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Tree-Structured Vector Quantization of CT Chest 
Scans: Image Quality and Diagnostic Accuracy 

P. C. Cosman, C. Tseng, R. M. Gray, R. A. Olshen, L. E. Moses, H. C. Davidson, C. J. Bergin, and E. A. Riskin 

Abstract-The quality of lossy compressed images is often 
characterized by signal-to-noise ratios, informal tests of subjec- 
tive quality, or receiver operating characteristic (ROC) curves 
that include subjective appraisals of the value of an image for a 
particular application. We believe that for medical applications, 
lossy compressed images should be judged by a more natural 
and fundamental aspect of relative image quality: their use 
in making accurate diagnoses. We apply a lossy compression 
algorithm to medical images, and quantify the quality of the 
images by the diagnostic performance of radiologists, as well 
as by traditional signal-to-noise ratios and subjective ratings. 
Our study is unlike previous studies of the effects of lossy 
compression in that we consider non-binary detection tasks, 
simulate actual diagnostic practice instead of using paired tests 
or confidence rankings, use statistical methods that are more 
appropriate for non-binary clinical data than are the popular 
ROC curves, and use low-complexity predictive tree-structured 
vector quantization for compression rather than DCT-based 
transform codes combined with entropy coding. 

Our diagnostic tasks are the identification of nodules (tumors) 
in the lungs and lymphadenopathy in the mediastinum from 
computerized tomography (CT) chest scans. Radiologists read 
both uncompressed and lossy compressed versions of images. For 
the image modality, compression algorithm, and diagnostic tasks 
we consider, the original 12 bit per pixel (bpp) CT image can 
be compressed to between 1 bpp and 2 bpp with no significant 
changes in diagnostic accuracy. The techniques presented in this 
paper for evaluating image quality do not depend on the specific 
compression algorithm and are useful new methods for evaluating 
the benefits of any lossy image processing technique. 

I. INTRODUCTION 

IGITAL image processing in recent years has shown D tremendous potential for application to digital medical 
images. At the foreground are the possibilities for easy image 
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retrieval, efficient storage, rapid image transmission for off- 
site diagnoses, and the maintenance of large image banks for 
teaching and research. In addition, images in digital format 
are accessible for digital signal processing such as filtering, 
enhancement, classification, 3-D modeling, and motion video. 
Although these techniques may in the future become an 
integral part of medical research, diagnosis, and treatment, they 
are hampered by the difficulty of handling multi-megabyte 
image files (X-ray: 2 Mb, CT: 0.5 Mb, MRI: 0.13 Mb). 
The typical compression ratios of 2:l or 3:l achieved by 
lossless schemes may be insufficient, thereby making lossy 
schemes attractive for consideration in any digital medical 
image processing system. With medical images, however, the 
determination of image quality is far more sensitive than 
the issue of image quality for entertainment or personal 
communications. 

Medical image quality has been examined in many recent 
studies. Typically, quality is quantified objectively by using 
signal-to-noise ratios (SNRs), and subjectively by performing 
statistical analyses on viewers’ scores. When viewers rated 
diagnostic usefulness rather than simply general appearance, 
these studies related diagnostic accuracy to compression level. 
In other studies, radiologists were asked to view an image 
which either did or did not possess an abnormality and to 
provide a binary decision (abnormality present or not) along 
with a quantitative value for their degree of certainty, typically 
a number from 1 to 5. Subsequent statistical analyses, usually 
ROC-based, attempted to quantify the levels of compression 
in a specific application that can be used without a statistically 
significant change in diagnostic accuracy. There are numerous 
examples of such approaches [ 1 1 4  101. 

In most of these studies, the basic experiments were sub- 
jective and did not simulate the ordinary tasks of radiol- 
ogists. The observers were asked to rate numerically their 
confidence or their opinion of image quality or usefulness 
rather than to make diagnoses as they would under ordinary 
clinical conditions. This rating resulted in data useful for 
ROC analysis, but it constitutes an artificial diagnostic task. 
Furthermore, radiologists often face images which may contain 
one or more abnormalities, and the diagnostic task is to 
find any and all that are present. In this case the task is 
not binary, and is not amenable to traditional ROC analysis 
techniques. Lastly, some studies used paired comparisons, 
where an original and a compressed image were displayed 
simultaneously and a radiologist was asked to rate the differ- 
ence. This procedure differs markedly from ordinary clinical 
practice. 

0278-M)62/93$03.00 0 1993 IEEE 



728 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 12, NO. 4, DECEMBER 1993 

Our goal was to use the performance of radiologists evaluat- 
ing compressed CT chest scans in order to quantify the impact 
of a specific lossy compression algorithm on diagnosis. Images 
could contain multiple abnormalities, and the radiologists were 
asked to make diagnoses in their usual fashion by locating 
and marking visible abnormalities. Images were not seen in a 
paired fashion, and the judges were not asked to associate 
confidence rankings with their diagnoses. The compression 
algorithm used was predictive pruned tree-structured vector 
quantization (PTSVQ). This technique combines statistical 
clustering methods for reproduction quality with classification 
and regression tree design techniques for efficient search and 
progressive transmission properties [ 1 11-1 141. Image quality 
was quantified in three ways: SNRs (or average normalized 
distortion as measured by mean squared error), average scores 
of quality ratings by three radiologists, and accuracy of diag- 
nosis of mediastinal adenopathy and lung nodules. The images 
were presented at six different compressed levels ranging 
from 2.6 bpp to 0.56 bpp plus the uncompressed original at 
12 bpp. Evaluation of compression performance in terms of 
diagnostic accuracy was based on sensitivity and predictive 
value positive, as will be described. Preliminary results of our 
study have been reported in [ 151 and [ 161. 

