q2 = q̃1 =∞
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to obtain

‖Ajk[∂jtu][∂kt u]‖L2
tH

s−1
x [k] . ‖∂

j
tu‖L∞t Hs−j

x [k]‖∂
k
t u‖L2

tW
ε
2 +1−k,∞
x [k]

+ ‖∂jtu‖
L2
tW

ε
2 +1−j,∞
x [k]

‖∂kt u‖L∞t Hs−k
x [k]

. ‖u‖2
ST
.

We now turn to estimating ‖Ajk[∂jtu][∂kt u]‖
L1
tW

8+ ε
2 ,∞

x [k]
. Applying Proposition 6.3.1

with a = 1− j, b = 1− k, c = d = 0, σ = σ̃ = 0, λ = λ̃ = ε
2 , p1 = p2 = p̃1 = p̃2 = 2, we see

that

‖Ajk[∂jtu][∂kt u]‖
L1
tW

8+ ε
2 ,∞

x [k]
. ‖∂jtu‖

L2
tW

9−j+ ε
2 ,∞

x [k]
‖∂kt u‖L2

tW
1−k+ ε

2 ,∞
x [k]

+ ‖∂jtu‖
L2
tW

1−j+ ε
2 ,∞

x [k]
‖∂kt u‖L2

tW
9−k+ ε

2 ,∞
x [k]

. ‖u‖2
ST
.

case 2: i = 1

In this case, ∂itF (u, u′) = ∂tF (u, u′) = ∑1
j,k=0Ajk([∂

j+1
t u][∂kt u] + [∂jtu][∂k+1

t u]). By symme-

try we only need to consider the terms Aj0[∂jtu][∂tu] and A1k[∂2
t u][∂kt u] for j, k ∈ {0, 1}.

We first consider Aj0[∂jtu][∂tu]. We aim to show that

‖Aj0[∂jtu][∂tu]‖L2
tH

s−2
x [k] + ‖Aj0[∂jtu][∂tu]‖

L1
tW

7+ ε
2 ,∞

x [k]
. ‖u‖2

ST
.

As Aj0 ∈ S(1− j, 1, 0, 0), we can apply Proposition 6.3.1 with λ = λ̃ = ε
2 , σ = σ̃ = 0, p1 =

p̃2 =∞, p2 = p̃1 = 2, q1 = q̃2 = 2, q2 = q̃1 =∞ to obtain

‖Aj0[∂jtu][∂tu]‖L2
tH

s−2
x [k] . ‖∂

j
tu‖L∞t Hs−1−j

x [k]‖∂tu‖L2
tW

1+ ε
2 ,∞

x [k]

+ ‖∂jtu‖
L2
tW

ε
2 +1−j,∞
x [k]

‖∂tu‖L∞t Hs−1
x [k]

. ‖u‖2
ST
.
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To bound ‖Aj0[∂jtu][∂tu]‖
L1
tW

ε
2 +7,∞
x [k]

we once again apply Proposition 6.3.1 with a = 1 −

j, b = 1, c = d = 0, λ = λ̃ = ε
2 , σ = σ̃ = 0, p1 = p2 = p̃1 = p̃2 = 2, q1 = q2 = q̃1 = q̃2 =∞ to

get

‖Aj0[∂jtu][∂tu]‖
L1
tW

7+ ε
2 ,∞

x [k]
. ‖∂jtu‖

L2
tW

8−j,∞+ ε
2

x [k]
‖∂tu‖

L2
tW

1+ ε
2 ,∞

x [k]

+ ‖∂jtu‖
L2
tW

1−j+ ε
2 ,∞

x [k]
‖∂tu‖

L2
tW

8+ ε
2 ,∞

x [k]

. ‖u‖2
ST
.

