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Abstract	
	

Deep	UV	Second	Harmonic	Generation	Studies	of	Thiocyanate	at	Hydrophobe/Water	Interfaces	
	
By	
	

Debra	Lynn	McCaffrey	
	

Doctor	of	Philosophy	in	Chemistry	
	

University	of	California,	Berkeley	
	

Professor	Richard	J.	Saykally,	Chair	
	
	
Our	understanding	of	the	air/water	interface	and	ion	adsorption	to	this	interface	has	developed	
rapidly	in	the	last	decade.	While	tremendous	progress	has	been	made	in	this	area,	it	is	essential	
for	the	field	to	branch	out	into	additional	interfaces.	This	dissertation	describes	the	work	I’ve	
done	to	extend	the	field	to	additional	hydrophobic	interfaces.	
	
Chapter	1	gives	historical	context	for	the	work	done	on	the	air/water	interface.	Macroscopic	
measurements,	such	as	surface	tension,	suggested	that	ions	should	be	depleted	from	the	
air/water	interface.	Microscopic	measurements,	such	as	molecular	dynamics	simulations	and	
second	harmonic	generation	spectroscopy,	show	that	some	ions	are	enhanced	at	the	air/water	
interface	and	that	the	degree	of	enhancement	follows	the	Hofmeister	series.	The	mechanism	
that	drives	adsorption	is	a	delicate	balance	between	factors	such	as	solvent	repartitioning,	
electrostatics,	capillary	waves,	and	configurational	entropy.	
	
Chapter	2	presents	nonlinear	optical	spectroscopy	theory	and	outlines	the	experimental	
apparatus.	It	also	details	the	sample	preparation	and	the	data	analysis	procedure.	The	
processed	data	are	fit	to	a	Langmuir	model,	derived	therein.	
	
Chapter	3	details	studies	on	hydrocarbon/water	interfaces.	Hydrocarbons	provide	a	condensed	
phase	analogue	to	the	air/water	interface.	While	the	data	are	preliminary	and	need	to	be	
refined,	the	general	trend	is	that	thin	layers	of	hydrocarbons	have	little	effect	on	the	free	
energy	of	adsorption	of	thiocyanate.	
	
Chapter	4	details	studies	on	the	graphene/water	interface.	While	graphene	has	a	high	charge	
carrier	mobility,	it	seems	that	graphene	behaves	like	a	hydrophobe	in	regards	to	thiocyanate	
adsorption.	Experimental	studies	showed	that	the	free	energy	of	adsorption	to	the	
graphene/water	interface	is	similar	to	that	of	the	air/water	interface.	Molecular	dynamics	
simulations	reveal	that	the	adsorption	mechanism	is	drastically	different,	however.	
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Chapter	5	evolved	out	of	a	concern	to	include	a	surface	potential	term	in	the	Langmuir	model.	
This	created	nested	models	that	were	compared	with	several	model	comparison	metrics.	The	
better	model	seems	to	depend	on	the	dataset.	The	method	of	calculating	errors	for	the	fit	
parameters	was	also	examined,	but	further	work	still	needs	to	be	done	on	finding	the	most	
accurate	method.	
	
Chapter	6	presents	some	broad	conclusions	and	directions	for	future	study.	It	seems	that	thin,	
uncharged	monolayers	inserted	into	an	interface	have	little	effect	on	the	free	energy	of	
adsorption,	although	the	mechanism	can	change.	This	chapter	also	proposes	a	new	study	to	
help	elucidate	the	effect	of	surface	charge.	Surfactants	can	mix	with	alkanes	to	form	an	ordered	
monolayer	on	water.	Varying	the	concentration	of	the	surfactant	can	vary	the	surface	charge.	
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Chapter	1	–	Introduction	
This	dissertation	work	examines	the	nature	of	aqueous	electrolyte	interfaces	by	the	

combination	of	nonlinear	optical	laser	spectroscopy	and	molecular	dynamics	modeling.	Here	
we	present	an	overview	of	the	underlying	theory	and	context.	

1.1 Surface	Tension	and	the	Gibbs	Adsorption	Equation	
There	are	many	chemists	who	have	contributed	to	the	field	to	the	point	where	every	

student	knows	their	names,	but	none	so	familiar	as	Josiah	Willard	Gibbs.	Among	his	many	
contributions,	his	work	on	surface	and	interfacial	thermodynamics	is	of	particular	interest.	
Gibbs	developed	an	equation	that	relates	the	surface	excess	of	a	solute	to	the	surface	tension1	

	 ! = −$%$& ,	 (1.1)	

where	!	is	the	surface	excess	of	the	solute,	&	is	the	chemical	potential	of	the	solute,	and	%	is	
the	surface	tension	of	the	solution.	Equation	(1.1)	is	called	the	Gibbs	adsorption	equation.	Since	
chemical	potential	increases	with	concentration,	if	an	increase	in	concentration	causes	an	
increase	in	surface	tension,	then	the	solute	is	predicted	to	be	depleted	at	the	surface,	and	vice	
versa.	

Jones	and	Ray	performed	a	series	of	experiments2–5	to	measure	the	surface	tension	of	
several	salts	with	painstaking	precision.	A	number	of	surface	tension	curves	had	minima	at	
millimolar	concentrations	(a	separate	phenomenon	called	the	Jones-Ray	effect),	but	otherwise,	
the	slopes	were	all	positive,	indicating	the	ions	should	not	be	present	at	the	surface.	Since	then,	
many	more	surface	tension	studies	have	been	performed	and	the	only	simple	ionic	solutes	that	
produce	negative	slopes	are	inorganic	acids.6	

1.2 Onsager-Samaras	Theory	and	the	Method	of	Image	Charges	
Onsager	and	Samaras	strove	to	describe	this	behavior	analytically.7	The	derivation	started	

with	the	method	of	image	charges	from	electrostatics,8,9	incorporated	screening	and	the	Gibbs	
adsorption	equation,	and	produced	a	limiting	law	for	the	surface	tension	

	 ( = 	(* + ,-./0.∗ , log
,-./0.
, ,	 (1.2)	

where	(	is	the	surface	tension	of	the	solution,	(*	is	the	surface	tension	of	the	pure	solvent,	,	is	
concentration,	and	the	constants	depend	on	the	system	of	interest.	

The	important	factor	in	the	derivation	is	the	method	of	image	charges.	In	electrostatics,	
there	is	a	theorem,	called	the	uniqueness	theorem,	which	states	that	the	solution	to	Laplace’s	
equation	in	a	volume	with	a	specific	set	of	boundary	conditions	is	unique.8	In	practice,	this	
means	a	complex	scenario	can	be	replaced	with	a	simpler	scenario	that	has	the	same	boundary	
conditions.	The	potentials	in	both	scenarios	will	be	the	same	and	the	simpler	scenario	can	be	
used	to	derive	the	electrostatic	potential.	
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Imagine	two	dielectric	media	with	static	dielectric	constants	67	and	68.	Embed	a	point	
charge	with	charge	9	in	medium	1	a	distance	$	from	the	interface.	The	scenario	is	illustrated	in	
Figure	1.1.		

	

Figure	1.1:	A	charge	9	embedded	in	a	medium	with	static	dielectric	constant	67	a	distance	$	from	another	medium	with	
dielectric	constant	68.	

The	boundary	condition	is	that	the	components	of	the	electric	field	must	approach	equality	
at	the	interface	between	the	media,	noting	that	the	perpendicular	components	are	also	
multiplied	by	the	respective	static	dielectric	constants.9	A	scenario	with	the	same	condition	is	
two	charges,	9	and	9:;<=>,	a	distance	2$	apart.	Solving	Laplace’s	equation	for	the	boundary	
condition	yields	an	expression	for	9:;<=>:	

	 9:;<=> = −68 − 6768 + 67
9.	 (1.3)	

For	ions	at	the	air/water	interface	(at	293K),	medium	1	is	water	and	medium	2	is	air,	so	67 =
80,	68 = 1,	and	9:;<=> ≈ 9.	Therefore,	ions	are	repelled	electrostatically	from	the	interface.	

1.3 The	Microscopic	Picture	Emerges	
One	thing	to	note	is	that	surface	tension	is	a	macroscopic	measurement,	devoid	of	

microscopic	information.	However,	there	were	still	some	inklings	that	the	macroscopic	picture	
did	not	capture	the	whole	story.	

For	one,	the	slopes	of	the	concentration	isotherms	for	simple	salts	are	positive,	but	the	
magnitude	of	the	slopes	differ	greatly.	For	example,	sulfate	salts	tend	to	have	steep	slopes,	
while	iodide	salts	tend	to	have	shallow	slopes.6	Looking	back	to	the	Gibbs	adsorption	equation,	
this	suggest	that	some	salts	have	a	greater	surface	depletion	than	others.	Surprisingly,	the	
magnitudes	don’t	correlate	with	charge;	the	halides	all	have	vastly	different	slopes.6	Clearly,	a	
molecular	detail	is	missing	from	the	description.	

The	second	indication	came	from	atmospheric	chemistry.	Both	bromide	and	chloride	
participate	in	tropospheric	ozone	reactions,	but	the	rate	constants	for	bromide	reactions	are	
much	larger,10	despite	the	fact	that	there	are	roughly	650	moles	of	chloride	for	every	mole	of	
bromide	in	sea	water	(the	source	of	halides	in	the	atmosphere).	These	reactions	are	known	to	
occur	at	the	surface	of	sea	salt	aerosol	particles.	One	of	the	possible	explanations	was	that	
bromide	was	present	at	the	aerosol	surface	in	greater	concentrations	than	chloride,	despite	
chloride	having	a	much	greater	bulk	concentration.	
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This	explanation	gained	traction	due	to	theoretical	work	by	Jungwirth	and	Tobias.11–13	They	
performed	molecular	dynamics	(MD)	simulations	of	sodium	halides	in	a	water	slab.11	The	
number	densities	of	the	species	in	the	direction	perpendicular	to	the	interface	showed	that	
iodide	had	a	large	preference	for	the	first	interfacial	liquid	layer,	bromide	had	some	preference,	
chloride	had	no	preference,	and	fluoride	was	absent.	The	cations	then	formed	a	double	layer	
with	the	anions.	Interestingly,	for	the	ions	that	preferred	the	interface,	the	subsequent	
interfacial	layers	showed	depletions	such	that	the	integrated	surface	region	showed	a	net	
depletion,	consistent	with	the	surface	tension	data.	The	authors	postulated	that	the	difference	
in	preference	was	due	to	ion	size	and	polarizability.12	

The	simulations	were	confirmed	indirectly	through	vibrational	sum	frequency	generation	
(VSFG)	experiments	that	examined	the	structure	of	interfacial	water	and	how	ions	perturbed	
it.14	Direct	confirmation	came	through	second	harmonic	generation	(SHG)	experiments.	
Petersen	and	Saykally	showed	that	azide	was	enhanced	at	the	air/water	interface	with	a	free	
energy	of	adsorption	of	-9.9	±	0.3	kJ/mol.15	Petersen	et	al.	also	showed	that	NaI	and	KI	were	
enhanced	in	the	dilute	concentration	range,	with	free	energies	of	-6.1	±	0.2	and	-6.3	±	0.2,	
respectively.16	Photoelectron	spectroscopy	provided	another	direct	confirmation.17	Numerous	
VSFG18,19	and	SHG20–27	studies	followed.	Two	patterns	emerged:	One,	the	degree	of	
enhancement	follows	the	Hofmeister	series.28,29	Two,	the	countercations	do	not	affect	surface	
adsorption.16,20,30	

1.4 The	Picture	Comes	into	Focus	
Nearly	a	decade	of	work	has	led	to	a	number	of	refinements	in	the	story	of	selective	ion	

adsorption	to	the	air/water	interface.	Further	studies	agree	that	countercations	do	not	affect	
surface	adsorption.31,32	Polarizability	no	longer	seems	to	be	the	explanation	for	the	degree	of	
enhancement,	as	postulated	by	Jungwirth	and	Tobias.12	In	fact,	the	explanation	for	
enhancement	and	the	explanation	for	the	Hofmeister	series	are	now	considered	one	and	the	
same.	It	seems	that	the	mechanism	for	the	Hofmeister	series	is	different	for	anions	than	for	
cations,6,33	but	a	complete	mechanism	is	more	complex,	involving	all	interactions	in	the	
interfacial	environment.34	

1.4.1 New	techniques	
Several	new	techniques	have	emerged	to	expand	our	knowledge	even	further.	The	first	is	

phase-sensitive	sum	frequency	generation	(PS-SFG).	As	the	name	suggests,	the	technique	is	
able	to	directly	measure	the	imaginary	component	of	the	spectra	generated	from	SFG,	which	is	
responsible	for	resonance	effects	and	gives	orientation	information.35	In	the	vibrational	region,	
this	technique	has	been	used	to	determine	how	water	orientation	–	namely,	in	which	direction	
the	water	hydrogens	point	–	changes	in	response	to	added	ions.36	This	has	allowed	researchers	
to	indirectly	probe	ions	not	at	the	interface	(such	as	sulfates	and	carbonates)	and	ions	that	have	
no	easily	accessed	transitions	(such	as	monatomic	cations).	PS-SFG	has	also	led	to	a	better	
understanding	of	the	neat	air/water	interface	as	well.	Combining	isotopic	dilution	with	the	
orientational	information	of	PS-SFG	has	allowed	the	water	spectrum	to	be	assigned.37,38	
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The	second	set	of	new	techniques	are	nonlinear	scattering	techniques39,	including	second	
harmonic	scattering40,41	(SHS)	and	sum	frequency	scattering42	(SFS).	These	techniques	allow	the	
interfaces	of	centrosymmetric	particles,	such	as	oil	nanodroplets,43,44	in	bulk	to	be	probed.	It	
has	also	been	applied	to	liquid	microjets	to	collect	scattering	signal	from	the	air/water	
interface.45	This	exciting	technique	has	the	potential	to	probe	systems	unavailable	to	SHG	and	
SFG	experiments.	

1.4.2 A	thermodynamic	mechanism	for	adsorption	
The	advantage	of	SHG	over	SFG	is	that	SHG	can	provide	a	quantitative	result,	namely	the	

free	energy	of	adsorption.	Further	temperature	dependent	measurements	can	then	elucidate	
the	enthalpy	and	entropy	changes	of	the	adsorption	process.	Otten	et	al.	did	just	this	for	
thiocyanate	at	the	air/water	interface.46	They	found	that	a	negative	enthalpy	change	drives	the	
ion	adsorption,	while	a	negative	entropy	change	impedes	it.	MD	simulations	suggested	the	
underlying	mechanism:	First,	when	the	ion	moves	from	the	bulk	to	the	interface,	weakly	
interacting	water	molecules	are	displaced	from	both	the	surface	and	the	ion	solvent	shell	into	
the	bulk	solution,	where	they	form	stronger	water-water	bonds,	leading	to	a	negative	enthalpy	
change.	Second,	the	presence	of	an	ion	at	the	interface	dampens	its	capillary	wave	fluctuations,	
leading	to	a	negative	entropy	change.	

1.5 Present	Work	
The	present	work	expands	upon	the	SHG	studies	of	Petersen,	Onorato,	and	Otten.	Chapter	

2	presents	an	introduction	to	SHG	theory	and	details	the	experimental	procedure	for	collecting	
signal	from	aqueous	solution	samples.	Chapter	3	explores	several	hydrocarbon/water	
interfaces.	While	those	final	results	are	not	easily	interpreted,	there	are	suggestions	for	future	
work	to	resolve	the	interpretation.	Chapter	4	explores	the	graphene/water	interface	and	
compares	its	properties	with	those	of	air/water.	Through	experiments	and	MD	simulations,	we	
discovered	that	the	free	energy	of	adsorption	remains	similar,	but	the	mechanism	of	adsorption	
is	qualitatively	different.	Chapter	5	examines	an	extension	of	the	model	used	to	describe	the	
SHG	signal	vs	concentration	isotherm.	It	also	explores	methods	for	improving	the	fit	to	the	
model	and	the	errors	reported.	Chapter	6	makes	some	general	conclusions	regarding	thin	
uncharged	monolayers	at	interfaces	and	suggests	some	future	directions	for	the	project.	
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Chapter	2	–	Apparatus	and	Methodology	
This	chapter	describes	the	spectroscopic	technique	used,	the	essential	theory	of	second	

harmonic	generation	(SHG),	and	the	general	experimental	setup	used	to	collect	data.	It	also	

discusses	the	measurement	processing	and	data	analysis.	

2.1 Nonlinear	optical	processes	and	SHG	spectroscopy	
Many	people	are	familiar	with	UV/vis	and	FTIR	spectroscopies,	which	are	both	linear	

absorption	spectroscopies.	An	electric	field	(light),	!,	interacts	with	matter	to	produce	a	new	

electric	field,	the	polarization,	":	

	 " ∝ "$ + &(()!.	 (2.1)	

This	equation	can	be	expanded	into	higher	order	terms:	

	 " ∝ "$ + & ( ! + & + !! + & , !!! +⋯ .	 (2.2)	

With	a	strong	enough	electric	field	(fast	and	ultrafast	pulses,	in	general),
1–3
	these	higher	

order	susceptibilities,	& .
,	can	be	observed.	

Looking	at	the	second	order	term	and	writing	the	electric	field	as	! = !( cos(34),	we	see	
that:	

	 " + ∝ & + !+	
∝ & + !( cos 34 +	

∝
& +

2 !(+(1 + cos 234 ).	 (2.3)	

The	second	order	polarization	has	a	frequency	that	is	double	the	input	electric	field	frequency,	

called	the	second	harmonic.	

"	and	!	are	both	first	rank	tensors,	while	& +
is	a	third	rank	tensor.	Imagine	that	&89:

(+)
	has	

inversion	symmetry,	meaning	&89:
(+) = &;8;9;:

(+)
.	Then,	inverting	the	coordinates	yields:	

	 "8
+ ∝ &89:

+ !9!:	
";8

+ ∝ &;8;9;:
+ !;9!;:	

−"8
+ ∝ &89:

+ (−!9)(−!:)	
∝ &89:

+ !9!:.	 (2.4)	

Therefore,	";8
+ = −"8

+ = 0.	Since	!	is	non-zero,	&89:
+
	is	necessarily	zero	for	centrosymmetric	

environments	in	the	dipole	approximation,
4
	meaning	that	the	second	order	(and	any	even	

order)	process	is	necessarily	surface	specific.	



	 9	

Since	intensities	are	easier	to	measure	than	electric	fields,	the	polarization	equation	is	often	

rewritten	with	intensities,	making	use	of	the	fact	that	> ∝ !+,	

	 >+? ∝ & + +
>?+ 	

>+?
>?+

∝ & + +
,	

(2.5)	

where	& +
	is	complex	in	general.	

One	thing	to	note	is	that		& +
is	a	macroscopic	rotational	average.	It	corresponds	to	the	

microscopic	property,	A,	the	hyperpolarizability,	which	is	the	second	order	analogue	to	the	
polarizability,	a.4	The	dependence	on	frequency	is	

	 A ∝
1

3BCD.E − 3F8GHI − JΓ
,	 (2.6)	

where	3BCD.E	is	the	frequency	of	a	transition	(electronic,	vibrational,	etc.),	3F8GHI 	is	the	
frequency	of	"	or	!,	and	Γ;(	is	the	transition	relaxation	time.	As	3F8GHI 	approaches	3BCD.E,	A	
becomes	large.	This	means	that	tuning	the	input	frequency	or	the	second	harmonic	to	a	

transition	will	enhance	the	SHG	signal.	For	anions,	there	is	a	transition	in	the	UV	called	a	

charge-transfer-to-solvent	(CTTS)	transition.
5
	It	is	a	broad,	strong	transition	that	even	atomic	

anions	like	iodide	possess.	It	allows	us	to	probe	ions	at	surfaces	directly.	

2.2 Spectroscopic	Apparatus	
A	schematic	of	the	experimental	setup	is	shown	in	Figure	2.1	and	a	full	description	of	the	

alignment	procedure	is	in	Appendix	1.	Femtosecond	pulses	were	generated	with	a	MaiTai	

oscillator	(Spectra	Physics,	800	nm,	100	fs,	80	MHz),	amplified	with	a	Spitfire	amplifier	(Spectra	

Physics,	~805	nm,	~110	fs,	1	kHz),	and	passed	through	a	TOPAS	(Light	Conversion,	~9	μJ,	p-

polarization)	to	generate	386	nm	light.	All	work	described	in	this	document	probed	the	

thiocyanate	ion,	which	has	a	CTTS	transition	that	is	resonant	with	the	second	harmonic	at	

193nm.
6,7
	Because	the	CTTS	transition	is	strong	in	general	and	thiocyanate	has	a	high	surface	

concentration,	thiocyanate	generates	a	strong	SHG	signal.	A	dielectric	coated	mirror	(Edmund	

Optics	84-621	360-440	nm)	was	used	to	separate	the	386	nm	light	from	the	output	of	the	

TOPAS.	The	beam	was	focused	onto	the	sample	with	a	100	mm	fused	silica	lens	and	the	

reflected	light	was	collected	with	a	100	mm	CaF2	lens.	The	spot	size	was	about	~100	μm	in	

diameter.	Since	the	fundamental	beam	and	the	SHG	beam	(193	nm)	are	collinear,	a	Pellin-Broca	

prism	was	used	to	separate	the	wavelengths	and	send	the	SHG	signal	(p-polarization)	through	a	

monochromator	(Acton,	SpectraPro	2150i)	to	a	solar-blind	PMT	(Hamamatsu,	R7154PHA).	The	

fundamental	beam	is	sampled	and	collected	with	a	photodiode	(PD)	before	the	sample.	
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Figure	2.1:	A	schematic	of	the	experimental	setup.	An	oscillator	creates	100	fs	pulses	at	800	nm	that	are	

amplified	and	converted	to	386	nm	light	by	the	OPA.	Before	the	sample,	the	beam	is	sampled	and	collected	by	a	

photodiode	(PD)	for	a	reference	measurement.	The	SHG	signal	is	reflected	off	the	sample,	separated	with	a	Pellin	

Broca	prism,	and	collected	by	a	PMT.	The	currents	from	the	PD	and	PMT	are	collected	with	gated	integrators	and	

LabView	software.	

The	current	from	the	PMT	was	amplified	with	a	wide	bandwidth	amplifier	(Hamamatsu	

C6438).	The	amplified	PMT	current	and	the	current	from	the	photodiode	were	processed	with	

gated	integrators	(Stanford	Research	Systems	SR250).	The	two	channels	are	called	Signal	and	

Reference,	respectively.	The	integrators	were	triggered	by	the	Spitfire	so	that	the	Reference	

and	Signal	were	correlated	in	time	using	the	Delay	setting.	The	integrator	Width	was	adjusted	

so	that	the	main	peak	was	just	covered	by	the	box	signal	and	most	of	the	negative	signal	was	

covered	by	the	tail	of	the	box	signal.	Signal	Sensitivity	was	kept	constant	across	measurements.	

The	pulses	were	not	averaged	by	the	integrator,	meaning	the	Averaging	Samples	setting	was	

always	set	to	LAST.	The	output	from	the	integrators	was	sent	to	a	DAQ	card	(NI	9215	and	NI	

9401)	for	data	collection	in	LabView	2009	SP1.	The	Signal	Input	Offset	was	adjusted	so	that	the	

baselines	for	the	Reference	and	Signal	channels	were	near	zero.	The	Reference	baseline	tended	

to	drift	downward	over	time,	so	the	baseline	could	be	set	to	slightly	above	zero.	Typical	settings	

are	summarized	in	Table	2.1.	

Setting	 Reference	 Signal	
Delay	 12	ns	 17	ns	

Width	 38	ns	 61	ns	

Sensitivity	 0.1	V/V	 0.2	V/V	

Table	2.1:	Summary	of	typical	gated	integrator	settings.	
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2.3 Solution	Preparation	
All	the	studies	described	in	this	document	used	the	thiocyanate	anion,	SCN

-
.	The	cation	has	

little	effect	on	SHG	signal	for	this	anion,	at	least	for	sodium	and	potassium.
8,9
	NaSCN	tends	to	

be	easier	to	work	with	than	KSCN,	since	it	has	a	higher	melting	point.	A	detailed	description	of	

the	procedure	is	included	in	Appendix	2.	Briefly,	glassware	is	soaked	in	NoChromix	overnight	

and	washed	the	next	morning	with	18.2MΩ	water	from	a	Millipore	filtration	system	(Milli-Q	

Advantage	A10).	Solutions	were	made	with	18.2MΩ	water	and	NaSCN	(J.	T.	Baker,	ACS	reagent	

≥98%)	that	had	been	baked	at	200°C	overnight.	Data	was	taken	the	day	after	solutions	were	

made	to	reduce	noise	in	the	measurements.	

2.4 Sample	measurement	
For	each	solution,	at	least	three	aliquots	were	measured.	More	aliquots	were	measured	if	

available,	but	the	aliquots	from	the	bottom	of	the	flask	tended	to	have	more	impurities.	

Solution	aliquots	were	always	dispensed	using	a	sterile	pipet,	with	liquid	taken	from	the	bulk	

and	never	the	surface.	Volume	of	the	aliquots	was	~18mL.	Precise	volumes	were	not	necessary	

because	the	sample	stage	had	a	height	adjustment.	At	least	one	aliquot	of	water	was	taken	

before	and	after	each	aliquot	of	solution.	Water	aliquots	were	dispensed	directly	from	the	

Millipore	system.	Each	aliquot	was	only	measured	once.	At	higher	concentrations	(>	1M),	

thiocyanate	begins	to	generate	photoproducts.
10
	To	mitigate	this,	the	input	intensity	was	

attenuated	(~1-9	μJ,	depending	on	the	concentration)	so	that	no	more	than	one	SHG	photon	

was	generated	per	pulse,	solutions	were	never	made	at	concentrations	above	3M,	and	

measurements	were	never	for	longer	than	one	minute	(60,000	points).	Measurement	

processing	also	assumes	that	there	is	no	more	than	one	photon	per	pulse.	If	the	signal	was	

weak	enough,	the	measurement	time	could	be	extended	to	get	better	statistics	during	

processing.	Clearly,	a	perturbing	level	of	photoproducts	were	not	being	generated	in	that	case.	

The	input	power	was	varied	during	the	measurement	using	a	neutral	density	filter	wheel	

rotating	at	1Hz.	

2.5 Measurement	Processing	
The	data	obtained	from	a	measurement	is	processed	in	Matlab,	consisting	of	a	time	series	

for	each	channel.	A	typical	series	for	a	water	sample	is	shown	in	Figure	2.2.	With	the	integrator	

settings	of	Table	2.1,	one	Signal	photon	corresponds	to	~0.5	on	the	y-axis.	In	practice,	input	

intensity	for	solutions	was	attenuated	until	the	Signal	was	at	~0.5.	The	cyclic	pattern	seen	in	the	

Reference	series	comes	from	the	filter	wheel.	
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Figure	2.2:	The	time	series	data	for	a	water	sample.	The	x-axis	is	shown	in	points,	which	is	equivalent	to	ms.	

The	y-axis	is	the	integrated	output	in	arbitrary	units.	A	neutral	density	filter	wheel	is	used	to	modulate	the	

Reference	power	at	1Hz.	The	dashed	lines	represent	examples	of	the	parameters	used	to	process	the	

measurements:	Maximum	Limit,	Minimum	Limit,	and	Signal	Threshold.	

To	process	the	measurement,	the	Signal	is	binarized	into	"photon"	and	"no	photon".	In	this	

way,	the	Signal	(>+?)	can	be	treated	with	Poisson	statistics.	A	threshold	is	set	that	divides	the	
Signal	data	into	"photon"	and	"no	photon".	The	signal	is	binned	according	to	the	Reference	

value	(>?).	Then,	the	average	photon	count	per	bin, L ,	is
6,11

	

	

>+? ∝ L = −MN
O:P$
QRHEG

OQRHEG ,	 (2.7)	

where	O:P$
QRHEG

is	the	number	of	"no	photon"	points	and	OQRHEG
is	the	total	number	of	points	in	

the	bin.	If	 L 	is	plotted	vs	>?+ ,	then	the	slope	of	that	line	is	 & + +
.	This	becomes	the	sample	

measurement.	

There	are	several	reasons	why	this	approach	is	more	beneficial	than	performing	a	

measurement	at	one	static	intensity.	One,	taking	an	average	input	power	and	squaring	it,	 >? +
,	

is	not	necessarily	the	same	as	 >?+ .	By	using	an	appropriate	number	of	bins	in	the	linear	

regression,	this	ambiguity	can	be	avoided.	Two,	plotting	a	line	allows	us	to	verify	that	the	

interaction	is	indeed	the	second	harmonic.	If	the	Signal	was	coming	from	a	stray	linear	process,	

L 	plotted	vs	>?+ 	would	deviate	from	a	straight	line.	Photoproduct	generation	also	distorts	the	

line.
10
	Three,	treating	the	Signal	as	binary	eliminates	any	noise	from	the	integration	of	weak	

signals,	so	long	as	the	signal	can	be	distinguished	from	the	baseline.	This	is	easily	achieved	by	

keeping	the	variable	voltage	on	the	PMT	high.	

2.6 Algorithm	Optimization	
The	LabView	software	was	optimized	before	the	work	in	this	dissertation	was	done.	

Previously,	it	calculated	variance	through	the	relation	S+ = T+ − T +
	and	used	this	in	a	

weighted	linear	regression	to	determine	the	slope.	However,	this	expression	occasionally	
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produced	a	negative	variance.	The	relation	is	only	valid	for	discrete	random	variables,	and	the	

points	are	obviously	correlated	in	time,	so	the	algorithm	had	to	be	corrected.	At	first,	the	online	

algorithm	for	variance	was	tried,
12
	but	this	resulted	in	fitted	lines	that	tended	to	deviate	from	

the	data,	especially	at	low	intensity.	The	high	intensity	bins	are	noisier	in	general,	simply	

because	they	are	sampled	less,	and	were	influencing	the	regression	results.	The	algorithm	was	

switched	to	using	bisquare	weighting,	which	is	more	robust	to	outliers.
13
	This	eliminated	the	

need	to	calculate	the	variance.	

This,	unfortunately,	led	to	the	regression	being	more	variable	with	respect	to	the	choice	of	

threshold	(called	Signal	Threshold)	as	well	as	to	the	limits	on	the	Reference	values	used	(called	

Minimum	Limit	and	Maximum	Limit).	These	parameters	are	illustrated	on	Figure	2.2.	Reference	

points	outside	the	Minimum	Limit	and	Maximum	Limit	are	excluded.	Signal	above	the	Signal	

Threshold	is	considered	a	"photon"	count	and	Signal	below	is	considered	a	"no	photon"	count.	

The	effects	of	these	parameters	on	the	slope	were	studied	in	Matlab	and	a	procedure	for	

finding	appropriate	limits	was	generated.	For	an	entire	1M	NaSCN	dataset	(4	water	samples	and	

3	1M	NaSCN	samples),	values	were	chosen	for	each	of	the	parameters:	100	values	for	the	

Maximum	Limit	that	ranged	from	the	minimum	to	the	maximum	Reference	values,	11	points	

for	the	Minimum	Limit	that	ranged	from	the	minimum	of	the	Reference	to	10%	of	the	

maximum	of	the	Reference,	and	11	points	for	the	Signal	Threshold	that	ranged	from	the	

minimum	of	the	Signal	to	10%	of	the	maximum	of	the	Signal.	The	slope	was	computed	for	all	

combinations	of	the	three	parameters	and	all	points	outside	the	99.3%	confidence	interval	(the	

definition	of	outliers	when	drawing	a	boxplot)	were	removed.	

Upon	examining	the	data	sets,	it	was	immediately	apparent	that	the	three	parameters	vary	

independently.	Signal	Threshold	and	Minimum	Limit	were	also	mostly	consistent	across	the	

values	of	Maximum	Limit.	Because	of	this,	the	Signal	Threshold	and	Minimum	Limit	were	

averaged	over.	Figure	2.3	shows	the	resulting	curve	of	slope	vs	Maximum	Limit.	Notice	that	the	

slope	approaches	an	asymptotic	value	at	higher	values.	These	observations	all	suggest	that	the	

parameters	can	be	chosen	independently.	A	procedure	for	doing	so	is	to	compute	and	display	

11	values	of	each	parameter	at	once	while	holding	the	other	two	constant.	For	Signal	Threshold	

and	Minimum	Limit,	outliers	and	the	mean	value	can	be	identified	visually.	For	the	Maximum	

Limit,	the	asymptote	can	be	identified	visually.	Matlab	programs	were	created	that	display	11	

values	of	the	chosen	parameter	at	a	time	while	keeping	the	other	two	constant.	The	

appropriate	value	for	the	parameter	is	selected	by	looking	for	the	asymptotic	value	or	the	mean	

value	among	the	outliers.	A	more	detailed	description	of	the	analysis	procedure,	along	with	

scripts,	is	given	in	Appendix	3.	The	full	text	of	the	Matlab	files	is	included	in	Appendix	4.	
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Figure	2.3.	Slope	vs	Maximum	Limit.	The	values	of	Signal	Threshold	and	Minimum	Limit	have	been	averaged.	

2.7 Normalization	Procedure	
The	data	set	now	consists	of	a	single	value	(the	slope,	 & + +

)	for	each	aliquot.	The	aliquots	

alternate	between	water	and	the	solution	of	interest.	The	solution	signal	is	normalized	to	the	

water	signal	by	dividing	the	solution	aliquot	values	by	the	average	of	the	water	values	

immediately	before	and	immediately	after	the	solution	aliquot.	For	example,	consider	the	

values	below:	

Sample	 Slope	 Normalized	Value	
Water	1	 0.0238	 –	

1M	NaSCN	 0.397	 0.397	/	average(0.0238,	0.0241)	=	16.6	

Water	2	 0.0241	 –	

Table	2.2:	Example	for	how	to	normalize	the	sample	slope	values.	

The	final	normalized	value	for	the	solution	is	16.6.	Different	aliquots	from	the	same	flask	can	be	

considered	repeated	measures,	so	the	data	point	for	the	concentration	in	the	flask	is	the	

average	of	the	aliquots	and	the	error	is	the	standard	deviation.
14
	Different	flasks	can	be	

considered	replicates,	so	each	flask	should	remain	a	separate	data	point,	even	if	two	flasks	have	

the	same	concentration.	
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An	example	data	set	is	shown	in	Table	2.3.	The	individual	solution	samples	are	normalized	

by	the	water	samples	before	and	after.	Then,	the	samples	from	the	same	flasks	(indicated	by	

letters	in	the	name	here)	are	averaged	to	produce	the	data	point	for	the	flask	and	the	standard	

deviation	is	used	as	the	error.	The	flasks	are	kept	as	separate	data	points,	since	they	are	

considered	replicates.	

Sample	 Slope	 Normalized	
water	 0.017763	

	1M	NaSCN	A	 0.361012	 20.10760833	

water	 0.018145	

	1M	NaSCN	A	 0.452147	 25.17312029	

water	 0.017778	

	1M	NaSCN	A	 0.302956	 15.74983754	

water	 0.020693	

	1M	NaSCN	B	 0.394102	 19.42681093	

water	 0.01988	

	1M	NaSCN	B	 0.338401	 16.80910987	

water	 0.020384	

	1M	NaSCN	B	 0.364186	 21.61212984	

water	 0.013318	

	1M	NaSCN	C	 0.378125	 25.034759	

water	 0.01689	

	1M	NaSCN	C	 0.421348	 27.01295038	

water	 0.014306	

	1M	NaSCN	C	 0.315488	 20.57709366	

water	 0.016358	

	

   normalized	 avg	 stdev	
1M	NaSCN	A	 20.34352205	 4.716068902	

1M	NaSCN	B	 19.28268355	 2.404751491	

1M	NaSCN	C	 24.20826768	 3.296570772	

Table	2.3:	An	example	of	the	data	normalization	procedure	on	a	full	data	set.	The	top	table	is	individual	aliquot	

measurements	and	the	bottom	table	is	the	averaged	data	points.	The	letters	indicate	that	three	different	flasks	

were	used,	so	they	remain	separate	data	points.	