Our public domain vector quantization algorithms use low 
complexity software implementations. This is in contrast to 
the full-frame or large block DCT used in all the cited 
references except [3].  For a specific bit rate, however, vector 
quantization approaches generally do not yield as high a 
quality as the transform codes based on much larger block 
sizes, especially when the transform code also incorporates 
noiseless coding (entropy coding, reversible coding) such 
as Huffman coding. Our compression algorithms operate on 
square blocks of 2 x 2 = 4 pixels and directly perform 
variable rate encoding without transforms for compression or 
decompression. The noiseless coding that can be cascaded after 
the DCT quantization step for an extra reduction in bit rate of 
typically 1.5: 1 or 2: 1 can also be used with vector quantization 
algorithms, at the cost of added complexity. 

Verification of diagnostic accuracy by clinical testing is 
detailed and expensive. It is highly desirable to find easily 
computable quantitative features of images that strongly cor- 
relate with or predict the results of more extensive diagnostic 
studies. Whether by computable features or clinical testing, 
such studies are necessary to develop reasonable policies for 
the use of lossy processing on medical images. The medical 
community is concemed about the legal consequences of 
an incorrect diagnosis based on a lossy processed image. 
However, since diagnoses based on original images can also 
be incorrect, clinical experiments are necessary to establish the 
limits of image processing for which the diagnostic accuracy 
is at least equal to that from an unprocessed image. 

11. TREE-STRUCTURED VECTOR QUANTIZATION 

A general vector quantizer (VQ) for image compression 
consists of an encoder and a decoder. An input image is 
parsed into a sequence of groups of pixels, often 2 x 2 
squares, but larger squares and rectangles are also used. The 

encoder views an input vector X ,  at time n and produces a 
binary vector or channel codeword in.  In fixed rate systems, 
the binary vectors all have dimension R. In variable rate 
systems, the binary vectors have an average dimension R. 
The decoder is a table lookup, and upon receiving a chan?el 
codeword in,  it puts out a stored codeword or template Yi,,, 
that is, a word in memory indexed by the channel codeword. 
Given a codebook containing all of the possible codewords, 
the decoder is completely described. The encoder operates 
according to a nearest neighbor or minimum distortion rule, 
possibly with constraints on how the search is done. To 
minimize overall average distortion, a good encoder will try 
to minimize distortion at each step. Suppose that d ( X ,  X) 2 0 
measures the distortion pr cost of reproducing an input vector 
X as a reproduction X. With no structural constraints, the 
optimal encoder for a given codebook selects the vector Y ,  if 

d(X,, K )  5 d(X,, Y , ) ,  for all j. 

The distortion measure permits us to quantify the perfor- 
mance of a VQ in a manner that can be computed, used in 
analysis, and used in design optimization. The theory focuses 
on average distortion in the sense of a probabilistic average or 
expectation. Practice emphasizes the time average or sample 
average distortion 

l L  D = - d ( X , , X n )  
n=l 

L 

for large L. With well-defined stationary random process 
models instead of real signals, the sample average and ex- 
pectation are effectively equal. We here focus on the simple 
squared error distortion which is the square of the Euclidean 
distance between the input and reproduction vectors. Given 
two Ic-dimensional>vectors X = ( X ( O ) ,  . . . , X ( k  - 1)) and 
X = (X(O), . . . , X ( I ~  - I)), then 

k-1 

d ( X , X )  = I1X - X I 1 2  = IX(l)  - X ( l ) 1 2 .  
1 =a 

There are a variety of approaches to VQ design. We 
concentrate on a class of constrained structure quantizers that 
are relatively easy to design and implement and which provide 
good performance. Codebooks are designed with a binary 
tree structure, and the encoder selects the codeword by a 
sequence of fast binary minimum distortion comparisons. The 
input vector is first compared to two templates representing 
the first two nodes in the tree. Since the squared error 
distortion measure is used, this is equivalent to a hyperplane 
or correlation test. The minimum distortion template is chosen 
and the algorithm advances to the corresponding node. At 
each step in the search, either one arrives at a terminal node 
(in which case the channel codeword is the binary sequence 
indicating the path from the root to that node), or the algorithm 
again faces a choice of two templates. 
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The code is designed by first growing a tree in a greedy 
manner [17]. One begins with a root note which has associated 
with it a label or template equalling the Euclidean centroid (or 
vector average) of the input distribution (usually an empirical 
distribution, that is, a learning or training set). The root node is 
split into two child nodes, one labeled by the original centroid 
and the other labeled by a close, but distinct, vector. The 
Lloyd (or k-means) clustering algorithm is then run on the 
two word code to produce a good I-bit-per-vector codebook. 
At this point, or any point in the tree growing, one has a 
collection of labeled terminal nodes or leaves. Any of these 
leaves could be made into an internal node by splitting it into 
two new leaves and running the clustering algorithm again. 
Splitting a leaf results in a decrease of average distortion and 
an increase in the average length of the binary codeword. The 
greedy growing algorithm finds the leaf that when split yields 
the largest decrease in distortion per increase in average length, 
i.e., best trade-off rate and distortion in a greedy sense. The 
tree is grown until some target rate is achieved or until the 
leaves have so few vectors from the training set that they 
become untrustworthy. 

Once grown, a tree may then be pruned to find better codes 
at lower bit rates than appeared in the growing stage. Here the 
operation is not greedy, but is a true optimum. The algorithm 
considers subtrees of the full-grown tree with a common root 
node. Pruning the full tree to a subtree yields a new code with 
a reduced average length, but an increased average distortion. 
Here the goal is to minimize the increase in average distortion 
per decrease in average length. Unlike growing, pruning can 
remove large numbers of nodes at a time. The combination of 
growing and pruning is the extension to vector quantization 
of a classification and regression tree design technique of 
Breiman, Friedman, Olshen, and Stone [ 181. 

