UC Davis
IDAV Publications

Title
ObVis: A Generic Framework for Information Visualization

Permalink
https://escholarship.org/uc/item/8501k1k?2

Authors

Heckel, Bjoern
Hamann, Bernd

Publication Date
1998

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/8501k1k2
https://escholarship.org
http://www.cdlib.org/

ObVis: A Generic Framework for Information Visualization

Bjoem Heckel** and Bemd Hamann*

*IBM Almaden Research Center
San Jose, Califomia

*Center for Image Processing and Integrated Computing (CIPIC)
Department of Computer Science
University of California, Davis

ABSTRACT

We present a platform independent, generic and extensible
framework for information visualization called ObVis. It
allows reusing and customizing existing components (e.g.,
layout algorithms), supports a variety of data sources (e.g.,
data base system, files and Web documents) and allows
integrating external applications and services. It is
decomposed in five different component hierarchies.
Recombining and adding components and utilizing the
framework enables a rapid development of visual-based
applications and visualization tools.

Keywords: Information Visualization, Visual Data

Exploration, and Visualization Systems.

1 INTRODUCTION

Nowadays, vast amounts of information are presented to
analysts and users of computer systems in general.
Traditionally, this information has been presented in textual
form. To deal with large quantities of data, visualization
techniques (e.g., cone trees [1], glyphs [2], magic lens [3],
and parallel coordinate systems [4]) have been developed
in recent years that allow visual exploration. These
techniques are applicable in a wide range of fields.
However, most visualization systems are tailored to the
application domain and as a consequence, these techniques
have been implemented numerous times. Moreover, most
of the existing visualization systems primarily focus on
representing information. In many domains, it is desirable
to perform operations on the underlying data integrating
visualization and for example data analysis or process
control. This is a crucial issue when it is necessary to
transform the original data in order to understand the
information content.

In this paper, we describe the design and implementation of
a generic and extensible framework for information
visualization, called ObVis, which allows reusing existing
components (e.g., layout algorithms). It supports a variety
of data sources (e.g., data base system, files and Web
documents) and allows integrating external applications
and services. The goal of the ObVis project is to create an
infrastructure that allows a rapid development of
visualization tools for a diverse range of domains.

The ObVis system is decomposed in five different groups
of components that are described in section 2. The
interfaces between these component groups are well
defined. Recombining existing components stored in a
repository supports a fast development of visual-based
applications. The different component groups are arranged
in a class hierarchy. New components can be added to the
component library by extending existing classes. By
utilizing inheritance and templates, the extension of ObVis
becomes an easy task. The complexity of the ObVis system
is hidden in the base classes of the component hierarchies.
The basic features can be used by derived classes and be
altered to give components an individual behavior. On one
hand, this approach allows programmers with little
graphics programming experience to create powerful
visualization tools without having to know much about the
implementation of the underlying technology (e.g., issues
like performance optimization). On the other hand, it gives
experienced programmers the opportunity to create highly
customized applications. ObVis is implemented platform
independent to reach a wide audience of users and
developers. It supports a variety of data sources including
database’ systems, conventional files and the Internet.
ObVis posses real-time capabilities and allows to plug in
external applications that - controlled through a visual
interface - perform operations on the underlying data.

Addresses: ¥IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, “Department of Computer Science,

University of California, Davis, Davis, CA 95616-8562
Email: {heckel, hamann } @cs.ucdavis.edu

Project homepage: http:\\graphics.ucdavis.edu\people\heckel\projects\obvis\index.html

g4

2 COMPONENTS

The ObVis system consists of five component groups: A
domain class hierarchy, an information object class
hierarchy, a layout algorithm class hierarchy, a pipe class
hierarchy, and a services class hierarchy.

2.1 Domain Objects

The heart of an ObVis application is an instance of a class
of the domain hierarchy. This so-called Domain Object
(DO) represents the domain in which the visualization tool
is operating. It stores information about the application
domain and manages a heterogeneous collection of
Information Objects (IOs), called the Object Collection
(OC). The DO also controls the visual representation of the
Object Collection and defines the layout algorithms that are
permitted to operate on it. It processes events triggered by
user interaction or external sources and requests for
exporting and importing data through pipes. The root of the
Domain Object class hierarchy provides methods to
manage the Object Collection (e.g. seek, add and delete
IOs), interact with external applications and data sources,
and process events. A user communicates with the DO,
either directly through its dialog or indirectly through the
visual representation of the OC.