2.8 The	Langmuir	model	
Recall	the	following	relation	from	Equation	(2.5):	

	 >+?
>?+

∝ & + +
.	 (2.5)	

In	general,	the	effective	& +
	is	the	sum	of	the	& +

	of	the	individual	species.	In	the	case	of	

the	air/water	interface,	the	species	are	water	and	the	aqueous	anion	(cation	signal	is	assumed	
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to	be	negligible	since	cations	are	not	expected	to	approach	the	interface	as	far	as	the	anions	

and	they	are	not	resonant).	

	 >+?
>?+

∝ &UDBGC
(+) + &D.8V.

(+) +
	 (2.8)	

On	the	molecular	level,	& + ∝ OAGFF,	where	AGFF	is	the	rotational	average	of	all	A.	
Therefore:	

	 >+?
>?+

∝ OUDBGCAUDBGC
GFF + OD.8V.AD.8V.

GFF +
.	 (2.9)	

Water	has	a	non-resonant	signal	in	the	UV,	so	AUDBGC
GFF

	has	a	real	component	only.	The	anion	

is	resonant	by	design,	so	AD.8V.
GFF

	has	both	real	and	imaginary	components.	

	 >+?
>?+

∝ OUDBGCAUDBGC
GFF + OD.8V.WX{AD.8V.

GFF }
+
+ OD.8V.>[{AD.8V.

GFF }
+
.	 (2.10)	

Dividing	by	OUDBGC 	gives:	

	 >+?
>?+

∝ AUDBGC
GFF +

OD.8V.
OUDBGC

WX{AD.8V.
GFF }

+

+
OD.8V.
OUDBGC

>[{AD.8V.
GFF }

+

.	 (2.11)	

Assuming	that	all	AGFF	remain	constant	and	noting	that	OD.8V./OUDBGC 	is	a	concentration	
yields	

	 >+?
>?+

= \ + ] \; ERCF
+ + ^ \; ERCF

+,	 (2.12)	

where	the	subscript	“surf”	indicates	the	anions	at	the	surface.	

To	find	an	expression	for	 \; ERCF,	we	turn	to	the	Langmuir	model	of	adsorption.
15
	The	model	

assumes	that	an	anion	in	the	bulk	exchanging	with	a	water	on	the	surface	is	an	equilibrium	

process:	

	 \_RH:; + ÈRCF 	\ERCF; + _̀RH:.	
(2.13)	

Then	the	equilibrium	equation	is	

	
aDIE =

\; ERCF ` _RH:

` ERCF \; _RH:
.	 (2.14)	

Assuming	that	there	are	a	maximum	number	of	possible	surface	sites,	 bJ4Xb cDd	yields	
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aDIE =

\; ERCF ` _RH:

( bJ4Xb cDd − \; ERCF) \; _RH:
.	 (2.15)	

Rearranging	gives	an	expression	for	 \; ERCF:	

	
\; ERCF = bJ4Xb cDd

\; _RH:

` _RH:aDIE;( + \; _RH:
.	 (2.16)	

Substituting	this	expression	into	Equation	(2.12)	gives	

	 >+?
>?+

= \ + ]′
\; _RH:

` _RH:aDIE;( + \; _RH:

+

+ ^′
\; _RH:

` _RH:aDIE;( + \; _RH:

+

.	 (2.17)	

Here	the	max	surface	sites	constant	was	absorbed	by	the	constants	]f	and	^′.	Changing	to	
mole	fractions	for	concentration	and	substituting	the	relation	between	aDIE	and	ΔhDIE	gives	

	 >+?
>?+

= \ + ]′
iD.8V.

(1 − iD.8V.)Xjk/mn + iD.8V.

+

+ ^′
iD.8V.

(1 − iD.8V.)Xjk/mn + iD.8V.

+

.	 (2.18)	

Equation	(2.18)	is	the	simple	Langmuir	model.	It	relates	the	bulk	anion	concentration	to	the	

normalized	second	harmonic	generation	(SHG)	signal	generated	from	the	samples.	

2.9 Fitting	Procedure	
For	the	oil/water	data	in	Chapter	3,	the	alkane	datasets	were	fit	using	Origin	6	and	the	

toluene	datasets	were	fit	using	custom	Python	modules	and	the	lmfit	package.	For	the	

graphene/water	data	in	Chapter	4,	the	dataset	was	fit	using	custom	Python	modules	and	the	

lmfit	package.	The	full	text	of	the	codes	as	well	as	usage	examples	are	given	in	Appendix	5.	For	

both	software	implementations,	the	Levenberg-Marquardt	algorithm
16
	was	used.	The	X	data	

points	were	bulk	mole	fractions	of	thiocyanate,	the	Y	data	points	were	the	mean	normalized	

SHG	signal,	and	the	Y	error	data	points	were	the	standard	deviations	of	the	normalized	SHG	

signals.	Replicates	were	treated	as	separate	data	points.	The	sum	of	squares	was	weighted	by	

the	standard	deviation	(called	instrumental	weighting	by	Origin)	

	

&+ =
o8 − p q8; s +

S8+
,

.

8P(

	 (2.19)	

where	&+	is	the	sum	of	squared	errors	(not	the	second	order	susceptibility),	o8 	is	the	set	of	Y	
measurements,	p q8; s 	is	the	fitting	equation	with	the	parameters	s,	and	S8 	are	the	
measurement	standard	deviations.	The	Levenberg-Marquardt	algorithm	minimizes	Equation	

(2.19).	The	parameter	errors	were	not	scaled	by	reduced	&+.	Parameters	were	initialized	to	+1	

unless	otherwise	noted.		
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Chapter	3	–	Thiocyanate	Adsorption	to	the	Oil/Water	Interface	

3.1 Introduction	
As	described	in	Chapter	1,	the	ion	adsorption	mechanism	for	the	air/water	interface	

involves	a	nuanced	balancing	of	several	factors	(e.g.	electrostatics,	solvent	repartitioning,	
capillary	waves,	configurational	entropy)	that	leads	to	some	ions	being	enhanced	in	
concentration	at	the	interface	and	some	being	expelled.	It	is	an	example	of	a	hydrophobic	
interface,	but	it	differs	from	other	hydrophobic	interfaces	in	one	important	regard:	the	second	
medium	is	gaseous,	not	condensed.	One	goal	of	studying	aqueous	solution/water	interfaces	is	
to	understand	the	Hofmeister	series,1	but	the	series’	main	application	–	protein	stabilization	in	
solution	–	involves	protein	interfaces.	To	truly	understand	the	"Hofmeister	Effects,"	it	is	
essential	to	examine	how	a	condensed	phase	affects	this	balance.	

Many	studies	have	been	done	on	the	carbon	tetrachloride/water	and	alkane/water	
interfaces.2	They	generally	show	that	interfacial	hydrogen	bonding	interactions	become	
weaker,	which	leads	to	interfacial	ordering.	However,	these	studies	were	all	homodyne	SHG	
studies	that	only	measured	 !" ",	not	#$ !" ,	so	the	interpretation	is	suspect.3	Another	study	
employed	sum	frequency	scattering,	along	with	molecular	dynamics	simulations,	to	show	that	
the	negative	charge	on	oil	droplets	in	water	is	due	to	asymmetric	charge	transfer	between	
water	molecules.4	However,	quantitative	measures	of	interfacial	ion	enhancement	are	lacking,	
let	alone	a	mechanism	of	adsorption.	

The	simplest	medium	to	start	with	is	a	hydrocarbon.	Unfortunately,	it	is	difficult	to	find	
hydrocarbons	that	wet	water.	One	possibility	is	hexane.	Hexane	exhibits	two	wetting	
transitions:	one	where	the	thickness	of	the	wetting	layer	discontinuously	jumps	from	near	zero	
to	a	mesoscopic	layer	of	hundreds	of	Angstroms	and	one	where	the	thickness	varies	
continuously	to	a	macroscopically	thick	layer.5	The	salt	concentration	of	the	solution	changed	
the	temperature	at	which	the	transitions	happened.	Staying	within	the	appropriate	
concentration	range	would	allow	the	layer	thickness	to	be	tuned.	Decane	is	a	volatile,	
nonwetting	alkane	and	hexadecane	is	a	nonvolatile,	nonwetting	alkane.	These	alkanes	can	
provide	comparisons,	since	the	water	will	only	interact	with	the	vapor	layer	produced	by	the	
alkanes.	Another	possibility	is	toluene.	Toluene	is	known	to	spread	continuously	on	water6	and	
is	able	to	form	hydrogen	bonds	through	its	%	system.7	Most	importantly,	all	four	candidates	
have	static	dielectric	constants	of	~2.8	This	keeps	the	dielectric	scenario	as	similar	as	possible,	
so	the	only	added	interactions	are	those	that	stem	from	the	condensed	phase.		

To	parallel	the	air/water	interface,	predictions	can	be	made	for	the	oil/water	case	based	on	
the	Gibbs	adsorption	equation.	Only	one	reliable	paper	has	been	published	with	experimentally	
measured	interfacial	tensions.	Aveyard	and	Saleem	found	that	LiCl,	NaCl,	KCl,	KBr,	and	Na2SO4	
increased	the	interfacial	tension	of	the	dodecane/water	interface,	while	KI	decreased	it,9	so	
iodide	is	expected	to	be	enhanced	at	the	interface,	while	chloride,	bromide,	and	sulfate	are	
repelled.	There	are	a	few	interfacial	tension	measurements	of	the	aromatic	hydrocarbon/water	
interface,	but	the	curves	are	highly	nonlinear	and	the	data	included	for	the	air/water	interface	
disagree	with	the	literature,	making	the	interfacial	tension	measurements	suspect	as	well.10,11	
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Theory	provides	a	more	solid	prediction.	Polarizable	anion	dielectric	continuum	theory	
predicts	that	ion	adsorption	to	the	oil/water	interface	will	be	greater	than	for	the	air/water	
interface,	due	to	dispersion	forces.12	A	study	based	on	Schmutzer’s	model	suggests	that	iodide	
and	thiocyanate	will	have	a	greater	affinity	for	the	oil/water	interface	than	the	air/water	
interface.13	Molecular	dynamics	simulations	including	ion	polarizability	show	that	fluoride	is	
absent	from,	chloride	and	bromide	have	no	preference	for,	and	iodide	has	a	strong	preference	
for	the	water/decane	interface.14	The	calculated	interfacial	tension	changes	in	that	study	agree	
with	Aveyard	and	Saleem,9	supporting	the	reliability	of	the	simulation	results.	Unfortunately,	it	
is	hard	to	compare	the	calculated	surface	excesses	quantitatively	with	results	for	the	air/water	
interface;	the	polarizable	model	gave	air/water	results	that	didn’t	come	close	to	experimental	
results	and	the	original	air/water	results	did	not	calculate	the	same	quantity.15	Qualitatively,	
chloride	was	slightly	depleted	at	the	air/water	interface,	whereas	it	retained	the	bulk	
concentration	at	the	water/decane	interface.	This	suggests	that	the	decane/water	interface	
should	be	slightly	more	favorable.	The	conclusion	seems	to	be	that	the	oil/water	interface	
should	be	more	favorable	than	the	air/water	interface.	Here,	I	describe	DUV	second	harmonic	
generation	(SHG)	studies	that	aimed	to	quantitatively	measure	the	affinity	of	thiocyanate	for	
several	hydrocarbon/water	interfaces.	

3.2 Methods	and	Materials	
Solution	preparation,	the	optical	design,	and	data	analysis	are	as	described	in	Chapter	2.	

The	methods	detailed	here	are	performed	in	addition	to	those	described	in	Chapter	2.	

3.2.1 Hydrocarbon	preparation	
The	hydrocarbons	used	were	hexane	(99%,	Alfa	Aesar),	decane	(99%,	Alfa	Aesar),	

hexadecane	(99%,	Alfa	Aesar),	and	toluene	(99.9%,	Alfa	Aesar).	All	equipment	was	washed	in	
NoChromix	when	possible	and	saturated	KOH	in	ethanol	when	NoChromix	wasn’t	possible.	
Silica	gel	(Avantor)	was	baked	for	two	hours	at	500°C.	The	hydrocarbon	was	poured	into	a	dark	
colored	bottle	and	the	baked	silica	poured	in	after	until	there	was	a	~5	mm	layer	of	silica	in	the	
bottom.	The	hydrocarbon	was	left	to	purify	overnight.	Solutions	were	made	so	that	an	
air/water	measurement	and	a	hydrocarbon/water	measurement	could	be	taken	from	the	same	
flask.	

3.2.2 Forming	the	hydrocarbon	layer	
Pipets	with	sterile	tips	were	used	to	dispense	the	hydrocarbons.	For	the	alkanes,	1-2	µL	

were	used,	dispensed	from	an	air	cushion	pipet	(so	the	exact	volume	is	not	known).	For	the	first	
toluene	dataset,	10	µL	were	used,	dispensed	from	a	positive	displacement	pipet.	For	the	
second	toluene	dataset,	75	µL	were	used,	except	for	50	µL	used	with	the	0.01	M	samples,	all	
dispensed	from	a	positive	displacement	pipet.	The	hydrocarbon	was	dropped	onto	the	water	
surface	and	left	for	a	minute	to	form	a	surface	layer.	Then	the	measurement	was	taken	for	1-3	
minutes,	depending	on	the	amount	of	signal	from	the	sample.	For	the	alkane	datasets,	an	
alkane	lens	would	often	wander	under	the	beam	focus	and	distort	the	measurement.	When	this	
happened,	the	sample	dish	was	jostled	to	move	the	lens	away	and	the	measurement	restarted.	
For	the	second	toluene	dataset,	the	initial	signal	was	weak.	The	measurement	would	continue	
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for	~1	minute,	then	the	signal	would	jump.	The	measurement	was	immediately	stopped,	saved,	
and	a	new	measurement	was	started.	Once	the	second	measurement	was	done,	the	sample	
stage	height	would	be	checked.	If	the	height	was	not	optimal,	a	third	measurement	would	be	
taken.	The	last	measurement	was	used	in	the	data	analysis.	

3.2.3 Langmuir	model	
Since	a	third	species	was	added	to	the	sample,	this	must	be	accounted	for	in	the	Langmuir	

model:	
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The	UV/vis	spectrum	of	toluene	was	obtained	and	the	extinction	coefficient	at	193	nm	was	
calculated	to	be	~2	M-1	cm-1.	Compare	this	to	thiocyanate,	which	has	an	extinction	coefficient	of	
3.5	x	103	M-1	cm-1	at	~222	nm;16	the	coefficient	at	193	nm	is	even	greater	than	that.17	While	
toluene	is	also	resonant,	the	signal	is	much	weaker	than	that	from	thiocyanate	and	can	be	
neglected.	Factoring	the	real	and	imaginary	components	and	dividing	by	()*+,- 	gives	
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Assuming	that	the	oil	terms	remain	constant,	they	can	be	absorbed	into	the	constant	‘A’:	
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(3.3)	

The	functional	form	of	Equation	(3.3)	ends	up	being	the	same	as	Equation	(2.18).	

For	the	toluene/water	datasets,	ΔR*S>*2- 	and	ΔR*S>*3T 	were	initialized	to	-7000	J/mol	to	avoid	
numerical	overflows	in	the	fitting	calculations.	All	other	parameters	were	initialized	to	+1.	

3.3 Results	
The	results	for	the	alkane	datasets	are	summarized	in	Figure	3.1	and	Table	3.1.	All	three	

alkane	datasets	had	corresponding	air/water	curves,	but	for	clarity,	only	the	air/water	curve	for	
the	hexadecane	dataset	is	shown	in	Figure	3.1.	Table	3.1	includes	the	full	fit	results	for	all	
datasets	and	curves.	For	the	hexadecane	dataset,	ΔR*S>*2- 	=	-4	±	1	kJ/mol	and	ΔR*S>*3T 	=	-5	±	1	
kJ/mol,	where	the	superscripts	‘air’	and	‘alk’	indicate	the	air/water	and	alkane/water	interfaces,	
respectively.	For	hexane	and	decane,	only	four	concentrations	each	were	collected	for	
preliminary	analysis.	This	means	that	there	were	not	enough	degrees	of	freedom	to	calculate	
errors	for	the	parameters.	Assuming	that	the	errors	are	the	same	order	of	magnitude	as	for	the	
hexadecane	interface,	ΔR*S>*2- 	=	-3	kJ/mol	and	ΔR*S>*3T 	=	-3	kJ/mol	for	hexane	and	ΔR*S>*2- 	=	-3	
kJ/mol	and	ΔR*S>*3T 	=	-3	kJ/mol	for	decane.	
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Figure	3.1:	SHG	signal	from	three	alkane/water	interfaces:	hexadecane,	hexane,	and	decane.	All	three	alkane	datasets	have	
their	own	air/water	curves,	but	only	the	curve	for	hexadecane	is	shown	for	clarity.	The	extracted	free	energies	are	presented	
below	the	corresponding	curve	in	the	legend.	The	hexane	and	decane	datasets	only	have	four	concentrations	each,	so	errors	
could	not	be	calculated.	

	 	 Air/Water	 Alkane/Water	
Alkane	 Parameter	 Value	 Error	 Value	 Error	

Hexadecane	

A	 1.17344	 0.11083	 -1.30368	 0.29727	
B	 -16.35043	 3.94454	 51.13381	 15.2272	
C	 53.27203	 23.16704	 18.11317	 22.06878	

ΔR	(J/mol)	 -4060.48083	 1182.47439	 -4543.26861	 1166.10139	

Hexane	

A	 0.99938	 -	 0.77916	 -	
B	 8.47994	 -	 56.81505	 -	
C	 86.48984	 -	 13.32012	 -	

ΔR	(J/mol)	 -2649.693	 -	 -3197.29116	 -	

Decane	

A	 0.71237	 -	 0.72714	 -	
B	 76.29785	 -	 61.37336	 -	
C	 -0.00226	 -	 51.46552	 -	

ΔR	(J/mol)	 -2927.73253	 -	 -2757.1415	 -	
Table	3.1:	The	full	fit	results.	For	each	alkane,	an	air/water	curve	was	collected	at	the	same	time	from	the	same	flasks.	The	

hexane	and	decane	datasets	only	have	four	concentrations	each,	so	errors	could	not	be	calculated.	

The	first	toluene	dataset,	using	10	µL	of	toluene,	is	summarized	in	Figure	3.2	and	the	full	fit	
results	are	included	in	Table	3.2.	The	fit	returned	reasonable	results	only	when	the	parameters	
‘B’	and	‘C’	were	shared.	This	implicitly	assumes	that	the	number	of	surface	sites	and	.*4214

,// 	
remain	constant	when	adding	toluene.	It	is	not	an	ideal	assumption,	but	it	seems	reasonable	
given	the	difficulty	of	fitting.	The	free	energies	are	ΔR*S>*2- 	=	-7.5	±	0.7	kJ/mol	and	ΔR*S>+13 	=	-7.3	±	
0.7	kJ/mol,	where	the	superscripts	‘air’	and	‘tol’	indicate	the	air/water	and	toluene/water	
interfaces,	respectively.	
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Figure	3.2:	SHG	signal	from	the	toluene/water	interface,	where	the	amount	of	toluene	used	was	10	µL.	The	corresponding	
air/water	curve	is	also	presented.	The	extracted	free	energies	are	presented	below	the	corresponding	curve	in	the	legend.	

Parameter	 Value	 Error	
Aair	 1.238896689	 0.20041642	
Atol	 1.101604796	 0.188590553	
B	 -5.959226902	 4.06205978	
C	 15.50613721	 3.371643733	

ΔR*2- 	(J/mol)	 -7465.595017	 691.6049937	
ΔR+13 	(J/mol)	 -7349.052002	 654.8320025	

Table	3.2:	The	full	fit	results.	The	super	scripts	‘air’	and	‘tol’	indicate	the	air/water	and	toluene/water	interfaces,	
respectively.	The	parameters	‘B’	and	‘C’	were	shared	between	the	datasets.	

For	the	second	toluene	dataset,	using	75	µL	of	toluene,	the	points	are	inconsistent	above	
0.020	mole	fractions.	These	points	correspond	to	1.5M,	2M,	2.5M,	and	3M.	The	1.5M	and	2.5M	
points	seem	to	differ	systematically	from	the	2M	and	3M	points.	This	is	interesting,	because	the	
2M	and	2.5M	points	were	collected	on	the	same	day,	but	the	1M	and	3M	points	were	on	
different	days.	Because	it	is	difficult	to	tell	which	points	have	the	systematic	error,	two	fits	were	
used:	one	with	the	full	dataset	and	one	without	the	3M	point.	For	the	full	dataset,	the	most	
reasonable	fit	had	all	parameters	unshared.	For	the	truncated	dataset,	the	most	reasonable	fit	
had	parameters	‘B’	and	‘C’	shared.	Figure	3.3	shows	the	resulting	curves.	The	air/water	curve	
was	also	fit	both	ways,	but	the	lines	ended	up	overlapping	completely,	so	only	one	is	shown	on	
the	graph	(black).	For	toluene,	the	full	dataset	fit	is	the	solid	red	line	and	the	truncated	dataset	
fit	is	the	dashed	red	line.	The	resulting	free	energies	are	ΔR*S>*2- 	=	-4.9	±	0.4	kJ/mol	and		
ΔR*S>+13 	=	-8.4	±	0.4	kJ/mol	for	the	full	dataset	and	ΔR*S>*2- 	=	-4.5	±	0.4	kJ/mol	and	ΔR*S>+13 	=	-4.2	±	
0.4	kJ/mol	for	the	truncated	dataset.	The	full	fit	results	are	shown	in	Table	3.3	and	Table	3.4.	
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Figure	3.3:	SHG	signal	from	the	toluene/water	interface,	where	the	amount	of	toluene	used	was	75	µL.	The	corresponding	
air/water	curve	is	also	presented.	Two	fits	were	performed:	one	with	the	full	dataset	and	one	with	the	highest	concentration	
excluded.	The	extracted	free	energies	are	presented	below	the	corresponding	curve	in	the	legend.	The	two	air/water	fits	
overlapped,	so	only	one	is	shown	(black),	but	both	free	energies	are	included	in	the	legend.	

Parameter	 Value	 Error	
Aair	 0.908662481	 0.056802157	
Atol	 0.936134364	 0.03421958	
Bair	 13.70003337	 7.872519347	
Btol	 4.389247243	 2.553745078	
Cair	 24.47898327	 2.954098149	
Ctol	 8.360635559	 1.246757848	

ΔR*2- 	(J/mol)	 -4922.492677	 362.3396161	
ΔR+13 	(J/mol)	 -8435.72712	 437.2161104	

Table	3.3:	The	full	fit	results	for	the	full	dataset.	The	super	scripts	‘air’	and	‘tol’	indicate	the	air/water	and	toluene/water	
interfaces,	respectively.	No	parameters	were	shared.	

Parameter	 Value	 Error	
Aair	 0.836296986	 0.04801207	
Atol	 0.948339088	 0.028501011	
B	 26.73911439	 9.417877303	
C	 14.5379066	 12.8133451	

ΔR*2- 	(J/mol)	 -4539.115368	 374.242722	
ΔR+13 	(J/mol)	 -4233.660634	 387.6065922	

Table	3.4:	The	full	fit	results	for	the	dataset	with	the	highest	concentration	excluded.	The	super	scripts	‘air’	and	‘tol’	
indicate	the	air/water	and	toluene/water	interfaces,	respectively.	The	parameters	‘B’	and	‘C’	were	shared	between	the	
datasets.	
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3.4 Discussion	
For	reference,	some	previously	published	values	for	ΔR*S>	are	included	in	Table	3.5.	All	of	

the	alkane	datasets	have	less	favorable	ΔR*S>*2- 	than	the	previous	results,	which	suggests	that	
the	magnitudes	of	all	values	are	probably	erroneous.	However,	since	the	air/water	curves	and	
alkane/water	curves	are	from	the	same	solutions,	the	two	curves	can	still	be	compared	to	each	
other.	Keeping	in	mind	that	the	hexane	and	decane	datasets	have	no	errors,	it	appears	that	the	
free	energies	differ	very	little	between	the	air/water	interface	and	the	alkane/water	interfaces.	
Since	decane	and	hexadecane	are	known	not	to	wet	water,	it	is	likely	that	hexane	was	not	
wetting	either,	perhaps	evaporating	entirely.	Most	ellipsometric	and	x-ray	reflectivity	studies	
use	closed	cells	as	their	sample	chambers	and	were	equilibrated	over	days.5,18–20	

Dataset	 UVWXY	(kJ/mol)	
NaSCN	air/water17	 -7.53	±	0.13	
KSCN	air/water21	 -6.78	±	0.03	
NaSCN	dodecanol/water22	 -6.7	±	1.1	
KSCN	dodecanol/water22	 -6.3	±	1.8	

Table	3.5:	Free	energy	values	from	previously	published	results	for	comparison.	

Due	to	the	effort	that	would	be	required	to	continue	with	the	alkane	interfaces,	I	moved	on	
to	the	toluene/water	interface.	The	first	toluene	dataset,	at	least,	was	consistent	with	previous	
thiocyanate	datasets.17,21	The	fact	that	the	free	energies	of	the	air/water	and	toluene/water	
interfaces	again	differ	only	slightly	is	also	consistent	with	results	from	the	dodecanol/water	
interface.22	Interpretation	of	the	second	dataset	is	less	straightforward.	It	does	not	agree	
quantitatively	with	previous	results,	but	the	curves	can	still	be	compared	to	each	other.	The	full	
dataset	implies	that	the	toluene/water	interface	is	more	favorable,	in	line	with	predictions.9,12–
14	The	truncated	dataset	implies	that	the	free	energies	are	the	same,	in	line	with	the	first	
toluene	dataset	and	the	dodecanol/water	data.	

This	begs	the	question:	“Is	toluene	actually	present	at	the	interface?”	Figure	3.2	and	Figure	
3.3	show	that	the	SHG	signal	is	affected	by	the	presence	of	toluene	–	more	so	than	for	the	
alkanes	–	so	it	is	likely	that	the	interface	does	change	when	the	toluene	is	added.	However,	
there	is	reason	to	believe	that	microliters	of	toluene	would	dissolve	into	solution,	especially	at	
high	concentration.23	With	the	first	dataset,	the	lack	of	alignment	trouble	likely	indicates	that	
no	toluene	phase	was	formed.	With	the	second	dataset,	given	the	initial	lack	of	signal	and	the	
jump	in	signal	after	exposure	to	the	laser	beam,	a	toluene	phase	likely	formed	and	was	
evaporated.	Whatever	toluene	was	left	behaves	like	the	toluene	in	the	first	dataset.	It	is	unclear	
what	this	behavior	is,	however.	

3.5 Conclusions	and	Future	Directions	
To	continue	with	the	alkane	interfaces,	a	new	sample	chamber	will	have	to	be	constructed.	

It	could	be	a	closed	sample	cell	that	allows	droplets	to	equilibrate5,20	or	a	cell	in	which	alkane	
vapors	are	allowed	to	adsorb	on	the	surface.18,19	However,	these	types	of	cells	require	long	
equilibration	times.	Another	possibility	is	a	cell	that	avoids	a	meniscus	through	a	thicker	layer	
and	appropriately	placed	windows.24	
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The	data	presented	here	for	toluene	are	preliminary	and	could	certainly	use	improvement.	
First,	the	volume	of	toluene	used	should	be	optimized	to	get	a	consistent	surface.	Second,	the	
high	concentration	regime	needs	to	be	redone	with	greater	precision.	Third,	the	assumptions	
made	when	sharing	parameters	‘B’	and	‘C’	are	likely	not	particularly	accurate.	However,	it	also	
does	not	seem	that	the	two	parameters	should	differ	drastically.	The	lmfit	module	in	Python	
allows	for	parameters	to	have	bounds,	including	conditions	like	“Bair	=	Btol	+	const.”	New	models	
could	be	created	that	incorporate	such	bounds.	

Even	after	the	data	are	improved,	however,	the	behavior	of	the	toluene/water	system	is	still	
unknown.	Is	it	forming	a	microscopic	layer	on	the	solution	surface?	Is	it	dissolving	partially?	Is	it	
dissolving	completely?	If	it	dissolves,	is	the	toluene	diffusing	away	from	the	interface?	If	the	
toluene	is	not	diffusing	away,	does	it	make	a	thermodynamic	difference	if	the	toluene	is	
dissolved	or	not?	Molecular	dynamics	simulations	can	be	used	to	elucidate	some	of	these	
issues.	Once	these	questions	are	answered,	an	interpretation	can	be	made	more	confidently.		
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Chapter	4	–	Thiocyanate	Adsorption	to	the	Graphene/Water	Interface	

4.1 Introduction	
The	work	described	in	this	chapter	was	also	motivated	by	the	debate	over	the	behavior	of	

ions	at	interfaces	of	water	with	materials	of	differing	static	dielectric	constant.	While	Chapter	3	
described	several	hydrocarbon/water	interfaces	with	similar	dielectric	conditions	to	the	
air/water	interface,	it	is	also	interesting	to	consider	what	happens	when	the	scenario	is	
reversed,	i.e.	when	!" > !$%&'( = 80",-..	The	first	such	material	that	comes	to	mind	is	a	
metal.	In	this	case,	it	is	more	instructive	to	think	about	the	boundary	conditions:	the	potential	is	
zero	at	the	interface	and	far	from	the	charge.	This	is	the	same	as	having	a	second	charge	with	
opposite	sign,1	leading	to	image	charge	attraction.	Put	in	terms	of	Equation	(1.3),	this	means	
!" → ∞.	However,	metals	are	opaque	to	light,	so	a	laser	pulse	cannot	propagate	through	the	
metal.	The	pulse	could	propagate	through	the	water,	but	this	poses	the	same	alignment	and	
signal	challenges	that	plagued	the	oil/water	experiments.	

Another	potential	experiment	involves	the	deliquescence	of	salt	crystals	in	humid	
environments.	The	Salmeron	group	performed	an	experiment	with	salt	crystals	on	SiO2	exposed	
to	varying	amounts	of	humidity.2	They	used	scanning	polarization	force	microscopy	(SPFM)	to	
show	that	all	salt	crystals	were	dissolved	at	95%	humidity.	The	technique	can	also	measure	
surface	potentials.	The	halide	surface	potentials	in	their	experiment	roughly	followed	the	
Hofmeister	series.	This	is	indicative	of	specific	ion	effects.	This	approach	can	be	adapted	for	the	
SHG	experiment	by	drying	solutions	on	pieces	of	metal	to	deposit	salt	crystals	and	placing	the	
pieces	in	water	(but	not	covering	them!)	to	generate	a	humid	environment.	Brief	preliminary	
tests	indicated	that	this	is	possible,	but	there	are	a	number	of	difficulties	in	the	interpretation.	
One,	the	bulk	concentration	of	the	deliquesced	solution	would	be	difficult	to	determine.	Two,	
the	resulting	solution	would	be	on	the	order	of	nanometers	thick.	It	is	unclear	if	this	would	be	
thick	enough	to	generate	a	bulk	region	at	all.	

Another	approach	is	to	employ	a	thin,	conductive	layer	that	can	be	floated	on	top	of	the	
solution.	One	material	that	fits	the	bill	is	graphene.	It	is	atomically	thin	and	only	absorbs	2.3%	of	
the	light	per	layer,3	allowing	laser	pulses	to	propagate	through	it	and	still	generate	signal.	An	
interesting	material	in	its	own	right,4	graphene	has	exciting	potential	applications	which	involve	
interfaces	and	ion	adsorption,	such	as	solution-gated	field	effect	transistors	for	sensing,5	porous	
membranes	for	filtering6	and	desalination,7	supercapacitors,8	and	lithium-ion	batteries.9	In	the	
context	of	specific	ion	effects,	two	properties	of	graphene	are	particularly	relevant,	namely	high	
in-plane	carrier	mobility	and	hydrophobicity.	The	high	carrier	mobility	makes	graphene	metal-
like,	ostensibly	engendering	image	charge	attraction	of	ions,	whereas	hydrophobicity	makes	it	a	
condensed	phase	analog	to	the	air/water	interface,	engendering	image	charge	ion	repulsion.	
Simulations	show	that	water	tends	to	be	more	disordered	near	the	graphene/water	interface,10	
which	could	affect	the	entropic	contributions.	Geiger	et	al.	have	studied	the	adsorption	of	ions	
and	molecules	to	graphene	deposited	on	a	silica	substrate11–13	and	found	that	graphene	does	
not	significantly	alter	the	free	energy	of	adsorption	to	the	silica/water	interface.	However,	it	is	
unclear	how	the	graphene	itself	affects	the	interfacial	water	structure	in	this	situation.14	Here	
we	describe	a	study	of	surface	ion	adsorption	by	DUV-SHG	spectroscopy	and	molecular	
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dynamics	simulations	addressing	graphene	suspended	on	the	aqueous	solution	surface	in	order	
to	explore	these	issues	and	compare	properties	of	the	resulting	interface	with	those	of	
air/water.		

4.2 Methods	and	Materials	
Solution	preparation,	the	optical	design,	and	data	analysis	are	as	described	in	Chapter	2.	

The	methods	detailed	here	are	performed	in	addition	to	those	described	in	Chapter	2.	
Experimental	work	was	performed	in	collaboration	with	Son	Nguyen	under	Paul	Alivisatos	and	
Horst	Weller.	

4.2.1 Graphene	Preparation	
All	glassware	was	soaked	in	NoChromix	overnight	and	rinsed	vigorously	with	18.2MΩ	water.	

Commercial	CVD	graphene	on	copper	foils	(3-5	layers,	one	sided)	was	purchased	from	ACS	
Material.	The	foil	was	cut	into	7x25	mm	pieces,	then	submerged	in	warm	acetone	five	times	to	
clean	up	any	contamination.	This	stock	graphene	was	stored	in	a	closed	box	to	avoid	new	
contamination.	The	stock	graphene	on	copper	foil	was	cut	into	7x7	mm	pieces	and	floated	on	a	
30	mL	aqueous	solution	of	10%	Na2S2O8	for	~5	hours	to	etch	away	the	copper.	Polyethylene	O-
rings	(cleaned	with	saturated	KOH	in	ethanol	and	stored	in	water)	with	inner	and	outer	
diameters	of	~1.2	and	~2.5,	respectively,	were	placed	around	the	pieces	(Figure	4.1).	The	O-
rings	stabilize	the	water	surface	so	that	the	graphene	pieces	are	less	likely	to	break	during	
transfers	and	are	more	likely	to	align	the	laser	beam	properly.	After	etching,	200	mL	of	18.2MΩ	
water	was	added	to	dilute	the	etching	solution,	then	the	floating	graphene	sheet	and	the	
surrounding	O-ring	was	scooped	into	a	small	cup	and	transferred	into	250	mL	water.	The	
solution	was	stirred	slowly	to	ensure	the	desorption	of	any	etching	product	from	the	graphene	
and	to	equilibrate	the	concentration.	The	graphene	samples	were	transferred	into	fresh	water	
three	more	times	and	left	to	float	overnight.	The	next	day,	the	graphene	samples	were	
transferred	once	more	into	350	mL	water	for	the	last	cleaning	step.	