The design algorithm outlined here yields a nested (embed- 
ded) family of codes with several useful properties. Pruned 
TSVQ usually yields lower distortion than fixed-rate full- 
search VQ for a given average rate, has a natural successive 
approximation (progressive) property, and is well matched to 
variable-rate environments such as storage or packet com- 
munications. A TSVQ can have its tree tailored by using 
input-dependent weighted distortion measures that permit the 
incorporation of enhancement and classification into the tree 
[19], [20]. Further details which would allow a reader to im- 
plement this algorithm may be found in [21], [17], [14], [ l l ] .  

A.  Predictive VQ 

If the codebook of reproductions is fixed for all input 
vectors, then the VQ operates in a memoryless fashion on 
each input vector; that is, each vector is encoded independently 
of previous inputs and outputs of the encoder. In general an 
encoder can have memory by varying the set of possible 
reproduction vectors according to past actions. Predictive 
and finite-state vector quantizers are examples of VQ with 
memory. 

Predictive PTSVQ works through a combination of a linear 
predictor and a residual quantizer [ 111-[ 141. The encoder 
predicts the current pixel block using past blocks, forms 

the residual from the prediction error, and quantizes it with 
a TSVQ. The encoding path through the tree is sent to 
the decoder. Given the same tree, the decoder decodes the 
quantized residual and reconstructs the pixel block by adding 
its prediction of the block to the quantized residual. The 
coefficients for the predictor are calculated from Wiener-Hopf 
equations, a simple method that has worked well experimen- 
tally. From the training set, the correlation matrix between 
the current block and its neighbors is estimated and inverted 
to obtain the prediction coefficients. These coefficients are 
thus based upon correlations between original pixel values 
and neighboring original pixel values. During compression, 
however, the encoder is constrained to predict on the encoded 
versions of surrounding blocks rather than unquantized ver- 
sions. This matches the encoder block prediction with the 
decoder block prediction. 

Once the prediction coefficients are fixed, a training se- 
quence of residuals is generated from the training sequence 
of original pixel values by calculating the differences between 
actual values and predicted values. The tree-structured encoder 
is developed using these residual vectors as a training set. 
By encoding the lower energy residual signal, fewer bits 
can be used to encode to a desired distortion level than 
would be needed for encoding the original higher energy 
signal. 

Both the predictor and residual quantizer were designed for 
2 x 2 pixel blocks. For the predictor, a larger block size results 
in a more tenuous prediction, since pixels being predicted 
are farther apart from pixels used in the prediction. For the 
residual quantizer, on the other hand, larger pixel blocks better 
exploit Shannon’s theory on the ability of vector quantizers to 
asymptotically outperform scalar quantizers. The block size 
choice is a trade-off among prediction accuracy, algorithmic 
complexity, storage memory, and quantization performance. 
While performance theoretically improves with block size, 
large block sizes can introduce block artifacts into an image 
that can outweigh any improvement in quantitative perfor- 
mance. Here we have chosen block size with an emphasis 
on achieving low complexity. 

111. DATA SET AND STUDY DESIGN 
The diagnostic tasks chosen were the detection of mediasti- 

nal adenopathy and lung nodules, both of crucial importance 
in chest imaging. Abnormally enlarged lymph nodes in the 
mediastinum (the central portion of the chest that contains 
the heart and major blood vessels) are frequently caused by 
lymphoma or metastatic disease. Typically radiologists can 
easily locate lymph nodes in a chest scan, and the detection 
task is therefore to determine which of them are enlarged. 
Lung nodules, commonly caused by primary or metastatic 
cancer, range in size from undetectably small to large enough 
to fill an entire segment of the lung. There can be multiple 
nodules in one or both lungs. In contrast to the mediastinal 
task, both the presence and size of lung nodules are detection 
issues. 

In our study, the prediction coefficients and residual quan- 
tizer for compressing CT images are designed on a training 
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set of representative CT images, thereby freeing the algorithm 
from pre-formed models of the source, either before or during 
compression. Twenty CT images of the mediastinum were 
used in the training set for detecting enlarged lymph nodes 
and twenty CT lung images were used in the training set for 
detecting lung nodules. All images were 512 x 512 pixels, and 
were obtained using a GE 9800 scanner (120 kV, 140 mA, 
scan time 2 seconds per slice, bore size 38 cm, field of 
view 32-34 cm). Although no formal research was undertaken 
to accurately determine what constitutes “representative” CT 
images, two radiologists were consulted concerning the typical 
range of appearance of adenopathy and nodules that occurs 
in daily clinical practice. The training and test images were 
chosen to be approximately representative of this range and 
included images of both normal and abnormal chests. Images 
with very large nodules were excluded as it was felt that these 
would be too easily detected. The study also had a lower 
percentage of normal chest images than would be encountered 
in daily practice. 

For each study (lymph nodes, lung nodules), a codebook tree 
for the prediction residuals was grown to a depth of 2.8 bpp 
and pruned back to 6 different levels, ranging from 0.56 bpp 
to 2.64 bpp. Then 30 test images were encoded with the 6 
subtrees. Patient studies represented in the training set were 
not used as subsequent test images, and the SNR, subjective 
quality, and diagnostic results are based only on test images. 

A. Protocol for Judging Images 

The compressed and original images were viewed by 3 radi- 
ologists. For each of the 30 images in a study, each radiologist 
viewed the original and 5 of the 6 compressed levels, and 
thus 360 images were seen by each judge. Images were seen 
on hardcopy film on a lightbox. A usual adjustment to the 
dynamic range of the image, called “windows and levels,” 
was applied to each image before filming. A radiologist who 
was not involved in the judging applied standard settings for 
“windows and levels” for the mediastinal images, and different 
standard settings for the lung nodule images. The compressed 
and original images were filmed in standard 12-on- 1 format on 
14” x 17” film using the scanner that produced the original 
images. 