2.2 Information Objects

An instance of a class of the information object class
hierarchy, called Information Object (IO), represents an
external entity (e.g., a gif file, a row in a relational database
or a web documents). Each 10 has a class-specific visual
representation and a set of applicable operations. A set of
basic operations - for example for event processing - are
derived from the root class of the IO class hierarchy. IO0s
have a class dependent primary and secondary function that
can be directly activated through the visualization. The
primary function usually is the most performed operation
on a certain object class. ObVis supports different viewing
modes, which differ from each other in the assignment of
different primary functions to the object classes. For
example in ExploreMode, clicking on a picture object
displays the picture, while in RearrangeMode it cuts it out
to let the user place it at a different "place”. The secondary
function creates a class specific dialog that displays the
state of the corresponding IO. It also allows the activation
of a set of operations that are applicable to one instance of
the particular class (e.g., "segment video" creating a set of
keyframe pictures).

2.3 Layout Objects

Layout Objects (LOs) are instances of a class from the
layout algorithm class hierarchy. A LO is applied to the
Object Collection or to a subset of it and spatially arranges
the geometric representation of the affected I0s. The state

25

of a LO is displayed in a dialog that is accessible through
the DO’s dialog. This Dialog is also used to configure the
particular layout algorithm. LOs are applicable to a certain
IO class and it’s descendents. Generic LOs - for example,
structural LOs like the cone tree layout - are applicable to
objects derived from the root of the IO class hierarchy.
Other, more individual LOs require the existence of
specific IO attributes and are therefore only applicable to
IOs of certain classes.

2.4 Pipe Objects

An instance of a class from the pipe object class hierarchy
is called a pipe object (PO). A pipe exports and imports
data to/from external data sources. It acts as a translator,
converting the data from the external data format to the
internal ObVis representation and vise versa. Pipes can
interpret file and web documents, read the structure of a file
system or web site, or access databases and digital libraries.

2.5 Service Objects

A Service Object (SO) is derived from a class of the service

hierarchy. It implements an internal operation that can be

performed on certain IO classes or it serves as an interface

to external applications and processes. SOs have one or

more of the following functions:

e production: adding objects to Object Collection,

e consumption: removing objects from OC,

e reorganization: structural alteration of OC, and

e transformation: change of attributes of objects in the
OC.

3 IMPLEMENTATION

ObVis is implemented in Java. As a runtime environment,
Netscape Communicator is used. For the visual
representation of the Object Collection, ObVis utilizes
VRML 2.0 [5].

lllustration 1: Screenshot of ObVis/AssetManager.

The user interface consists of two frames in the web
browser and additional dialog windows that are created on
demand. One frame displays the visual representation of
the Object Collection. The other frame shows the GUI of
the Domain Object. The communication between the Java
Domain Object and the VRML scene is established through
the external-authoring interface, EAI [6]. As a VRML
plugin for Netscape Communicator ObVis uses SGI’s
Cosmoplayer V2.1 [7]. ObVis uses JDBC to directly access
a data base or it communicates with external applications
via local or remote method invokation. Files and web
documents are accessed through the Java File and URL
classes. Currently, ObVis uses an own file format to store
and load a Object Collections that is of similar structure as
the VRML and Openlnventor file format. In the future,
ObVis will utilize the Extensible Markup Language (XML)
[8] for loading and storing ObVis files as well as for the
communication with external applications.

4 APPLICATIONS

Currently, the ObVis framework is being used for the
development of a variety of visualization-based
applications, which are briefly described in the following
subsections.

4.1 ObVis/ContentManager

ObVis/ContentManager is being developed to display the
state of a content management system consisting of a set of
control and service components. It is an administrative tool,
which shows the architecture of a content management
system. It allows examining the state of individual
components and performing operations on them (e.g., start
service, and cancel job). Moreover, it displays run-time
information (e.g., propagation of objects through the
system). Similarly, ObVis could be used to manage other
processes, for example production processes or distribution
of mail.