	

Figure	4.1:	Preparing	samples	of	graphene	floating	in	sodium	thiocyanate	solution	for	SHG	experiment.	A)	CVD	3-5	layer	
graphene	on	copper	foils.	The	polyethylene	o-rings	are	outlined	in	red	for	clarity.	B)	3-5	layer	graphene	samples	confined	inside	
the	o-rings	after	cleaning.	C)	Each	graphene	sample	with	its	o-ring	is	scooped	in	a	small	cup	for	SHG	measurement.	The	red	and	
blue	lines	represent	the	fundamental	and	SHG	beam	paths,	respectively.	Beam	colors	are	for	clarity	and	do	not	correspond	to	
the	experimental	wavelengths.	
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Solutions	were	prepared	volumetrically	the	day	before,	using	18.2MΩ	water	and	NaSCN	(J.	
T.	Baker,	ACS	reagent	≥98%)	that	had	been	baked	at	200°C	overnight.	Solutions	were	poured	
into	a	large	Petri	dish	and	graphene	samples	were	transferred	into	the	dish	with	a	glass	scoop.	
The	volume	of	solution	in	the	scoop	was	accounted	for	when	calculating	bulk	concentrations.	
Once	all	samples	of	graphene	were	in	the	dish,	the	solution	was	stirred	to	ensure	a	uniform	
bulk	concentration.	The	samples	were	then	removed	one	at	a	time	to	be	measured	in	the	SHG	
experiment	and	replaced	in	the	same	concentration	solution	(Figure	4.1).	After	all	samples	were	
measured,	any	samples	to	be	reused	were	transferred	to	the	new	concentration.	

4.2.2 Optical	design	
The	laser	energy	was	attenuated	to	<	1	μJ	for	graphene	samples	to	prevent	damage15	and	to	

ensure	that	no	more	than	one	photon	was	generated	per	pulse.	Figure	4.2A	depicts	the	
experiment,	where	CVD	graphene	(3-5	layers)	is	suspended	on	top	of	solutions	of	NaSCN.	The	
input	laser	pulses	(100fs,	386nm)	incident	on	the	surface	of	generate	193nm	second	harmonic	
radiation,	which	is	resonant	with	the	charge-transfer-to-solvent	(CTTS)	transition	of	
thiocyanate16,17.	Figure	4.2B	diagrams	the	interfacial	structure.	

	

Figure	4.2:	(A)	The	experimental	design.	Fundamental	(386	nm)	pulses	are	reflected	from	the	graphene/water	surface	and	
SHG	(193	nm)	pulses	are	generated.	The	collected	signal	is	proportional	to	the	number	of	thiocyanate	ions	at	the	surface.	(B)	
Structure	of	the	interface	studied	in	A.	

4.2.3 Raman	characterization	of	graphene	
Raman	spectra	were	acquired	under	ambient	conditions	with	a	WiTech	alpha300R+	

confocal	Raman	microscope	equipped	with	a	488	nm	excitation	laser	and	a	600	lines/mm	
grating	spectrograph	operating	in	180°	backscattering	geometry.	A	Zeiss	50x	or	20x	objective	
was	used	to	focus	the	excitation	laser	light	spot	of	on	the	samples.	To	ensure	quality,	all	
purchased	foils	were	reexamined	under	a	Raman	microscope	(Figure	4.3A,	B,	C).	The	average	
intensity	ratios	of	the	2D	over	the	G	band	indicate	the	graphene	has	3	to	5	layers	on	
average18,19.	The	graphene	was	also	examined	after	etching	and	cleaning,	but	before	an	SHG	
measurement.	Raman	spectra	show	that	the	floating	graphene	is	of	the	same	quality	as	it	was	
on	copper	(Figure	4.3D,	E,	F).	After	all	SHG	measurements	were	finished,	the	graphene	samples	
were	transferred	first	to	clean	water,	then	to	a	glass	slide	to	inspect	under	a	Raman	
microscope.	Figure	4.3G,	H,	K	show	similar	Raman	spectra	to	the	original	graphene	on	copper	
(Figure	4.3A,	B,	C),	indicating	that	there	was	no	damage	of	graphene	during	the	SHG	
experiment.	
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Figure	4.3:	Raman	characterization	of	the	graphene	samples	used	in	the	experiment	before	etching,	after	etching,	and	
after	exposure	to	the	laser	beam.	A)	Optical	image	of	the	graphene	on	Cu	with	Cu	grain	boundary	(dark	line).	B)	Spatial	map	of	
2D/G	intensity	(peak	height)	ratios	over	the	area	marked	in	A.	C)	Average	spectrum	of	area	marked	in	A	(without	background	
subtraction).	D)	Optical	image	of	the	graphene	on	clean	water	after	Cu	etching.	E)	Spatial	map	of	Raman	spectra	of	graphene	
and	water	in	the	area	marked	in	D.	F)	Average	spectra	of	area	with	and	without	graphene	covered	on	water.	G)	Optical	image	of	
graphene	on	glass	after	SHG	measurement.	H)	Spatial	map	of	2D/G	intensity	ratios	over	the	area	marked	in	G.	K)	Average	
spectrum	of	area	marked	in	G,	and	spectrum	of	glass	substrate.	

4.2.4 Molecular	Dynamics	simulation	details	
Simulations	were	performed	in	collaboration	with	Stephen	Cox	under	Phillip	Geissler.	To	

calculate	the	potential	of	mean	force	(PMF),	we	used	umbrella	sampling.	The	system	consisted	
of	264	SPC/E	water	molecules20	placed	above	a	2.13×1.97	nm2	graphene	sheet	consisting	of	160	
carbon	atoms.	Initial	simulations	of	a	larger	system	with	1151	water	molecules	above	a	
2.55x2.46	nm2	graphene	sheet	with	no	vapor	phase	found	only	a	small	effect	on	the	PMF	(the	
adsorption	free	energy	of	a	single	ion	was	more	favorable	in	the	small	system	by	only	0.3	234).	
We	therefore	opted	to	use	the	smaller	system	size	of	264	water	molecules,	as	this	permits	the	
calculation	of	the	energy	and	entropy	profiles	with	reasonable	computational	resources.	The	
plane	of	the	graphene	sheet	was	taken	to	be	the	56-plane,	with	the	normal	direction	taken	to	
be	7.	Periodic	boundary	conditions,	commensurate	with	the	graphene	sheet,	were	used	with	
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the	length	of	the	7-direction	set	to	4.5	nm.	The	simulation	setup	could	thus	be	described	as	a	
thin	slab	of	liquid	water	(approx.	2	nm	thick),	with	one	graphene/water	interface	and	one	
air/water	interface.	An	iodide	ion	with	charge	89 = −0.8;,	where	;	is	the	elementary	unit	of	
charge,	was	restrained	at	different	heights	7<	above	the	graphene	sheet	with	a	harmonic	bias	
potential:	

	 =>?%@(7) =
2>?%@
2 7 − 7< ".	 (4.1)	

Here,	7	is	the	instantaneous	height	of	the	iodide	above	the	graphene	sheet.	A	total	of	23	
‘windows’	with	7<	=	0.3,	0.4,	…,	2.5	nm	were	used,	with	2>?%@	=	836.8	kJ/mol/nm2.	Dynamics	
were	propagated	at	a	temperature	of	298	K	using	Langevin	dynamics21,22	as	implemented	in	the	
LAMMPS	simulation	package23	(available	at	http://lammps.sandia.gov),	with	a	time	step	of	
1.0	fs	and	a	damping	constant	of	1	ps.	For	each	window,	a	simulation	of	7	ns	was	performed.	To	
reconstruct	the	PMF,	the	multistate	Bennett	acceptance	ratio24	(MBAR)	method	was	used.	At	
ambient	conditions,	it	is	reasonable	to	ignore	contributions	due	to	pressure-volume	work,	and	
contributions	from	kinetic	energy	are	independent	of	7.	We	therefore	equate	the	changes	in	
enthalpy	to	the	changes	in	potential	energy.	Potential	energy	profiles	were	measured	directly	
from	the	umbrella	sampling	simulations	by	binning	the	samples	according	to	the	7-coordinate	
of	the	ion,	with	a	bin	width	0.1	nm.	The	autocorrelation	time	of	the	potential	energy	in	each	
window	was	used	to	construct	uncorrelated	data	sets,	and	the	standard	error	for	each	height	
was	computed	as	

	 D =
E
F − 1

.	 (4.2)	

Here,	s	is	the	standard	deviation	of	the	potential	energy	at	a	given	height,	and	F	is	the	
number	of	samples.	The	entropy	profiles	were	calculated	by	subtracting	the	potential	of	mean	
force	from	the	enthalpy	4ΔI(7) 	= 	Δ=(7) 	− 	ΔK(7),	and	error	bars	were	calculated	by	simple	
propagation	of	errors.	

Long-ranged	Coulomb	interactions	were	computed	using	the	particle-particle	particle-mesh	
solver25	with	an	interpolation	order	5,	a	neutralizing	background	charge,	a	2-space	grid	of	
18×16×30	and	a	screening	parameter	of	2.95	nm-1.	Short	range	Lennard-Jones	(LJ)	interactions	
were	also	defined	between	atomic	species	L	and	M:	

	
=NO(P?Q) = 4!?Q

E?Q
P?Q

S"

−
E?Q
P?Q

T

,	 (4.3)	

with	parameters	given	in	Table	4.120,26,27.	There	were	no	Coulomb	interactions	between	
graphene	carbon	atoms	and	other	species.	Furthermore,	as	their	equations	of	motion	were	not	
integrated,	no	interaction	potential	between	carbon	atoms	was	defined	(although	tests	with	a	
flexible	graphene	model	were	performed,	see	below).	Similarly,	as	only	a	single	iodide	ion	was	
present,	no	iodide-iodide	LJ	parameters	were	defined.	
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Interaction	 VWX	(kJ/mol)	 YWX 	(nm)	
O-O	 0.650	 0.3166	
C-O	 0.392	 0.3190	
I-0.8-O	 0.521	 0.4145	
I-0.8-C	 0.708	 0.4169	
Table	4.1:	Lennard-Jones	parameters	used	in	the	simulations.	The	water-water	parameters	were	taken	from	Reference	20,	

the	water-carbon	parameters	from	Reference	26	and	water-iodide	parameters	from	Reference	27.	The	iodide-carbon	!?Q	was	
chosen	to	obtain	agreement	with	experiment,	and	the	obtained	absorption	energy	of	a	single	iodide	at	the	graphene	sheet	(no	
waters)	is	in	reasonable	agreement	with	literature	values	obtained	with	density	functional	theory.28,29	

4.2.5 Analysis	of	interfacial	fluctuations	
To	analyze	the	fluctuations	of	both	the	air/water	and	graphene/water	interfaces,	we	closely	

followed	the	methodology	outlined	in	Reference	16.	Specifically,	we	used	the	instantaneous	
interface	method	of	Willard	and	Chandler30,	in	which	Gaussian	mass	distributions	are	assigned	
to	each	water	oxygen	atom.	At	each	point	in	space,	the	coarse-grained	density	field	is	defined	
as	the	sum	of	all	such	Gaussian	mass	distributions,	and	the	interface	is	taken	to	be	the	2-
dimensional	manifold	where	the	coarse	grained	density	field	is	equal	to	half	its	bulk	value	(16	
nm-3).	The	Gaussian	mass	distribution	had	a	width	0.3	nm,	and	was	truncated	and	shifted	at	
0.9	nm.	In	practice,	the	coarse	grained	density	field	is	evaluated	on	a	grid,	with	spacings	0.1014,	
0.1036	and	0.0500	nm	in	the	5,	6	and	7	directions,	respectively.	

4.2.6 Computing	the	adsorption	free	energy	from	the	PMFs	

	

Figure	4.4:	Schematic	of	the	model	used	to	calculate	the	adsorption	free	energy.	We	imagine	that	a	single	solute	‘B’	is	
constrained	to	a	column	above	the	surface.	The	dimensions	of	the	column	are	Z	´	[	´	[	and	we	imagine	that	it	has	been	divided	
into	small	cubes	of	volume	[-.	The	probability	that	the	solute	is	adsorbed	to	the	surface	is	given	by	Equation	(4.4).	

In	our	simulations,	we	obtain	a	PMF,	ΔK(7),	for	the	ion	above	the	graphene	surface.	In	
order	to	compare	to	experiment,	we	need	to	obtain	an	adsorption	free	energy,	Δ\%]@.	To	do	

B
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this,	we	imagine	dividing	space	into	small	cubic	cells	of	volume	[-.	Now	consider	a	single	solute	
‘B’	constrained	to	an	Z	´	[	´	[	column,	where	Z	is	a	macroscopic	distance.	This	is	shown	
schematically	in	Figure	4.4.	Let	us	define	the	following:		

• 83,	the	internal	partition	function	of	a	cell	in	bulk	containing	a	solute	molecule.	
• 83,@,	the	internal	partition	function	of	a	cell	at	the	surface	containing	a	solute	molecule.	
• 8<,	the	internal	partition	function	of	a	cell	in	bulk	with	no	solute	molecule.	
• 8<,@,	the	internal	partition	function	of	a	cell	at	the	surface	with	no	solute	molecule.	

The	surface	binding	probability	of	a	solute	that	is	constrained	to	reside	in	the	column	is:	

	
%̂]@ =

83,@8<
838<,@

[
Z .	 (4.4)	

We	can	also	compute	this	probability	from	simulation:	

	
%̂]@ =

1
Z _7`;abcd ef

e∗

<
	

=
h
Z ,	 (4.5)	

	
h	 ≡ _7`;abcd ef

e∗

<
.	 (4.6)	

Here,	7∗ 	is	a	microscopic	distance	from	the	interface	below	which	we	consider	the	solute	
adsorbed,	and	b	 = 	1/234	is	the	inverse	temperature.	It	immediately	follows	that:	

	 h =
83,@8<
838<,@

[.	 (4.7)	

Let	us	denote	the	probability	that	a	solute	occupies	a	particular	site	by	f3.	If	there	are	a	
total	of	k3 	solutes,	and	the	total	volume	of	the	system	is	l,	which	we	have	also	divided	into	
small	cubes	of	volume	[-,	we	can	write:	

	 m3
1 − m3

=
nopp
nqropp

	

=
83,@83

staS8<
u
vw astxS l

[-
staS 1

k3 − 1 !

8<,@83
st8<

u
vw ast l

[-
st 1

k3 !

	

=
83,@8<
838<,@

k3[-
l 	

= h["z3.	 (4.8)	
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Here,	nopp 	and	nqropp 	are	the	total	partition	functions	for	the	system	when	a	particular	site	
is	occupied	and	unoccupied	by	a	solute,	respectively,	and	r3 	is	the	bulk	concentration	of	solute	
molecules.	The	equilibrium	constant	for	the	Langmuir	model	used	to	interpret	the	experimental	
data	is:	

	 h%]@ =
E3z{
E{z3

.	 (4.9)	

Here,	s| 	is	the	surface	density	of	species	‘X’,	and	the	subscript	‘A’	indicates	quantities	
pertaining	to	the	solvent.	If	the	maximum	surface	density	is	s}%~,	and	all	surface	sites	are	
occupied	by	either	solvent	or	solute	molecules	we	can	write:	

	 h%]@ =
E3z{

E}%~ − E3 z3
	

=
m3

1 − m3
z{
z3
	

= h["z{.	 (4.10)	

The	adsorption	free	energy	is	therefore	calculated	from	the	simulation	PMF	as	follows:	

	 �\%]@ = −234[F[ z{[" h].	 (4.11)	

For	a	liquid-vapor	interface,	there	is	a	certain	degree	of	ambiguity	in	choosing	the	size	of	an	
adsorption	site	[.	If	we	assume	that	[	is	the	same	for	adsorption	to	the	air/water	and	
graphene/water	interfaces,	then	the	difference	in	free	energies	

	 ��\%]@ ≡ �\%]@
Ç(% − �\%]@

É%Ñ	

= −234[F
hÇ(%
hÉ%Ñ	 (4.12)	

will	be	independent	of	the	choice	of	[.	The	superscripts	‘gra’	and	‘vap’	indicate	quantities	
calculated	for	the	graphene	and	air	interfaces,	respectively.	A	negative	value	of	ΔΔ\%]@		
corresponds	to	more	favorable	adsorption	at	graphene	than	at	air.	This	provides	a	direct	way	to	
compare	the	simulation	and	experimental	results.	

4.3 Results	
Figure	4.5	shows	the	actual	SHG	signal	collected	(normalized	to	the	nonresonant	SHG	signal	

of	water)	versus	bulk	concentration	of	thiocyanate.	The	data	were	fit	to	the	same	simple	
Langmuir	model	used	in	Reference	16,	as	described	by	Equation	(2.18).	The	only	difference	is	
the	nonresonant	graphene	term.	Assuming	that	the	same	number	of	carbon	atoms	are	probed	
on	average,	this	is	constant	and	can	be	included	in	‘A.’		
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The	functional	form	of	Equation	(4.13)	ends	up	being	the	same	as	Equation	(2.18).	

The	parameter	values	are	summarized	in	Table	4.2.	In	particular,	note	the	free	energy	of	ion	
adsorption:	Δ\%]@

Ç(%	=	-8.8	±	0.4	kJ/mol.	While	statistically	different	from	the	air/water	interface	
–	Δ\%]@

É%Ñ	=	-6.78	±	0.03	kJ/mol)	–	this	corresponds	to	a	difference	of	<	1	234	and	is	not	
thermodynamically	significant.	The	model	used	does	not	account	for	any	surface	potential	
caused	by	the	electrical	double	layer,	which	explains	the	deviation	of	the	fit	from	the	data	at	
higher	concentrations.	

	

Figure	4.5:	SHG	signal	(normalized	to	the	nonresonant	SHG	signal	of	water)	versus	bulk	concentration	of	thiocyanate.	The	
data	were	fit	to	a	Langmuir	model	(Equation	(2.18))	and	the	free	energy	of	adsorption	was	extracted.	

A	 1.21	±	0.07	
B	 -7.4	±	0.5	
C	 7	±	1	
Δ\	 -8.8	±	0.4	kJ/mol	

Table	4.2:	Values	for	the	fitting	parameters	obtained	from	the	Levenberg-Marquardt	algorithm.	Parameter	errors	are	the	
square	roots	of	the	corresponding	diagonal	elements	in	the	variance-covariance	matrix.	
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Figure	4.6:	Simulation	results	for	iodide	interacting	with	both	graphene/water	and	air/water	interfaces.	(A)	A	
representative	snapshot	of	the	simulation	box.	The	graphene	is	at	7=0.0	nm	in	grey.	The	iodide	is	in	yellow.	The	instantaneous	
interfaces	for	the	air/water	interface	and	graphene/water	interface	are	shown	in	blue	and	red,	respectively.	The	periodic	
boundaries	are	indicated	by	blue	dashed	lines.	The	carbons	and	waters	are	not	rendered	with	a	space-filling	representation,	
meaning	any	gaps	are	not	realistic.	This	was	done	to	make	sure	the	graphene/water	instantaneous	interface	is	visible.	(B)	The	
potential	of	mean	force	(black),	total	potential	energy	(red),	and	entropy	(blue)	curves	for	the	ion	vs	distance	from	the	
graphene	sheet.	Graphene	is	centered	at	7?or=0.0nm.	Distances	less	than	7?or~0.4nm	are	effectively	disallowed	by	steric	
repulsion.	Total	potential	energy	is	nearly	identical	to	enthalpy	at	ambient	conditions.	

To	elucidate	the	molecular	details	underlying	the	small	change	in	Δ\%]@,	we	performed	MD	
simulations	of	ion	adsorption	to	the	graphene/water	interface.	Previous	studies	have	shown	
that	iodide	and	thiocyanate	exhibit	very	similar	behavior,16	hence	our	previous	halide	model	
was	used.		The	simulation	box	contained	a	graphene/water	interface	on	one	end	(with	
graphene	centered	at	7=0.0nm)	and	an	air/water	interface	on	the	other	(Figure	4.6A).	The	
potential	of	mean	force	(PMF)	for	an	iodide	ion	above	the	graphene	was	constructed	using	
umbrella	sampling,	in	which	the	height	of	the	ion	was	biased	with	a	harmonic	potential	(Figure	
4.6B,	black	curve).	As	discussed	in	the	methods,	computing	Δ\%]@	directly	from	the	PMF	
requires	the	size	of	an	adsorption	for	an	ion	at	the	air/water	interface	to	be	defined.	This	is	
avoided	by	comparing	the	difference	ΔΔ\%]@	(Equation	(4.12))	of	values	for	the	
graphene/water	and	air/water	interfaces.	Discussed	in	detail	below,	there	is	some	flexibility	in	
choosing	the	model	parameters.	We	have	found	that	our	results	are	surprisingly	robust	to	
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varying	the	flexibility	of	graphene,	but	that	ΔΔGads	does	depend	on	the	choice	of	interaction	
strength	between	the	ion	and	the	graphene.	We	have	chosen	this	interaction	to	reproduce	the	
experimental	free	energy	differences,	which	yields	an	adsorption	energy	for	iodide	at	graphene	
in	vacuum	(no	waters)	in	reasonable	agreement	with	density	functional	theory.28,29	Despite	the	
similarity	in	the	adsorption	free	energies	at	the	two	interfaces,	there	are	qualitative	differences	
in	the	PMFs	for	the	two	interfaces,	namely	the	graphene/water	free	energy	minimum	is	much	
deeper	and	narrower	than	that	for	air/water	(7~2nm).	

	

Figure	4.7:	Examining	potential	energy	(enthalpy)	and	height	fluctuations	(entropy).	(A)	The	total	potential	energy	(red)	of	
the	iodide	in	solution	and	the	direct	interaction	energy	(blue)	of	a	single	iodide	at	the	graphene	sheet	(no	waters).	Graphene	is	
centered	at	7?or=0.0nm.	The	total	potential	energy	has	contributions	from	ion-graphene	interactions,	water-ion	interactions,	
water-water	interactions,	and	Coulomb	forces.	(B)	The	variance	of	the	height	fluctuations	of	the	instantaneous	interface30	for	
the	graphene	interface	(left)	and	the	air	interface	(right)	with	the	ion	positioned	at	the	graphene	interface	(0.4	nm,	red	
triangle),	in	bulk	(1.2	nm,	blue	x),	and	at	the	air	interface	(2.0	nm,	cyan	diamond).	Neat	simulations	without	the	ion	are	shown	
with	black	circles	for	comparison.	The	main	plots	are	shown	with	the	same	6	axis	for	direct	comparison;	the	smaller	scale	of	the	
inset	highlights	changes	of	the	comparably	placid	graphene/water	interface	due	to	the	ion’s	proximity.	

The	enthalpy	was	calculated	directly	from	the	total	potential	energy	of	the	simulations	
(Figure	4.6B,	red	curve)	and	the	entropy	was	calculated	by	subtracting	the	enthalpy	from	the	
free	energy	(Figure	4.6B,	blue	curve)	–	see	methods.	The	air/water	interface	has	a	more	
favorable	enthalpy	change	than	does	the	graphene/water	interface,	but	this	is	offset	by	an	
unfavorable	entropy	change,	whereas	the	graphene/water	interface	exhibits	an	entropy	
contribution	near	zero	(distances	less	than	7?or~0.4nm	are	effectively	disallowed	by	steric	
repulsion).	To	clarify	the	enthalpy	contributions,	Figure	4.7A	compares	the	total	potential	
energy	to	the	direct	interaction	of	iodide	with	graphene	in	vacuum	(i.e.	with	no	waters	in	the	
simulation	box).	The	total	potential	energy	has	contributions	from	ion-graphene	interactions,	
water-ion	interactions,	water-water	interactions,	and	Coulomb	forces.	Comparison	of	the	two	
curves	reveals	that	the	potential	energy	at	the	graphene/water	interface	is	primarily	due	to	the	
direct	interaction,	and	not	to	the	solvent	repartitioning	energy,	as	for	the	air/water	interface,	
which	has	no	equivalent	direct	interaction.	Figure	4.8	depicts	this,	displaying	spatial	maps	of	
water-water	interactions	(row	A)	and	ion-water	interactions	(row	B),	as	first	described	in	
Reference	16.	Note	that	graphene	interactions	are	not	included	in	this	calculation.	Notice	in	
Figure	4.8A	(especially	the	middle	panel)	that	the	water-water	interactions	are	less	disrupted	at	
the	graphene	interface	than	at	the	air	interface.	This	leads	to	a	less	favorable	enthalpy	change	
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when	these	interfacial	waters	are	repartitioned	back	to	the	bulk	solution.	To	better	understand	
the	entropy	contributions,	Figure	4.7B	shows	the	height	fluctuations	of	the	two	interfaces	
relative	to	the	instantaneous	interface,30	an	important	contribution	to	the	entropy	at	the	
air/water	interface.16	The	graphene	sheet	itself	severely	dampens	these	fluctuations	(Figure	
4.7B	left	panel,	cyan	curve)	and	the	iodide	actually	enhances	the	fluctuations	when	it	
approaches	the	interface	(Figure	4.7B	left	panel,	red	curve).	In	contrast,	at	the	air/water	
interface,	large	fluctuations	are	dampened	when	the	ion	approaches	the	interface	(Figure	4.7B	
right	panel).	

	

Figure	4.8:	Spatial	maps	of	water	interactions.	Graphene	is	centered	at	7=0.0nm.	Note	that	interactions	with	graphene	are	
not	included	in	this	calculation.	(A)	The	average	interaction	a	water	experiences	with	all	other	waters	for	the	ion	positioned	at	
the	graphene	interface	(left),	in	the	bulk	(middle),	and	at	the	air	interface	(right).	The	zero	of	energy	for	all	maps	corresponds	to	
bulk	values	for	easy	comparison.	The	depression	at	the	air-water	interface	is	an	artifact	of	the	cylindrical	averaging.	(B)	The	
average	interaction	a	water	experiences	with	the	ion	for	the	ion	positioned	at	the	graphene	interface	(left),	in	the	bulk	(middle),	
and	at	the	air	interface	(right).	

4.4 Discussion	
Given	the	electronic	properties	of	graphene	and	the	qualitative	differences	in	the	molecular	

details	underlying	ion	adsorption	to	graphene	and	air,	it	is	surprising	that	the	experimental	free	
energies	differ	only	by	-2.0	±	0.4	kJ/mol.	This	corresponds	to	<	1	kBT,	so	this	difference,	while	
statistically	significant,	is	not	thermodynamically	significant.	Free	energies	of	adsorption	at	the	
silica/water(cyclohexane)	interface	for	chloride	and	magnesium	(hexanol)	are	in	the	tens	of	
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kJ/mol.11–13	If	graphene	were	indeed	behaving	like	a	metal,	one	might	expect	a	result	on	the	
same	order	of	magnitude,	due	to	strong	image	charge	attraction	between	graphene	and	the	
ion.	Because	the	free	energies	are	so	similar,	it	is	likely	that	graphene	is	behaving	primarily	as	a	
hydrophobe.	Nevertheless,	the	mechanism	of	adsorption	to	the	graphene/water	interface	is	
qualitatively	different	than	for	air/water.	The	air/water	interface	exhibits	a	large	enthalpic	
contribution	dominated	by	favorable	solvent	repartitioning	and	an	unfavorable	entropic	
contribution	from	the	dampening	of	capillary	waves.	The	graphene/water	interface	exhibits	a	
smaller	enthalpic	contribution	dominated	by	the	direct	interaction	of	the	iodide	and	graphene	
and	a	much	reduced	entropic	contribution.	These	differences	in	adsorption	enthalpy	and	
entropy	cancel	such	that	the	free	energies	of	the	interfaces	remain	very	similar.		This	distinction	
challenges	the	common	notion	that	hydrophobic	interfaces	present	a	solvation	environment	
much	like	the	air/water	interface.31	We	show	that	the	similarity	of	adsorption	affinities	actually	
reflects	a	subtle	cancellation	in	differences	in	adsorption	enthalpy	and	entropy.	The	underlying	
mechanistic	differences	we	have	identified	are	not	specific	to	graphene;	they	may	apply	as	well	
for	ion	solvation	at	other	substrates	with	significant	hydrophobic	character,	such	as	biological	
macromolecules.	

4.4.1 Using	the	instantaneous	interface	to	compute	the	PMFs	
In	addition	to	computing	the	PMF	relative	to	the	graphene	sheet,	it	is	also	possible	to	use	

the	height	relative	to	the	instantaneous	interface,32	as	shown	in	Figure	4.9.	This	analysis	reveals	
that	at	the	air/water	interface,	the	ion	prefers	to	reside	slightly	in	the	vapor	phase,	whereas	the	
opposite	is	true	at	the	graphene/water	interface.	We	also	find	ΔΔ\%]@	=	-1.7	kJ/mol	when	these	
PMFs	are	used,	in	good	agreement	with	the	value	computed	with	the	PMF	relative	to	the	
graphene	sheet	(ΔΔ\%]@	=	-1.9	kJ/mol).	

	

Figure	4.9:	PMFs	computed	relative	to	the	instantaneous	interface.	The	air/water	interface	is	in	blue	and	the	
graphene/water	interface	is	in	red.	A	height	of	0.0	corresponds	to	the	appropriate	instantaneous	interface.	The	change	in	axis	
convention	is	to	account	for	the	fact	that	multiple	instantaneous	interfaces	exist.	Negative	values	for	the	height	correspond	to	
the	liquid	phase.	
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4.4.2 The	effect	of	graphene	flexibility	
The	simulation	results	presented	so	far	have	been	obtained	with	a	rigid	model	of	graphene.	

It	is	possible	that	allowing	the	graphene	to	vibrate	could	affect	water’s	interfacial	fluctuations	
and	consequently,	the	propensity	of	ions	to	adsorb	to	the	interface.	We	have	therefore	
performed	the	simulations	using	an	optimized	Tersoff	model	for	graphene,33	which	has	been	
shown	to	predict	the	harmonic	and	anharmonic	interactions	for	graphene	reasonably	well.34	
Figure	4.10	shows	the	PMF	calculated	with	!åa9çö.õ 	=	0.315	kJ/mol,	both	relative	to	the	average	
height	of	the	graphene	surface	and	the	instantaneous	interface.	While	there	are	some	very	
slight	changes	in	the	PMF	when	computed	relative	to	the	average	graphene	height,	these	have	
negligible	effect	on	the	adsorption	free	energies,	with	ΔΔ\%]@	=	+5.1	and	+4.9	kJ/mol	for	the	
rigid	and	flexible	models,	respectively.	(The	PMFs	relative	to	the	instantaneous	interface	give	
��\%]@	=	+5.0	and	+4.7	kJ/mol	for	rigid	and	flexible	graphene	models,	respectively.)	

	

Figure	4.10:	PMF	for	an	iodide	above	rigid	and	flexible	graphene	models,	with	!åa9çö.õ 	=	0.315	kJ/mol.	The	introduction	of	
graphene	flexibility	has	little	effect.	The	air/water	interface	is	in	blue	and	the	graphene/water	interface	is	in	red.	(A)	The	PMF	
relative	to	the	average	graphene	position.	Graphene	is	centered	at	0.0	nm.	(B)	The	height	relative	to	the	instantaneous	
interface.	Graphene	is	centered	at	0.0	nm	and	negative	values	for	the	height	correspond	to	the	liquid	phase.	The	change	in	axis	
convention	is	to	account	for	the	fact	that	multiple	instantaneous	interfaces	exist.	

4.4.3 Sensitivity	of	the	potential	of	mean	force	to	direct	interactions	between	the	
iodide	and	graphene	

In	the	discussion	so	far,	we	have	presented	results	using	the	Lennard-Jones	parameters	
given	in	Table	4.1.	To	test	the	sensitivity	of	our	simulation	results	to	the	direct	interaction	
between	the	iodide	and	the	graphene,	we	also	calculated	the	PMFs	using	different	values	of	
!åa9çö.õ.	First,	we	applied	the	standard	Lorentz-	Berthelot	mixing	rules,	which	gave	!åa9çö.õ 	=	
0.315	kJ/mol.	Second,	we	used	a	much	stronger	interaction	with	!åa9çö.õ 	=	1.046	kJ/mol.	Third,	
we	used	an	interaction	that	reproduced	experimental	results.	The	adsorption	energies	for	a	
single	iodide	at	the	graphene	sheet	(no	waters)	using	the	different	!åa9çö.õ 	values	are	presented	
in	Table	4.3,	along	with	differences	in	adsorption	free	energies	between	the	graphene/water	
and	air/water	interfaces	(see	Equation	(4.12)).	Adsorption	energies	in	the	literature	for	iodide	
adsorption	at	graphene	are	scarce.	Using	density	functional	theory	(DFT),	Zhu	and	Yang28	report	
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a	value	of	-27.0	kJ/mol	for	iodide	at	the	center	of	a	C54H18	single	layer	sheet	(19	aromatic	rings).	
Shi	et	al.29	report	DFT	adsorption	energies	of	-68.2,	-32.2,	and	-25.1	kJ/mol	for	F–,	Cl–	and	Br–,	
respectively,	suggesting	that	the	adsorption	energy	of	I–	is	weaker	than	-25	kJ/mol.	While	it	is	
clear	from	Table	4.3	that	ΔΔ\%]@	is	sensitive	to	!åa9çö.õ,	it	is	reassuring	that	a	value	that	gives	
reasonable	agreement	with	experiment	also	gives	a	sensible	adsorption	energy.	Furthermore,	
given	the	insensitivity	of	the	simulation	results	to	graphene’s	flexibility,	this	suggests	that	the	
experimental	observation	of	similar	adsorption	free	energies	to	the	graphene	and	air	interfaces	
is	due	to	contributions	from	the	direct	graphene-solute	interaction	that	offsets	a	weaker	
contribution	from	solvent	repartitioning	interactions	relative	to	the	vapor	interface.	

Vúaùçû.ü 	 Adsorption	energy	(kJ/mol)	 ††°¢£§	(kJ/mol)	
0.315	 -6.9	 +5.1	
0.708	 -15.4	 -1.9	
1.046*	 -22.8	 -8.9	
Table	4.3:	Adsorption	energy	of	a	single	iodide	to	the	graphene	sheet	(no	waters)	for	different	values	of	!åa9çö.õ ,	and	

differences	in	adsorption	free	energies	between	the	graphene/water	and	air/water	interfaces	(ΔΔ\%]@).	*These	simulations	
were	performed	with	the	flexible	graphene	model.	

4.5 Conclusions	and	Future	Directions	
In	summary,	SHG	signal	vs	thiocyanate	concentration	was	collected	at	the	graphene/water	

interface	and	fit	to	a	Langmuir	model	in	order	to	extract	the	free	energy	of	adsorption,	which	is	
only	-2.0	±	0.4	kJ/mol	larger	than	for	the	air/water	interface.	This	corresponds	to	<	1	kBT,	so	this	
difference,	while	statistically	significant,	is	not	thermodynamically	significant.	If	the	high	carrier	
mobility	of	graphene	led	to	metal-like	behavior,	one	would	expect	that	the	free	energy	would	
instead	be	much	larger	be	in	the	tens	of	kJ/mol,	like	at	the	silica/water	interface.11–13	Molecular	
dynamics	simulations	indicate	that	despite	the	similar	adsorption	free	energies,	qualitative	
differences	in	the	adsorption	mechanism	exist.	First,	the	direct	interaction	of	the	ion	with	
graphene	dominates	the	favorable	adsorption	enthalpy,	while	the	solvent	repartitioning	of	
weakly	interacting	waters,	which	dominates	the	enthalpy	for	the	air/water	case,	is	negligible.	
Second,	the	entropic	penalty	due	to	pinning	of	capillary	waves	at	air/water	is	negligible	for	the	
much	more	rigid	graphene	interface.	