The viewings were divided into 3 sessions during which 
the judges independently viewed 10 pages, each with 6 lung 
nodule images and 6 mediastinal images. The judges marked 
abnormalities directly on the films with a grease pencil. No 
constraints were placed on the viewing time, the viewing dis- 
tance, or the lighting conditions. Each judge was encouraged 
to simulate the conditions he or she would use in everyday 
work. The judges were, however, constrained to view the 10 
pages in the predetermined order, and could not go back to 
review earlier pages. At each session, each judge saw each 
image at exactly 2 of the 7 levels of compression (7 levels 
includes the original). The two levels never appeared on the 
same film, and the ordering of the pages ensured that they 
never appeared with fewer than 3 pages separating them. This 
was intended to reduce learning effects. A given image at a 
given level was never seen more than once by any one judge, 

and so intra-observer variability was not explicitly measured. 
Of the 6 images in one study on any one page, only one image 
was shown as the original, and exactly 5 of the 6 compressed 
levels were represented. 

B. Determination of a Gold Standard 

To measure the preservation of diagnostic accuracy, it is 
necessary to determine a “gold standard” for each image that 
can serve as the standard for comparison with readings of 
the compressed versions. For our study, the gold standard 
was determined by consensus of the 3 judges on the original 
image. For more than half of the images, examination of the 
readings by the 3 judges revealed complete agreement in the 
number and location of abnormalities, and the gold standard 
was established. In the cases of disagreement, each judge was 
separately informed that a disagreement had occurred, and was 
asked to review his or her reading of that original. In a small 
number of cases where this did not produce agreement, the 
judges were brought together to discuss the image. As a result 
of this process, the 30 images in each study were winnowed 
to 24, with elimination of the ones that generated the most 
irreconcilable controversy. If judges do not agree on what 
structures are abnormal in an uncompressed image, there are 
other ways to determine what constitutes a correct or incorrect 
judgment on a compressed image [33]. The gold standard for 
the lung determined that there were, respectively, 4 images 
with 0 nodules, 9 with 1, 4 with 2, 5 with 3, and 2 with 
4 among those images retained. For the mediastinum, there 
were 3 images with 0 abnormal nodes, 17 with 1 ,  2 with 2, 
and 2 with 3. 

This process for determining the gold standard allows the 
study to be most useful for comparing the various compressed 
levels among themselves. The gold standard was established 
by consensus on the original images, and this consensus was 
achieved on only 24 images out of 30, the remaining 6 
being eliminated from the study. Since the consensus was 
clearly more likely to be attained for those original images 
where the judges were in perfect agreement initially, and 
thus where the original images would have perfect diagnostic 
accuracy relative to that gold standard, the original images 
have an advantage when compared with the others; hence the 
comparative statements we make later are conservative. 

IV. DISTORTION-RATE PERFORMANCE 

The traditional manner for comparing the performance of 
lossy compression algorithms is to plot the average distortion 
of the codes as a function of bit rate. Often the distortion per 
pixel is normalized by either the energy or the variance of the 
input distribution, or by the maximum pixel intensity squared. 
The ratio of normalization constant to average distortion is 
called a signal-to-noise ratio (SNR) or signal-to-quantization- 
noise ratio if the input variance or energy is the normalization: 
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Fig. 1 .  SNR for the 24 lung test images at the 6 compressed levels 
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Fig. 2. SNR for the 24 mediastinal test images at the 6 compressed levels. 

where D is the average distortion, E ( X 2 )  is the input energy, 
and SNR is measured in dB. Figures 1 and 2 depict a scatter 
plot of the SNR and average bit rate for each of the 24 images 
in the mediastinum and lung studies that had a gold standard, 
together with a quadratic spline fit with a single knot at 1.5 bpp 
[22] that provides a good indication of the overall distortion- 
rate performance of the code family on the test data. The SNR 
plots take into account the differences in distortion due to 
differences in input signal intensity; log plots are commonly 
used for such comparisons. 

Long-term experience has led to the conclusion that SNR 
is a reasonable indicator of relative visual distortion for most 
types of images, but it is not based on visual models. The lack 
of context and the quadratic nature of the error response are 
not thought to be consistent with models of human observers 
considered as measuring instruments. Some compression algo- 
rithms can introduce artifacts into the decompressed image that 
perceptually degrade the image even though the SNR seems 
high. For example, any compression algorithm operating on 
blocks of pixels (including transform codes and VQ) can 
introduce block artifacts such as staircases and texturing if 
the block size is too large. Due to its simplicity, however, 
SNR is a useful method for comparing different algorithms or 

approximately evaluating visual distortion at different bit rates. 
SNR has yet to qualify, however, as a successful measure of 
the preservation of diagnostic accuracy in lossy compression 
of medical images. 

V. SUBJECTIVE QUALITY 

Distortion-rate plots are the most commonly quoted indica- 
tor of performance in data compression systems, but they are 
often accompanied by the caveat that they do not necessarily 
represent subjective quality. In this section we consider the 
issue of subjective quality in two ways. First we give examples 
of images of both lung and mediastinum at all bit rates so that 
readers can form their own opinions of the usefulness of the 
compressed images. The images are collected in Appendix B. 
Little degradation is evident in any but the lowest rate of 
0.56 bpp. The lung image contains 3 nodules with complete 
initial agreement on the gold standard. One judge had perfect 
readings at all levels, a second judge missed the smallest tumor 
at the most compressed level, and the third judge missed 
the two smallest tumors at the most compressed level. The 
mediastinal test image contains one abnormal lymph node. 
Its gold standard had to be determined by asking the judges 
to independently review their decisions on the uncompressed 
image, as one judge differed from the other two judges on the 
original. The judges scored perfectly in diagnosis at all other 
bit rates except for a second judge who had a wrong diagnosis 
on the least compressed version at 2.75 bits. 