4.2 ObVis/AssetManager

ObVis/AssetManager is being designed to interface to an
Intranet file asset management system using DataLinks.
DataLinks is a new IBM database technology [9] that
enables management of data external to a database (e.g.,
files on a file system or web server). DataLinks technology
provides referential integrity, access control and
coordinated backup and recovery of file assets along with
metadata in a relational database. Applications (e.g., web
server) can continue to access the files from the file system
without change. ObVis/AssetManager will be used to
visualize the Intranet site structure and link information,
and provide services for version control and for the
management and manipulation of data in a DataLinks
database. Integrating ObVis with the DataLinks technology

will allow managing a large collection of file assets
efficiently and robustly.

4.3 ObVis/DocumentExplorer

ObVis/DocumentExplorer is being designed for a visual
exploration of large multimedia object collections. It will
provide basic operations like searching by metadata (e. g,
image name or video description) and browsing. By
integrating powerful services, like IBM’s Query By Image
Content (QBIO), CueVideo and TextMiner,
ObVis/DocumentExplorer is expected to become a very
useful tool integrating the functionality of different
applications.

4.4 ObVis/DataMine

ObVis/DataMine is being designed to explore the result of
data mining processes. Currently, it allows the visualization
of high-dimensional clusters, and association rules [10].
The utilized layout techniques are parallel coordinates
system and a new interactive method called binfields, which
is currently in an experimental stage.

5 SUMMARY

ObVis has proven to be a powerful environment to develop
visualization tools and front-ends for information rich
applications. With the refinement of the existing
applications and the development of new ones, ObVis is
expected to evolve further enhancing its capabilities.

6 ACKNOWLEDGEMENTS

This work was supported by the IBM Almaden Research
Center and various grants and contracts awarded to the
University of California, Davis, including the National
Science Foundation under contract ACI 9624034
(CAREER Award), the Office of Naval Research under
contract N00014-97-1-0222, the Army Research Office
under contract ARO 36598-MA-RIP, the NASA Ames
Research Center under contract NAG2-1216, the Lawrence
Livermore National Laboratory under contract W-7405-

- ENG-48 (B335358, B347878), and the Department of

6

Energy as part of the Accelerated Strategic Computing
Initiative (ASCI) under contract W-7405-ENG-48. We
would like to thank the members of the Visualization
Thrust at the Center for Image Processing and Integrated
Computing (CIPIC) at the University of California, Davis
and the members of the Digital Library research group at
the IBM Almaden Research Center.

7 REFERENCES

[1] Robertson, George, Jock Mackinlay, and Stuart Card, "Cone
Trees: Animated 3D Visualizations of Hierarchical
Information", SIGCHI 91, pp. 189-194.

(2]

(3]

(4]

[5]

(6]

(7]
(8]

%]

Jeff Beddow, "Shape Coding of Multi-Dimensional Data on
a Microprocessor Display,” Proc. Visualization 90, Arie E.
Kaufman, ed., IEEE Computer Society Press, Los Alamitos,
CA, 1990, pp. 238--246.

Eric A. Bier, Maureen C. Stone, Ken Pier, William Buxton,
and Tony D. DeRose, "Toolglass and Magic Lenses: The
See-Through Interface,” Proceedings of Siggraph 93
(Anaheim, August), Computer Graphics Annual Conference
Series, ACM, 1993, pp. 73-80.

Alfred Inselberg and Bemard Dimsdale, "Parallel
Coordinates: A Tool for Visualizing Multi-Dimensional
Geometry,” Proc. Visualization 90, Arie E. Kaufman, ed.,
IEEE Computer Society Press, Los Alamitos, CA, 1990, pp.
361--375.

Hartman, Jed and Josie Wemecke, "The VRML 2.0
Handbook- Building Moving Worlds on the Web", Silicon
Graphics Incorporated, Addison-Wesley ~ Publishing
Company, Reading, Massachusetts, 1996.

External Authoring Interface (EAD:
http://cosmosoftware.com/ developer/moving-worlds/
spec/Externallnterface html

Cosmoplayer 2.1 VRML plugin:
http'J/cosmosoftware.com/download/player.hmﬂ

Extensible Markup Language documentation:
http//www.w3.org/ XML/

DataLinks white paper, available at:
http://www.software.ibmconﬂdata/pubs/papers/datalink.hmﬂ

[10] Related publications are available at:

http//www.almaden.ibm. comy/cs/quest/publications.html