While	these	results	are	certainly	interesting	and	informative,	there	is	still	much	to	be	done	
on	the	experimental	side.	To	verify	that	the	signal	collected	is	actually	on	a	resonance,	and	to	
help	make	the	fit	more	accurate,	data	are	collected	at	multiple	wavelengths.17,35,36	This	has	not	
yet	been	done	for	the	graphene/water	interface,	so	it	would	be	prudent	to	do	so.	Also,	the	
adsorption	mechanism	suggested	by	the	molecular	dynamics	simulations	needs	to	be	verified	
experimentally	through	temperature	dependent	experiments	like	those	described	in	Reference	
16.	
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Chapter	5	–	Model	Comparison	and	Error	Analysis	

5.1 Introduction	
By	inserting	the	Langmuir	equilibrium	expression	into	the	second	harmonic	generation	

expression	to	derive	Equation	(2.18),	the	assumption	is	made	that	the	input	laser	pulses	are	the	

only	electric	fields	present	to	generate	the	polarization.	However,	with	ion	adsorption,	a	double	

layer	can	form
1

	that	can	also	contribute	an	electric	field.	A	solution-gated	field	effect	transistor	

made	with	graphene	and	Na2PO3	solution	even	showed	a	high	capacitance.
2

	Knowing	this,	it	

seems	pertinent	to	account	for	the	surface	potential	in	the	Langmuir	model.	

5.2 The	Langmuir	Model	with	a	Surface	Potential	Term	
If	the	double	layer	contributes	a	third	(static)	electric	field,	!",	a	third	order	polarization	

term	must	be	considered:	

	 # $ ∝ & $ !'(!".	 (5.1)	

Since	!"	is	a	static	field,	the	frequency	of	# $
	is	also	2+	and	# $

	is	indistinguishable	from	

# (
.	Then	the	total	polarization	at	2+	will	be:	

	 #(' = # ( + # $ 	
∝ & ( !'( + & $ !'(!".	 (5.2)	

The	static	electric	field	can	be	integrated	from	the	interface	to	positive	infinity	(water	

phase)	to	yield
3

	

	 #(' ∝ & ( !'( + & $ !'(/",	 (5.3)	

where	/"	is	the	interfacial	potential.	Equation	(5.3)	is	the	& $
	equation	and	is	used	in	the	

Eisenthal	& $
	technique	(sometimes	called	electric	field	induced	second	harmonic	generation,	

or	EFISH).
4

	Generally,	this	technique	is	used	for	nonresonant	measurements,	where	the	main	

contribution	is	from	water	molecules	aligning	to	the	field.
3–5

	This	means	the	terms	are	all	real	

valued.	The	resonant	case	becomes	more	complicated.	Converting	to	intensities	and	dividing	by	

the	input	field	gives	

	 1('
1'(

∝ & ( + & $ /"
(
.	 (5.4)	

Expanding	into	real	and	imaginary	terms	yields	

	 1('
1'(

∝ 23{& ( } + /"23{& $ }
(
+ 16{& ( } + /"16{& $ }

(
.	 (5.5)	

On	the	molecular	level,	& ( ∝ 789::	and	& $ ∝ 7;9::,	where	8	is	the	molecular	

hyperpolarizability,	;	is	the	third	order	molecular	polarizability,	and	89::	and	;9::	are	
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rotational	averages.	In	the	interest	of	being	succinct,	the	derivation	will	be	for	the	air/water	

interface.	For	other	interfaces,	the	equation	will	be	functionally	the	same,	using	the	same	

reasoning	as	in	Chapter	3	and	Chapter	4.	Then,	the	species	that	contribute	to	the	signal	are	

water	(real	only)	and	the	anion,	<=	(real	and	imaginary):	

	 1('
1'(

∝ 7>?@9A8>?@9A
9:: + 7BC23{8BC

9::} + /"(7>?@9A;>?@9A
9:: + 7BC23{;BC

9::})
(

+ 7BC16{8BC
9::} + /"7BC16{;BC

9::}
(
.	

(5.6)	

Again,	dividing	by	7>?@9A 	gives	

	 1('
1'(

∝ 8>?@9A
9:: +

7BC

7>?@9A
23{8BC

9::} + /"(;>?@9A
9:: +

7BC

7>?@9A
23{;BC

9::})
(

+
7BC

7>?@9A
16{8BC

9::} + /"
7BC

7>?@9A
16{;BC

9::}
(

.	
(5.7)	

Assuming	89::	and	;9::	are	constant	and	converting	to	molar	concentration	gives	

	 1('
1'(

∝ < + F <= GHA: + /" <I + J <= GHA:

(
+ K <= GHA: + /"! <= GHA:

(
,	 (5.8)	

where	the	subscript	“surf”	indicates	the	anions	at	the	surface.	Constant	names	were	chosen	to	

parallel	the	simple	Langmuir	model.	

The	next	step	is	to	find	an	expression	for	/".	Jena	et	al.	performed	a	nonresonant	& $
	study	

using	NaCl	and	examined	how	the	interfacial	potential	behaved	for	different	concentration	

regions.
5

	They	found	that,	for	 KL= MHNO > 0.13M,	the	interfacial	potential	can	be	described	by	

a	Stern	model	

	
/" =

4VW"X
Y

,	 (5.9)	

where	W"	is	the	surface	charge,	X	is	the	distance	between	the	surface	and	anions,	and	Y	is	the	
dielectric	constant.	Considering	that	chloride	lies	towards	the	kosmotropic	end	of	the	

Hofmeister	series,	it	is	safe	to	assume	that	thiocyanate	will	reach	an	equivalent	surface	

concentration	(and	interfacial	potential)	at	a	lower	bulk	concentration.	The	only	dataset	that	

reaches	a	significantly	lower	concentration	than	0.13M	is	the	temperature	dependent	dataset.	

Assuming	that	W"	is	proportional	to	 <= GHA:	and	the	other	quantities	remain	constant	yields	

	 1('
1'(

∝ < + F <= GHA: + <′ <= GHA: + J <= GHA:
( )

(

+ K <= GHA: + ! <= GHA:
( (

	

∝ < + F <= GHA: + J <= GHA:
( )

(
+ K <= GHA: + ! <= GHA:

( (
.	 (5.10)	
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Substituting	Equation	(2.16)	into	Equation	(5.10)	and	converting	to	mole	fractions	gives	our	

working	Langmuir	model	with	a	surface	potential	term.	

	

1('
1'(

= <′ + F′
[BC

1 − [BC 3
]^
_` + [BC

+ J′
[BC

1 − [BC 3
]^
_` + [BC

( (

+ K′
[BC

(1 − [BC)3
]^
_` + [BC

+ !′
[BC

1 − [BC 3
]^
_` + [BC

( (

	

(5.11)	

During	the	fitting	process,	the	initial	value	for	Δb?cG	had	to	be	adjusted	for	several	datasets	
to	avoid	numerical	overflows	and	erroneous	local	minima.	These	changes	are	noted	in	Table	

5.1.	All	other	parameters	were	initialized	to	+1.	

	 defgh	initial	value	(J/mol)	
Dataset	 SL	 LSP	

KSCN	temperature	dependence
8

	 -7000	 -7000	

NaSCN	dodecanol/water
9

	 -1	 -1000	

NaSCN	<	4M	dodecanol/water
9

	 -5000	 -1	

KSCN	<	4M	dodecanol/water
9

	 -7000	 -7000	

Table	5.1:	Initial	values	used	for	some	datasets.	All	other	initial	values	were	+1.	SL:	simple	Langmuir	model.	LSP:	Langmuir	

with	surface	potential.	

5.2.1 Model	comparison	
There	are	several	metrics	for	comparing	models,	all	originating	from	different	paradigms	of	

statistics.	The	frequentist	metric	is	the	F-test
6

,	calculated	from	Equation	(5.12).	

	

i =
(&jHNN

( − &?N@
( )/(XljHNN − Xl?N@)
&?N@
( /Xl?N@

	 (5.12)	

The	null	hypothesis	is	that	the	simpler	model	(Equation	(2.18))	is	correct.	The	alternative	

hypothesis	is	that	the	more	complex	model	is	correct	(Equation	(5.11)).	Then	the	F	statistic	can	

be	converted	to	a	p-value	and	interpreted	as	normal.	Note	that	the	models	must	be	applied	to	

the	same	datasets	and	the	models	must	be	nested,	i.e.	the	complex	model	must	be	a	

modification	of	the	simple	model,	such	as	adding	the	potential	term	to	the	Langmuir	model.	

The	Akaike	Information	Criterion	(AIC)	is	a	metric	from	Kullback-Leibler	information	theory.
7

	

This	criterion	starts	from	the	assumption	that	there	is	a	true	model	(l(m),	not	known)	and	
calculates	how	much	information	is	lost	by	approximating	the	true	model	with	another	model	

(n(m|p)).	If	the	estimated	parameters	are	p	and	the	data	are	q,	then	the	AIC	is	calculated	as	
follows:	
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	 <1K = −2 log ℒ p q + 2v,	 (5.13)	

where	ℒ p q 	is	the	likelihood	of	the	estimated	parameters	given	the	data,	and	v	is	the	
number	of	parameters	that	were	allowed	to	vary	in	the	fitting	procedure	(<, F, K, J, !,	and	wb,	
but	not	2	and	x).	In	this	way,	the	criterion	accounts	for	the	likelihood	of	the	fit	while	also	
penalizing	models	with	many	parameters;	it	takes	into	account	the	bias-variance	tradeoff.	For	

least	squares,	this	becomes	

	 <1K = y log &(/y + 2v,	 (5.14)	

where	y	is	the	number	of	data	points	and	&(	is	the	sum	of	squared	errors.	

Equations	(5.13)	and	(5.14)	are	generally	only	accurate	for	y v > 40.7	For	small	datasets,	

the	AIC	needs	to	be	corrected.	Unfortunately,	the	correction	depends	on	the	type	of	model	and	

is	not	easily	derived.	The	standard	correction	is	for	a	fixed-effects	linear	model	with	normal	

errors	and	constant	residual	variances,	given	by	Equation	(5.15):	

	
<1Kz = <1K + 2v

v + 1
y − v − 1

	 (5.15)	

One	thing	to	note	about	the	AIC	is	that	it	is	relative	to	the	unknown	true	model.	The	AIC	can	

determine	which	of	two	models	is	better,	but	cannot	determine	if	both	models	are	bad.		

The	Bayesian	metric	is	the	Bayesian	Information	Criterion	(BIC)	and	is	given	by	Equation	

(5.16):
7

	

	 F1K = −2 log ℒ p q + v	log	(y)	 (5.16)	

For	least	squares,	this	becomes	

	 F1K = y log &(/y + v	log	(y).	 (5.17)	

The	derivation	is	purely	from	a	Bayesian	standpoint,	which	presents	two	problems:
7

	One,	it	

is	based	on	the	true	model	being	one	of	the	models	tested.	Two,	the	penalty	for	parameter	

number	is	not	derived	from	the	bias-variance	tradeoff,	so	it	is	unclear	if	it	will	actually	address	

the	tradeoff.	The	BIC	also	does	not	have	corrections	for	small	sample	sizes.	

For	all	of	the	information	criteria,	the	difference,	w{,	can	be	used	to	interpret	the	results:	

	 w{ = 1K{ − 1K|{j,	 (5.18)	

where	1K|{j	is	the	model	with	the	minimum	value	and	the	other	}	models	are	compared	

against	it.	The	differences	can	be	interpreted	according	to	Table	5.2:
7
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~�	 Level	of	empirical	support	for	Model	}	
(0,	2]	 Substantial	support	

(2,	7]	 Some	support	

(7,	10]	 Little	support	

>	10	 No	support	

Table	5.2:	The	interpretation	of	information	criteria	differences,	where	Model	}	is	defined	by	Equation	(5.19).	Table	
adapted	from	Reference	7.	

5.2.2 Comparisons	
For	clarity,	Equation	(2.18)	will	be	abbreviated	as	SL,	for	the	simple	Langmuir,	and	Equation	

(5.11)	will	be	abbreviated	as	LSP,	for	Langmuir	with	surface	potential.	

The	F-test	was	interpreted	with	a	significance	level	of	0.05.	The	information	criteria	

differences	were	always	calculated	as	1KÄÅ − 1KÅÄÇ.	This	means	that	Model	}	is	SL	for	positive	
differences	and	LSP	for	negative	differences.	This	works	because	there	are	only	two	models	in	

the	comparison.	The	absolute	values	of	the	differences	were	interpreted	according	to	Table	5.2.	

To	look	at	the	correlations	between	variables,	all	values	above	0.1	were	extracted	and	the	

fraction	of	these	values	that	were	0.9	or	greater	was	calculated	for	each	model.	A	lower	

fraction	was	considered	support	for	that	model.	

Dataset	 Method	 Result	

NaSCN	graphene/water	

F-test	 evidence	for	LSP	

AIC	 no	support	for	SL	over	LSP	

BIC	 little	support	for	SL	over	LSP	

AICc	 some	support	for	SL	over	LSP	

Correlations	 support	for	SL	

Conclusion	 inconclusive*	

KSCN	temperature	

dependence
8

	

F-test	 no	evidence	for	LSP	

AIC	 no	support	for	SL	over	LSP	

BIC	 some	support	for	LSP	over	SL	

AICc	 no	support	for	LSP	over	SL	

Correlations	 support	for	SL	

Conclusion	 SL	is	better	

NaSCN	dodecanol/water
9

	

F-test	 evidence	for	LSP	

AIC	 some	support	for	SL	over	LSP	

BIC	 some	support	for	LSP	over	SL	

AICc	 substantial	support	for	LSP	over	SL	

Correlations	 support	for	LSP	

Conclusion	 LSP	is	better	
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NaSCN	<	4M	

dodecanol/water
9

	

F-test	 evidence	for	LSP	

AIC	 some	support	for	SL	over	LSP	

BIC	 some	support	for	LSP	over	SL	

AICc	 some	support	for	LSP	over	SL	

Correlations	 support	for	SL	

Conclusion	 inconclusive*	

KSCN	dodecanol/water
9

	

F-test	 no	evidence	for	LSP	

AIC	 some	support	for	LSP	over	SL	

BIC	 little	support	for	LSP	over	SL	

AICc	 little	support	for	LSP	over	SL	

Correlations	 support	for	LSP	

Conclusion	 SL	is	better	

KSCN	<	4M	dodecanol/water
9

	

F-test	 no	evidence	for	LSP	

AIC	 some	support	for	LSP	over	SL	

BIC	 little	support	for	LSP	over	SL	

AICc	 no	support	for	LSP	over	SL	

Correlations	 support	for	SL	

Conclusion	 SL	is	better	

NaSCN	air/water
10

	

F-test	 evidence	for	LSP	

AIC	 no	support	for	SL	over	LSP	

BIC	 no	support	for	SL	over	LSP	

AICc	 no	support	for	SL	over	LSP	

Correlations	 support	for	SL	

Conclusion	 inconclusive**	

Table	5.3:	A	summary	of	the	model	comparisons	for	all	the	datasets	considered,	along	with	the	final	conclusions	about	the	

appropriate	model.	For	the	datasets	from	Reference	9,	in	the	original	analysis,	the	fits	did	not	converge	for	the	full	datasets	and	

were	truncated.	SL:	simple	Langmuir	model.	LSP:	Langmuir	with	surface	potential.	*It’s	likely	that	neither	model	works	well	for	

these	datasets.	**LSP	had	trouble	converging	on	sensible	fits,	which	made	the	comparisons	suspect.	

Table	5.3	summarizes	the	results	from	the	model	comparisons	for	the	graphene/water	

dataset	described	in	Chapter	4,	as	well	as	several	other	datasets	from	previous	publications.
8–10

	

One	set	is	the	temperature	dependence	of	KSCN	at	the	air/water	interface	by	Otten	et	al.	Four	

sets	come	from	Onorato	et	al.:	both	NaSCN	and	KSCN	at	the	dodecanol/water	interface	and	the	

two	datasets	truncated	to	concentrations	less	than	4M.	The	reason	given	by	the	authors	is	that	

the	full	datasets	did	not	converge	to	sensible	fits;	the	KSCN	dataset	didn’t	converge	at	all.	This	

was	also	done	here	for	completeness.	The	final	set	is	NaSCN	at	the	air/water	interface	from	

Petersen	et	al.	The	Δb?cG	values	have	also	been	collected	in	Table	5.4.	This	is	the	only	
parameter	that	retains	physical	meaning,	so	the	others	are	not	discussed	further.	The	full	

results	of	the	model	comparisons	and	the	fit	values	are	given	in	Appendix	6.	

It	is	worth	noting	some	discrepancies.	First,	the	value	for	Δb?cG	for	the	NaSCN	air/water	
dataset	is	more	negative	than	the	other	datasets,	including	the	analogous	air/water	isotherm	
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from	the	temperature	dependent	dataset.	This	is	likely	due	to	the	accumulation	of	

photoproducts	during	the	measurement	process.
11

	Subsequent	experiments	were	modified	to	

avoid	this.	Second,	the	current	study	had	no	trouble	with	the	full	dodecanol/water	datasets	

converging;	the	truncated	datasets	were	more	troublesome	in	this	regard.	Also,	the	values	

obtained	for	Δb?cG	in	this	study	(shown	in	Table	5.4)	were	systematically	less	negative	than	

those	reported	in	Reference	9.	This	is	likely	due	to	differences	in	the	fitting	equation	and/or	

algorithms.	However,	this	cannot	be	determined	with	certainty	because	the	exact	fitting	

procedure	is	undocumented.	

For	the	graphene/water	dataset,	the	simple	Langmuir	performed	better	than	the	Langmuir	

with	surface	potential,	but	this	is	likely	because	neither	model	does	a	good	job	of	fitting	the	

data;	hence,	the	inconclusive	results	for	this	dataset.	This	is	likely	because	of	the	quality	of	the	

data.	Obtaining	better	quality	data	(by	reducing	error	bars,	extending	the	concentration	range,	

or	collecting	at	more	wavelengths)	would	likely	give	a	more	conclusive	comparison.	The	NaSCN	

<	4M	dodecanol/water
9

	dataset	also	gave	inconclusive	results	for	similar	reasons.	The	result	for	

the	NaSCN	air/water	dataset	was	inconclusive	because	the	Langmuir	with	surface	potential	did	

not	behave	well.	The	support	is	large	for	the	Langmuir	with	surface	potential	over	the	simple	

Langmuir,	but	the	difficulty	of	using	the	Langmuir	with	surface	potential	indicates	that	the	

results	may	be	suspect.	The	simple	Langmuir	was	better	for	the	temperature	dataset,	which	is	

likely	because	the	low	concentration	region	is	not	well	described	by	the	Stern	model.	The	

simple	Langmuir	was	also	better	for	the	KSCN	dodecanol/water	datasets,	however	the	same	

explanation	does	not	apply.	

One	interesting	thing	to	note	is	that	the	Langmuir	with	surface	potential	performed	better	

for	the	full	NaSCN	dodecanol/water
10

	dataset.	The	authors	of	the	original	paper	noted	that	

there	was	a	“salient	kink”	in	the	dataset	that	caused	upward	deviations	from	the	fit	at	higher	

concentrations,	the	same	as	with	the	graphene/water	dataset.	Perhaps	this	kink	is	indicative	of	

the	surface	potential	becoming	nonnegligible.	Using	the	Langmuir	model	with	surface	potential	

does	bring	Δb?cG	for	the	full	NaSCN	dodecanol/water	dataset	into	agreement	with	the	

truncated	dataset.	

Datasets	 Model	

Reported	
values	
(kJ/mol)	

Values	from	
fit	and	
covariance	
(kJ/mol)	

Values	from	
Jackknife,	
É(.) ± ÖfÜ	
(kJ/mol)	

Bias	
corrected,	
ÉáàÜÜ	(kJ/mol)	

NaSCN	

graphene/water	

SL	 -8.8	±	0.4	 -8.8	±	0.4	 -9	±	2	 -11	

LSP	 	 -5.0	±	1.7	 -5	±	3	 -5	

KSCN	274K	

air/water
8

	

SL	 -7.06	±	0.09	 -7.16	±	0.09	 -7.2	±	0.2	 -7.1	

LSP	 	 -9.3	±	0.3	 -9.4	±	1.8	 -6.6	

KSCN	283K	

air/water
8

	

SL	 -6.97	±	0.04	 -7.09	±	0.03	 -7.09	±	0.14	 -7.15	

LSP	 	 -9.0	±	0.2	 -9	±	5	 -9	

KSCN	293K	

air/water
8

	

SL	 -6.78	±	0.03	 -6.92	±	0.03	 -6.9	±	0.2	 -6.9	

LSP	 	 -9.6	±	0.4	 -9.6	±	0.4	 -9.1	
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KSCN	303K	

air/water
8

	

SL	 -6.5	±	0.2	 -6.68	±	0.15	 -6.68	±	0.9	 -6.73	

LSP	 	 -8.2	±	1.9	 -8.2	±	1.3	 -8.1	

KSCN	313K	

air/water
8

	

SL	 -6.46	±	0.09	 -6.66	±	0.08	 -6.7	±	0.7	 -6.0	

LSP	 	 -10.3	±	0.5	 -10	±	3	 -6	

NaSCN	

dodecanol/water
9

	

SL	 -4.5	±	0.9	 -3.2	±	1.4	 -3.2	±	1.3	 -3.9	

LSP	 	 -6.7	±	1.5	 N/A	 N/A	

NaSCN	<	4M	

dodecanol/water
9

	

SL	 -6.7	±	1.1	 -6.2	±	1.3	 -6.2	±	1.5	 -7.7	

LSP	 	 -5	±	6	 -5	±	3	 -9	

KSCN	

dodecanol/water
9

	

SL	 N/A	 -3.5	±	0.6	 -3.5	±	0.3	 -3.2	

LSP	 	 -7	±	3	 -7	±	1	 -8	

KSCN	<	4M	

dodecanol/water
9

	

SL	 -6.3	±	1.8	 -6	±	3	 -5.5	±	1.4	 -6	

LSP	 	 -7	±	10	 N/A	 N/A	

NaSCN	air/water
10

	

SL	 -7.53	±	0.13	 -7.6	±	0.4	 -7.6	±	3	 -7.6	

LSP	 	 -7	±	3	 -7	±	3	 -5	

Table	5.4:	The	collected	wb?cG	values	for	the	datasets.	All	units	are	in	kJ/mol.	SL:	simple	Langmuir	model.	LSP:	Langmuir	

with	surface	potential.	The	reported	values	are	included	for	comparison.	The	three	calculated	values	are	from	the	least	squares	

fit,	the	jackknife	calculation,	and	the	bias-corrected	jackknife	calculation.	For	the	NaSCN	dodecanol/water	dataset	and	the	KSCN	

<	4M	dodecanol/water	dataset,	the	LSP	subfits	had	trouble	converging	and	the	subsequent	calculations	were	not	reasonable.	

5.3 Error	Analysis	
In		Chapter	4,	we	found	that	the	difference	in	free	energy	between	the	graphene/water	

interface	and	the	air/water	interface	was	statistically	significant,	but	not	thermodynamically	

significant.	In	this	case,	getting	accurate	error	bars	on	the	parameters	was	not	crucial.	It	is	easy	

to	imagine	a	situation	where	the	difference	is	thermodynamically	significant,	such	as	if	

graphene	was	indeed	behaving	like	a	metal.	In	that	case,	it	is	important	to	know	the	parameter	

errors	accurately.	Given	the	difficulties	that	arose	during	the	model	comparison	calculations,	it	

is	also	worth	discussing	the	errors	generated	from	the	nonlinear	fitting	process.	

5.3.1 Nonlinear	regression	and	the	covariance	matrix	
Nonlinear	regression	programs	generally	employ	the	least	squares	approach.	There	are	four	

main	assumptions	in	this	approach:
6

	

• There	is	no	error	in	X,	only	in	Y.	

• The	error	in	Y	follows	a	known	distribution.	

• In	unweighted	nonlinear	regression,	Y	has	uniform	variance.	In	weighted	nonlinear	

regression,	the	variance	is	described	by	a	known	relation,	such	as	1/W(.	
• The	Y	values	are	independent.	

The	parameter	errors	are	calculated	from	the	covariance	matrix,	which	is	the	inverse	of	the	

Hessian	matrix.
12

	The	Hessian	is	approximated	with	the	Jacobian	matrix:	ℋ = ä`ä,	setting	the	
second	order	derivative	term	to	zero.	This	approximation	is	valid	when	there	are	many	data	

points,	little	scatter,	and	the	points	define	the	curve	well.	Otherwise,	the	error	tends	to	be	
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underestimated	when	calculated	in	this	way.
6

	In	the	literature,	reported	errors	are	usually	

calculated	in	this	way.	

5.3.2 The	jackknife	estimator	
One	tool	in	the	statistician’s	belt	is	the	jackknife	estimator.	It	is	a	nonparametric	method	

that	allows	the	calculation	of	variance	when	a	sum	of	squares	is	not	easily	defined.
13

	If	the	

errors	generated	from	the	covariance	matrix	can	be	thought	of	as	a	lower	bound	on	the	true	

error,	then	the	jackknife	can	be	thought	of	as	an	upper	bound.	More	importantly,	the	jackknife	

can	remove	bias	(i.e.	the	difference	between	the	estimated	parameter	and	the	true	parameter)	

of	the	order	1/y,	where	y	is	the	total	number	of	data	points.
14

	

The	algorithm	works	by	systematically	removing	points	from	the	dataset	and	estimating	the	

parameter	with	this	subset.	Let	p(={)	be	the	parameter	estimates	with	point	}	removed,	then	

the	jackknife	estimate	of	the	parameters,	p(.)	,	is	the	average	of	these	estimates:	

	

p(.) =
1
y

p(={)

j

{ãå

.	 (5.19)	

The	bias	corrected	estimate,	pzçAA,	is	

	 pzçAA = yp − (y − 1)p(.),	 (5.20)	

where	p	are	the	estimates	for	the	full	dataset.	

The	variance,	éèê,	is	calculated	as	follows:	

	

éèê =
y − 1
y

p ={ − p .
(
.

j

{ãå

	 (5.21)	

For	the	NaSCN	air/water	dataset,	the	estimated	parameter	values	for	the	full	dataset	were	

used	as	the	initial	values	for	the	subsets.	For	the	other	datasets,	the	initial	values	for	the	

subsets	were	the	same	as	used	for	the	full	datasets.	If	any	subsets	generated	erroneous	fits,	the	

fits	were	recalculated	using	the	estimated	parameter	values	for	the	full	dataset	as	initial	values.	

The	values	calculated	for	Δb?cG	are	summarized	in	Table	5.4.	For	the	NaSCN	

dodecanol/water	dataset	and	the	KSCN	<	4M	dodecanol/water	dataset,	the	LSP	subfits	had	

trouble	converging	and	the	subsequent	calculations	were	not	reasonable.	Considering	the	size	

of	the	error	for	the	KSCN	<	4M	dodecanol/water	dataset,	this	is	understandable.	One	curiosity	

is	that	most	of	the	dodecanol/water	results	have	smaller	errors	for	the	jackknife	calculation.	

The	reason	for	this	is	not	apparent	and	further	analysis	will	be	needed	to	ascertain	it.	Another	

curiosity	is	that	using	the	Langmuir	model	with	surface	potential	for	the	temperature	

dependent	dataset	yields	Δb?cG	that	are	not	monotonic	with	temperature,	no	matter	which	
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result	is	examined.	However,	the	model	comparison	conclusively	supported	the	simple	

Langmuir	for	this	dataset.	

The	jackknife	estimates,	p(.),	agree	with	the	values	from	the	fitting	procedure,	which	

supports	the	validity	of	the	jackknife	calculation.	In	general,	the	bias-corrected	results	also	

agree,	which	proves	the	validity	of	the	fitting	procedure.	Some	notable	exceptions	are	the	SL	

model	for	the	graphene/water	dataset	and	both	models	for	the	NaSCN	<	4M	dodecanol/water	

dataset.	This	further	supports	the	conclusion	that	neither	model	was	able	to	fit	these	datasets	

very	well.	

5.4 Conclusions	and	Future	Directions	
Two	models	for	ion	adsorption	were	compared:	the	simple	Langmuir	model	(Equation	

(2.18))	and	the	Langmuir	model	with	surface	potential	(Equation	(5.11)).	The	results	generally	

indicate	that	the	simple	Langmuir	is	sufficient,	but	there	are	situations	where	the	Langmuir	

model	with	surface	potential	is	more	appropriate.	Datasets	that	have	“salient	kinks,”	like	the	

dodecanol/water	datasets
9

	or	the	graphene/water	dataset,	are	potentially	described	better	by	

the	Langmuir	model	with	surface	potential.	However,	without	significant	improvements	in	the	

data,	the	error	analysis	indicates	that	the	model	will	overfit	the	data	in	most	cases.	

A	possibility	for	calculating	more	accurate	parameter	errors	would	be	to	use	the	F-test	for	

model	comparison	as	above,	except	that	the	alternate	hypothesis	is	a	different	set	of	

parameter	values.
6

	The	critical	F	value	for	the	desired	significance	level	is	easily	looked	up.	Then	

parameter	values	are	varied	to	find	the	contour	of	values	that	make	up	the	significance	level	

boundary.	The	subsequent	interval	is	then	the	maximum	and	minimum	values	of	the	parameter	

on	this	contour.	The	dodecanol/water	datasets	seem	like	good	candidates	for	this,	as	does	the	

graphene/water	dataset.	See	Reference	6	for	a	more	in-depth	explanation	of	the	algorithm.	

A	possibility	for	improving	the	fit,	when	necessary,	would	be	to	treat	the	model	with	a	full	

maximum	likelihood	treatment.	Under	the	assumptions	of	nonlinear	fitting,	maximizing	the	

likelihood	function	is	the	same	as	minimizing	the	sum	of	squared	errors.
12

	The	bias-corrected	

values	for	the	SL	model	of	the	graphene/water	dataset	and	both	models	for	the	NaSCN	<	4M	

dodecanol/water	dataset	indicate	that	the	least	squares	algorithm	did	not	find	the	most	likely	

parameter	estimates.	Maximizing	the	likelihood	function	directly	might	bypass	this.	The	

algorithm	seems	straightforward:	maximize	the	joint	probability	of	the	data	points,	given	the	

parameter	values.	The	problem	will	be	to	derive	a	probability	distribution	function	from	the	

Langmuir	model.	
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Chapter	6	–	Conclusions	and	Future	Directions	
Chapters	3-5	each	provided	some	suggestions	for	future	work	directly	related	to	the	

projects,	but	there	are	a	few	directions	that	overlap	between	the	projects	which	warrant	
further	discussion.	

6.1 Thin,	uncharged	monolayers	
In	Chapter	4,	we	saw	that	the	free	energy	of	adsorption	of	thiocyanate	to	the	

graphene/water	interface	was	similar	to	that	for	the	air/water	interface,	masking	an	adsorption	
mechanism	that	differed	significantly.	This	result	is	similar	to	a	previous	study	from	our	group	
involving	dodecanol.1	When	a	monolayer	of	dodecanol	was	added	to	the	surface	of	NaSCN	and	
KSCN	solutions,	the	extracted	free	energies	of	adsorption	were	also	similar	to	those	for	the	
air/water	interface.	Furthermore,	the	Geiger	group	has	done	several	studies	of	the	
silica/graphene/liquid	interface	where	the	liquids	are	aqueous	NaCl,2	aqueous	MgCl2,3	and	
hexanol	in	cyclohexane.4	In	all	three	studies,	the	free	energy	of	adsorption	did	not	change	much	
when	the	graphene	was	added.	Considering	the	range	of	values	for	adsorption	free	energy,	the	
differences	when	adding	graphene	in	the	above	systems	are	small	in	comparison.	The	different	
results	are	tabulated	in	Figure	6.1.	What	is	curious	is	that	the	systems	still	show	mechanistic	
changes,	like	for	the	graphene/water	interface.	Dodecanol	can	participate	in	the	hydrogen	
bonding	network,5,6	affecting	the	enthalpy.	Graphene	screened	silica	in	the	NaCl	study,2	
affecting	enthalpy	as	well.	As	seen	for	the	graphene/water	interface,	the	changes	balance	out	
so	that	the	free	energy	of	adsorption	remains	similar.	We	postulate	that	adding	an	atomically	
thin,	uncharged	layer	to	an	interface	does	not	significantly	affect	equilibrium	adsorption	
behavior,	regardless	of	the	mechanism.	If	toluene	actually	forms	a	monolayer	when	dropped	
onto	the	surface,	then	the	results	of	Chapter	3	also	support	this.	The	enthalpy	and	entropy	
would	also	be	affected	by	!-hydrogen	bonding.7	

	

Figure	6.1:	A	summary	of	systems	that	show	little	change	in	the	free	energy	of	adsorption	with	and	without	an	inserted	
atomically	thin	layer.	a)	Chapter	4.	b)	Reference	1.	c)	Reference	8.	d)	Reference	2.	e)	Reference	3.	See	the	reference	for	a	
detailed	explanation	of	Δ#$%&.	f)	Reference	4.	
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This	requires	a	reinterpretation	of	experiments	that	use	substrates	to	support	the	
monolayers,	such	as	windows	or	prisms	(as	in	attenuated	total	reflection	experiments).	For	
example,	Tian	and	Shen	measured	the	adsorption	of	chloride	to	the	
octadecyltrichlorosilane/water	interface	and	found	Δ#$%&	=	-39.5	kJ/mol	(no	error	reported).9	
Considering	that	chloride	is	not	enhanced	or	depleted	at	the	air/water	interface,10	it	is	
surprising	that	a	hydrophobic	interface	would	cause	such	a	large	increase.	Vazdar	et	al.	
predicted	that	the	surface	excess	for	chloride	at	a	hydrophobic	interface	would	only	be	0.06	
ions/nm2.11	However,	the	monolayer	of	octadecyltrichlorosilane	was	supported	by	a	fused	silica	
window.	Achtyl	et	al.	demonstrated	that	a	layer	of	graphene	was	not	sufficient	to	completely	
screen	the	silica	surface	charge.2	It	is	possible	that	the	silica	is	dictating	the	interfacial	behavior,	
not	the	octadecyltrichlorosilane,	but	this	is	hard	to	say	with	certainty,	since	Tian	and	Shen	did	
not	measure	the	bare	silica/water	interface	and	the	free	energy	cannot	be	compared	to	other	
experiments.	

More	work	will	have	to	be	done	to	verify	this	hypothesis.	For	one	thing,	the	toluene	results	
need	to	be	refined.	More	interfaces	will	also	have	to	be	studied.	It	would	be	interesting	to	
repeat	the	studies	with	silica,	but	changing	phase	A	to	air,	or	to	a	different	window	material,	
such	as	CaF2.	