The assessment of subjective quality is based on a ques- 
tionnaire provided the radiologists following the experiments. 
Each radiologist was asked to assign a score of 1 to 5 for each 
of the last 12 images in each session. The score was based on 
evaluating the diagnostic quality of the -image and responding 
to the question “How good is the quality of this image for 
diagnostic purposes?’ The allowed responses were as follows: 

1. Image is of excellent quality. 
2. Standard image quality. Image usable and very adequate. 
3. Image quality passable. Image usable but below stan- 

4. Low image quality. Image usable but difficult to use. 
5 .  Very low quality image. Image not usable. 

These questions resembled the subjective ranking of Barrett et 
al. [5] who asked how certain the observer was that a lesion 
was present and who then based their statistical analyses on 
these responses. In our study, however, the subjective ques- 
tionnaire was aimed only at getting an overall appraisal from 
the radiologist for comparison with the diagnostic accuracy 
results. Quality scorehit rate pairs for all of the test images 
are plotted in Figs. 3 and 4. Scores for individual images 
are displayed as 5’s. The 0’s mark the average of the z’s 
for each bit rate. For both mediastinum and lung images, 
uncompressed images at 12 bpp received scores of 1 and 2. 
Images compressed to lower bit rates received worse quality 
scores as expected. 

The qualitative scores are not as smooth as the SNR, 
predictive value positive, or sensitivity data. To guarantee that 
fits to these non-negative data are themselves non-negative 
(indeed positive), we take logarithms of the data, fit a model 

dard. 



H 
132 

0 8 

0 7  

0 6 -  

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 12, NO. 4, DECEMBER 1993 

x x  x x  1 x 

- -  x / /  L .  

01 
0 5  1 1 5  2 2 5  

bit m e  (bpp) 

1 5 -  

1 -  

0 5 -  

Fig. 3. Subjective quality vs. bit rate for lungs: 1 = excellent; 5 = poor. 

5 ,  : I 

0.5 I 1.5 2 2 s  12 

bit rate @pp) 

Fig. 4. Subjective quality vs. bit rate for mediastina: 1 = excellent; 5 = poor. 

(for example, a spline model), and exponentiate the answer. It 
follows from Jensen’s inequality that if the usual assumptions 
for linear models are in force when we fit the logged data, 
then there is a systematic bias in the exponentiated answers we 
report. However, corrections for that bias are negligible, and 
have not been incorporated into our algorithms. This approach 
has been studied in detail and applied in some settings by 
C. J. Stone and C. Kooperberg [23], [24]. We found their “log- 
spline” approach simple but very powerful when adapted to 
our regression problem. Figs. 3 and 4 include quadratic splines 
with knots at 1.2 and 1.9 bpp fit to the logged qualitative 
scores, and then exponentiated. 

VI. STATISTICAL METHODS AND RESULTS 

A. Sensitivity and Predictive Value Positive 

Many analyses of studies in clinical radiology involve 
ROC or “receiver operating characteristic” curves [ 2 5 ] ,  [26]. 
They summarize a trade-off between true positive and false 
positive rates, typically as a threshold for detection varies. 
The true positive rate is also called sensitivity, the probability 
something is detected given that it is present. The complement 
of the false positive rate is termed specificity, the probability 
something is not detected given that it is actually absent. 

1 

0 9  

Fig. 5. Lung Sensitivity: RMS = ,177. 

Fig. 6. Lung Predictive Value Positive (PVP): RMS = .215. 

For our realistic clinical studies, specificity does not make 
sense because there is no sample space in which to do the 
computation; that is, specificity has no natural denominator, 
as it is not possible to say how many abnormalities are absent. 
On the other hand, once our protocol for determining the 
gold standard is concluded, sensitivity not only makes sense, 
but also is a crucial statistic that quantifies results. However, 
a judge who finds nodules or abnormal nodes everywhere 
in an image could have perfect sensitivity. The additional 
descriptive statistic we use, therefore, should penalize false 
positive reporting. What we can and do measure is termed 
predictive value positive (PVP), the chance something marked 
as an abnormality is indeed an abnormality [27]. So a judge 
who is too aggressive in finding abnormality could have high 
sensitivity at the expense of low PVP, while a judge who 
is too stringent about what defines abnormality could have a 
high PVP at the expense of low sensitivity. As is the case with 
the ROC parameters of true positives and false positives, both 
sensitivity and PVP will be 1 if the decision is perfect. In Fig. 5 
we plot sensitivity as a function of bit rate for all lung images, 
judges, compression levels (not including the original), and 
sessions. There are 360 2’s: 360 = 24 images x 3 judges x 5 
compressed levels seen for each image. Figure 6 is analogous 
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Fig. 7. Mediastinum Sensitivity: RMS = ,243. 

for lung PVP. Figures 7 and 8 are the corresponding figures 
for the mediastinum. The values of the sensitivity and PVP 
are simple fractions such as 112 and 2/3 because there are 
only 0-4 abnormalities found in each image. The 0’s mark 
the average of the 2’s for each bit rate. The six achieved bit 
rates (averaged across 24 test images for a given codebook) 
for compressed images of both lung and mediastinum were 
nearly identical: for the lung .57, 1.18, 1.33, 1.79, 2.19, 2.63, 
and for the mediastinum 0.56, 1.18, 1.34, 1.80, 2.20, 2.64 bpp. 