We next consider the term A1k[∂2
t u][∂kt u]. In particular, we aim to show that

‖A1k[∂2
t u][∂kt u]‖L2

tH
s−2
x [k] + ‖A1k[∂2

t u][∂kt u]‖
L1
tW

7+ ε
2 ,∞

x [k]
. ‖u‖2

ST
. (7.16)

As A1k ∈ S(0, 1 − k, 0, 0), we can apply Proposition 6.3.1 with λ = λ̃ = ε
2 , σ = 0, σ̃ =

0, p1 = p̃2 =∞, p2 = p̃1 = 2, q1 = q̃2 = 2, q2 = q̃1 =∞ to obtain

‖A1k[∂2
t u][∂kt u]‖L2

tH
s−2
x [k] . ‖∂

2
t u‖L∞t Hs−2

x [k]‖∂
k
t u‖L2

tW
ε
2 +1−k,∞
x [k]

+ ‖∂2
t u‖L2

tW
ε
2 ,∞
x [k]

‖∂kt u‖L2
tH

s−1−k
x [k]

.
(
‖∂2

t u‖L∞t Hs−2
x [k] + ‖∂2

t u‖L2
tW

ε
2 ,∞
x [k]

)
‖u‖ST .

It remains to prove the bound

‖∂2
t u‖L∞t Hs−2

x [k] + ‖∂2
t u‖L2

tW
ε
2 ,∞
x [k]

. ‖u‖ST + ‖u‖2
ST
. (7.17)

For the term ‖A1k[∂2
t u][∂kt u]‖

L1
tW

7+ ε
2 ,∞

x [k]
we once again apply Proposition 6.3.1 with σ =
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σ̃ = 0, λ = λ̃ = ε
2 , p1 = p2 = p̃1 = p̃2 = 2, q1 = q2 = q̃1 = q̃2 =∞ to get

‖A1k[∂2
t u][∂kt u]‖

L1
tW

7+ ε
2 ,∞

x [k]
. ‖∂2

t u‖L2
tW

7+ ε
2 ,∞

x [k]
‖∂kt u‖L2

tW
1−k+ ε

2 ,∞
x [k]

+ ‖∂2
t u‖L2

tW
ε
2 ,∞
x [k]

‖∂kt u‖L2
tW

8−k+ ε
2 ,∞

x [k]

. ‖∂2
t u‖L2

tW
7+ ε

2 ,∞
x [k]

‖u‖ST .

Combining the above estimate with equation (7.17), we see that (7.16) follows from

‖∂2
t u‖L∞t Hs−2

x [k] + ‖∂2
t u‖L2

tW
7+ ε

2 ,∞
x [k]

. ‖u‖ST + ‖u‖2
ST
. (7.18)

Recall that

∂2
t u = (1 + |Dx|2)u+ F (u, u′)

The first component is easy to handle as

‖(1 + |Dx|2)u‖L∞t Hs−2
x [k] . ‖u‖L∞t Hs

x[k] . ‖u‖ST

and

‖(1 + |Dx|2)u‖
L2
tW

7+ ε
2 ,∞

x [k]
. ‖u‖

L2
tW

9+ ε
2 ,∞

x [k]
. ‖u‖ST .

So it remains to show that

‖F (u, u′)‖L∞t Hs−2
x [k] + ‖F (u, u′)‖

L2
tW

7+ ε
2 ,∞

x [k]
. ‖u‖2

ST
.

As F (u, u′) = ∑1
j,k=0Ajk[∂

j
t ][∂kt ] this follows from proving the bound

‖Ajk[∂jtu][∂kt u]‖L∞t Hs−2
x [k] + ‖Ajk[∂jtu][∂kt u]‖

L2
tW

7+ ε
2 ,∞

x [k]
. ‖u‖2

ST
, (7.19)

for all j, k ∈ {0, 1}
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Because Ajk ∈ S(1 − j, 1 − k, 0, 0), we can apply Proposition 6.3.1 with σ = σ̃ =

0, λ = λ̃ = ε, p1 = p2 = p̃1 = p̃2 =∞, q1 = q̃2 = 2, q2 = q̃1 =∞ to get

‖Ajk[∂jtu][∂kt u]‖L∞t Hs−2
x [k] . ‖∂

j
tu‖L∞t Hs−1−j

x [k]‖∂
k
t u‖L∞t W 1−k+ε,∞

x [k]

+ ‖∂jtu‖L∞t W 1−j+ε,∞
x [k]‖∂

k
t u‖L∞t Hs−1−k

x [k].