6.2 Surface	potential	
Related	to	alkane	monolayers,	there	is	a	phenomenon	called	surface	freezing	that	is	known	

to	happen	with	liquid	alkanes.12	At	a	temperature	a	few	degrees	above	the	bulk	freezing	
temperature,	the	surface	layer	will	actually	form	an	ordered,	crystalline	monolayer.	A	similar	
transition	can	be	induced	in	alkane	lenses	on	water	by	adding	a	surfactant;	the	surfactant	
creates	a	mixed	monolayer	with	the	alkane,	forming	an	ordered	monolayer.13–18	The	most	
common	surfactants	used	are	alkyltrimethylammonium	bromides	(CnTAB).	Surface	freezing	has	
been	demonstrated	for	C16TAB	with	C11-C20	(where	Cn	is	an	alkane),13–16	C14TAB	with	C14	and	
C16,16	C12TAB	with	C16,18	and	C16TAB,	C14TAB,	and	C12TAB	with	dodecanol.17	

These	surfactants	are	charged,	so	varying	their	concentration	in	the	monolayer	varies	the	
surface	potential.	In	light	of	the	results	in	Chapter	5,	it	seems	prudent	to	study	the	surface	
potential	involved	in	the	adsorption	process	more	thoroughly.	By	choosing	an	appropriate	
surfactant/alkane	combination,	the	surface	potential	can	be	varied	systematically.	Matsubara	
et	al.	reviewed	several	combinations	and	provide	a	helpful	summary.19	These	experiments	
would	also	compliment	work	done	by	the	Netz	group	to	examine	how	surface	charge	affects	
the	ordering	of	the	Hofmeister	series.20–22	
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Appendix	1	–	Alignment	
	
See	the	figures	at	the	end	for	the	alignment	diagram	and	for	abbreviations.	
	
There	is	a	box	that	surrounds	L1-M6.	This	is	to	block	air	currents	around	the	table.	These	
currents	can	affect	measurements,	so	make	sure	it	is	in	place	when	collecting	data.	There	are	
also	remnants	of	a	purge	box	around	M6,	PB,	and	L3.	I	use	these	to	block	stray	beams.	I	also	put	
a	piece	of	cardboard	over	the	top	of	the	panels	above	L3	to	catch	spills	from	my	samples	as	I	
put	them	in	the	holder.	Boxes	are	represented	by	dashed	lines	in	the	diagram.	
	
Full	Alignment	
The	beam	shape	isn’t	the	best,	so	choose	a	bright	point	in	the	beam	and	always	align	to	that.	
Don’t	try	to	align	the	whole	shape.	I	don’t	usually	have	to	adjust	any	of	the	stands,	either.	If	you	
feel	like	you	have	to	adjust	stands,	the	alignment	is	likely	off	somewhere	else.	Try	to	do	the	
alignment	as	quickly	as	possible,	too,	because	the	water	does	evaporate	noticeably.	

1. Slide	the	box	out	of	the	way	(it	can	be	pushed	straight	back	a	few	inches).	
2. Remove	filters,	M3-M6,	L1,	L2,	and	PB.	The	beam	sampler	can	be	rotated	out	of	the	

way.	A	collar	is	helpful	for	M3.	
3. Align	M1	and	M2.	The	line	of	the	experiment	after	M2	is	marked	on	the	table.	The	

height	is	6”.	
4. Set	the	iris.	
5. Replace	M3.	Since	this	one	just	goes	straight	up,	it’s	difficult	to	be	certain	of	the	

alignment.	There	is	a	notecard	taped	to	the	underside	of	the	shelf	with	a	target	on	it	
that	can	be	used.	

6. Take	the	sample	dish	off	the	magnetic	base.	Replace	M4.	M4	should	direct	the	beam	to	
a	~60	degree	angle.	If	the	post	hasn’t	been	adjusted,	then	the	card	taped	to	the	table	on	
the	far	right	should	achieve	the	desired	angle.	Now	the	trick	is	to	align	the	beam	
horizontally.	I	have	a	target	on	a	post	(made	of	a	1.5”,	1”,	and	12”	post)	that	I	use	to	do	
this.	I’ve	marked	a	screw	hole	to	the	left	of	the	sample	holder	where	the	height	works	
out.	Unfortunately,	the	target	doesn’t	screw	tightly,	so	you	have	to	judge	the	
straightness	by	eye.	If	you	are	having	a	lot	of	trouble,	adjust	M3	a	bit.	

7. Replace	the	sample	dish	and	put	a	water	sample	in	it.	Adjust	the	height	so	that	your	
chosen	beam	spot	is	in	the	center	of	the	dish	and	on	the	water	surface.	Dipping	a	
notecard	vertically	into	the	water	can	help	with	this.	

8. At	this	point,	the	water	level	is	set.	If	anything	happens	to	change	it,	the	height	needs	to	
be	realigned.	If	M6	is	in,	you	can	align	the	height	there.	

9. Replace	M5.	There	is	a	target	below	this	mirror	to	aim	for.	Use	the	post	target	to	double	
check	horizontal	alignment	going	to	M5.	There	is	another	screw	hole	to	the	right	of	the	
sample	that	is	marked.	

10. Replace	M6.	Be	careful!	This	mirror	can	end	up	pointed	at	your	face.	At	this	point,	I	find	
it	helpful	to	remove	the	panels.	The	new	line	for	the	beam	is	marked	again.	The	new	
height	is	4”.	If	this	mirror	is	hard	to	align,	try	adjusting	M5	a	little	bit.	It	is	possible	to	see	
the	beam	through	the	alignment	card,	so	I	usually	use	the	card	facing	me.	
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11. Replace	L1.	It	is	mounted	in	a	lens	tube	with	an	iris	on	it.	In	my	experience,	the	beam	
can	still	be	used	for	alignment	after	M6,	even	though	it’s	diverging.	Between	that	and	
the	iris,	you	can	align	the	lens.	Watch	out	for	the	back	reflection	on	this	one.	There	is	no	
anti-reflective	coating	on	the	lens,	so	there’s	a	large	back	reflection.	

12. Replace	L2.	This	is	also	in	a	lens	tube.	Align	the	lens	and	then	check	the	collimation.	If	
the	collimation	needs	adjusting,	turn	the	tube	in	the	mount.	This	is	much	easier	than	
adjusting	the	post.	

13. Move	the	beam	sampler	back	into	place	and	rotate	to	direct	it	onto	the	photodiode.	
14. At	this	point,	you	are	ready	to	put	the	Pellin	Broca	prism	in.	Since	this	has	to	be	done	

daily,	anyway,	see	the	Daily	Alignment	section.	
15. Final	checks:	

a. Make	sure	the	focus	of	L1	is	near	the	center	of	the	stage.	Turn	the	tube	in	the	
mount	to	adjust	the	focus,	if	needed.	

b. Take	the	sample	holder	off	and	check	the	alignment	on	the	far	right	card.	It	
probably	won’t	be	exactly	on	target,	but	remember	where	it	is.	Outline	it	on	the	
card,	if	you	want.	

	
Daily	Alignment	

1. Move	the	box	back	and	remove	the	sample	holder.	
2. Align	to	the	iris	and	the	card	on	the	table	to	the	far	right.	
3. Replace	the	sample	holder	and	put	in	a	water	sample.	
4. Check	the	height	after	M6.	Adjust	M1	and	M2	more	if	needed.	
5. If	the	prism	is	not	in	place	yet:	

a. Make	sure	that	the	PMT	is	off.		
b. Remove	L3	if	it	is	there.	
c. Make	sure	the	front	and	right	panels	are	in	place.	
d. Replace	PB.	Adjust	it	so	that	the	fundamental	is	normal.	If	the	prism	was	

removed	while	the	SHG	was	normal,	turn	it	in	the	base	until	the	fundamental	is	
at	~10mm	from	center	when	the	alignment	card	is	4”	away.	Then	use	the	knob	
on	the	rotation	stage	to	make	the	fundamental	normal.	

e. Replace	L3.	This	is	also	in	a	beam	tube	with	an	iris,	so	you	can	use	the	iris	to	
assist	in	alignment.	

f. Turn	the	fundamental	past	~10mm	on	the	card	4”	away.	
g. Turn	the	PMT	on	and	start	the	LabView	acquisition	program.	
h. Switch	to	a	thiocyanate	sample	if	available.	
i. Turn	the	knob	back	towards	normal	while	watching	the	signal	in	LabView.	Adjust	

the	knob	for	maximum	signal.	
6. Adjust	the	boxcar	for	the	signal	and	reference.	I	adjust	the	delay	so	that	the	signal	is	

slightly	after	the	box.	I	try	to	adjust	the	width	so	that	the	main	part	of	the	box	gets	the	
positive	signal	and	the	box	shoulder	gets	the	negative	signal.	Reference	sensitivity	is	
always	0.1V/V	and	signal	sensitivity	is	always	0.2V/V.	Check	my	lab	notebooks	for	typical	
values.	Adjust	the	baselines	to	be	near	zero.	The	reference	baseline	tends	to	drift	
downward	throughout	the	day.	

7. 7.	I	adjust	the	power	supply	on	the	table	to	0.97V.	
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Notes	on	the	electronics	
Turn	on	order:	

1. Power	supply	below	table,	boxcar,	DAQ	card	
2. Photodiode,	power	supply	on	table,	amplifier	box,	oscilloscope	

Reverse	for	shut	down	
	
Power	supply	below	table	setup:	
This	power	supply	runs	the	custom	box	for	the	amplifier.	The	PMT	also	used	to	be	connected	to	
the	box,	but	we	don’t	use	that	connection	anymore.	There	is	a	special	wire	that	connects	the	
two.	It	has	a	DB9	connector	on	one	end	that	plugs	into	the	box.	The	other	end	has	five	wires	
that	need	to	be	plugged	into	the	power	supply.	Left	to	right,	the	wires	are	red,	black	(either),	
uncovered,	black,	white.	The	voltage	between	red	and	uncovered	needs	to	be	15.5V.	The	
voltage	between	white	and	uncovered	needs	to	be	-5V.	There	is	a	cheat	sheet	on	top	of	the	
power	supply.	
	
Power	supply	on	table	setup:	
This	power	supply	runs	the	PMT.	It	also	has	a	special	wire.	One	end	is	a	DB9	connector	that	
plugs	into	the	PMT	and	the	other	end	has	three	wires	that	connect	to	the	power	supply.	From	
left	to	right,	the	wires	are	yellow,	black,	red,	none,	none.	Adjust	the	20V	channel	to	15V.	The	6V	
channel	is	a	variable	voltage.	It	can	be	set	between	0.2-1.2V.	This	spec	is	for	the	PMT,	not	the	
power	supply.	The	power	supply	can	do	6V,	but	you	should	not	send	that	to	power	the	PMT.	I	
find	that	0.97V	works	best	for	this	experiment.	There	is	also	a	cheat	sheet	on	the	power	supply.	
	
Parts:	
M1:	Edmund	Optics	84-621	360-440nm	Ultrafast	dielectric.	(needed	to	separate	TOPAS	output)	
M2:	CVI	PAUV-PM-1025-C	
M3:	CVI	Al	PW1-1037-C	(discontinued,	their	aluminum	mirrors	should	work)	
M4:	CVI	Al	PW1-1037-C	
L1:	f	=	100mm	at	400nm,	fused	silica	(don’t	know	much	else,	but	it	works)	
L2:	CVI	PLCX-25.4-46.4-CFUV,	f	=	100mm	
M5:	CVI	DUVA-PM-1025-UV	(these	wear	out	quickly)	
M6:	CVI	DUVA-PM-1025-UV	
PB:	Thorlabs	ADBV-10	CaF2	
L3:	CVI	PLCX-25.4-46.4-CFUV,	f	=	150mm	
Grating:	Richardson	Gratings	53*-120R	1200gr/mm	150nm	blaze	
PMT:	Hamamatsu	R7154	PHA	
In	general,	anti-reflective	coatings	kill	the	signal,	so	I	don’t	use	them	on	my	optics.	
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Figure	A2.1:	The	first	part	of	the	optical	setup.	This	view	is	in	the	plane	of	the	laser	table.	

	
Figure	A2.2:	This	view	is	perpendicular	to	the	table	and	parallel	to	the	fume	hood.	M3	directs	the	beam	up	by	90	degrees.	
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Figure	A2.3:	This	view	is	in	the	plane	of	the	table	again.	M6	directs	the	beam	towards	the	hood,	essentially	acting	as	a	periscope.	
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Appendix	2	–	Sample	Preparation	
	
For	solutions	
Day	0	(can	be	left	out)	

1. Put	a	100x50mm	petri	dish	(or	several	if	a	lot	of	salt	is	needed)	in	NoChromix.	Let	soak	
overnight.	

	
Day	1	
If	Day	0	left	out:	

1. Put	a	100x50mm	petri	dish	(or	several	if	a	lot	of	salt	is	needed)	in	piranha	(~1	part	H2O2:	
3	parts	H2SO4).	Let	soak	for	~1	hour.	

Both:	
2. Rinse	dish	vigorously	with	Millipore	water.	
3. Place	dish	in	oven	to	dry	(any	setting	4	or	above).	Takes	10-30	mins.	
4. Remove	dish	from	oven.	
5. As	soon	as	you	are	able	to	handle	it,	pour	NaSCN	solid	into	the	dish.	Weigh	if	desired.	

You	just	need	enough	for	the	solutions,	plus	~5g	more	for	water	loss.	As	long	as	there	is	
at	least	that	much,	mass	doesn’t	matter.	

6. Put	dish	back	in	oven	(I	use	the	top	rack	so	nothing	falls	in	it).	Bake	overnight	at	
maximum	setting.	

7. Put	in	NoChromix:	
a. 1	amber	flask	per	concentration	(no	stopper	yet)	
b. 1	flask	to	hold	Millipore	water	(200mL	is	best)	
c. spatulas	(a	50mL	graduated	cylinder	works	for	containing	them)	
d. 1	sample	dish/lid	pair	
e. 1	4”	glass	disk	per	salt	dish	(used	as	a	lid)	
f. a	dish	to	dry	the	disks	in	(125x65mm	works	well)	

	
Day	2	

1. Put	1	stopper	per	flask	in	NoChromix	for	~30	mins.	The	stoppers	are	hollow	with	thin	
glass	on	top,	and	porous	on	the	bottom.	We	don’t	want	to	etch	them	too	much.	

2. Rinse	all	pieces	with	Millipore	water.	Stopper	the	flasks	once	they	are	rinsed.	
3. Dry	in	oven	at	maximum	(~10	mins):	

a. Spatulas	in	GC.	Use	a	small	dish	to	cover	it	(there	is	a	spout	for	air	to	escape).	
b. Put	the	disk	in	the	larger	dish	and	prop	up	with	the	other	small	dish	(dries	faster	

and	prevents	the	disk	from	getting	stuck	to	the	dish).	
4. If	possible	(i.e.	nobody	else	is	using	the	oven),	turn	the	oven	down	to	4	and	wait	

~20mins.	Glassware	will	be	easier	to	handle	at	this	temperature.	
5. Take	out	of	the	oven:	

a. Salt	
b. Disk	in	dish	
c. Spatulas	in	GC	
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d. Cover	the	salt	dish	with	the	disk,	with	the	side	that	was	facing	the	drying	dish	
now	touching	the	salt	dish.	

6. Let	cool	for	25	mins.	May	take	longer	if	oven	was	on	maximum.	You	want	the	salt	to	be	
cool	enough	to	get	a	proper	mass	measurement,	but	you	want	it	to	be	warm	enough	
that	it	doesn’t	stick	to	surfaces.	This	means	it’s	starting	to	accumulate	water,	which	
could	affect	the	mass	measurement.	

7. NaSCN	likes	to	clump	and	is	hard	to	unclump.	The	easiest	way	to	get	it	massed	and	into	
a	flask	is	to	use	a	weight	boat,	add	Millipore	water	to	the	boat,	and	pour	into	the	flask.	

a. Use	the	clean	water	flask	and	disposable	pipets	to	add	Millipore	water.	
8. NaSCN	and	KSCN	dissolving	are	both	endothermic	and	slowish.	I	fill	the	flask	a	bit	more	

(not	to	neck)	and	put	it	in	the	bottom	cabinet	to	the	left	of	the	sink	while	I	clean	up	from	
measuring	the	salt.	

9. Once	the	salt	is	fully	dissolved,	I	fill	the	flask	to	the	line.	You	can	use	the	Millipore	spout	
directly,	but	I’m	not	very	skilled	at	that.	I	pipet	water	from	the	flask	again	to	fill	to	the	
line.	

10. SCN	doesn’t	like	to	mix,	so	you	have	to	invert	the	flask	10	times	to	make	sure	it	is	fully	
mixed.	It	will	not	spontaneously	mix	between	now	and	the	experiment.	There	are	visible	
swirls	that	appear	when	the	solution	is	not	fully	mixed.	

11. Vent	the	flask	quickly	and	store	it	in	the	cabinet	under	the	hood	overnight.	Empirically,	I	
get	better	results	if	I	let	the	solution	sit	overnight.	

12. Put	in	NoChromix:	
a. 1	sample	dish/lid	pair	per	solution	
b. 1	sample	dish/lid	pair	for	water	
c. extra	sample	dishes	and	lids,	as	many	as	possible	
d. A	170x90mm	dish	works	well	for	this.	Then	this	dish	is	also	clean	for	storage	the	

next	morning.	
e. A	190x100mm	dish	to	cover	the	170x90mm	dish.	I	usually	only	fill	the	bottom	

with	1-2cm	of	NoChromix.	The	sides	don’t	matter	as	much	as	the	surface	that	
will	face	the	clean	dishes.	

	
Day	3	–	Data	day	

1. Rinse	all	the	glassware	with	Millipore	water.	Use	the	large	petri	dishes	for	covered	
storage.	

2. When	taking	aliquots	for	measurement:	
a. Take	water	aliquots	straight	from	the	Millipore	system.	Rinse	three	times,	then	

get	the	aliquot.	I	find	it	helps	to	dry	off	the	bottom	of	the	dish	before	taking	it	
over	to	the	sample	holder.	

b. Use	a	disposable	pipet	to	take	aliquots	out	of	flasks.	Draw	up	to	-1mL	on	the	
pipet.	Rinse	the	dish	three	times	with	~1mL	each.	Dispense	the	rest	in	the	dish.	
Draw	again	to	0mL	and	dispense.	This	puts	~18mL	in	the	dish.	

c. Always	keep	dishes	that	are	not	in	use	covered.	
	
For	hydrocarbons	and	alcohols	
Add	these	steps	to	the	appropriate	solution	days:	
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Day	1	
1. Put	in	NoChromix:	

a. Amber	wide	mouth	bottle	(if	a	new	bottle	is	needed;	sometimes	I	just	pour	new	
silica	in	an	old	bottle)	

b. Two	small	petri	dishes	(bottom/lid	pair	works)	
2. Put	in	saturated	KOH	in	ethanol:	

a. Casserole	dish	
b. Lid	for	the	amber	bottle	

	
Day	2	

1. Rinse	the	items	with	Millipore	water.	I	suggest	rinsing	all	the	items	in	base	first,	cleaning	
up	from	the	base,	then	rinsing	items	in	the	acid.	

2. Put	the	casserole,	bottle	and	one	petri	dish	in	the	oven	to	dry.	
3. Shake	as	much	water	off	the	bottle	lid	as	possible,	then	place	in	hood	to	dry	the	rest	of	

the	way.	Put	it	face	up	and	cover	as	much	as	possible	with	the	other	petri	dish	while	
leaving	space	to	vent.	

a. The	Teflon	pad	in	the	lid	will	warp	in	heat,	so	it	can’t	be	put	in	the	oven.	
4. Take	the	casserole	out	and	fill	it	about	half	way	up	with	silica.	That	should	be	plenty.	

Cover	with	foil,	leaving	the	spout	uncovered.	
5. The	silica	needs	to	be	baked	at	500C,	which	requires	a	furnace.	The	upper	class	labs	

have	one.	Talk	to	Dante	Valdez	(306	Latimer,	dvaldez@berkeley.edu)	to	get	access	and	
to	find	out	when	you	can	use	it.	For	using	this	furnace:	

a. Take	the	casserole	with	silica	and	a	clay	triangle	up	to	the	lab.	
b. Place	the	clay	triangle	on	the	bottom	of	the	furnace	and	put	the	casserole	on	the	

triangle.	I	find	that	the	casserole	fits	best	along	the	diagonal	with	the	handle	
pointing	out.	Try	to	arrange	it	so	that	it	doesn’t	touch	the	walls.	Definitely	do	not	
touch	the	thermocouple	in	the	back	corner.	

c. I	like	to	stay	in	the	room	while	the	temperature	heats	up,	just	to	make	sure	
nothing	goes	wrong.	I	also	check	on	it	periodically	while	it’s	heating.	

6. Bake	the	silica	for	at	least	2	hours.	
a. Cooling	takes	at	least	2	hours,	so	make	sure	to	account	for	this!	
b. When	cooling,	I	just	crack	the	door	a	little	bit.	

7. Before	the	casserole	is	finished	cooling,	take	the	bottle	out	to	cool.	Cover	with	the	petri	
dish.	

8. One	everything	is	cool,	pour	the	liquid	into	the	bottle,	then	pour	silica.	
a. Silica	makes	a	mess.	
b. I	usually	pour	in	about	1/4	-	1/3	of	the	liquid	volume	of	silica.	

9. The	silica	degasses	for	a	bit,	so	I	usually	like	to	leave	the	bottle	in	the	hood	with	the	cap	
on	loosely	until	it	stops	degassing.	

10. Store	the	bottle	in	the	flammables	cabinet.	
	
Day	3	–	Data	day	

1. Use	a	pipet	(I	suggest	the	Eppendorf	Repeater	M4)	to	dispense	the	liquid.	You	can	take	
it	straight	from	the	bottle,	so	long	as	you	avoid	the	silica.	
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a. I	tried	1-2µL	for	hexane,	decane,	and	hexadecane.	
b. I	tried	10-200µL	for	toluene.	
c. If	the	drop	doesn’t	come	off	the	tip,	carefully	touch	the	drop	to	the	solution	

without	touching	the	tip	to	the	solution.	
2. Give	the	surface	a	minute	to	form,	then	take	data	as	normal.	

a. With	large	amounts	of	toluene,	I	would	see	a	dramatic	increase	in	signal	after	a	
certain	point,	so	I	would	try	to	capture	both	regions	in	the	measurement.	

	
For	graphene	
This	experiment	is	done	with	Son	Nguyen’s	help.	Contact	him	to	schedule	the	experiment,	
ngchison@gmail.com.	This	experiment	also	takes	up	a	lot	of	space	and	uses	a	whole	bottle	of	
NoChromix.	It	is	easier	if	you	are	the	only	one	working	in	the	hood	that	week.	You	will	likely	
have	to	clean	as	much	as	possible	every	night	to	make	sure	everything	is	clean.	Instead	of	
stepping	through	when	to	do	things,	I	will	just	tell	you	what	additional	glassware	needs	to	be	
cleaned	by	when	(solution	making	glassware	is	not	included).	Try	to	do	as	much	of	it	the	night	
before,	if	possible.	Make	sure	that	there	are	plenty	of	covers	as	well.	You	can	cover	the	bottoms	
of	all	the	dishes	in	a	little	NoChromix	to	achieve	this.	Solutions	need	to	be	200mL.	
Day	2	

• 4	100x50mm	Petri	dishes	
• graphene	scoops	(they	are	custom	pieces	with	flow	inlets	and	outlets)	
• 4	1.5”	teflon	stir	bars	

Son	will	come	in	the	morning	to	start	the	graphene	etching.	He	will	come	back	in	the	afternoon	
to	transfer	the	graphene	pieces	to	water	several	times	to	clean	it.	He	may	use	the	stir	bars	at	
this	point.	After	his	last	transfer,	he	will	leave	the	graphene	covered	in	the	hood.	
	
Day	3	–	Data	day	

• 1	100x50mm	Petri	dish	per	solution	
• 1	teflon	stir	bar	per	solution	
• 1	125x65mm	Petri	dish	
• 1	5”	glass	disc	
• all	4”	glass	discs	
• graphene	scoops	
• the	pieces	of	Teflon	to	put	in	the	sample	holder	

Son	will	come	in	the	morning	to	transfer	the	graphene	one	last	time	into	the	125x65mm	dish.	
Solutions	are	used	from	lowest	concentration	to	highest.	Put	a	stir	bar	in	one	of	the	100x50mL	
Petri	dishes	and	pour	the	first	solution	in	it.	Son	will	transfer	the	pieces	of	graphene	from	the	
water	to	the	solution.	Keep	track	of	these	transfers.	You	will	have	to	calculate	the	new	
concentration	afterward.	There	are	two	scoops,	marked	‘H’	and	‘L.’	Their	volumes	are	9.4mL	
and	6.2mL	respectively.	‘H’	works	better	for	taking	measurements,	so	we	usually	use	this	one.	
NaSCN	solutions	do	not	like	mixing,	so	they	need	to	be	stirred	gently.	Stir	until	the	visible	
ripples	are	gone.	Now	you	can	take	data	with	these	samples.	Son	will	scoop	them	out	one	at	a	
time	and	place	them	in	the	sample	holder	on	top	of	the	clean	pieces	of	Teflon	(to	keep	the	
scoops	clean	and	to	help	see	the	graphene).	Adjust	the	tip/tilt	stage	with	a	mirror	beforehand	
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and	avoid	moving	it	again.	Use	the	micrometers	to	adjust	the	alignment.	Son	can	also	nudge	the	
graphene	into	place.	Once	it’s	measured,	he	will	put	it	back	in	the	solution.	When	all	of	the	
pieces	are	measured,	he	will	transfer	them	to	the	next	solution.	Then,	as	a	sanity	check,	I	would	
pipet	out	samples	and	measure	them	without	the	graphene.	Sometimes	these	samples	are	
contaminated,	so	take	the	results	with	a	grain	of	salt.	Repeat	this	until	all	measurements	are	
taken.	
	
Tips	

• A	2L	beaker	will	hold	3	100x50mm	Petri	dishes	and	3	4”	glass	discs.	Place	the	beaker	in	
another	Petri	dish	to	catch	spill	over	though.	

• Put	smaller	items	in	the	Petri	dishes	being	cleaned	to	save	room.	
• The	scoops	are	constantly	immersed	in	sample	solutions,	so	only	let	them	touch	other	

clean	surfaces.	
• Keep	track	of	the	samples	with	the	same	piece	of	graphene.	

	
Notes	

• PLAN	OUT	YOUR	WEEK	BEFORE	YOU	START!!!!	
• PPE	for	working	with	acid	and	base:	splash	goggles,	labcoat	made	of	majority	Dacron	(a	

PET	fabric	made	by	DuPont),	double	nitrile	gloves.	
• Use	the	large	funnel	when	pouring	NoChromix	back	into	the	bottle.	Pour	slowly,	

because	the	acid	can	gurgle	back	up	the	spout	and	spray	a	bit.	
• Use	lots	of	water	when	rinsing	to	dilute	the	acid	as	you	go	and	to	make	sure	all	the	

NoChromix	gets	off.	Be	careful	because	this	makes	the	glassware	slippery.	
• Piranha	is	quicker,	but	it	changes	results.	Piranha	can	only	be	used	in	place	of	

NoChromix	for	baking	salts.	
• A	NoChromix	bottle	can	be	reused	for	a	week.	Piranha	cannot	be	reused.	
• NoChromix	and	piranha	can	get	HOT.	Times	to	be	careful	are	when	making	piranha	and	

when	coming	into	contact	with	water	(rinsing,	pouring	after	condensation).	
• Sulfuric	acid	is	highly	hydroscopic.	Keep	this	in	mind	when	cleaning.	Cover	large	surface	

areas	when	possible.	Try	not	to	reuse	NoChromix	that	has	accumulated	a	lot	of	water.	
• To	saturate	KOH	in	ethanol,	use	a	stir	bar.	It	takes	30-60	minutes.	I	usually	try	three	

scoops	of	KOH	first	and	add	more	until	it	stops	dissolving.	It	doesn’t	need	to	be	analytic,	
so	don’t	stress	over	amounts.	

o This	can	be	reused,	but	I	never	used	it	often	enough	to	do	that.	
o It	will	turn	a	cider	color	over	time.	This	is	normal.	

• Oven	settings:	4	~	120C,	10	~	200C	
• The	only	brand	of	NaSCN	that	can	be	baked	without	breaking	down	is	J.	T.	Baker	NaSCN	

98%	ACS	reagent.	The	manufacturer	is	Avantor,	so	it	is	probably	best	to	buy	from	them	
if	you	need	more.	

• Try	to	bake	for	24	hours.	If	not	possible,	overnight	will	suffice.	
• Try	to	soak	in	NoChromix	for	24	hours.	If	not	possible,	overnight	will	suffice.	
• All	petri	dishes	except	for	sample	dishes	can	be	purchased	in	the	stock	room.	
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• The	sample	dishes	have	to	be	specifically	Pyrex	brand	to	fit	in	the	holder.	Other	brands	
don’t	fit.	

• The	metal	spatulas	were	hand	sanded	from	rods	in	the	student	shop.	Hopefully,	the	
three	I	have	will	last,	but	you	can	make	more	if	you	need	to.	

• Never	pour	from	a	flask	or	use	the	top	surface.	The	remaining	impurities	accumulate	
there.	Always	use	a	disposable	pipet	to	draw	from	the	bulk.	

• Benchmark:	1M	NaSCN	should	have	normalized	signal	~20.	
• Use	the	amber	flasks	to	prevent	photoproducts	from	forming	prematurely.	If	absolutely	

necessary,	you	can	cover	a	clear	flask	in	foil.	
• I	use	NaSCN	instead	of	KSCN	like	Dale	because	I’ve	found	crystals	that	turn	green	upon	

heating	in	the	KSCN.	KSCN	also	melts	at	<	200C.	Dale	did	not	bake	KSCN,	just	filtered.	
Baking	is	necessary	though.1	SFG	of	these	salts	showed	that	filtering	is	not	necessary.	

• NaSCN	disposal:	I	put	extra	solid	in	the	blue	bin	and	try	to	wipe	everything	down	as	best	
as	possible.	The	residue	on	the	glassware	can	be	washed	down	the	sink.	The	waste	
solution	should	go	in	a	waste	bottle.	Do	not	put	anything	but	NaSCN	and	KSCN	in	the	
bottle.	For	concentrated	solutions,	I	rinse	it	with	water	and	put	that	in	the	bottle,	as	
well.	Final	rinses	can	go	down	the	drain.	

• Use	Millipore	water	only	for	cleaning	glassware	to	be	used	in	the	experiment,	for	
solutions,	and	for	water	samples.	

• When	handling	and	storing	the	glassware,	think	about	what	surfaces	will	be	touching	
samples.	Only	put	those	surfaces	in	contact	with	other	clean	surfaces.	For	example,	in	
the	graphene	experiment,	the	sample	dishes	are	submerged	in	solution	frequently,	so	
the	dishes	can	only	be	placed	on	clean	surfaces,	including	in	the	sample	holder.	

• Things	to	know	about	the	pipets:	
o The	Eppendorf	Repeater	M4	is	a	positive	displacement	pipet.	This	means	the	

volume	dispensed	is	the	same,	no	matter	the	vapor	pressure	of	the	liquid	being	
dispensed.	It’s	also	designed	so	that,	if	you	need	a	different	volume	range,	you	
buy	new	tips,	not	a	new	pipet.	This	is	the	one	I’ve	used	most	recently.	

o The	Eppendorf	Biomaster	is	a	positive	displacement	pipet	for	1-20µL.	
Unfortunately,	the	tips	do	not	come	sterile,	so	they	have	to	be	autoclaved.	Check	
the	autoclave	on	8th	floor	Latimer	for	up	to	date	information	on	how	to	use	it.	I	
do	not	suggest	using	this	pipet.	

o The	BrandTech	Transferpette	S	is	an	air	cushion	pipet	for	0.1-2.5µL.	It	has	filter	
tips	that	can	help	prevent	contamination	to	the	pipet	from	volatile	samples	and	
ultra	low	retention	tips	for	samples	that	don’t	like	to	come	out.	It	is	an	air	
cushion,	so	the	volume	dispensed	is	dependent	on	vapor	pressure.	

	
Items	and	part	numbers	

• Sample	dishes:	08747A	from	Fisher	Scientific	
• NoChromix:	328693-10PAK	from	Sigma	Aldrich	
• Vented	caps	for	NoChromix:	Z683205-3EA	from	Sigma	Aldrich	
• Spatula	material:	“Alloy	20	Stainless	Steel	Rod1/4"	Diameter,	****1/2	ft	length****”	

9091K27	from	McMaster	Carr	
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• Sterile	Pipets:	1367827F	from	Fisher	Scientific	
• Weigh	boats:	13735743	from	Fisher	Scientific	
• Amber	flask	100mL:	980-28507-Z39	from	Spectrum	Chemical	and	Laboratory	Companies	
• Amber	flask	200mL:	980-28510-Z39	from	Spectrum	Chemical	and	Laboratory	Companies	
• 4”	glass	lid:	8477K37	from	McMaster	Carr	
• 5”	glass	lid:	8477K69	from	McMaster	Carr	
• amber	bottles:	stock	room,	1	or	2	oz	will	do,	get	wide	mouth	bottles	with	the	green	lids	
• Casseroles:	porcelain	70mm	diameter,	S325501B	from	Fisher	Scientific	
• Repeater	tips:	https://online-shop.eppendorf.us/US-en/Laboratory-Consumables-

44512/Tips-44513/Eppendorf-Combitips-advanced-PF-18250.html,	get	whatever	size	is	
needed,	make	sure	to	get	Biopur	quality	

• Silica,	KOH,	ethanol:	stock	room	
• Hydrocarbons:	Alfa	Aesar	

	
(1)		 Hua,	W.;	Verreault,	D.;	Adams,	E.	M.;	Huang,	Z.;	Allen,	H.	C.	Impact	of	Salt	Purity	on	

Interfacial	Water	Organization	Revealed	by	Conventional	and	Heterodyne-Detected	
Vibrational	Sum	Frequency	Generation	Spectroscopy.	J.	Phys.	Chem.	C	2013,	117,	19577–
19585.	

	



Appendix 3 – Data Analysis Procedure
Document has been converted from a Jupyter Notebook to a LATEXdocument.

In [1]: %matplotlib inline

In [2]: import numpy

import pandas

import matplotlib.pyplot as plt

import lmfit

import fits

import models

import datatools

1 Data collection

Solutions are made in 100mL and 200mL flasks, then measured in ~21mL aliquots. This
gives 4 aliquots for a 100mL flask and 8-9 aliquots for a 200mL flask. The last aliquot
taken should be met with skepticism. Empirically, samples taken from the bottom of the
flask tend to have more impurities. Each aliquot should have a water sample measured
before and after it. A typical routine for a 100mL flask of 1M NaSCN is:

• water

• 1M NaSCN

• water

• 1M NaSCN

• water

• 1M NaSCN

• water

• 1M NaSCN

• water

The stage has a height adjustment to account for the difference in surface heights of the
samples. This is the largest source of error, so retake any samples that seem to have a poor
height alignment, especially water. Later, the 1M NaSCN samples will be normalized by
the average of the water samples before and after.
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The input (reference) power, I!, is measured by a photodiode and the signal power, I2!,
is measured with a PMT. The laser pulses are femtoseconds in width and have a repeti-
tion rate of 1kHz (1 pulse/ms), so a gated integrator is used to help reduce noise from
dark counts. The output from the gated integrator is read by a DAQ card with LabView
software. A trigger signal from the laser is used to correlate the pulses to give (reference,
signal) data pairs. A neutral density filter wheel is used to modulate I! at a rate of 1Hz.