The curves are least squares quadratic spline fits to the data 
with a single knot at 1.5 bpp [22], together with the two-sided 
95% confidence regions. With regression splines, observations 
at particular bit rates tend to have most influence nearby, 
and observations at remote bit rates have little influence. 
This is what we prefer since the functional form of PVP 
(or sensitivity) as it varies with bit rate is utterly unknown 
beyond our knowing that the relationship is a smooth one. 
In view of the highly nonGaussian nature of the data, the 
Scheffk simultaneous confidence regions were obtained by a 
bootstrapping procedure. The algorithm for this is adapted 
from [28], [29], and is described in Appendix A. Since the 
sensitivity and PVP cannot exceed 1 ,  the upper confidence 
curve was thresholded at 1. The residual root mean square 
(RMS) is the square root of the residual mean square from 
an analysis of variance of the spline fits. Though the text that 
follows gives various detailed analyses of our data, its basic 
messages are transparent from Figures 5 through 8. Namely, 
sensitivity for the lung seems to be nearly as good at low 
rates of compression as at high rates, while sensitivity for the 
mediastinum falls off noticeably for the lowest bit rate. PVP 
for both lung and mediastinum is roughly constant across the 
bit rates. 

B. Behrens-Fisher t Statistic 

The comparison of sensitivity and PVP at different bit 
rates was carried out using a variation of the two-sample t- 
test, sometimes called the Behrens-Fisher test [30], in which 
inequality of variances is accounted for in the (approximate) 
test; the test is quite robust when data are not Gaussian, as 
our data clearly are not. The use of this statistic is illustrated 
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Fig. 8. Mediastinum Predictive Value Positive (PVP): RMS = ,245. 

by the following example. Suppose Judge 1 has judged N 
lung images at both levels A and B. These images can be 
divided into 5 groups, according to whether the gold standard 
for the image contained 0, 1, 2, 3, or 4 abnormalities. Let Ni 
be the number of images in the ith group. Let Ai; represent 
the difference in sensitivities (or PVP) for the jth image in 
the ith group seen at level A and at level B. Let a, be the 
average difference: h, = & Ai;. We define 

and then the Behrens-Fisher t statistic is given by 

Our Aij are fractions with denominators not more than 4, so 
are utterly nonGaussian. Therefore, computations of attained 
significance @-values) are based on the restricted permutation 
distribution of t B F .  For each of the N images, we can permute 
the results from the two levels [A + B & B --+ A] or not. There 
are 2 N  points possible in the full permutation distribution, 
and we calculate t g F  for each one. The motivation for the 
permutation distribution is that if there were no difference 
between the bit rates, then in computing the differences A;j, 
it should not matter whether we compute Level A - Level 
B or vice versa, and we would not expect the “real” t g F  

to be an extreme value among the 2 N  values. If k is the 
number of permuted t g F  values that exceed the “real” one, 
then (k + l)/aN is the attained one-sided significance level for 
the test of the null hypothesis that the lower bit rate performs 
at least as well as the higher one. As discussed later, the one- 
sided test of significance is chosen to be conservative and to 
argue most strongly against compression. 

When the judges were evaluated separately, level A (the 
lowest bit rate) was found to be significantly different at the 
5% level against most of the other levels for two of the judges, 
for both lung and mediastinum sensitivity. No differences were 
found among levels B through G. There were no significant 
differences found between any pair of levels for PVP. 
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When judges were pooled, more significant differences 
were found. For example, in comparing levels B and G for 
mediastinal sensitivity, Judge 1 saw 19 images at both levels, 
and had identical readings on 16 of them. Three times the 
reading on level G led to a higher value of sensitivity than 
the reading on the same image seen at level B. However, a 
3:O split cannot be considered significant at the 5% level. For 
Judges 2 and 3, there were only 2 differences apiece out of 21 
and 20 image pairs seen, which again is not a significant result. 
In pooling the judges, however, there were 7 cases where level 
G outperformed level B, a result which achieves significance. 
When the data were examined this way, again level A was 
inferior to almost all of the other levels for both lung and 
mediastinal sensitivity. Also levels B and C differed from level 
G for lung sensitivity (p = 0.016 for both) and levels B and 
C differed from level G for mediastinal sensitivity (p = 0.008 
and 0.016, respectively). For PVP, no differences were found 
against level A with the exception of A vs. E and F for the 
lungs (p = 0.039 and 0.012, respectively), but B was somewhat 
different from C for the lungs (p = 0.03 l), and C was different 
from E, F, and G for the mediastinum (p = 0.016, 0.048, and 
0.027, respectively). 

The results indicate that level A (0.56 bpp) is unacceptable 
for diagnostic use. Since the blocking and prediction artifacts 
became quite noticeable at level A, the judges tended not to 
attempt to mark any abnormality unless they were quite sure it 
was there. This explains the initially surprising result that level 
A was not different from most other levels for PVP, whereas 
it is different from all other levels for sensitivity. Since no 
differences were found among levels D (1.8 bpp), E (2.2 bpp), 
F (2.64 bpp), and G (original images at 12 bpp), despite 
the biases against compression contained in our analysis 
methods, these 3 compressed levels are clearly acceptable for 
diagnostic use. The decision concerning levels B (1.18 bpp) 
and C (1.34 bpp) is less clear, and would require further tests 
involving a larger number of detection tasks, more judges, 
and a reformulation of the gold standard protocol that would 
remove at least one of the biases against compression that are 
present in this study. This latter goal could be accomplished, 
for example, by having the gold standard determined by an 
independent panel of radiologists, rather than by the consensus 
of the judging radiologists on level G. 