As s − (1 + ε) > n
2 = 3

2 we can apply Sobolev embedding to bound the expression above

by

. ‖∂jtu‖L∞t Hs−1−j
x [k]‖∂

k
t ‖L∞t Hs−k

x [k]

+ ‖∂jtu‖L∞t Hs−j
x [k]‖∂

k
t u‖L∞t Hs−1−k

x [k]

. ‖u‖2
ST
,

where the last step follows from the definition of ‖ · ‖ST .

Finally, we turn our attention towards the term ‖Ajk[∂jtu][∂kt u]‖
L2
tW

7+ ε
2 ,∞

x [k]
. Ap-

plying Proposition 6.3.1 with σ = σ̃ = 0, λ = λ̃ = ε
2 , p1 = p̃2 = 2, p2 = p̃1 = ∞, q1 = q2 =

q̃1 = q̃2 =∞, we get

‖Ajk[∂jtu][∂kt u]‖
L2
tW

7+ ε
2 ,∞

x [k]
. ‖∂jtu‖

L2
tW

8−j+ ε
2 ,∞

x [k]
‖∂kt u‖L∞t W

1−k+ ε
2 ,∞

x [k]

+ ‖∂jtu‖
L∞t W

1−j+ ε
2 ,∞

x [k]
‖∂kt u‖L2

tW
8−k+ ε

2 ,∞
x [k]

.

We once again apply Sobolev embedding to bound the expression above by

. ‖∂jtu‖
L2
tW

8−j+ ε
2 ,∞

x [k]
‖∂kt u‖L∞t Hs−k

x [k]

+ ‖∂jtu‖L∞t Hs−j
x [k]‖∂

k
t u‖L2

tW
8−k+ ε

2 ,∞
x [k]

≤ ‖u‖2
ST
.
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This completes the proof of estimate (7.10).

We now focus on proving (7.11). As B10 ∈ S(1, 2,−2, 6) we may apply Proposition

6.3.1 to (7.11) with a = 1, b = 2, c = −2, d = 6, r = s− 1, λ = λ̃ = ε
2 , σ = σ̃ = 0, p1 = p2 =

2, p̃1 = 1, p̃2 =∞, q1 = q̃2 = 2, q2 = q̃1 =∞ to obtain

LHS(7.11) . ‖F (u, u′)‖L2
tH

s−2
x [k]‖∂tu‖L2

tW
8+ ε

2 ,∞
x [k]

+ ‖F (u, u′)‖
L1
tW

7+ ε
2 ,∞

x [k]
‖∂tu‖L∞t Hs−1

x [k].

Observe that

‖∂tu‖
L2
tW

8+ ε
2 ,∞

x [k]
. ‖u‖ST

and

‖∂tu‖L∞t Hs−1
x [k] . ‖u‖ST ,

so we are left to show

‖F (u, u′)‖L2
tH

s−2
x [k] + ‖F (u, u′)‖

L1
tW

7+ ε
2 ,∞

x [k]
. ‖u‖2

ST
. (7.20)

But the above follows from estimate (7.14).

We now turn our attention to proving estimate (7.12). As B11 ∈ S(1, 1,−2, 6), we

may apply Proposition 6.3.1 to the LHS of (7.12) with a = b = 1, c = −2, d = 6, σ = σ̃ =

1, λ = λ̃ = ε
2 , p1 = p2 = p̃1 = p̃2 = 2, q1 = q̃2 = 2, q2 = q̃1 =∞ to conclude

LHS(7.12) . ‖F (u, u′)‖L2
tH

s−1
x [k]‖F (u, u′)‖

L2
tW

7+ ε
2 ,∞

x [k]
.