The LabView program for collecting data is called Front Panel
Direct.current.vi. The above image shows a picture of the front panel. The
program is shown running and it is meant to run continuously during all data collection.
When the program is running, an inset on the top right appears. These are the shared
global variables that will be discussed later. When the program is stopped, this panel is
not shown. The upper left panel is where all the user control buttons are. The “Quit”
button stops the program, as does pressing the red stop sign in the LabView toolbar.
“Dataset ID” and “Rev” are the ID and revision number for the data in the current buffer
stream. The “Save Directory” is the default directory for saving files. This can be changed
from the program or during the save prompt. The “Save” button saves the current buffer
to a .ddf file, which can only be read by LabView. The “New Dataset” button clears the
buffer. “Dataset Size Limit” is how long you want the program to run for. One point is
one pulse, which is one ms. “Dataset Size” is the actual size of the data. The “Reference”
graph is the input intensity collected from the photodiode and the “Signal” graph is the
signal intensity collected from the PMT.

At this point, the LabView files are converted to text and analyzed in Matlab.
There are two LabView programs that can convert the data, Channel Intensity
Histograms.rawdata.vi and Raw Data to txt.vi. Raw Data to txt.vi is
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shown above. This program is also meant to run continuously, but is not shown run-
ning. Click the run arrow in the LabView toolbar to run. Click the “Save txt” button to
choose the file to convert to txt and save it. The ID of the last dataset converted is in
“Dataset ID.” Use the “Stop” button or the stop sign button in the LabView toolbar to
stop the program.

2 Matlab analysis of samples

2.1 The raw time series data

The data generated is a time series that is exported to a .txt file. The first column is the
reference and the second column is the signal. A row corresponds to 1 ms.

In [3]: with open('160428.145918.00.rawdata.txt') as file:
water1 = numpy.loadtxt(file, delimiter='\t')

print(water1[0:5])
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
ax1.plot(water1[0:10000,0], '.')
ax1.set_title('Reference')
ax2.plot(water1[0:10000,1], '.')
ax2.set_title('Signal')

[[ 2.15811500e+00 9.76060000e-02]
[ 2.29381500e+00 5.61134000e-01]
[ 2.11731100e+00 1.64900000e-03]
[ 2.04961900e+00 -2.81500000e-03]
[ 2.20682800e+00 2.60500000e-03]]
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Out[3]: <matplotlib.text.Text at 0x117e8c198>

The above code shows an example of what a few rows of data look like, as well as the time
series plots for the first 10000 ms. This sample is water, which is non-resonant, i.e. low
signal. Here is what a thiocyanate sample (resonant, i.e. high signal) typically looks like:

In [4]: with open('160428.150342.00.rawdata.txt') as file:
scn = numpy.loadtxt(file, delimiter='\t')

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 6))
ax1.plot(scn[0:10000,0], '.')
ax1.set_title('Reference')
ax2.plot(scn[0:10000,1], '.')
ax2.set_title('Signal')

Out[4]: <matplotlib.text.Text at 0x1182b96d8>

Notice that there are more points above the baseline and that the magnitude is larger.
The power here has been cut so that there is a maximum of one photon per pulse. Signal
centered around ~0.5 corresponds to 1 pulse or less.
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2.2 Choose the parameters based on the histogram

A matlab script called BNanalysis_script.m contains all the command line scripts
that are needed to run the analysis in Matlab. I will talk about the individual lines of code
here.

A parameter called “Signal Threshold” is used to discriminate between photons and null
counts in the signal series. There are also two parameters called “Maximum Limit” and
“Minimum Limit” that are used to discard the noisier points in the reference series. Plot-
ting the histograms of these data allows you to choose an initial value for these three
parameters. To plot in Matlab, run these lines once:

ref = figure;
sig = figure;
BNfit = figure;
limSearch = figure;
minV = 0;
maxV = 3;
thresh = .2;
nBins = 100;
binOpt = 0; %linear in R^2
sigOpt = 1; %ln(tau)
limType = 1; %start with signal threshold
stepSize = 0.01;
yMax = 100;

This creates workspace variables that are shared among the data sets. In particular, the
first four variables are the figure handles that will be passed into the plotting functions.
The windows generated should not be closed. Next, for each individual file, run the
following lines to read the data into the Matlab workspace:

date = '######';
time = '######';
revision = '##';
readFile = strcat(date,'.',time,'.',revision,'.rawdata.txt');
data=dlmread(readFile);
dataCopy = data;
fprintf('\nPoints: %d\n\n', size(data,1));

The file name needs to be of the form “date.time.revision.rawdata.txt”.

The histogram plotting function is called intensityHist(). The command line call is:

intensityHist(data, nBins, ref, sig, yMax);

This plots the histogram of the data with the number of bins equaling nBins. The ref-
erence data is on the figure called ref and the signal data is on the figure called sig.
yMax is the maximum for the y-axis on the signal histogram. Both nBins and yMax can
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be adjusted. Here are example histograms with nBins=100 and yMax=150:

Reference

Signal

The markers indicate good initial guesses for the parameters. They can be placed by click-
ing on the curve. Use Shift-Click for more than one marker. On the reference histogram,
the “Minimum Limit” is the left marker and it is chosen to be at the midpoint of the curve.
The “Maximum Limit” is the right marker and it is chosen to be in the right tail of the high
intensity peak. On the signal histogram, the “Signal Threshold” is chosen to be where the
signal peak begins to level out on the left. The large dark count peak, not shown in its
entirety, also has a tail in that region that prevents the signal peak from returning to zero.

The corresponging X values for the markers can be extracted by right clicking on the
marker and selecting “Export Cursor Data to Workspace.” I choose to call all of the cursor
variables cursor_info. For the reference histogram, this creates a 1x2 structure with
three fields each. The Position field is a vector with [X,Y] coordinates. The following
lines:

maxV = cursor_info(1).Position(1);
minV = cursor_info(2).Position(1);

copy the respective X positions to the maxV and minV variables. For the signal histogram,
this creates a 1x1 structure with three fields. The following line:
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thresh = cursor_info.Position(1);

copies the X position to the thresh variable.

2.3 Refine parameter choices

With the three parameters chosen, we can continue with the analysis. The next step is to
bin the data with binNorm():

[b, BN] = binNorm(data, minV, maxV, thresh, nBins, binOpt,...
sigOpt, BNfit, true);

This function bins the signal data according to the reference value. The bins can either be
linear in reference values or square reference values. This is encoded with the binOpt
variable. Set binOpt to 1 for linear in reference values and anything else for linear in
squared reference values. There are also two algorithms to calculate the signal. This
is encoded in sigOpt. Set sigOpt to 1 to use Poissonian statistics (nullCalc.m) and
anything else to use the signal value as is (sigCalc.m). In Poissonian statistics, the
average photon count per bin (which is proportional to the second harmonic signal) is:

I2! / hki = �ln
hNpulse

k=0

Npulse

i

where hki is the average number of photons per pulse, Npulse
k=0 is the number of null counts

(no photon), and Npulse is the total number of pulses. nullCalc.m keeps track of the null
counts in each bin and uses this to calculate hki.

Once the data is binned and the signal is calculated, the data is fit with a bisquare linear
regression. This is a robust algorithm that is not influenced by outliers as much as regular
linear regression. The slope is used as the measurement.

The remaining two inputs are BNfit, the figure handle that plots the data and the fit line,
and print, a boolean for printing output to the screen. In this case, it is set to true.

I use binOpts = 0 and sigOpts = 1 for my data. A typical graph looks like this:
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I decrease my power so that there is a maximum of one photon generated, but if this is
not done, or if photoproducts are generated, you will see a graph that is not linear. In that
case, adjust the parameters so that only the linear region is captured. This can usually be
accomplished by adjusting “Maximum Limit”.

The outputs of binNorm are b and BN. b contains the slope and intercept values for the
line. BN is a three column matrix with columns reference squared, signal, and fit.

The limitSearch() function is used to fine tune the parameters with the command line
call:

limitSearch(data, minV, maxV, thresh, nBins, binOpt, sigOpt,...
limSearch, limType, stepSize);

It calls binNorm() for five points on either side of the given parameter so that 11 val-
ues can be compared at once. The input limType encodes the parameter to search: 1
for “Signal Threshold,” 2 for “Minimum Limit,” and 3 for “Maximum Limit.” The input
limSearch is the figure handle to plot to. The input stepSize is the step size used
when choosing the values to search. For “Signal Threshold,” the amplitude of the sig-
nal, as seen on the histogram, should be similar for all samples when using the photon
counting scheme, so stepSize=0.01 is a good initial step size. For “Minimum Limit”
and “Maximum Limit,” the step size depends on the reference power. The water sample
shown above was collected with the maximum available power at the collection wave-
length. This corresponds to an amplitude of ~3 for the reference data. Appropriate step
sizes in this case are 0.01 for “Minimum Limit” and 0.1 for “Maximum Limit.” The graph
below shows the reference histogram for a 2.5M NaSCN sample:

Reference

Notice that the reference amplitude is ~10 times smaller, so the step sizes should be 10
times smaller as well: 0.001 for “Minimum Limit” and 0.01 for “Maximum Limit.” The
“Maximum Limit” step size should always be 10 times larger than the “Minimum Limit”
step size.

Here are the searches for the water sample:
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Signal Threshold

Minimum Limit

Maximum Limit

You are looking for a section in the graph where the values level out and then choosing a
value that is roughly the average of the levelling out. The new values are selected on the
graphs. Notice that “Maximum Limit” is the only one that will change in this case. If it is
hard to find a good value, reduce the step size by half and try again. In general, it is good
to go in order: “Signal Threshold,” “Minimum Limit,” “Maximum Limit.” Once the new
values are chosen and the corresponding variables updated, run binNorm() again:
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Here you can see that the high power end is starting to deviate from the fit line. This
suggests that the highest power laser shots might be producing more than one photon.
If this happens, choose a smaller value for maxV (I tried 2.2203 in this case) and run
limitSearch() for the “Maximum Limit” again:

Maximum Limit

It looks like there are two level regions now. We already know the higher one is no good,
so try a value for the lower region: 2.0203. Run binNorm() again:

Now the low power end is deviating. Try 2.2203:
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This graph looks good; neither end is deviating from the fit. On the limitSearch()
graph, it doesn’t look like 2.2203 is an average for either of the level regions, but it does
seem to be a pretty good average for the whole region. If these two programs don’t
ever converge to a reasonable value, give greater weight to the values that produce good
graphs from binNorm().

Once the final parameter values are chosen, run binNorm() one last time to get the slope
measurement for the sample. The data can be saved as a .mat file with the following code:

writeMat = strcat(date,'.',time,'.',revision,'.BN.mat');
%can change revision number in command line
save(writeMat,'minV','maxV','thresh','nBins','b','BN','data',...

'date','time','revision','dataCopy');
fprintf('.mat file saved\n');

It can also be saved as a text file with the following code:

writeFile = strcat(date,'.',time,'.',revision,'.BN.txt');
% can change revision number in command line
file = fopen(writeFile, 'w');
fprintf(file, strcat(writeFile,'\n'));
fprintf(file, 'Minimum Limit\tMaximum Limit\tSignal Threshold\t...

# Bins\n%.6f\t%.6f\t%.6f\t%d\n',minV,maxV,thresh,nBins);
fprintf(file, 'Slope\tSlope Error\tIntercept\tIntercept Error...

\n%.6f\t%.6f\t%.6f\t%.06f\n',b(2),b(4),b(1),b(3));
fprintf(file, 'R^2\tSignal\tFit\n');
fclose(file);
dlmwrite(writeFile,BN,'-append','delimiter','\t','newline','unix');
fprintf('.txt file saved\n');

2.4 Calculating final data points from the samples

The previous discussion was about how to analyze each sample. This section is how to
analyze the data set of all your samples. You will have at least 6 samples per data point,
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where a data point is one concentration for the system of interest, i.e. 1M NaSCN is a
point and graphene on 1M NaSCN is another point.

At this point, I like to switch to Excel, but any sort of program that can handle tabular
data will do. Excel is convenient because I can record slope values in the spreadsheet
as I generate them. First, I look at the waters as a whole and get rid of one or two that
seem to clearly be outliers. Also consider how the waters change over time when looking
for outliers. Remove values cautiously, though. While we do know that poor height
alignment can cause deviations in signal, it is still better practice to keep as many values
as possible. Occasionally, solution samples can also be discarded.

The remaining samples need to be normalized to water by dividing by the average of the
water samples before and after. For example, for the following samples:

• water1

• water2 (discarded)

• 1M NaSCN1

• water3

the normalized signal for 1M NaSCN1 is 1M NaSCN / average(water1, water3).

Once you have the normalized values, the data point is the average of all the normalized
values and the error is the standard deviation. Since the error is deviation, it is not as
dependent on sample size, so it is okay if the sample sizes differ. They most likely will
because 4 aliquots in a flask doesn’t mean you’ll get 4 good normalized values.
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Appendix 4 – Text of the Matlab Functions for

Measurement Processing

createBins.m

function [edges] = createBins(minV, maxV, nBins)

%Creates bin edges based on the minimum and maximum reference limits and
%the number of bins.
%
% Inputs:
% min: minimum reference value
% max: maximum reference value
% nBins: number of bins to create
%
% Output:
% edges: a vector of bin edges, siz(nBins+1)

%Determine bin width
width = abs((maxV-minV)/nBins);

%Initialize edges
edges = 0:nBins;

%calculate edges
edges=edges*width+minV;

end

lims.m

function [newData] = lims(data, minV, maxV)

%This function keeps data that have reference intensities between the min
%(exclusive) and max (exclusive) values.
%
% Inputs:
% data: the data to be analyzed
% min: minimum reference value
% max: maximum reference value
%
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% Output:
% newData: analyzed data

newData = data;

cond = newData(:,1) >= maxV;
newData(cond,:) = [];
cond = newData(:,1) <= minV;
newData(cond,:) = [];

end

sigCalc.m

function [binnedData] = sigCalc(data, edges, thresh)

%Calculates bin data using <R^2> and <S> for each bin.
%
% Inputs:
% data: the data ready to be binned
% edges: the end points for the bins (minimum inclusive)
% thresh: signal threshold (exclusive)
%
% Output:
% binnedData: Averaged ref and sig for each bin. Bins with fewer than 2
% points are discarded

%Remove data below threshold
newData = data;

cond=newData(:,2) <= thresh;
newData(cond,:) = [];

%bin the data
[N, ~, bin] = histcounts(newData(:,1), edges);
N=N’;

%calculate averages
R2 = accumarray(bin,newData(:,1),[],@mean);
S = accumarray(bin,newData(:,2),[],@mean);
binnedData = [R2.^2 S];

%keep only bins with more than one point
cond = N < 2;
binnedData(cond,:) = [];
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end

nullCalc.m

function [dataArray] = nullCalc(data, edges, nBins, thresh)

%Calculates bin data using <R^2> and <ln(tau)> for each bin. Uses unsorted
%raw data.
%
% Inputs:
% data: the data to be binned, unsorted
% edges: the end points for the bins (minimum inclusive)
% nBins: the number of bins to use
% thresh: signal threshold (exclusive)
%
% Output:
% dataArray: Columns are total shots, <R^2>, null shots, <tau>,
% <ln(tau)>. Bins are discarded with less than 2 null shots or with
% <ln(tau)> == 0.

%find which bin each ref/sig pair belongs in
%all data is included, so some pairs might not have bins
[~,~,bin] = histcounts(data(:,1),edges);

m = size(data,1);

%data trackers are empty initially
dataArray = zeros(nBins,5)/0; %holds updating stats
internalArray = zeros(nBins,1)/0; %counts photons
%debugArray = zeros(m,6);

delta = 0;

for i = 1:m
if bin(i)

if isnan(dataArray(bin(i))) && isnan(internalArray(bin(i)))
internalArray(bin(i)) = 0;
dataArray(bin(i),:) = 0;

else
%update total shots and <R^2>
dataArray(bin(i),1) = dataArray(bin(i),1) + 1;
delta = data(i,1)^2 - dataArray(bin(i),2);
dataArray(bin(i),2) = dataArray(bin(i),2)...

+ delta/dataArray(bin(i),1);
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%check for photon
if data(i,2) <= thresh

%data point
internalArray(bin(i)) = internalArray(bin(i)) +1;
y = log(internalArray(bin(i)));

%update tau stats
dataArray(bin(i),3) = dataArray(bin(i),3) + 1;
delta = internalArray(bin(i)) - dataArray(bin(i),4);
dataArray(bin(i),4) = dataArray(bin(i),4)...

+ delta/dataArray(bin(i),3);
delta = y - dataArray(bin(i),5);
dataArray(bin(i),5) = dataArray(bin(i),5)...

+ delta/dataArray(bin(i),3);

internalArray(bin(i)) = 0; %reset photon counter
else

internalArray(bin(i)) = internalArray(bin(i)) +1;
end

end
end

%debugArray(i,:) = [dataArray(bin(i),:) internalArray(bin(i))];

end

cond = dataArray(:,3) < 2 | dataArray(:,5) == 0;
dataArray(cond,:) = [];

end

binNorm.m

function [b,BN] = binNorm(data, minV, maxV, thresh, nBins, binOpt,...
sigOpt, figHandle, print)

%Takes reference/signal data, bins it according to reference values, and
%fits the bins to a bisquare linear fit.
%
% Inputs:
% data: the data to be analyzed
% min: minimum reference value
% max: maximum reference value
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% thresh: threshold value for photon event
% nBins: number of bins to use
% binOpt: determines whether bins should be linear in R or R^2. A
% value of 1 is used for linear in R. All other values indicate R^2.
% sigOpt: determines whether integrated signal or ln(tau) is used in
% fit. A value of 1 is used for ln(tau). All other values indicate
% integrated signal.
% figHandle: the handle of the figure to plot to. Pass 0 or False to
% suppress figure.
% print: print is a boolean. True prints the slope, false does not
% print the slope.
%
% Output:
% b: a vector with slope and intercept values
% BN: a matrix with columns R^2, ln(tau), yFit

%make sure data is two columns
[m,n] = size(data);

if m == 2 || n == 2 %makes sure data is two vectors

if n > m
data=data’; %makes sure data is two columns

end

%Determine if bins should be linear in R or R^2 and create edges
%Final edges are in reference values
if isempty(binOpt)

binOpt = 0;
end

if binOpt ~= 1 %linear in R^2
min2 = minV^2;
max2 = maxV^2;
edges = createBins(min2, max2, nBins);
edges = sqrt(edges);

else %linear in R
edges = createBins(minV, maxV, nBins);

end

%Determine if integrated signal or null counts are used in fit.
if isempty(sigOpt)

sigOpt = 0;
end
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if sigOpt ~= 1 %integrated signal
Ldata = lims(data, minV, maxV); %Throw out data outside the

%reference limits.
Ldata = sortrows(Ldata);
dataArray = sigCalc(Ldata, edges, thresh);
X = dataArray(:,1);
Y = dataArray(:,2);

else %null counts
dataArray = nullCalc(data, edges, nBins, thresh);
X = dataArray(:,2);
Y = dataArray(:,5);

end

[b, stats] = robustfit(X,Y);

%calculate fit
yFit = b(2)*X + b(1);

if ~(figHandle == 0)
figure(figHandle)
plot(X,yFit,’-’,X,Y,’.’,’LineWidth’,2,’MarkerSize’,22)
datacursormode off

end

%make output
b = [b stats.se];
BN = [X Y yFit];

%print out slope
if print

fprintf(’Slope: %.6f\nDoF: %d\n’,b(2),stats.dfe);
end

%%all calculations before this point
else

fprintf(’Data must have one dimension equal to 2.’)
end

end

intensityHist.m

function intensityHist(data, nBins, figHandle1, figHandle2, yMax)

%Creates histograms of the reference and signal.
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% Inputs:
% data: the data to be histogramed
% figHandle1: figure handle for the reference histogram
% figHandle2: figure handle for the signal histogram

%reference
[N1, edges1] = histcounts(data(:,1), nBins);
width1 = edges1(2) - edges1(1);
centers1 = edges1 + width1/2;
centers1 = centers1(1:nBins);

figure(figHandle1)
plot(centers1, N1, ’LineWidth’, 2)
datacursormode on

%signal
[N2, edges2] = histcounts(data(:,2), nBins);
width2 = edges2(2) - edges2(1);
centers2 = edges2 + width2/2;
centers2 = centers2(1:nBins);

figure(figHandle2)
plot(centers2, N2, ’LineWidth’, 2)
ylim([0 yMax])
datacursormode on

end

limitSearch.m

function limitSearch(data, minV, maxV, thresh, nBins, binOpt,...
sigOpt, figHandle, limType, stepSize)

%Looks at a window of 11 values for a parameter and plots them.
%
% Inputs:
% data: the data to be analyzed
% min: minimum reference value
% max: maximum reference value
% thresh: threshold value for photon event
% nBins: number of bins to use
% binOpt: determines whether bins should be linear in R or R^2. A
% value of 1 is used for linear in R. All other values indicate R^2.
% sigOpt: determines whether integrated signal or ln(tau) is used in
% fit. A value of 1 is used for ln(tau). All other values indicate
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% integrated signal.
% figHandle: the handle of the figure to plot to. Pass 0 or False to
% suppress figure.
% limType: which parameter to search. 1 for thresh, 2 for minV, 3 for
% maxV.
% stepSize: width between values to search.

%start calculating axes
X = [-5:5];
X = X * stepSize;
bRange = zeros(11,1);

%calculate differently based on limType
switch limType

case 1 %thresh
X = X + thresh;
cond = X < 0; %get rid of negative values
X(cond) = [];
for i = 1:11

[b,~] = binNorm(data, minV, maxV, X(i), nBins,...
binOpt, sigOpt, 0, false);

bRange(i) = b(2);
end

case 2 %minV
X = X + minV;
cond = X < 0;
X(cond) = [];
for i = 1:11

[b,~] = binNorm(data, X(i), maxV, thresh, nBins,...
binOpt, sigOpt, 0, false);

bRange(i) = b(2);
end

case 3 %maxV
X = X + maxV;
cond = X < 0;
X(cond) = [];
for i = 1:11

[b,~] = binNorm(data, minV, X(i), thresh, nBins,...
binOpt, sigOpt, 0, false);

bRange(i) = b(2);
end

otherwise
disp(’not a valid limType’)

end
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figure(figHandle)
plot(X,bRange,’.’,’MarkerSize’,22)
cursor = datacursormode(figHandle);
set(cursor, ’Enable’, ’on’, ’SnapToDataVertex’, ’on’);

end

BNanalysis script.m

%a script for analyzing datasets from the command line
%do at beginning
ref = figure;
sig = figure;
BNfit = figure;
limSearch = figure;
minV = 0;
maxV = 3;
thresh = .2;
nBins = 100;
binOpt = 0; %linear in R^2
sigOpt = 1; %ln(tau)
limType = 1; %start with signal threshold
stepSize = 0.01;
yMax = 100;

%create file name strings
date = ’160428’;
time = ’145918’;
revision = ’00’;

%import data
readFile = strcat(date,’.’,time,’.’,revision,’.rawdata.txt’);
data=dlmread(readFile);
dataCopy = data;
fprintf(’\nPoints: %d\n\n’, size(data,1));

%histograms
intensityHist(data, nBins, ref, sig, yMax); %can change yMax and rerun

%bin data and fitminV
[b, BN] = binNorm(data, minV, maxV, thresh, nBins, binOpt,...
sigOpt, BNfit, true);

%search limits
limitSearch(data, minV, maxV, thresh, nBins, binOpt, sigOpt,...
limSearch, limType, stepSize);
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%write cursor data to variables
thresh = cursor_info.Position(1);
maxV = cursor_info(1).Position(1);
minV = cursor_info(2).Position(1);

%write data to mat file
writeMat = strcat(date,’.’,time,’.’,revision,’.BN.mat’);
%can change revision number in command line
save(writeMat,’minV’,’maxV’,’thresh’,’nBins’,’b’,’BN’,’data’,’date’,...

’time’,’revision’,’dataCopy’);
fprintf(’.mat file saved\n’);

%write data to file
writeFile = strcat(date,’.’,time,’.’,revision,’.BN.txt’);
% can change revision number in command line
file = fopen(writeFile, ’w’);
fprintf(file, strcat(writeFile,’\n’));
fprintf(file, ’Minimum Limit\tMaximum Limit\tSignal Threshold\t#’...
’Bins\n%.6f\t%.6f\t%.6f\t%d\n’,minV,maxV,thresh,nBins);

fprintf(file, ’Slope\tSlope Error\tIntercept\tIntercept Error’...
’\n%.6f\t%.6f\t%.6f\t%.06f\n’,b(2),b(4),b(1),b(3));

fprintf(file, ’R^2\tSignal\tFit\n’);
fclose(file);
dlmwrite(writeFile,BN,’-append’,’delimiter’,’\t’,’newline’,’unix’);
fprintf(’.txt file saved\n’);
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Appendix 5 – Text of the Python Files for Fitting
and Usage Examples

These Python modules were written to fit second harmonic generation datasets to a Lang-
muir equation using the Python module lmfit. There is also a module for calculating
jackknife fits. The modules are:

• datatools.py

• fits.py

• models.py

• minimizefits.py

• jackknife.py

1 datatools.py

"""
Useful functions for handling the data used in the fitting
scripts.

Functions:
parse_csv_data(array)
create_flat_data(X, Y, Yerr)
plot_multi_data_sets(X, Y, Yerr)
extract_fit_values(fit)
extract_err_values(fit)
extract_corrs(fit)
"""
import numpy
import matplotlib.pyplot as plt

def parse_csv_data(array):
"""
Takes data that has been imported from a csv file and parses
it into X, Y, and Yerr arrays. It assumes the shape:
X | Y(1) | Yerr(1) | ... |Y(num_sets) | Yerr(num_sets)

Inputs:
array: a numpy array of the data imported from a csv file

Outputs:
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X: the 1D column of X values. It has the same units as in
the csv file.

Y: the Y values with data sets in columns, 1D or 2D
Yerr: the Yerr values with data sets in columns. Same

shape as Y. """
(rows, cols) = array.shape

#determine number of data sets
num_sets = (cols - 1) // 2

#create X
X = array[:,0]

#create Y and Yerr
Y = numpy.zeros_like(X)
Yerr = numpy.zeros_like(X)
for i in range(num_sets):

Y = numpy.column_stack((Y, array[:,i*2 + 1]))
Yerr = numpy.column_stack((Yerr, array[:,i*2 + 2]))

Y = numpy.delete(Y, 0, 1)
Yerr = numpy.delete(Yerr, 0, 1)

return X, Y, Yerr

def create_flat_data(X, Y, Yerr):
"""
Takes X, Y, and Yerr data and makes 1D flattened vectors.

Inputs:
X: the 1D column of X values.
Y: Y values with datasets in columns, a 2D numpy array
Yerr: the Yerr values with data sets in columns. Same

shape as Y.
Outputs:

flat_X: a 1D vector with num_sets repeats of X. Same
shape as Y and Yerr.

flat_Y: a 1D vector with Y columns stacked on each other.
Same shape as X and Yerr.

flat_Yerr: a 1D vector with Yerr columns stacked on each
other. Same shape as X and Y.

"""
(rows, num_sets) = Y.shape

#create flattened X
flat_X = numpy.zeros_like(X)
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#create a column vector with num_sets repeats of the X vector
for i in range(num_sets):

flat_X = numpy.column_stack((flat_X, X))
flat_X = numpy.delete(flat_X, 0, 1)
flat_X = flat_X.flatten('F')

#create flattened Y and Yerr
flat_Y = Y.flatten('F')
flat_Yerr = Yerr.flatten('F')

return flat_X, flat_Y, flat_Yerr

def plot_multi_data_sets(X, Y, Yerr):
"""
Takes X, Y, and Yerr data and creates a plot with errorbars.
Using only the errorbar function results in the data set
lines being connected.

Inputs:
X: the 1D column of X values
Y: the Y values with data sets in columns, 1D or 2D
Yerr: the Yerr values with data sets in columns. Same

shape as Y.
"""
#create flat data for errorbar
(flat_X, flat_Y, flat_Yerr) = create_flat_data(X, Y, Yerr)

#make plots
plt.plot(X, Y) #plot can broadcast, errorbar can't
plt.errorbar(flat_X, flat_Y, flat_Yerr, linestyle='None',

marker='o', color='0.5', ecolor='k',
elinewidth='3')

def extract_fit_values(fit):
"""
Extract the parameter values of varied parameters into a list
"""
fit_values = []
for param in fit.params:

if fit.params[param].vary:
fit_values.append(fit.params[param].value)

#fit_values = numpy.array(fit_values)

return fit_values
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def extract_err_values(fit):
"""
Extract the parameter errors of varied parameters into a list
"""
fit_errs = []
for param in fit.params:

if fit.params[param].vary:
fit_errs.append(fit.params[param].stderr)

#fit_values = numpy.array(fit_values)

return fit_errs

def extract_corrs(fit):
"""Extract the correlation matrix from fit parameters."""
params = fit.params

corrs_cols = []
for param in params:

try:
for key, value in params[param].correl.items():

if abs(value) >= 0.1:
corrs_cols.append([param, key, value])

except AttributeError:
pass

corrs_matrix = pandas.DataFrame(corrs_cols).pivot(index=0,
columns=1)

return corrs_matrix

2 fits.py

"""
This module contains the Langmuir functions to be used by the
various fitting functions.

Functions:
lang_mol_frac(X, A, B, C, G, T=293, R=8.314)
lang_pot_mol_frac(X, A, B, C, D, E, G, T=293, R=8.314)
"""

import math
import numpy
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def lang_mol_frac(X, A, B, C, G, T=293, R=8.314):
"""Calculates the simple Langmuir isotherm in mole fractions.
Inputs:

A - fit parameter
B - fit parameter
C - fit parameter
G - free energy of adsorption in J/mol
R - gas constant, fixed (default = 8.314 J/mol/K)
T - temperature, fixed (default = 293K)
X - concentration in mole fractions, type = numpy array

Outputs:
Yfit - the model Y values for X

"""
Yfit = numpy.zeros_like(X)
#creates an array of zeros the same shape as X

Yfit = ((A + B *(X / (X + (1 - X) * math.exp(G/R/T)))) ** 2 +
(C * (X / (X + (1 - X) * math.exp(G/R/T)))) ** 2)

return Yfit

def lang_pot_mol_frac(X, A, B, C, D, E, G, T=293, R=8.314):
"""Calculates the Langmuir isotherm with surface potential
included in mole fractions.
Inputs:

A - fit parameter
B - fit parameter
C - fit parameter
D - fit parameter
E - fit parameter
G - free energy of adsorption in J/mol
R - gas constant, fixed (default = 8.314 J/mol/K)
T - temperature, fixed (default = 293K)
X - concentration in mole fractions, type = numpy array

Outputs:
Yfit - the model Y values for X"""

Yfit = numpy.zeros_like(X)
#creates an array of zeros the same shape as X

Yfit = ((A + B *(X / (X + (1 - X) * math.exp(G/R/T))) +
D *(X / (X + (1 - X) * math.exp(G/R/T)))**2) ** 2 +
(C * (X / (X + (1 - X) * math.exp(G/R/T))) +
E *(X / (X + (1 - X) * math.exp(G/R/T)))**2) ** 2)
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return Yfit

3 models.py

"""
This module contains the corresponding Model object fits for the
fitting equations written in fits.py. These only work with single
data sets, i.e. one Y column.

Functions:
lang_mol_frac_fit(X, Y, Yerr, initial, print_out=True)
lang_pot_mol_frac_fit(X, Y, Yerr, initial, print_out=True)
"""
import lmfit
import matplotlib.pyplot as plt

import fits

#All models must start with args (X, Y, Yerr, initial, ...)
def lang_mol_frac_fit(X, Y, Yerr, initial, print_out=True):

"""Calculates a single fit using the simple Langmuir model.

Inputs:
X - concentration in mole fractions, a 1D numpy array
Y - SHG data, a 1D numpy array the same size as X
Yerr - error bars for Y, a 1D numpy array same size as Y
initial - initial values for parameters, a 4 element list
print_out - a flag for printing the output of the fit

Outputs:
fit_lmf - a ModelResult object from the lmfit module

"""
#weights are inverse errors, multiplied by (y(exp)-y(model))
W = 1 / Yerr

#create Model object from fit function contained in fits.py
lang_mol_frac_model = lmfit.Model(fits.lang_mol_frac)

#initialize the parameters
params_lmf = lang_mol_frac_model.make_params()
params_lmf['A'].set(value=initial[0])
params_lmf['B'].set(value=initial[1])
params_lmf['C'].set(value=initial[2])
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params_lmf['G'].set(value=initial[3])
params_lmf['R'].set(vary=False)
params_lmf['T'].set(vary=False)

#fit the Model
fit_lmf = lang_mol_frac_model.fit(Y, params_lmf, W, X=X,

scale_covar=False)

#print out the results if desired
if print_out:

print(fit_lmf.fit_report())
fit_lmf.plot_fit()
plt.legend(bbox_to_anchor=(1.05, 1), loc=2)

return fit_lmf

def lang_pot_mol_frac_fit(X, Y, Yerr, initial, print_out=True):
"""Calculates a single fit using the Langmuir model with

surface potential.

Inputs:
X - concentration in mole fractions, a 1D numpy array
Y - SHG data, a 1D numpy array the same size as X
Yerr - error bars for Y, a 1D numpy array same size as Y
initial - initial values for parameters, a 6 element list
print_out - a flag for printing the output of the fit

Outputs:
fit_lpmf - a ModelResult object from the lmfit module

"""
#weights are inverse errors, multiplied by (y(exp)-y(model))
W = 1 / Yerr

#create Model object from fit function contained in fits.py
lang_pot_mol_frac_model = lmfit.Model(fits.lang_pot_mol_frac)

#initialize the parameters
params_lpmf = lang_pot_mol_frac_model.make_params()
params_lpmf['A'].set(value=initial[0])
params_lpmf['B'].set(value=initial[1])
params_lpmf['C'].set(value=initial[2])
params_lpmf['D'].set(value=initial[3])
params_lpmf['E'].set(value=initial[4])
params_lpmf['G'].set(value=initial[5])
params_lpmf['R'].set(vary=False)
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params_lpmf['T'].set(vary=False)

#fit the Model
fit_lpmf = lang_pot_mol_frac_model.fit(Y, params_lpmf, W,X=X,

scale_covar=False)

#print out the results
if print_out:

print(fit_lpmf.fit_report())
fit_lpmf.plot_fit()
plt.legend(bbox_to_anchor=(1.05, 1), loc=2)

return fit_lpmf

4 minimizefits.py

"""
A module for fitting the Langmuir functions in fits.py to
multiple datasets, i.e. multiple Y columns. It allows control
over shared parameters.

Functions:
make_full_params(T, R, Y, vars_list, *args)
lang_mol_frac_dataset(params, i, X, vars_list, func)
resid_multi_lang_mol_frac(params, X, Y, Yerr, num_sets,

vars_list, func)
report_and_plot(fit, X, Y, Yerr, num_sets, vars_list, func)
lang_mol_frac_multiset(X, Y, Yerr, func, *args, T=293, R=8.314,

print_out=True, handle_error=True)
"""
import numpy
import lmfit
import matplotlib.pyplot as plt
import inspect

import datatools

def make_full_params(T, R, Y, vars_list, *args):
"""
Generate the full Parameter object for the dataset. For
variables that aren't shared, it creates num_sets parameters
with names e.g. 'A_1', 'A_2.' For shared parameters, only one
parameter is created.
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Inputs:
T: the temperature(s) for the experiment, list for

multiple temps and numeric for same temp
R: gas constant (8.314 kJ/mol/K)
Y: SHG data, a 2D array
vars_list: list of strings that represent the variables.