As we study schemes for compressing data, we would 
like to conclude that their implementation would not degrade 
clinical practice, but to make our point, we must argue as our 
own devil’s advocates. This criterion is met by the fact that 
the statistical approach described here contains 4 identifiable 
biases, none of which favors compression. The first is the 
bias in the gold standard described earlier, which specifically 
confers an advantage upon level G relative to the compressed 
levels. Secondly there is the problem of multiple comparisons 
[29]. Since we perform comparisons for all possible pairs out 
of the 7 levels, for both sensitivity and PVP, for both lung 
and mediastinal images, and for both 3 judges separately and 
for judges pooled, we are reporting on 21 x 2 x 2 x 4 = 336 
tests. One would expect that, even if there were no effect of 
compression upon diagnosis, 5% of these comparisons would 
show significant differences at the 5% level. A third element 

which argues against compression is the use of a 1-sided test 
instead of a 2-sided test. In most contexts, for example when 
a new and old treatment are being compared and subjects on 
the new treatment do better than those on the old, we do a 
two-sided test of significance. Such two-sided tests implicitly 
account for both possibilities: that new interventions may make 
for better or worse outcomes than standard ones. For us, a 
two-sided test would implicitly recognize the possibility that 
compression improves, not degrades, clinical practice. In fact, 
we believe this can happen, but to incorporate such beliefs in 
our formulation of a test would make us less our own devil’s 
advocates than would our use of a one-sided test. Our task is to 
find when compression might be used with clinical impunity, 
not when it might enhance images. The fourth bias stems from 
the fact that the summands in the numerator of t g ~  may well 
be positively correlated (in the statistical sense), though we 
have no way to estimate this positive dependence from our 
data. If we did, the denominator of t g F  would typically be 
smaller, and we are nearly certain that such incorporation 
would make finding “significant” differences between com- 
pression levels more difficult. For all of these reasons, we 
believe that the stated conclusions are conservative. 

Other tests that were carried out were the pairwise compari- 
son of judges using the permutation distribution of Hotelling’s 
paired T 2  statistic [31], and a comparison of images. The 
judges were found to be different in judging the mediastinum 
but not the lung, and the lung images were found to be very 
different for all judges, but mediastinal images were different 
for only 2 of the judges. These results are reported in [32]. 
Consistency of individual judges is examined in [33]. 

C. Learning: Analyses by ANOVA and McNemar Statistics 

Since the radiologists would see an image at different 
compression levels six times during the course of the study, we 
needed to ascertain whether learning effects were significant. 
Learning and fatigue are both processes that might change 
the score of an image depending on when it was seen. In 
each session, each image was seen at exactly 2 levels, and the 
ordering of the pages ensured that they never appeared with 
fewer than 3 pages separating them. At least two weeks sep- 
arated the sessions. To examine the possibility of intrasession 
learning and fatigue, we examined the paired data in which 
the first occurrence of a given image in a session was paired 
with the second occurrence of that same image (at a different 
compression level) in the same session. Each image in the 
pair was either “perfect” (sensitivity = 1, PVP = 1) or not. 
There were thus four types of pairs, those with both members 
perfect, those with the first occurrence perfect and the second 
not, those with the second occurrence perfect and the first not, 
and those with neither one perfect. In the McNemar analysis 
[34], we concern ourselves with 2 of the 4 types: those pairs in 
which the members differ. If it did not matter whether an image 
was seen first or second, then conditional on the numbers of 
the other two types, each would have a binomial distribution 
with parameter 1/2. Examining the data according to this 
formulation showed no differences at the 5% significance level 
between images seen first and those seen second, whether the 
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Lung nodule images. (B. l )  Original lung nodule image. The black arrows indicate the three tumors of the gold standard. 
(B.2) Lung nodule image compressed to 2.66 bpp. (B.3) Lung nodule image compressed to 2.23 bpp. (B.4) Lung nodule image 
compressed to 1.83 bpp. 

judges were considered separately or pooled together. As an 
example of the calculation, Judge 1 in evaluating lung nodules 
over the course of 3 sessions saw 71 pairs of images, in which 
an image seen at one compression level in a given session 
is paired with the same image seen at a different level in 
the same session. Of the 71 pairs, 53 times both images in 
the pair were judged perfectly, and 5 times both images were 
judged incorrectly. We concern ourselves with the other 13 
pairs: 9 times the image seen first was incorrect while the 
second one was correct, and 4 times the image seen second 
was incorrect when the first one was correct. The probability 
that a fair coin flipped 13 times will produce a headdtails 
split at least as great as 9 to 4 is 0.267; thus this result is not 
significant. Considering both image types with judges pooled 

or separate, the probabilities ranged from 0.06 to 1.0. In no 
case was a significant difference found. An analysis of variance 
(ANOVA) using the actual sensitivity and PVP observations 
similarly also indicated that page order and session order had 
no significant effect on the diagnostic result. 

VII. CONCLUSION 

This paper examines diagnostic accuracy testing on com- 
pressed images for non-binary diagnostic tasks, and presents 
statistical tools appropriate for analyzing such data. Some 
diagnostic detection tasks are genuinely binary, e.g., in ex- 
amining a chest radiograph for a pneumothorax, on a given 
half there will always be either 0 or 1 occurrences. ROC 
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03.7) 

(B.7) Lung nodule image compressed to 0.58 bpp. 
Lung nodule images (continued). (B.5) Lung nodule image compressed to 1.38 bpp. (B.6) Lung nodule image compressed to 1.21 bpp 

analysis for such binary diagnoses is well-developed, and an 
extension [37] has been developed for non-binary tasks such 
as the search for lung nodules and lymphadenopathy presented 
here. We believe that our approach, including the definition 
of sensitivity and predictive value positive relative to the 
gold standard, the fitting of quadratic splines with associated 
bootstrapped confidence regions, and the pairwise comparison 
of levels via the Behrens-Fisher t statistic, represents a useful 
and appropriate new way of analyzing this type of detection 
task that does not suffer the problems of ROC analysis for this 
application. In fact, the methods presented here can be used 
for analyzing data from binary detection tasks as well. 