Recall that F (u, u′) = ∑1
j,k=0Ajk[∂

j
tu][∂kt u]. So it suffices to show that given i, j ∈ {0, 1}

we have

‖Ajk[∂jtu][∂kt u]‖L2
tH

s−1
x [k] + ‖Ajk[∂jtu][∂kt u]‖

L2
tW

7+ ε
2 ,∞

x [k]
. ‖u‖2

ST
.

But this follows from estimates (7.15) and (7.19), completing the proof of (7.12).
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Finally, we turn our attention towards estimate (7.13). As B11 ∈ S(1, 1,−2, 6), we

may apply Proposition 6.3.1 to the LHS of (7.13) with a = b = 1, c = −2, d = 6, σ =

1, σ̃ = 0, λ = λ̃ = ε
2 , p1 = p2 = 2, p̃1 = 1, p̃2 =∞, q1 = q̃2 = 2, q2 = q̃1 =∞ to obtain

LHS(7.13) . ‖F (u, u′)‖L2
tH

s−1
x [k]‖(|D′′|2 + 1)u‖

L2
tW

7+ ε
2 ,∞

x [k]

+ ‖F (u, u′)‖
L1
tW

7+ ε
2 +1,∞

x [k]
‖(|D′′|2 + 1)u‖L∞t Hs−2

x [k].

As F (u, u′) = ∑1
j,k=0Ajk[∂

j
tu][∂kt u] and we know from (7.15) that

‖Ajk[∂jtu][∂kt u]‖L2
tH

s−1
x [k] + ‖Ajk[∂jtu][∂kt u]‖

L1
tW

7+ ε
2 +1,∞

x [k]
. ‖u‖2

ST
.

We only need to show that

‖(|D′′|2 + 1)u‖
L2
tW

7+ ε
2 ,∞

x [k]
+ ‖(|D′′|2 + 1)u‖L∞t Hs−2

x [k] . ‖u‖ST ,

but this is obvious from the definition of ‖ · ‖ST .

In order to complete our proof of estimates (7.8) and (7.9), it’s left to prove

Proposition 7.2.2. The following holds true

‖U(0)‖Hs
x
. ‖u(0)‖2

Hs
x

+ ‖u(0)‖3
Hs
x

(7.21)

‖Ut(0)‖Hs−1
x
. ‖ut(0)‖2

Hs−1
x

+ ‖ut(0)‖3
Hs−1
x

(7.22)

‖U(t)‖ST . ‖u(t)‖2
ST

+ ‖u(t)‖3
ST
. (7.23)

Proof. Recall that U = ∑1
i,j=0 Bij[∂itu][∂jtu] and so

‖U‖L∞t Hs
x
.

1∑
i,j=0
‖Bij[∂itu][∂jtu]‖L∞t Hs

x
. (7.24)
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As Bij ∈ S(2 − i, 2 − j,−2, 6) we can apply Proposition 6.3.1 with λ = λ̃ = ε, σ = σ̃ =

0, p1 = p2 = p̃1 = p̃2 =∞, q1 = q̃2 = 2, q2 = q̃1 =∞ to get

‖Bij[∂itu][∂jtu]‖L∞t Hs
x
. ‖∂itu‖L∞t Hs−i

x
‖∂jtu‖L∞t W 8+ε−j,∞

x
+ ‖∂itu‖L∞t W 8+ε−i,∞

x
‖∂jtu‖L∞t Hs−j

x
.

As s− (8 + ε) > 3
2 = n

2 we can apply Sobolev embedding to bound the above by

. ‖∂itu‖L∞t Hs−i
x
‖∂jtu‖L∞t Hs−j

x

. ‖u‖2
ST
.

We remark that the above proof also implies (7.21).