Doesn't include temp.
*args: the appropriate variables for the function,

i.e. A, B, C, G

Outputs:
full_params: the full set of parameters

"""
full_params = lmfit.Parameters()

#handle R
full_params.add('R', value=R, vary=False)

#iterate over the variables that vary
for var, var_value in zip(vars_list, args):

#if the variable is a list, that means it's not shared
#and multiple parameters need to be created
if isinstance(var_value, list):

for iy, y in enumerate(Y.T):
full_params.add('{:s}_{:d}'.format(var, iy+1),

value=var_value[iy])
#else the parameter is shared and one is created
else:

full_params.add(var, value = var_value)

#handle T separately but similarly, only diff is 'vary'.
if isinstance(T, list):

for iy, y in enumerate(Y.T):
full_params.add('T_{:d}'.format(iy+1), value=T[iy],

vary=False)
else:

full_params.add('T', value = T, vary=False)

return full_params

def lang_mol_frac_dataset(params, i, X, vars_list, func):
"""
Calculate the Langmuir fit for data set i using simple,
hardwired naming convention.
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Inputs:
params: a Parameters object that includes all of the

parameters. Naming convention is '{model parameter
name}_{i}'. R is always the same, so it is just 'R'.

i: the dataset iterator
X: concentration in mole fractions, a 1D numpy array
vars_list: a list with the names of the variables in

strings. Should include temperature.
func: the name of the function to use

Returns the fit values calculated from X and the parameters.
"""
#create a list to store the valaues
values = []

#iterate over the variables
for var in vars_list:

try: #try as a list
values.append(params['{:s}_{:d}'.format(var, i+1)]

.value)
except KeyError: #if not a list

values.append(params[var].value)

#handle R
values.append(params['R'])

#pass X and the values into the langmuir function
Yfit = func(X, *values)

return Yfit

def resid_multi_lang_mol_frac(params, X, Y, Yerr, num_sets,
vars_list, func):

"""
Calculates the model residuals: (data - model) / uncertainty.
This function is passed into lmfit.minimize() for least
squares minimization.

Inputs:
params: a Parameters object that includes all of the

parameters. Naming convention is '{model parameter
name}_{i}'. R is always the same, so it is just 'R'.

X: concentration in mole fractions, a 1D numpy array
Y: the normalized SHG signal, a 2D numpy array with the

same number of rows as X
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Yerr: the error in Y, a numpy array the same shape as Y
num_sets: the total number of datasets
vars_list: a list with the names of the variables in

strings. Should include temperature.
func: the name of the function to use

Returns the residual array, flattened into 1D.
"""
#calculate the full fit for the data sets
Yfit = numpy.zeros_like(X) #add a row of zeros to start
for i in range(num_sets):

Ysubfit = lang_mol_frac_dataset(params, i, X, vars_list,
func)

Yfit = numpy.column_stack((Yfit, Ysubfit))
Yfit = numpy.delete(Yfit, 0, 1)# take out the row of zeros

#claculate the residual
resid = (Y - Yfit) / Yerr

return resid.flatten()

def report_and_plot(fit, X, Y, Yerr, num_sets, vars_list, func):
"""
Creates a fit report and a plot of the fit with errorbars.

Inputs:
fit: the fit object from lmfit.minimizer()
X: concentration in mole fractions, a 1D numpy array
Y: the normalized SHG signal, a 2D numpy array with the

same number of rows as X
Yerr: the error in Y, a numpy array the same shape as Y
num_sets: the total number of datasets
vars_list: a list with the names of the variables in

strings. Should include temperature.
func: the name of the function to use

"""
#create flattened data for errorbar
flat_X, flat_Y, flat_Yerr = datatools.create_flat_data(X, Y,

Yerr)

#create report
lmfit.report_fit(fit.params)

#create plot
plt.figure()
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for i in range(num_sets):
y_fit = lang_mol_frac_dataset(fit.params, i, X,

vars_list, func)
plt.plot(X, y_fit, '-')

plt.errorbar(flat_X, flat_Y, flat_Yerr, linestyle='None',
marker='o', color='0.5', ecolor='k',
elinewidth='3')

def lang_mol_frac_multiset(X, Y, Yerr, func, *args,T=293,R=8.314,
print_out=True, handle_error=True):

"""
Will fit multiple datasets with any Langmuir function from
fits.py.

Inputs:
X: the 1D column of X values.
Y: the Y values with data sets in columns, 2D numpy array
Yerr: the Yerr values with data sets in columns. Same

shape as Y.
func: the name of the function to use
*args: the appropriate variables for the function,

i.e. A, B, C, G. For fit parameters, the arg must be
a list the same length as the number of datasets or
a scalar.

T: temperature. Can be numeric or a list. Default is 293K
R: the gas constant (default: 8.314 kJ/mol/K)
print_out: a boolean flag for printing out the fit report

and plot. True will print them out. Default is True.
handle_error: a boolean flag for how to handle

OverflowErrors in the fitting process. True will
handle the errors in this function. Use false if
another function calls this one, e.g. a jackknife
function. Default is True.

"""
#find the number of datasets
(num_conc, num_sets) = Y.shape

#find the parameters list and remove X, R, and T
vars_list = inspect.signature(func)
vars_list = list(vars_list.parameters.keys())
vars_list.remove('X')
vars_list.remove('R')
vars_list.remove('T')

#create the parameters
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full_params = make_full_params(T, R, Y, vars_list, *args)

#add T back to vars_list
vars_list.append('T')

#create the Minimizer model
model =lmfit.Minimizer(resid_multi_lang_mol_frac,full_params,

fcn_args=(X, Y, Yerr, num_sets,
vars_list, func),

nan_policy='omit', scale_covar=False)

#fit the data
if handle_error: #handle errors in this function if true

try:
fit = model.minimize()

except OverflowError:
#prints out a message, but still raises error

fit = []
print("OverflowError. Use new inital values.")

else:
#print out the results
if print_out:

report_and_plot(fit,X,Y,Yerr,num_sets, vars_list,
func)

else: #error handled in calling function
fit = model.minimize()
#print out the results
if print_out:

report_and_plot(fit, X, Y, Yerr, num_sets, vars_list,
func)

return fit

5 jackknife.py

"""
This module contains functions used to calculate the jackknife
error for any of the Langmuir fits in models.py and
minimizefits.py. To create new functions to use in the jackknife
calculation, the order of parameters needs to match the order in
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the jackknife call minus the model parameter.

Functions:
jackknife_one_set(model, X, Y, Yerr, *args)
subfit_redo_one_set(i, model, X, Y, Yerr,*args)
jackknife_multi_set(X, Y, Yerr, *args, **kwargs)
def subfit_redo_multi_set(k, X, Y, Yerr, *args, **kwargs):
jackknife_calcs(sub_fits, fit_values)
"""
import numpy

import datatools
n+nnminimizefits

def jackknife_one_set(model, X, Y, Yerr, *args):
"""A function for fitting subsets of data to be used in a
jackknife calculation. This function only works for one set
of Y, Yerr data and thus can only call models form the
models.py file.

Inputs:
model: the function name of the desired Langmuir model

from models.py
X: concentration data in mole fractions, a 1D numpy array
Y: SHG data, a 1D numpy array that is the same size as X
Yerr: error bars for Y, a 1D numpy array that is the same

size as Y
*args: any additional arguments needed for model.

Outputs:
sub_fit: the parameters for each subset, a numpy array
sub_errs: the fit errors for each subset, a numpy array
fit_values: the parameter values for the full dataset, a

numpy array
"""
#number of data points
num_data = numpy.size(X)

#create the fit for the full dataset
fit = model(X, Y, Yerr, *args)

#get ordered list of parameter values
fit_values = datatools.extract_fit_values(fit)

#need an initialized array before I can append >:(
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sub_fits = numpy.zeros_like(fit_values)
sub_errs = numpy.zeros_like(fit_values)

for i in range(num_data):
#delete index at i
sub_X = numpy.delete(X, i)
sub_Y = numpy.delete(Y, i)
sub_Yerr = numpy.delete(Yerr, i)

#retry logic for OverflowError in fits
MAX_RETRIES = 2
new_args = list(args)

#try the fit with inital values of one
for retries in range(MAX_RETRIES):

try:
#same as args first time, modified second time
sub_fit = model(sub_X, sub_Y, sub_Yerr,*new_args)

#if there's an overflow, try again with initial
#values set to fit_values
except OverflowError:

#create new initial values
initial_new = list(fit_values)

#copy args to new list variable for modification
new_args[0] = initial_new

#only does this if fit is valid and breaks loop
#extracts fit values and errors
else:

column = datatools.extract_fit_values(sub_fit)
col_err = datatools.extract_err_values(sub_fit)
break

#does this when no valid fit was generated
#fill with nans and look at later
else:

column = numpy.zeros_like(fit_values)
column.fill(numpy.nan)
col_err = numpy.zeros_like(fit_values)
col_err.fill(numpy.nan)
print("Subset {:d} caused an overflow error.

".format(i))
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#gather the sub fit info into one variable
sub_fits = numpy.column_stack((sub_fits,column))
sub_errs = numpy.column_stack((sub_errs,col_err))

#delete the column of zeros from initialization
sub_fits = numpy.delete(sub_fits, 0, axis=1)
sub_errs = numpy.delete(sub_errs, 0, axis=1)

return sub_fits, sub_errs, fit_values

def subfit_redo_one_set(i, model, X, Y, Yerr,*args):
"""
A function to redo one of the sub fits in case any fits seem
erroneous.Used with jackknife_one_set().

Inputs:
i: the number of the dataset to redo

(the column index in the sub_fits variable)
**the rest of the inputs are the same as for

jackknife_one_set()**
model: the function name of the desired Langmuir model

from models.py
X: concentration data in mole fractions, a 1D numpy array
Y: SHG data, a 1D numpy array that is the same size as X
Yerr: error bars for Y, a 1D numpy array that is the same

size as Y
*args: any additional arguments needed for model.

Outputs:
sub_fit_new: the new set of parameter values
sub_err_new: the new set of parameter errors

"""
#create the subsampled dataset
sub_X = numpy.delete(X, i)
sub_Y = numpy.delete(Y, i)
sub_Yerr = numpy.delete(Yerr, i)

#fit the dataset
sub_fit = model(sub_X, sub_Y, sub_Yerr, *args)

#get the sub values and sub errors
sub_fit_new = datatools.extract_fit_values(sub_fit)
sub_err_new = datatools.extract_err_values(sub_fit)

return sub_fit_new, sub_err_new
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def jackknife_multi_set(X, Y, Yerr, *args, **kwargs):
"""A function for performing a jackknife calculation with the
lang_mol_frac_multiset() function from minimizefits.py.

Inputs:
X: concentration data in mole fractions, a 1D numpy array
Y: SHG data, a 2D numpy array with the same number of
rows as X
Yerr: error bars for Y, a 2D numpy array that is the same

size as Y
*args: any additional positional arguments needed for

model. Order must match the model.
**kwargs: any additional keyword arguments needed for the

model. Variable names must match the model.

Outputs:
sub_fit: the parameters for each subset, a numpy array
sub_errs: the fit errors for each subset, a numpy array
fit_values: the parameter values for the full dataset, a

numpy array
"""
#number of data points
(m, n) = Y.shape

#create the fit for the full dataset
fit = minimizefits.lang_mol_frac_multiset(X, Y, Yerr, *args,

**kwargs)

#get ordered list of parameter values
fit_values = datatools.extract_fit_values(fit)

#need an initialized array before I can append >:(
sub_fits = numpy.zeros_like(fit_values)
sub_errs = numpy.zeros_like(fit_values)

for i in range(m):
for j in range(n):

#change one value in Y to nan
sub_Y = numpy.copy(Y)
sub_Y[i, j] = numpy.nan

#retry logic for OverflowError in fits
MAX_RETRIES = 2
new_args = list(args)
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#try the fit with inital values of one
for retries in range(MAX_RETRIES):

#print(retries)
try:

#passed args first time, modified second time
sub_fit=minimizefits.lang_mol_frac_multiset(

X, sub_Y, Yerr, *new_args,
**kwargs)

#if there's an overflow, try again with initial
#values set to fit_values
except OverflowError:

#create new initial values from the full fit
#values
initial_new = list(fit_values)

#replace the old initial values with new ones
#remember that args also includes the func
#variable and a variable number of parameters
num_params = len(initial_new) // n

#use the list to fill up all the variables
#they can be different sizes
#so element by element is the only way
iterator = 0
for p in range(num_params):

for q in range(len(new_args[p+1])):
new_args[p+1][q] = initial_new[

iterator]
iterator += 1

#only does this if fit is valid and breaks loop
#extracts fit values and errors
else:

column=datatools.extract_fit_values(sub_fit)
col_err=datatools.extract_err_values(sub_fit)
break

#does this when no valid fit was generated
#fill with nans and look at later
else:

column = numpy.zeros_like(fit_values)
column.fill(numpy.nan)
col_err = numpy.zeros_like(fit_values)
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col_err.fill(numpy.nan)
print("Subset {:d} caused an overflow error."

.format(i))

#gather the sub fit info into one variable
sub_fits = numpy.column_stack((sub_fits,column))
sub_errs = numpy.column_stack((sub_errs,col_err))

#delete the column of zeros from initialization
sub_fits = numpy.delete(sub_fits, 0, axis=1)
sub_errs = numpy.delete(sub_errs, 0, axis=1)

return sub_fits, sub_errs, fit_values

def subfit_redo_multi_set(k, X, Y, Yerr, *args, **kwargs):
"""
A function to redo one of the sub fits in case any fits seem
erroneous.Used with jackknife_multi_set().

Inputs:
k: the number of the dataset to redo

(the column index in the sub_fits variable)
**the rest of the inputs are the same as for

jackknife_multi_set()**
X: concentration data in mole fractions, a 1D numpy array
Y: SHG data, a 2D numpy array with the same number of

rows as X
Yerr: error bars for Y, a 2D numpy array that is the same

size as Y
*args: any additional positional arguments needed for

model. Order must match the model.
**kwargs: any additional keyword arguments needed for the

model. Variable names must match the model.

Outputs:
sub_fit_new: the new set of parameter values
sub_err_new: the new set of parameter errors

"""
#get the data point that was removed
m, n = Y.shape
i = k // n
j = k % n
sub_Y = numpy.copy(Y)
sub_Y[i, j] = numpy.nan
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#get the sub fit
sub_fit = minimizefits.lang_mol_frac_multiset(X, sub_Y, Yerr,

*args, **kwargs)

#get the sub values and sub errors
sub_fit_new = datatools.extract_fit_values(sub_fit)
sub_err_new = datatools.extract_err_values(sub_fit)

return sub_fit_new, sub_err_new

def jackknife_calcs(sub_fits, fit_values):
"""
Performs calulations based on the jackknife subfits.

Inputs:
sub_fits: the parameters for each subset, a numpy array
fit_values: the fit values for the full data set, a list

Outputs:
estimate: the calculated jackknife parameters
sdterr: the calculated jackknife errors
est_corr: the bias corrected estimates

"""

#shape of sub_fits
num_params, num_data = sub_fits.shape

#calculate jk estimate
estimate = numpy.average(sub_fits, axis=1)

#calculate residuals
square_resids = (sub_fits.T - estimate).T ** 2
sum_resids = numpy.sum(square_resids, axis=1)
var = (num_data - 1) / num_data * sum_resids
stderr = numpy.sqrt(var)

#calculate the bias corrected estimates
est_corr = num_data * numpy.array(fit_values)

- (num_data - 1) * estimate

return estimate, stderr, est_corr
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6 Usage Examples

In [1]: %matplotlib inline

In [2]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import datatools
import fits
import models
import minimizefits
import jackknife

6.1 Single dataset example

For data sets with only one Y, Yerr column pair, use the models.py module and
jackknife.jackknife_one_set().

Load the graphene data from Chapter 4.

In [3]: with open('graphene_data_sorted.csv') as file:
load = pd.read_csv(file)
data = load.values

load

Out[3]: Mol Frac 193nm 193err
0 0.00152 0.82831 0.03773
1 0.00378 0.64777 0.14890
2 0.00413 0.88307 0.11317
3 0.00797 2.89190 0.43359
4 0.00830 3.45178 0.19691
5 0.01107 4.03015 1.03038
6 0.01192 4.13298 0.72800
7 0.01251 6.48660 2.49315
8 0.01496 8.87753 0.24343
9 0.01691 9.98051 0.64263
10 0.01902 12.63280 1.98260
11 0.02159 14.30370 1.13706
12 0.02350 12.30050 0.79586
13 0.02396 14.87840 2.68018
14 0.02591 20.79050 2.37478
15 0.03222 23.03210 3.35097
16 0.03271 26.37340 4.38724
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17 0.03784 30.00100 7.76124
18 0.04201 42.68350 2.96554

In [4]: X = data[:,0]
Y = data[:,1]
Yerr = data[:,2]

Simple Langmuir model

I2!
I2!

=
⇣
A+B0 XSCN�

(1�XSCN�)e�G/RT +XSCN�

⌘2

+
⇣
C 0 XSCN�

(1�XSCN�)e�G/RT +XSCN�

⌘2

In [5]: initial = [1,1,1,1] #order is [A, B, C, G]

In [6]: fit = models.lang_mol_frac_fit(X, Y, Yerr, initial)
plt.xlabel('Mole Fraction Thiocyanate')
plt.ylabel('SHG response (neat water = 1)')

[[Model]]
Model(lang_mol_frac)

[[Fit Statistics]]
# function evals = 151
# data points = 19
# variables = 4
chi-square = 58.391
reduced chi-square = 3.893
Akaike info crit = 29.332
Bayesian info crit = 33.109

[[Variables]]
A: 1.21457115 +/- 0.073313 (6.04%) (init= 1)
B: -7.37693500 +/- 0.498521 (6.76%) (init= 1)
C: 7.09623300 +/- 1.025682 (14.45%) (init= 1)
G: -8780.09329 +/- 382.2984 (4.35%) (init= 1)
T: 293 (fixed)
R: 8.314 (fixed)

[[Correlations]] (unreported correlations are < 0.100)
C(C, G) = 0.975
C(A, C) = -0.898
C(A, G) = -0.826
C(A, B) = -0.512
C(B, C) = 0.244
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Out[6]: <matplotlib.text.Text at 0x113ed9978>

Use datatools.extract_fit_values() and datatools.extract_err_values()
to extract the parameter values and errors into variables.

In [7]: fit_values = datatools.extract_fit_values(fit)
fit_errs = datatools.extract_err_values(fit)
for item in zip(fit_values, fit_errs):

print(item)

(1.2145711535307293, 0.073313399479016841)
(-7.3769350009735781, 0.49852126924926987)
(7.0962330039385488, 1.0256822436209414)
(-8780.0932975888154, 382.29848035741725)

Use datatools.extract_corrs() to extract the correlation matrix into a DataFrame.
Unreported correlations are < 0.100.

In [8]: corrs_matrix = datatools.extract_corrs(fit)
corrs_matrix

Out[8]: 2
1 A B C G
0
A NaN -0.511753 -0.897563 -0.825834
B -0.511753 NaN 0.244406 NaN
C -0.897563 0.244406 NaN 0.974762
G -0.825834 NaN 0.974762 NaN
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Langmuir model with surface potential term.

I2!
I2!

=
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In [9]: initial = [1,1,1,1,1,1] #order is [A, B, C, D, E, G]

In [10]: fit = models.lang_pot_mol_frac_fit(X, Y, Yerr, initial)
plt.xlabel('Mole Fraction Thiocyanate')
plt.ylabel('SHG response (neat water = 1)')

[[Model]]
Model(lang_pot_mol_frac)

[[Fit Statistics]]
# function evals = 308
# data points = 19
# variables = 6
chi-square = 25.566
reduced chi-square = 1.967
Akaike info crit = 17.640
Bayesian info crit = 23.307

[[Variables]]
A: 1.36294785 +/- 0.107655 (7.90%) (init= 1)
B: -46.7350955 +/- 24.61348 (52.67%) (init= 1)
C: 29.9149659 +/- 21.06090 (70.40%) (init= 1)
D: 224.857829 +/- 245.3559 (109.12%) (init= 1)
E: -40.0893303 +/- 69.58432 (173.57%) (init= 1)
G: -5029.76623 +/- 1.72e+03 (34.12%) (init= 1)
T: 293 (fixed)
R: 8.314 (fixed)

[[Correlations]] (unreported correlations are < 0.100)
C(C, E) = -0.998
C(D, G) = 0.997
C(C, G) = 0.997
C(B, D) = -0.994
C(C, D) = 0.992
C(E, G) = -0.991
C(D, E) = -0.986
C(B, G) = -0.986
C(B, C) = -0.974
C(B, E) = 0.965
C(A, E) = 0.866
C(A, C) = -0.861
C(A, G) = -0.835
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C(A, D) = -0.802
C(A, B) = 0.738

Out[10]: <matplotlib.text.Text at 0x113ec7e10>

Use datatools.extract_fit_values() and
datatools.extract_err_values() to extract the parameter values and errors into
variables.

In [11]: fit_values = datatools.extract_fit_values(fit)
fit_errs = datatools.extract_err_values(fit)
for item in zip(fit_values, fit_errs):

print(item)

(1.3629478542975455, 0.10765511100229698)
(-46.735095593092865, 24.613481768714191)
(29.914965988001157, 21.060906898845055)
(224.85782962537073, 245.35592777293945)
(-40.089330376751953, 69.584322494697787)
(-5029.7662389896768, 1716.1601978843578)

Use jackknife.jackknife_one_set() to perform the jackknife. It can be used with
any model in the models.py file and should generalize to future models with model sig-
nature: model(X, Y, Yerr,...).

Calculate the sub fits and sub errors.

In [12]: sub_fits, sub_errs, fit_values =
jackknife.jackknife_one_set( models.lang_mol_frac_fit,

X, Y, Yerr, initial, False)

If one of the sub fits seems erroneous and needs to be recalculated, use the
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jackknife.subfit_redo_one_set() function.

In [13]: i = 0
initial_new = [10, 10, 10, -10000]
sub_fit_new, sub_err_new = jackknife.subfit_redo_one_set(i,

models.lang_mol_frac_fit, X, Y, Yerr,
initial_new)

[[Model]]
Model(lang_mol_frac)

[[Fit Statistics]]
# function evals = 122
# data points = 18
# variables = 4
chi-square = 49.634
reduced chi-square = 3.545
Akaike info crit = 26.257
Bayesian info crit = 29.819

[[Variables]]
A: 0.00961593 +/- 13.03740 (135581.23%) (init= 10)
B: 12.1936714 +/- 1.67e+04 (136894.27%) (init= 10)
C: -0.32063497 +/- 8.27e+05 (258080585.31%) (init= 10)
G: -7342.07935 +/- 539.7051 (7.35%) (init=-10000)
R: 8.314 (fixed)
T: 293 (fixed)

[[Correlations]] (unreported correlations are < 0.100)
C(B, C) = 1.000
C(A, C) = -1.000
C(A, B) = -1.000
C(B, G) = 0.400
C(C, G) = 0.400
C(A, G) = -0.394
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Then these values can replace the column in sub_fits and sub_errs:
sub_fits[:,i] = sub_fit_new and sub_errs[:,i] = sub_err_new

Calculate the parameter estimates, errors, and bias-corrected estimates.

In [14]: estimate, stderr, est_corr =
jackknife.jackknife_calcs(sub_fits, fit_values)

In [15]: for item in zip(estimate, est_corr, stderr):
print(item)

(1.1463899142272462, 2.4418334609934256, 1.1934790178429788)
(-7.5060089282163789, -5.0536043106031627, 2.891663267670463)
(7.3354984802708829, 2.7894544299565496, 4.9598441155718245)
(-8642.528644796721, -11256.257047846506, 2385.949068037296)

6.2 Multiple datasets

For data with multiple Y, Yerr column pairs (such as multiple temperatures or wave-
lengths), use minimizefits.py and jackknife.jackknife_multi_set().

6.2.1 Datasets with no shared parameters

Load temperature data from Otten, D. E.; Shaffer, P. R.; Geissler, P. L.; Saykally, R. J. Proc.

Natl. Acad. Sci. 2012, 109 (3), 701–705.

In [16]: with open('dale_origin_data.csv') as file:
load = pd.read_csv(file)
data = load.values

load
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Out[16]: Mol Frac 274K 274Kerr 283K 283Kerr 293K
0 0.060460 86.400 1.69000 84.900 0.77000 80.500
1 0.049540 74.000 2.32000 68.400 0.14100 65.900
2 0.038990 59.500 1.95000 55.100 0.87300 51.500
3 0.028250 41.000 0.37300 37.300 0.79600 33.500
4 0.018900 23.800 0.27800 20.700 0.20600 18.800
5 0.009250 8.960 0.29800 7.440 0.04290 6.310
6 0.001830 1.420 0.00953 1.310 0.01070 1.220
7 0.000184 0.983 0.01060 0.989 0.00278 0.979
8 0.000018 0.991 0.01210 1.000 0.00272 0.990

293Kerr 303K 303Kerr 313K 313Kerr
0 0.36500 74.500 2.52000 70.200 2.23000
1 1.57000 60.300 1.76000 51.900 1.06000
2 0.91800 45.300 1.42000 40.500 0.23700
3 0.81700 28.400 0.20400 26.600 0.18500
4 0.10900 15.700 0.15500 13.200 0.29400
5 0.04100 5.290 0.12200 4.540 0.04280
6 0.00441 1.130 0.03440 1.110 0.00650
7 0.00749 0.981 0.00595 0.995 0.00704
8 0.01470 0.983 0.01020 0.993 0.01710

Use datatools.parse_csv_data() to easily take the above table and convert to X, Y,
and Yerr variables.

In [17]: X, Y, Yerr = datatools.parse_csv_data(data)

Each parameter in the fitting function needs to be initialized with a list of length equal to
the number of datasets. Here, it is five datasets.

In [18]: A = [1, 1, 1, 1, 1]
B = [1, 1, 1, 1, 1]
C = [1, 1, 1, 1, 1]
G = [-5000, -5000, -5000, -5000, -5000]
T = [274, 283, 293, 303, 313]
func = fits.lang_mol_frac

The minimizefits.lang_mol_frac_multiset() function can be used with any fit-
ting function in the fits.py module and should generalize. The models.py module
uses the fits.py module internally. Here, it is called in the function call.

Simple Langmuir model.

In [19]: fit = minimizefits.lang_mol_frac_multiset(X, Y, Yerr,
func,A, B, C, G, T=T)

plt.xlabel('Mole Fraction Thiocyanate')
plt.ylabel('SHG response (neat water = 1)')
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plt.legend(labels=['274K','283K','293K','303K','313K'],
bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

[[Variables]]
R: 8.314 (fixed)
A_1: 0.99110394 +/- 0.004373 (0.44%) (init= 1)
A_2: 0.99724530 +/- 0.001110 (0.11%) (init= 1)
A_3: 0.99232594 +/- 0.003701 (0.37%) (init= 1)
A_4: 0.99199681 +/- 0.003190 (0.32%) (init= 1)
A_5: 1.00214494 +/- 0.003619 (0.36%) (init= 1)
B_1: 0.44590506 +/- 0.277481 (62.23%) (init= 1)
B_2: -0.33391959 +/- 0.204472 (61.23%) (init= 1)
B_3: -0.61838691 +/- 0.178988 (28.94%) (init= 1)
B_4: -1.10230528 +/- 0.751388 (68.17%) (init= 1)
B_5: -1.82979777 +/- 0.241977 (13.22%) (init= 1)
C_1: 15.5474989 +/- 0.325040 (2.09%) (init= 1)
C_2: 16.0060707 +/- 0.098077 (0.61%) (init= 1)
C_3: 17.0942038 +/- 0.124659 (0.73%) (init= 1)
C_4: 18.1406873 +/- 0.694663 (3.83%) (init= 1)
C_5: 18.4920515 +/- 0.406092 (2.20%) (init= 1)
G_1: -7157.13515 +/- 87.18813 (1.22%) (init=-5000)
G_2: -7087.76391 +/- 32.62569 (0.46%) (init=-5000)
G_3: -6918.98859 +/- 31.62257 (0.46%) (init=-5000)
G_4: -6678.56301 +/- 147.4619 (2.21%) (init=-5000)
G_5: -6662.87511 +/- 84.54643 (1.27%) (init=-5000)
T_1: 274 (fixed)
T_2: 283 (fixed)
T_3: 293 (fixed)
T_4: 303 (fixed)
T_5: 313 (fixed)

[[Correlations]] (unreported correlations are < 0.100)
C(C_5, G_5) = 0.994
C(C_4, G_4) = 0.990
C(C_1, G_1) = 0.978
C(C_2, G_2) = 0.973
C(C_3, G_3) = 0.958
C(A_3, B_3) = -0.838
C(B_2, G_2) = 0.770
C(A_5, B_5) = -0.755
C(B_1, G_1) = 0.738
C(B_4, G_4) = 0.664
C(B_2, C_2) = 0.640
C(B_3, G_3) = 0.629
C(B_1, C_1) = 0.626
C(A_4, B_4) = -0.593
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C(A_1, B_1) = -0.580
C(B_5, G_5) = 0.578
C(B_4, C_4) = 0.565
C(B_5, C_5) = 0.525
C(A_2, B_2) = -0.499
C(B_3, C_3) = 0.457
C(A_3, G_3) = -0.391
C(A_4, G_4) = -0.391
C(A_5, G_5) = -0.378
C(A_5, C_5) = -0.344
C(A_2, G_2) = -0.343
C(A_4, C_4) = -0.334
C(A_2, C_2) = -0.275
C(A_3, C_3) = -0.257
C(A_1, G_1) = -0.163

Out[19]: <matplotlib.legend.Legend at 0x113fc0e80>

Langmuir model with surface potential term.

In [20]: D = [1, 1, 1, 1, 1]
E = [1, 1, 1, 1, 1]
func = fits.lang_pot_mol_frac

In [21]: fit = minimizefits.lang_mol_frac_multiset(X, Y, Yerr,
func, A, B, C, D, E, G, T=T)

OverflowError. Use new inital values.

In the event that the fitting function encounters values that are too large or too small, it
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throws an OverflowError. The function will print out a response prompting you to
choose new initial values.

In [22]: G = [-10000, -10000, -10000, -10000, -10000]

In [23]: fit = minimizefits.lang_mol_frac_multiset(X, Y, Yerr,
func, A, B, C, D, E, G, T=T)

plt.xlabel('Mole Fraction Thiocyanate')
plt.ylabel('SHG response (neat water = 1)')
plt.legend(labels=['274K','283K','293K','303K','313K'],

bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

[[Variables]]
R: 8.314 (fixed)
A_1: 0.99853557 +/- 0.006778 (0.68%) (init= 1)
A_2: 1.00067677 +/- 0.001523 (0.15%) (init= 1)
A_3: 0.99708340 +/- 0.007449 (0.75%) (init= 1)
A_4: 0.99323442 +/- 0.004251 (0.43%) (init= 1)
A_5: 1.00581269 +/- 0.008677 (0.86%) (init= 1)
B_1: -1.20806694 +/- 0.841545 (69.66%) (init= 1)
B_2: -1.07698128 +/- 0.236949 (22.00%) (init= 1)
B_3: -1.15005924 +/- 0.826099 (71.83%) (init= 1)
B_4: -0.95544960 +/- 0.660009 (69.08%) (init= 1)
B_5: -1.26891100 +/- 0.904327 (71.27%) (init= 1)
C_1: 6.81165050 +/- 1.015459 (14.91%) (init= 1)
C_2: 7.45746045 +/- 0.608821 (8.16%) (init= 1)
C_3: 5.78640843 +/- 0.874010 (15.10%) (init= 1)
C_4: 9.14604673 +/- 7.882020 (86.18%) (init= 1)
C_5: 8.65747205 +/- 0.868773 (10.03%) (init= 1)
D_1: 14.5643006 +/- 0.870708 (5.98%) (init= 1)
D_2: 14.9212753 +/- 0.486822 (3.26%) (init= 1)
D_3: 15.0031433 +/- 0.401931 (2.68%) (init= 1)
D_4: 13.3725304 +/- 7.906370 (59.12%) (init= 1)
D_5: -13.3537176 +/- 1.248679 (9.35%) (init= 1)
E_1: -6.14728816 +/- 2.644143 (43.01%) (init= 1)
E_2: -3.87271355 +/- 1.529059 (39.48%) (init= 1)
E_3: -6.09691623 +/- 4.466606 (73.26%) (init= 1)
E_4: 2.13162554 +/- 6.105663 (286.43%) (init= 1)
E_5: -8.29690871 +/- 5.781653 (69.68%) (init= 1)
G_1: -9323.50224 +/- 320.8468 (3.44%) (init=-10000)
G_2: -8957.65148 +/- 229.8494 (2.57%) (init=-10000)
G_3: -9579.75562 +/- 392.9832 (4.10%) (init=-10000)
G_4: -8227.54492 +/- 1.92e+03 (23.28%) (init=-10000)
G_5: -10303.5221 +/- 452.3032 (4.39%) (init=-10000)
T_1: 274 (fixed)
T_2: 283 (fixed)
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T_3: 293 (fixed)
T_4: 303 (fixed)
T_5: 313 (fixed)

[[Correlations]] (unreported correlations are < 0.100)
C(C_4, G_4) = 0.997
C(B_5, E_5) = 0.996
C(D_4, E_4) = -0.995
C(D_5, G_5) = -0.994
C(E_3, G_3) = 0.992
C(B_3, E_3) = 0.984
C(B_5, C_5) = -0.976
C(B_3, C_3) = -0.973
C(C_5, E_5) = -0.970
C(B_3, G_3) = 0.969
C(D_5, E_5) = -0.967
C(B_5, D_5) = -0.960
C(E_5, G_5) = 0.956
C(C_3, D_3) = 0.949
C(C_3, E_3) = -0.941
C(B_5, G_5) = 0.940
C(C_1, D_1) = 0.931
C(A_5, B_5) = -0.927
C(A_5, E_5) = -0.909
C(E_1, G_1) = 0.901
C(C_3, G_3) = -0.898
C(A_5, D_5) = 0.897
C(D_4, G_4) = -0.895
C(A_3, B_3) = -0.894
C(B_1, D_1) = -0.893
C(C_5, D_5) = 0.882
C(A_5, C_5) = 0.881
C(B_3, D_3) = -0.880
C(B_2, D_2) = -0.873
C(E_4, G_4) = 0.870
C(A_5, G_5) = -0.866
C(C_4, D_4) = -0.865
C(C_5, G_5) = -0.857
C(A_3, C_3) = 0.841
C(A_3, G_3) = -0.840
C(A_3, E_3) = -0.839
C(C_4, E_4) = 0.837
C(C_2, G_2) = 0.830
C(A_3, D_3) = 0.814
C(D_2, E_2) = -0.808
C(D_3, E_3) = -0.805
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C(A_1, B_1) = -0.800
C(B_1, E_1) = 0.799
C(B_2, E_2) = 0.793
C(E_2, G_2) = 0.763
C(A_2, B_2) = -0.748
C(B_1, C_1) = -0.747
C(D_3, G_3) = -0.740
C(A_1, D_1) = 0.675
C(A_1, E_1) = -0.630
C(A_2, E_2) = -0.615
C(A_4, D_4) = 0.609
C(A_4, E_4) = -0.597
C(B_1, G_1) = 0.593
C(A_2, D_2) = 0.577
C(A_4, B_4) = -0.577
C(D_1, E_1) = -0.571
C(A_1, G_1) = -0.522
C(A_2, G_2) = -0.517
C(A_4, G_4) = -0.512
C(A_1, C_1) = 0.510
C(B_2, G_2) = 0.503
C(A_4, C_4) = -0.471
C(C_2, E_2) = 0.299
C(C_2, D_2) = 0.294
C(C_1, E_1) = -0.276
C(D_2, G_2) = -0.275
C(B_4, E_4) = 0.244
C(B_4, D_4) = -0.232
C(D_1, G_1) = -0.220
C(A_2, C_2) = -0.169
C(B_4, C_4) = -0.124
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Out[23]: <matplotlib.legend.Legend at 0x11765f630>

Use jackknife.jackknife_multi_set() to perform the jackknife. It can be used
with minimizefits.lang_mol_frac_multiset() and should generalize well to
other functions.