The primary conclusion on diagnostic accuracy is that for 
the image modality, compression algorithm, and diagnostic 

tasks considered, the original 12 bpp CT image can be com- 
pressed to between 1 and 2 bpp with no statistically significant 
changes in diagnostic accuracy as measured by sensitivity and 
PVP. For a variety of reasons outlined above, we believe 
that our statistical methodology is biased against compression, 
and so the stated conclusions regarding the implementation of 
our lossy codes in clinical practice are conservative. A visual 
comparison of these sensitivity and PVP curves with the ones 
representing SNR and subjective quality seems to indicate that 
with increasing compression ratios, distortion increases and 
subjective quality degrades sooner than diagnostic accuracy 
falls off. Although not yet a conclusive result, this is certainly 
a promising sign, as researchers in lossy compression would 
like to reassure physicians and medical policy makers that 
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(B.lO) ( B . l l )  

Mediastinal images. (B.8) Original mediastinal adenopathy image. The white arrow indicates the one abnormal lymph node of 
the gold standard. (B.9) Mediastinal image compressed to 2.75 bpp. (B.lO) Mediastinal image compressed to 2.27 bpp. (B.11) 
Mediastinal image compressed to 1.86 bpp. 

diagnoses will not suffer even when the general appearance of 
the compressed image is perceptibly degraded. 

Many studies in the published literature do not find sig- 
nificant differences until rates are well below 1 bpp. This 
difference from our study is due both to the difference in 
compression algorithms (which is difficult to verify when 
proprietary algorithms are used) and to the statistical methods 
used to verify diagnostic accuracy. Although other compres- 
sion algorithms may achieve comparable quality at lower 
bit rates than PTSVQ, the latter does have several potential 
advantages not explicitly exploited in this study: the ability 
to incorporate other types of signal processing tasks such as 
enhancement or classification [35], [20], [36], the progressive 
transmission capability, and the speed of encoding and decod- 
ing without the need for any specialized hardware. However, in 
any comparison of the diagnostic accuracy results of one study 
with another, it is essential to include such factors as dynamic 
range and image size that relate to the chosen modality, as 
well as differences between the diagnostic tasks undertaken. 

We are currently pursuing several areas of improvement 
in both the algorithmic and methodologic components of this 
study. The former includes using larger VQ block sizes and 
improving prediction schemes for larger blocks. Improve- 
ments in the methodology should rectify the bias involved 
in determining a gold standard. Additional information can 
be gained by examining the vectors of spline coefficients to 
make various comparisons though we have not reported on 
such applications here. Different spline techniques, such as 
smoothing splines, could also be applied to our problems. 
These various improvements are currently being applied to 
a study of the effects of compression on a size measurement 
task. 
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(B.12) (B.13) 

(B.14) 

Mediastinal images (continued). (B. 12) Mediastinal image compressed to 1.38 bpp. (B. 13) Mediastinal image compressed to 1.20 bpp. 
(B.14) Mediastinal image compressed to 0.57 bpp. 

APPENDIX A n x 1 and p is k x 1, then 

A. Bootstrapping Confidence Regions for 
Spline Fits (PVP or Sensitivity) 

1. A quadratic spline equation can be written as y = 
a0 + a l x  + a2x2 + bz(max(0,x - ZO))~, where 50 is 
the “knot” (in our study, z = bit rate and zo = 1.5 bpp). 
This gives rise to the linear model Y = DP+e, with one 
entry of Y (and corresponding row of D) per observation. 
D is the “design matrix.” It has four columns, the first 
having the multiple of a0 (always I ) ,  the second the 
multiple of a1 (that is the bit rate), and so on. 

2. Write least squares estimate of P as ,B (= 
(D’D)-l D’Y). 

3. For a given bit rate b, write the row vector dictated by 
the spline as d’ = d’(b). 

4. The confidence region will be of the form 

where S is the square root of the residual mean square 
from an analysis of variance of the data. So, if Y is 

The region will be truncated, if necessary, so that always 

5. Construct the empirical distribution Fn of the residuals 
(the coordinates of Y - DP). 

6. Sample, successively, n times with replacement from F,, 
obtaining E ; ,  . . . , E:. The motivation for this bootstrap 
sampling is simple: the bootstrap sample (in this case 
of residuals) bears the same relationship to the original 
sample (the “true” residuals) that the original sample 
bears to nature. We do not know the real relationship 
between the true residuals and nature; if we did, we 
would use it in judging coverage probabilities in Steps 9 
and 10. However, we do know the true residuals them- 
selves, and so we can imitate the relationship between 
the true residuals and nature by examining the observed 
relationship between a sample from the true residuals 
and themselves [28]. 

O l y l l .  
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7. Construct the fictitious bootstrap data Y’, whose ith 
coordinate is d:P+e:, where d: is the ith row of D. The 
bootstrap process will be carried out n b  = 1000 times. 

8. For the j th bootstrap sample cpmpute a new /3 and S; 
denote them, respectively, by P B , ~  and S B , ~ .  

9. Compute, for each 0, 

Note that the latter expression is what is used in the 
computation. This is the standard Scheffk method, as 
described in [291. 

10. For a loop% confidence region compute ( f i ) p  = 
m i n ( 0  : G ~ ( f i )  2 p} and use that value in the 
equation in step 4. 

APPENDIX B 
The images [(B.l)-(B.l4)] in this appendix are examples of 

both lung and mediastinum at all bit rates. 
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