We now turn our attention towards bounding ‖U‖
L2
tW

9+ ε
2 ,∞

x

. It suffices to show that

‖Bij[∂itu][∂jtu]‖
L2
tW

9+ ε
2 ,∞

x

. ‖u‖2
ST
,

for all i, j ∈ {0, 1}. Applying Proposition 6.3.1 with a = 2− i, b = 2− j, c = −2, d = 6, λ =

λ̃ = ε, σ = σ̃ = 0, p1 = p̃2 = 2, p2 = p̃1 = q1 = q2 = q̃1 = q̃2 =∞ we see that

‖Bij[∂itu][∂jtu]‖
L2
tW

9+ ε
2 ,∞

x

. ‖∂itu‖L2
tW

9+ ε
2−i,∞

x

‖∂jtu‖L∞t W 8+ε−j,∞
x

+ ‖∂itu‖L∞t W 8+ε−i,∞
x

‖∂jtu‖
L2
tW

9+ ε
2−j,∞

x

. ‖∂itu‖L2
tW

9+ ε
2−i,∞

x

‖∂jtu‖L∞t Hs−j
x

+ ‖∂itu‖L∞t Hs−i
x
‖∂jtu‖

L2
tW

9+ ε
2−j,∞

x

. ‖u‖2
ST
.

Our next task is to bound ‖∂tU‖L∞t Hs−1
x

+ ‖∂tU‖
L2
tW

8+ ε
2 ,∞

x

. Observe that

∂tU =
1∑

i,j=0
Bij[∂i+1

t u][∂jtu] + Bij[∂itu][∂j+1
t u].
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By symmetry, it suffices to show that

‖Bij[∂i+1
t u][∂jtu]‖L∞t Hs−1

x
+ ‖Bij[∂i+1

t u][∂jtu]‖
L2
tW

8+ ε
2 ,∞

x

. ‖u‖2
ST

+ ‖u‖3
ST
.

Applying Proposition 6.3.1 with a = 2− i, b = 2− j, c = −2, d = 6, λ = λ̃ = ε, σ = 0, σ̃ =

1, p1 = p2 = p̃1 = p̃2 =∞, q1 = q̃2 = 2, q2 = q̃1 =∞ we deduce

‖Bij[∂i+1
t u][∂jtu]‖L∞t Hs−1

x
. ‖∂i+1

t u‖L∞t Hs−1−i
x
‖∂jtu‖L∞t W 8+ε−j,∞

x

+ ‖∂i+1
t u‖L∞t W 7+ε−i,∞

x
‖∂jtu‖L∞t Hs−j

x
.

We once again use the fact that s − (8 + ε) > 3
2 to apply Sobolev embedding and bound

the above by

. ‖∂i+1
t u‖L∞t Hs−1−i

x
‖∂jtu‖L∞t Hs−j

x

. ‖∂i+1
t u‖L∞t Hs−1−i

x
‖u‖ST .

It remains to show that

‖∂i+1
t u‖L∞t Hs−1−i

x
. ‖u‖ST + ‖u‖2

ST
. (7.25)

When i = 0 this is obvious from the definition of ‖ · ‖ST so we only need to consider the

case i = 1. In this case the desired bound follows from (7.18). We remark that the above

proof also implies (7.22).

In order to bound ‖Bij[∂i+1
t u][∂jtu]‖

L2
tW

8+ ε
2 ,∞

x

, we once again apply Proposition 6.3.1

with a = 2− i, b = 2− j, c = −2, d = 6, λ = λ̃ = ε
2 , σ = σ̃ = 0, p1 = p̃1 = 2, p2 = p̃2 = q1 =
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q2 = q̃1 = q̃2 =∞ to obtain

‖Bij[∂i+1
t u][∂jtu]‖

L2
tW

8+ ε
2 ,∞

x

. ‖∂i+1
t u‖

L2
tW

8+ ε
2−i,∞

x

‖∂jtu‖
L∞t W

8+ ε
2−j,∞

x

. ‖∂i+1
t u‖

L2
tW

8+ ε
2−i,∞

x

‖∂jtu‖L∞t Hs−j
x

. ‖∂i+1
t u‖

L2
tW

8+ ε
2−i,∞

x

‖∂jtu‖ST .

So, it’s left to show that

‖∂i+1
t u‖

L2
tW

8+ ε
2−i,∞

x

. ‖u‖ST + ‖u‖2
ST
.

When i = 0 this is obvious from the definition of ‖ · ‖ST so it remains to consider the case

i = 1. In this case the desired bound again follows from (7.18).
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