Using the simple Langmuir only.

In [24]: A = [1, 1, 1, 1, 1]
B = [1, 1, 1, 1, 1]
C = [1, 1, 1, 1, 1]
G = [-5000, -5000, -5000, -5000, -5000]
T = [274, 283, 293, 303, 313]
func = fits.lang_mol_frac

In [25]: sub_fits, sub_errs, fit_values =
jackknife.jackknife_multi_set(X, Y, Yerr, func,

A, B, C, G, T=T,
print_out=False,
handle_error=False)

If one of the sub fits seems erroneous and needs to be recalculated, use the
jackknife.subfit_redo_multi_set() function.

In [26]: k = 0
G = [-1000, -1000, -1000, -1000, -1000]
sub_fit_new, sub_err_new =

jackknife.subfit_redo_multi_set(k,
X, Y, Yerr, func, A, B, C, G, T=T)

[[Variables]]
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R: 8.314 (fixed)
A_1: 0.99039539 +/- 0.004391 (0.44%) (init= 1)
A_2: 0.99724529 +/- 0.001110 (0.11%) (init= 1)
A_3: 0.99232594 +/- 0.003701 (0.37%) (init= 1)
A_4: 0.99199680 +/- 0.003190 (0.32%) (init= 1)
A_5: 1.00214480 +/- 0.003619 (0.36%) (init= 1)
B_1: 0.75937503 +/- 0.358065 (47.15%) (init= 1)
B_2: -0.33391767 +/- 0.204472 (61.23%) (init= 1)
B_3: -0.61838687 +/- 0.178989 (28.94%) (init= 1)
B_4: -1.10230462 +/- 0.751395 (68.17%) (init= 1)
B_5: -1.82978357 +/- 0.241957 (13.22%) (init= 1)
C_1: 16.2110636 +/- 0.550859 (3.40%) (init= 1)
C_2: 16.0060713 +/- 0.098076 (0.61%) (init= 1)
C_3: 17.0942038 +/- 0.124659 (0.73%) (init= 1)
C_4: 18.1406882 +/- 0.694668 (3.83%) (init= 1)
C_5: 18.4920925 +/- 0.406049 (2.20%) (init= 1)
G_1: -6997.49529 +/- 132.8867 (1.90%) (init=-1000)
G_2: -7087.76368 +/- 32.62568 (0.46%) (init=-1000)
G_3: -6918.98858 +/- 31.62258 (0.46%) (init=-1000)
G_4: -6678.56283 +/- 147.4624 (2.21%) (init=-1000)
G_5: -6662.86651 +/- 84.54204 (1.27%) (init=-1000)
T_1: 274 (fixed)
T_2: 283 (fixed)
T_3: 293 (fixed)
T_4: 303 (fixed)
T_5: 313 (fixed)

[[Correlations]] (unreported correlations are < 0.100)
C(C_5, G_5) = 0.994
C(C_1, G_1) = 0.990
C(C_4, G_4) = 0.990
C(C_2, G_2) = 0.973
C(C_3, G_3) = 0.958
C(A_3, B_3) = -0.838
C(B_1, G_1) = 0.825
C(B_2, G_2) = 0.770
C(B_1, C_1) = 0.760
C(A_5, B_5) = -0.755
C(B_4, G_4) = 0.664
C(B_2, C_2) = 0.640
C(B_3, G_3) = 0.629
C(A_4, B_4) = -0.593
C(B_5, G_5) = 0.578
C(B_4, C_4) = 0.565
C(A_1, B_1) = -0.533
C(B_5, C_5) = 0.525
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C(A_2, B_2) = -0.499
C(B_3, C_3) = 0.457
C(A_3, G_3) = -0.391
C(A_4, G_4) = -0.391
C(A_5, G_5) = -0.378
C(A_5, C_5) = -0.344
C(A_2, G_2) = -0.343
C(A_4, C_4) = -0.334
C(A_2, C_2) = -0.275
C(A_3, C_3) = -0.257
C(A_1, G_1) = -0.179
C(A_1, C_1) = -0.124

Then these values can replace the column in sub_fits and sub_errs: sub_fits[:,i] =
sub_fit_new and sub_errs[:,i] = sub_err_new

Calculate the parameter estimates, errors, and bias-corrected estimates.

In [27]: estimate, stderr, est_corr =
jackknife.jackknife_calcs(sub_fits, fit_values)

In [28]: for item in zip(estimate, est_corr, stderr):
print(item)

(0.99118964191265069, 0.98733305985793862, 0.0071729487069151377)
(0.99724103836915956, 0.99743291956565372, 0.0058012653183970161)
(0.99245687588878695, 0.98656515710414538, 0.0082387802532657654)
(0.99197683815223925, 0.99287559357624389, 0.0013753104729033246)
(1.0023425590749866, 0.99344990649638021, 0.0089119961369202548)
(0.41215515136230552, 1.9309010878008479, 1.6411323766697861)
(-0.34291966543201269, 0.06208372374248583, 1.0241216007495333)
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(-0.65155268756858342, 0.84090694512060438, 1.5512807112079243)
(-1.0951965694856927, -1.4150888102256687, 0.66240381708882079)
(-1.8900027749438146, 0.81922229223006582, 2.7700269935741382)
(15.547452736558595, 15.549533164787363, 0.83469836305666745)
(16.014787382788487, 15.622539699291792, 0.5228393219584504)
(17.103398539689405, 16.689636957651828, 1.1040236887461212)
(18.146413982989518, 17.888715467502948, 0.38534599003217712)
(18.424261846961393, 21.474798672598695, 2.9796277258646704)
(-7158.7286711928436, -7087.0204339167685, 246.04447171362531)
(-7086.2766674294926, -7153.2028370163753, 144.28670029372367)
(-6918.9258280410013, -6921.7502785508404, 241.79934845266177)
(-6677.3060520997515, -6733.8693803983042, 88.375173939878735)
(-6678.6353065573212, -5969.4265907790395, 673.55369686352446)

6.2.2 Datasets with one or more shared parameter

Load data from Petersen, P. B.; Saykally, R. J.; Mucha, M.; Jungwirth, P. J Phys Chem B

2005, 109 (21), 10915–10921.

In [29]: with open('poul_origin_data_nascn.csv') as file:
load = pd.read_csv(file)
data = load.values

load

Out[29]: Molarity 200nm 200err 212nm 212err
0 4.00000 217.95047 21.89505 91.25119 9.22512
1 3.00000 194.16100 19.51610 69.57555 7.05755
2 2.00000 135.90941 13.69094 45.42832 4.64283
3 1.00000 65.58297 6.65830 23.85600 2.48560
4 0.50000 25.38578 2.63858 9.99346 1.09935
5 0.25000 9.97127 1.09713 4.76236 0.57624
6 0.12500 4.36041 0.53604 2.45415 0.34542
7 0.06250 2.31932 0.33193 1.64823 0.26482
8 0.03125 1.52001 0.25200 1.18353 0.21835
9 0.01563 1.33945 0.23395 1.03818 0.20382
10 0.00782 NaN NaN 1.01939 0.20194

219nm 219err 227nm 227err 241nm 241err
0 58.35191 5.93519 11.99235 1.29924 4.67430 0.56743
1 44.27587 4.52759 9.34094 1.03409 3.31323 0.43132
2 28.90151 2.99015 5.87993 0.68799 2.21728 0.32173
3 12.45554 1.34555 3.33201 0.43320 1.45477 0.24548
4 5.76458 0.67646 2.02902 0.30290 1.03564 0.20356
5 2.59660 0.35966 1.27060 0.22706 0.86803 0.18680
6 1.75263 0.27526 1.05313 0.20531 0.86250 0.18625
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7 1.20572 0.22057 1.01610 0.20161 0.85649 0.18565
8 1.00112 0.20011 0.96178 0.19618 0.90994 0.19099
9 0.88356 0.18836 1.00476 0.20048 0.96695 0.19669
10 0.88551 0.18855 1.14910 0.21491 0.87871 0.18787

In [30]: X, Y, Yerr = datatools.parse_csv_data(data)

#X in molarity. Need mol frac
X = X * 18.02 / 0.9982067 / 1000
X = np.array([x / (1 + x) for x in X])

Simple Langmuir model.

G and T are both shared here, so they are scalars instead of lists.

In [31]: A = [1, 1, 1, 1, 1]
B = [1, 1, 1, 1, 1]
C = [1, 1, 1, 1, 1]
G = -5000
T = 293
func = fits.lang_mol_frac

In [32]: fit = minimizefits.lang_mol_frac_multiset(X, Y, Yerr,
func, A, B, C, G, T=T)

plt.xlabel('Mole Fraction Thiocyanate')
plt.ylabel('SHG response (neat water = 1)')
plt.legend(labels=[

'200nm','212nm','219nm','227nm','241nm'],
bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)

[[Variables]]
R: 8.314 (fixed)
A_1: 0.97074452 +/- 0.065885 (6.79%) (init= 1)
A_2: 0.95057720 +/- 0.071437 (7.52%) (init= 1)
A_3: 0.94540591 +/- 0.063009 (6.66%) (init= 1)
A_4: 1.00783250 +/- 0.054194 (5.38%) (init= 1)
A_5: 0.96178162 +/- 0.050229 (5.22%) (init= 1)
B_1: 23.6084216 +/- 1.838475 (7.79%) (init= 1)
B_2: 12.5996696 +/- 4.737637 (37.60%) (init= 1)
B_3: 3.97263220 +/- 2.785257 (70.11%) (init= 1)
B_4: 0.26218028 +/- 1.126889 (429.81%) (init= 1)
B_5: -0.85368560 +/- 0.717996 (84.11%) (init= 1)
C_1: 0.00620139 +/- 1.57e+04 (252494721.46%) (init= 1)
C_2: 5.17341000 +/- 11.99342 (231.83%) (init= 1)
C_3: 10.5578898 +/- 1.409116 (13.35%) (init= 1)
C_4: 5.11124640 +/- 0.528884 (10.35%) (init= 1)
C_5: 3.25897094 +/- 0.290538 (8.92%) (init= 1)
G: -7568.72125 +/- 285.6773 (3.77%) (init=-5000)
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T: 293 (fixed)
[[Correlations]] (unreported correlations are < 0.100)

C(B_2, C_2) = -0.982
C(B_1, G) = 0.861
C(B_3, C_3) = -0.837
C(B_4, C_4) = -0.765
C(A_2, C_2) = 0.726
C(A_2, B_2) = -0.706
C(B_5, C_5) = -0.688
C(A_3, B_3) = -0.671
C(A_4, B_4) = -0.656
C(B_2, G) = 0.633
C(A_5, B_5) = -0.630
C(A_3, C_3) = 0.624
C(B_3, G) = 0.571
C(B_1, B_2) = 0.545
C(A_1, G) = 0.498
C(C_2, G) = -0.496
C(B_1, B_3) = 0.491
C(A_4, C_4) = 0.486
C(C_5, G) = 0.470
C(B_1, C_1) = 0.469
C(B_1, C_2) = -0.427
C(B_1, C_5) = 0.404
C(B_2, B_3) = 0.361
C(A_5, C_5) = 0.340
C(B_4, G) = 0.336
C(A_1, B_2) = 0.315
C(A_1, B_1) = 0.302
C(B_2, C_5) = 0.297
C(B_1, B_4) = 0.290
C(A_1, B_3) = 0.284
C(B_3, C_2) = -0.283
C(B_3, C_5) = 0.268
C(C_4, G) = 0.249
C(A_1, C_2) = -0.247
C(A_1, C_5) = 0.234
C(C_2, C_5) = -0.233
C(B_1, C_4) = 0.215
C(B_2, B_4) = 0.213
C(B_3, B_4) = 0.192
C(A_3, G) = -0.189
C(A_2, G) = -0.181
C(A_1, B_4) = 0.167
C(B_4, C_2) = -0.167

132



C(A_3, B_1) = -0.163
C(B_4, C_5) = 0.158
C(B_2, C_4) = 0.158
C(A_2, B_1) = -0.156
C(B_3, C_4) = 0.142
C(B_5, G) = 0.132
C(A_1, C_4) = 0.124
C(C_2, C_4) = -0.124
C(A_3, B_2) = -0.120
C(C_4, C_5) = 0.117
C(B_1, B_5) = 0.114
C(C_1, G) = 0.113
C(A_4, G) = -0.112
C(A_2, B_3) = -0.103
C(A_1, C_1) = 0.100

Out[32]: <matplotlib.legend.Legend at 0x117cbf048>

7 Notes on future use

The lmfit module is very powerful and has many more options available for customiza-
tion. For example, the fit objects also have a method for plotting a residual plot and the
parameters can have bounds. The minimizefits.py module in particular has several func-
tions that are called by minimizefits.lang_mol_frac_multiset() which can be used individ-
ually, if necessary.

133



	 134	

Appendix	6	–	Error	Analysis	Full	Results	

A6.1 Model	comparisons	
“frac_lmf”	is	the	fraction	of	correlations	above	0.1	that	were	0.9	or	greater	for	Equation	

(2.18),	the	simple	Langmuir	model.	“frac_lpmf”	is	the	fraction	of	correlations	above	0.1	that	
were	0.9	or	greater	for	Equation	(5.13),	the	Langmuir	model	with	surface	potential.	

A6.1.1 NaSCN	graphene/water	
	 Value	 Result	
F-test	 0.004662381	 evidence	for	LSP	
AIC	 11.69174609	 no	support	for	SL	over	LSP	
BIC	 9.802868131	 little	support	for	SL	over	LSP	
AICc	 7.548888946	 some	support	for	SL	over	LSP	
frac_lmf	 0.2	 support	for	SL	
frac_lpmf	 0.6666	 	

A6.1.2 KSCN	temperature	dependence1	
	 Value	 Result	
F-test	 0.176363705	 no	evidence	for	LSP	
AIC	 13.80597374	 no	support	for	SL	over	LSP	
BIC	 -4.260651161	 some	support	for	LSP	over	SL	
AICc	 -84.05116912	 no	support	for	LSP	over	SL	
frac_lmf	 0.172413793	 support	for	SL	
frac_lpmf	 0.236111111	 	

A6.1.3 NaSCN	dodecanol/water2	
	 Value	 Result	
F-test	 0.026450721	 evidence	for	LSP	
AIC	 6.686053608	 some	support	for	SL	over	LSP	
BIC	 -5.880013765	 some	support	for	LSP	over	SL	
AICc	 -1.475313264	 substantial	support	for	LSP	over	SL	
frac_lmf	 0.212121212	 support	for	LSP	
frac_lpmf	 0.132352941	 	
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A6.1.4 NaSCN	<	4M	dodecanol/water2	
	 Value	 Result	
F-test	 0.039592985	 evidence	for	LSP	
AIC	 6.418925522	 some	support	for	SL	over	LSP	
BIC	 -5.05321251	 some	support	for	LSP	over	SL	
AICc	 -4.424897322	 some	support	for	LSP	over	SL	
frac_lmf	 0.030303030	 support	for	SL	
frac_lpmf	 0.182795698	 	

A6.1.5 KSCN	dodecanol/water2	
	 Value	 Result	
F-test	 0.470415594	 no	evidence	for	LSP	
AIC	 -3.178140601	 some	support	for	LSP	over	SL	
BIC	 -9.72848524	 little	support	for	LSP	over	SL	
AICc	 -9.598653421	 little	support	for	LSP	over	SL	
frac_lmf	 0.076923076	 support	for	LSP	
frac_lpmf	 0.05	 	

A6.1.6 KSCN	<	4M	dodecanol/water2	
	 Value	 Result	
F-test	 0.60133765	 no	evidence	for	LSP	
AIC	 -3.874757192	 some	support	for	LSP	over	SL	
BIC	 -9.479546719	 little	support	for	LSP	over	SL	
AICc	 -13.45051477	 no	support	for	LSP	over	SL	
frac_lmf	 0.058823529	 support	for	SL	
frac_lpmf	 0.255813953	 	

A6.1.7 NaSCN	air/water3	
	 Value	 Result	
F-test	 5.09E-06	 evidence	for	LSP	
AIC	 53.78832625	 no	support	for	SL	over	LSP	
BIC	 33.89848579	 no	support	for	SL	over	LSP	
AICc	 16.49102896	 no	support	for	SL	over	LSP	
frac_lmf	 0.024691358	 support	for	SL	
frac_lpmf	 0.051401869	 	
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A6.2 Jackknife	calculations	
All	!"#$%	values	are	presented	in	units	of	J/mol.	

A6.2.1 NaSCN	graphene/water	

A6.2.1.1 Simple	Langmuir	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A	 1.214571154	 1.146389914	 2.441833461	 0.073313399	 1.193479018	
B	 -7.376935001	 -7.506008928	 -5.053604311	 0.498521269	 2.891663268	
C	 7.096233004	 7.33549848	 2.78945443	 1.025682244	 4.959844116	
G	 -8780.093298	 -8642.528645	 -11256.25705	 382.2984804	 2385.949068	

A6.2.1.2 Langmuir	with	surface	potential	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A	 1.362947854	 1.357337044	 1.463942437	 0.107655111	 0.204498606	
B	 -46.73509559	 -48.27231634	 -19.06512213	 24.61348177	 48.00917313	
C	 29.91496599	 31.2385991	 6.089569913	 21.0609069	 37.40254043	
D	 224.8578296	 254.9998424	 -317.6984001	 245.3559278	 514.6220773	
E	 -40.08933038	 -48.84691788	 117.5472446	 69.58432249	 136.5415953	
G	 -5029.766239	 -5022.919115	 -5153.014475	 1716.160198	 3155.499825	

A6.2.2 KSCN	temperature	dependence1	

A6.2.2.1 Simple	Langmuir	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 0.991103937	 0.991189643	 0.987332874	 0.004373219	 0.007172971	
A2	 0.997245303	 0.99724104	 0.997432867	 0.001110788	 0.005801247	
A3	 0.992325949	 0.992456876	 0.986565166	 0.003701974	 0.008238778	
A4	 0.991996812	 0.99197684	 0.992875594	 0.003190564	 0.001375308	
A5	 1.002144929	 1.002342544	 0.993449895	 0.00361973	 0.008911921	
B1	 0.445905365	 0.412154689	 1.930935086	 0.277482029	 1.641150788	
B2	 -0.333919697	 -0.342920139	 0.06209977	 0.204472442	 1.024120046	
B3	 -0.618386957	 -0.651552718	 0.840906507	 0.178988922	 1.551280589	
B4	 -1.102305944	 -1.095197245	 -1.415088683	 0.751383178	 0.662402429	
B5	 -1.829796216	 -1.890000901	 0.819209898	 0.241975228	 2.77000319	
C1	 15.5474992	 15.54745259	 15.54954992	 0.325040045	 0.834700293	
C2	 16.00607074	 16.01478724	 15.62254455	 0.09807705	 0.522839325	
C3	 17.09420382	 17.10339851	 16.68963757	 0.124659856	 1.104022831	
C4	 18.14068664	 18.14641305	 17.88872473	 0.69465924	 0.385345925	
C5	 18.49205601	 18.42426634	 21.47480161	 0.406087885	 2.979608225	
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G1	 -7157.135082	 -7158.72872	 -7087.015025	 87.18815028	 246.0455197	
G2	 -7087.763928	 -7086.276725	 -7153.200872	 32.62569516	 144.2866315	
G3	 -6918.988599	 -6918.925835	 -6921.750199	 31.62257332	 241.7992144	
G4	 -6678.563171	 -6677.306254	 -6733.867514	 147.4615566	 88.37512431	
G5	 -6662.874178	 -6678.634361	 -5969.42613	 84.54595042	 673.5489972	

A6.2.2.2 Langmuir	with	surface	potential	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 0.998535576	 1.002175418	 0.838382533	 0.006778039	 0.152984055	
A2	 1.000676913	 1.00049536	 1.00866521	 0.00152388	 0.008164566	
A3	 0.997083366	 0.997086734	 0.996935175	 0.00744941	 0.006195142	
A4	 0.993234343	 0.993217584	 0.99397174	 0.004252014	 0.002742015	
A5	 1.005810636	 1.010152197	 0.81478193	 0.008678229	 0.20194191	
B1	 -1.208066711	 -1.598352424	 15.96450465	 0.841546612	 12.45056594	
B2	 -1.077001465	 -1.056406446	 -1.983182292	 0.236937006	 1.570269629	
B3	 -1.150054525	 -1.154320993	 -0.962329962	 0.826096372	 0.761600916	
B4	 -0.955451306	 -0.956482826	 -0.910064449	 0.65996588	 0.578022107	
B5	 -1.268678152	 -1.71901089	 18.54596233	 0.904273388	 15.45051824	
C1	 6.811650349	 6.994005407	 -1.211972188	 1.015460105	 4.942018616	
C2	 7.457372542	 8.840732213	 -53.41045295	 0.60849404	 38.29829851	
C3	 5.786403837	 5.791839742	 5.547224015	 0.874027286	 0.927003259	
C4	 9.146364405	 9.160699476	 8.515621245	 7.879093875	 5.91213358	
C5	 4.598955105	 4.900519695	 -8.66988687	 1.866279108	 7.321948916	
D1	 14.56430043	 14.81235726	 3.649799862	 0.870708819	 11.60583684	
D2	 14.92129717	 15.81126684	 -24.23736852	 0.486541319	 28.24941571	
D3	 15.00314158	 14.98273466	 15.90104627	 0.401893507	 0.779351899	
D4	 13.37224617	 13.43501024	 10.61062728	 7.904271637	 3.406022201	
D5	 13.38949894	 13.1369955	 24.49965057	 0.629108546	 24.54358151	
E1	 -6.147287532	 -6.435831271	 6.548636994	 2.644145649	 12.56461498	
E2	 -3.872912656	 -5.537866869	 69.38507271	 1.528709695	 52.7022984	
E3	 -6.096890023	 -6.202948993	 -1.430295347	 4.466212215	 4.261975994	
E4	 2.131838747	 2.002500795	 7.82270863	 6.106798569	 3.619658378	
E5	 -8.238068821	 -8.243303892	 -8.007725706	 4.274949081	 21.95146127	
G1	 -9323.502174	 -9385.292498	 -6604.727905	 320.8470737	 1817.628843	
G2	 -8957.691156	 -8755.323712	 -17861.8587	 229.7565321	 5360.203418	
G3	 -9579.753296	 -9589.609133	 -9146.096464	 392.9626736	 358.5915531	
G4	 -8227.467556	 -8231.338989	 -8057.124483	 1915.020529	 1278.077884	
G5	 -10303.39851	 -10407.74978	 -5711.94275	 452.0785478	 3072.067494	
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A6.2.3 NaSCN	dodecanol/water2	

A6.2.3.1 Simple	Langmuir	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 0.996302006	 0.996104324	 1.008558282	 0.010225997	 0.015156582	
A2	 0.992608471	 0.992355704	 1.008279992	 0.008941815	 0.022295755	
A3	 1.000348241	 1.000366061	 0.999243375	 0.009191646	 0.00229599	
B1	 5.223242397	 5.272256818	 2.184348281	 3.571414128	 3.414289482	
B2	 1.660875305	 1.680132968	 0.466900215	 1.152986874	 1.367096567	
B3	 0.241964721	 0.244998386	 0.053877502	 0.420247025	 0.353687578	
C1	 3.602915059	 3.510973457	 9.30329437	 2.123812606	 3.928874094	
C2	 2.61953624	 2.601685988	 3.726251872	 0.650239956	 1.39499542	
C3	 3.14426194	 3.157990624	 2.293083561	 1.067162996	 1.002202865	
G	 -3228.283628	 -3216.671912	 -3948.210001	 1391.115792	 1301.862555	

A6.2.3.2 Langmuir	with	surface	potential	
	 Fit	values	 Fit	error	
A1	 1.00018656	 0.01099976	
A2	 0.998271852	 0.009781721	
A3	 0.998808308	 0.009857809	
B1	 0.274347763	 1.156999012	
B2	 -0.021781893	 0.546680571	
B3	 0.237229796	 0.612217428	
C1	 6.320812724	 1.417292381	
C2	 1.535866173	 2.678397305	
C3	 1.113737007	 2460.684677	
D1	 -7.333805526	 2.79500974	
D2	 1.62049533	 1.150025653	
D3	 -1.207242098	 2760.291764	
E1	 -4.601321814	 2.771225203	
E2	 -1.708948206	 5.214647476	
E3	 1.381538952	 2439.108713	
G	 -6650.924197	 1525.31116	

A6.2.4 NaSCN	<	4M	dodecanol/water2	

A6.2.4.1 Simple	Langmuir	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 0.997367722	 0.99703312	 1.014097808	 0.010551718	 0.018807276	
A2	 0.997708328	 0.997518106	 1.007219431	 0.009344384	 0.010896222	
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A3	 1.000735109	 1.00079448	 0.997766551	 0.009490078	 0.004825598	
B1	 1.209741573	 1.24499028	 -0.552693766	 1.086194412	 1.438955553	
B2	 0.115926207	 0.125130065	 -0.344266701	 0.305161405	 0.343567166	
B3	 -0.029115088	 -0.026816038	 -0.14406758	 0.193875041	 0.168766501	
C1	 3.075431946	 1.262743232	 93.70986762	 0.353132942	 19.81512555	
C2	 2.173821686	 2.185541466	 1.587832649	 0.51633606	 0.591162374	
C3	 1.508436055	 1.516681548	 1.096161396	 0.412293782	 0.689987609	
G	 -6203.22923	 -6172.838259	 -7722.777755	 1272.316194	 1462.732136	

A6.2.4.2 Langmuir	with	surface	potential	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 0.998796087	 0.998568319	 1.010184497	 0.010836002	 0.012740154	
A2	 0.998195777	 0.997948786	 1.010545299	 0.009831949	 0.014243295	
A3	 1.000149141	 1.000190476	 0.998082434	 0.009977329	 0.0023314	
B1	 1.504956102	 1.627691403	 -4.631808967	 4.047610054	 4.435857166	
B2	 -0.002257792	 0.008391023	 -0.534698516	 1.173114223	 0.705063887	
B3	 -0.483625565	 -0.50404197	 0.537194647	 1.146553738	 0.826047254	
C1	 5.59592842	 5.551124787	 7.836110063	 12.55034181	 16.97360922	
C2	 3.45075592	 3.690136559	 -8.518276053	 9.289731128	 8.132178895	
C3	 -4.867401423	 -4.06645096	 -44.91492461	 6.522547761	 22.94638917	
D1	 3.270968377	 3.259675109	 3.835631764	 11.94690923	 10.14161612	
D2	 3.775589566	 4.092796973	 -12.0847808	 12.37678072	 19.79570981	
D3	 3.276361803	 3.694731445	 -17.64212029	 8.039577676	 14.71922068	
E1	 -8.804018028	 -9.143591513	 8.174656201	 46.80348229	 64.48048746	
E2	 -7.805085711	 -9.126901511	 58.2857043	 37.80956789	 59.68705644	
E3	 16.57908666	 14.88529092	 101.268874	 48.02210558	 108.0998872	
G	 -5001.479851	 -4913.936119	 -9378.666431	 5740.88291	 3373.134222	

A6.2.5 KSCN	dodecanol/water2	

A6.2.5.1 Simple	Langmuir	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 1.000317057	 1.000365864	 0.99851118	 0.015153506	 0.00171595	
A2	 0.995509034	 0.995239768	 1.005471882	 0.013118715	 0.014023486	
B1	 5.315025728	 5.293072753	 6.127285774	 1.023097963	 0.665607684	
B2	 0.495982463	 0.497613504	 0.435633963	 0.383374415	 0.245375277	
C1	 -0.000497718	 -0.090326245	 3.323157757	 1403.461544	 2.41019354	
C2	 2.238866657	 2.229526999	 2.584434017	 0.703515484	 0.374316925	
G	 -3471.759102	 -3479.881189	 -3171.241871	 624.6316365	 283.9235848	
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A6.2.5.2 Langmuir	with	surface	potential	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 1.00072271	 1.00120603	 0.98283986	 0.016856155	 0.018706811	
A2	 0.998977191	 0.998616675	 1.012316269	 0.014540534	 0.014463619	
B1	 0.736382771	 0.729993746	 0.972776708	 2.060142074	 0.773705416	
B2	 -0.310494786	 -0.303833638	 -0.556957263	 0.674849281	 0.324621635	
C1	 -2.675021482	 -2.700935887	 -1.716188461	 2.914324626	 1.125277317	
C2	 2.004988907	 1.9957573	 2.346558393	 1.897054618	 0.775287709	
D1	 2.191574234	 2.217569721	 1.229741204	 2.205397479	 0.89983391	
D2	 1.174684873	 1.168105808	 1.418110254	 1.211931589	 0.520121834	
E1	 5.728231406	 5.756405382	 4.685794282	 2.217300707	 1.263945903	
E2	 -3.317688195	 -3.319161167	 -3.263188239	 2.691473472	 1.024313236	
G	 -7263.343302	 -7252.683823	 -7657.744044	 2505.458805	 986.0474665	

A6.2.6 KSCN	<	4M	dodecanol/water2	

A6.2.6.1 Simple	Langmuir	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 1.000168917	 1.000214829	 0.998837459	 0.016352093	 0.001942521	
A2	 0.996429014	 0.995973132	 1.009649579	 0.013685834	 0.016584579	
B1	 2.119674617	 2.147746168	 1.305599645	 3.539552109	 1.59683946	
B2	 0.120400108	 0.128992979	 -0.128793164	 0.437954394	 0.299866308	
C1	 2.679138683	 2.652903302	 3.439964731	 1.385174539	 0.736552334	
C2	 1.529106153	 1.523586834	 1.689166408	 1.005638866	 0.480464921	
G	 -5538.504273	 -5525.598583	 -5912.769287	 3070.723178	 1380.680681	

A6.2.6.2 Langmuir	with	surface	potential	
	 Fit	values	 Fit	error	
A1	 1.000369194	 0.016842927	
A2	 0.999124132	 0.014714954	
B1	 1.004217665	 5.069224524	
B2	 -0.369649484	 1.043775403	
C1	 1.764473497	 7.438753539	
C2	 2.3045937	 6.599871647	
D1	 1.882844989	 3.567920287	
D2	 1.35311609	 5.073054757	
E1	 -3.752616086	 9.82326334	
E2	 -3.973266347	 17.33342232	
G	 -7059.323138	 9987.47835	
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A6.2.7 NaSCN	air/water3	

A6.2.7.1 Simple	Langmuir	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 0.970772452	 0.970632784	 0.978314541	 0.121111498	 0.034367807	
A2	 0.950520857	 0.950712933	 0.940148737	 0.072426198	 0.017848292	
A3	 0.945393447	 0.945383205	 0.945946514	 0.063955113	 0.022294147	
A4	 1.007827441	 1.007814548	 1.008523635	 0.054478111	 0.027177245	
A5	 0.961778966	 0.961757652	 0.962929925	 0.050373275	 0.01639255	
B1	 23.60966013	 23.61507564	 23.3172223	 12.01756023	 1.844332271	
B2	 12.60526234	 12.59413305	 13.20624427	 5.483862105	 2.31312249	
B3	 3.974072938	 3.978861191	 3.715507274	 3.145830439	 1.662932531	
B4	 0.262493346	 0.262478212	 0.263310607	 1.179639532	 0.747781347	
B5	 -0.853627381	 -0.853159148	 -0.878911974	 0.723331268	 0.429417194	
C1	 -0.161297048	 -0.018519892	 -7.871263481	 12954.99967	 0.35665245	
C2	 -5.159671919	 -5.102327074	 -8.256293583	 13.2304248	 6.760786087	
C3	 10.55773884	 10.55266137	 10.8319222	 1.413413149	 0.779596484	
C4	 -5.111360028	 -5.110257654	 -5.170888229	 0.542708237	 0.361085149	
C5	 3.259093019	 3.258144413	 3.310317742	 0.316510294	 0.280393441	
G	 -7568.482538	 -7568.416273	 -7572.060821	 388.129045	 252.4508327	

A6.2.7.2 Langmuir	with	surface	potential	
	 Fit	values	 JK	estimate	 JK	bias-corr	values	 Fit	error	 JK	error	
A1	 1.041274446	 1.040506038	 1.082768494	 0.141111815	 0.063314794	
A2	 0.962506493	 0.962420442	 0.96715324	 0.087724343	 0.0230882	
A3	 0.908211224	 0.908426304	 0.896596906	 0.079322031	 0.020373132	
A4	 1.02029114	 1.021316468	 0.964923377	 0.070717865	 0.051577242	
A5	 0.964725672	 0.96516256	 0.941133723	 0.065612463	 0.028156011	
B1	 17.7771435	 17.87304839	 12.59827926	 28.78063646	 25.73485389	
B2	 12.82679498	 12.77673488	 15.53004037	 22.59097656	 15.43971628	
B3	 8.926942182	 8.84621959	 13.28596215	 13.81247067	 10.00043978	
B4	 -1.236584648	 -1.286747948	 1.472233577	 3.680028938	 2.761836195	
B5	 -1.792750884	 -1.796612157	 -1.584242132	 2.787494067	 0.572295801	
C1	 27.85763695	 27.42783168	 51.06712153	 23896.81513	 21.5308448	
C2	 15.56878665	 15.42524465	 23.32005506	 16.99204365	 12.63003522	
C3	 5.47646047	 5.569193264	 0.46888959	 39.25365418	 10.15111695	
C4	 -8.209387335	 -8.224382216	 -7.399663798	 7.584738333	 5.474360518	
C5	 7.137571679	 7.128482519	 7.628386298	 4.689916727	 3.346336907	
D1	 -7.587947619	 -7.763724711	 1.904015379	 639058.206	 27.44518754	
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D2	 -26.00374919	 -26.03258337	 -24.44670361	 40.91747102	 37.36293424	
D3	 -0.999911067	 -1.701479234	 36.88476998	 89.18584247	 18.12667047	
D4	 9.479335154	 9.545811403	 5.889617723	 9.215247596	 7.516118386	
D5	 -5.699091735	 -5.692590641	 -6.050150817	 7.93953941	 5.467549637	
E1	 -11.60140625	 -11.35878083	 -24.70317866	 418077.3732	 32.03394082	
E2	 1.821442891	 1.833337621	 1.179127477	 27.51308137	 11.4211583	
E3	 5.895061584	 5.650378576	 19.10794402	 49.21908206	 11.93130361	
E4	 12.15538263	 12.26897149	 6.021584065	 17.3625606	 15.07409088	
E5	 -9.514823088	 -9.539140268	 -8.201695383	 10.31078539	 6.956263433	
G	 -7125.048166	 -7165.496062	 -4940.861767	 3190.79582	 2758.936896	
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