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Power Optimization of Wireless Media Systems
With Space-Time Block Codes

Homayoun Yousefi’zadeh, Member, IEEE, Hamid Jafarkhani, Senior Member, IEEE, and Mehran Moshfeghi

Abstract—We present analytical and numerical solutions to
the problem of power control in wireless media systems with
multiple antennas. We formulate a set of optimization problems
aimed at minimizing total power consumption of wireless media
systems subject to a given level of QoS and an available bit rate.
Our formulation takes into consideration the power consumption
related to source coding, channel coding, and transmission of mul-
tiple-transmit antennas. In our study, we consider Gauss–Markov
and video source models, Rayleigh fading channels along with the
Bernoulli/Gilbert–Elliott loss models, and space–time block codes.

Index Terms—Bernoulli and Gilbert–Elliott loss models, mul-
tiple antenna systems, power optimization, QoS, source/channel
coding, space-time block codes, wireless media systems.

INTRODUCTION

WIRELESS devices are proliferating at a rapid rate.
Broadband wireless coverage is extensive in many areas

and there has been an exponential growth in the processing
power of embedded processors. The emergence of new wireless
standards is expected to expedite the delivery of the next
generation portable multimedia services such as disaster relief,
surveillance, and videoconferencing. More frequent and longer
use of portable multimedia services is naturally equivalent to
higher power consumption of mobile devices. Added to this
the fact that the battery life is growing far more slowly than the
processing power in handheld devices, the power consumption
of such devices is required to be kept to a minimum level in
order to extend the lifetime of their limited power resources. On
the contrary, providing the desired level of quality of service
(QoS) in the presence of the fading effects of multipath wireless
channels necessitates higher consumption of power in mobile
devices. Power optimization is, therefore, very important
because it extends the lifetime of batteries.

Multiple antenna systems substantially reduce the effect
of multipath fading in wireless channels through antenna
diversity. Antenna diversity has been adopted in WCDMA and
CDMA2000 standards. It is also being considered in many
current wireless standard efforts. A large percentage of next
generation mobile devices such as cellular phones, global
positioning systems (GPS), personal digital assistants (PDA),
and laptops will, therefore, employ multiple antennas. Hence, it
is essential to consider systems using multiple antennas in the
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study of wireless media systems. In what follows, we provide
a review of the literature.

In an early work, Lan et al. [12] solved an energy optimization
problem subject to QoS constraints for transmitting images
across the wireless backbone. However, they did not consider
the time-varying characteristics of the wireless channel in
the analysis of channel coding and transmission. Goel et al.
[7] solved another image transmission energy optimization
problem subject to distortion and rate constraints. While they
appropriately considered hardware specific impacts in their
work, their analysis lacked a consideration of channel coding and
transmission with respect to the time-varying characteristics of
the wireless channel. Having a [8] considered energy efficiency
in channel coding techniques for wireless systems without
considering the energy of source coding and transmission.
Stuhlmuller et al. [16] derived a rate-distortion model for
an H.263 compliant coder based on simulation data. Their
model could also be used for other codecs that rely on hybrid
motion compensation. Appadwedula et al. [4] formulated and
solved an energy optimization problem subject to statistical
distortion and rate constraints for transmitting images over
wireless channels. The authors considered transmission, source,
and channel-coding components in the formulation of the
problem. Ji et al. [11] proposed a generic motion estimation
technique that could well fit into H.263 or MPEG-2 source
coding standards. They used an unequal error protection (UEP)
technique based on the Bernoulli loss model in conjunction with
Reed–Solomon (RS) channel coding. Focusing on an uplink
mobile-to-base scenario, Lu et al. [13] solved a similar power
optimization problem subject to the end-to-end distortion of
[16] relying on H.263 source coding and RS channel coding in
conjunction with the Gilbert loss model. A preliminary version
of this work [10] analytically solved a similar problem under
the Bernoulli loss model with an additional rate constraint
while deploying space-time block codes. We point out that
although the use of multiple antennas cannot be ignored as
the result of adoption in the new wireless standards, none of
the literature articles cited above have considered deploying
multiple antennas in wireless systems. Further, none of the
literature articles has provided an analysis of complexity when
solving their formulated optimization problem. Considering the
real-time nature of the problem, we argue that providing a
low complexity solution to a power optimization problem is
important.

An outline of the remaining parts of the paper follows. In Sec-
tion II, we express our motivation and contributions. In Sec-
tion III, we provide an analysis of the transmission and the
channel coding components of the underlying wireless system.

1057-7149/04$20.00 © 2004 IEEE
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In this section, we express the symbol error rate as a function
of the average received signal-to-noise ratio and the loss model.
In Section IV, we provide an analysis of the source coding and
distortion for the underlying wireless system. Starting from a
simple Gauss–Markov source model, we generalize our anal-
ysis to a video source and obtain associated overall distortions
for each case. In Section V, we formulate and solve our power
optimization problem subject to distortion and rate constraints.
In Section VI, we numerically validate our results. Finally, Sec-
tion VII includes a discussion of concluding remarks and future
work.

I. MOTIVATION AND CONTRIBUTIONS

The theme representing the goal of this paper is to study the
end-to-end problem of multimedia transmission over a wireless
channel with multiple-transmit/receive antennas. We address
the tradeoff between the power consumption and the quality
of service in wireless media systems. Our goal is to minimize
the overall power consumption for a given quality of service
and a given bit rate. Fig. 1 illustrates the general model of a
communication system used to transmit multimedia content
across a wireless backbone. We note that the model may use
one or more transmit and/or receive antennas.

Optimizing power for transmitting multimedia content from
a mobile host requires addressing the consumption tradeoff
among different components of the underlying communication
system. The power consumed in a transmitting mobile device is
for the most part associated with source coding, channel coding,
and transmission. The power of source coding and channel
coding is typically a function of the underlying algorithms. The
transmission power depends on the overall transmission bit
rate and the symbol transmission energy. Intuitively, a higher
QoS and a higher bit rate result in more power consumption. In
this paper, the received signal distortion is used as the metric
of measuring QoS. Signal distortion has two components.
The first component is the distortion caused by source coding
compression and decompression. The second component is the
distortion caused by having unrecoverable channel coding er-
rors. The available bit rate is divided between the source coding
information and the channel coding redundancy assigned for
error recovery.

We independently describe each of the terms involved in the
formulation of our power optimization problem followed by the
formulation of the problem itself. We will then focus on pro-
viding efficient methods of solving our problem and validating
our results.

The main contributions of this paper are in the following
areas. First, we propose the use of multiple antenna systems
along with space-time block codes in addition to traditional
single antenna systems. Second, we consider three dif-
ferent channel loss models, namely Bernoulli, Gilbert, and
Gilbert–Elliott models, to properly capture the loss behavior of
different transmission channels. While we rely on closed-form
expressions of the loss model in the first two cases, we use
a recursive expression to describe the behavior of the last
loss model. Third, relying on the analysis of multiple antenna
systems along with various channel loss models, we formulate

Fig. 1. Illustration of the multiple antenna communication system.

a set of power optimization problems aimed at minimizing
the combined power of source coding, channel coding, and
transmission while considering rate and distortion constraints.
We provide analytical solutions to the optimization problems
utilizing Bernoulli and Gilbert loss models and a numerical
solution to the optimization problem using the Gilbert–Elliott
loss model.

II. TRANSMISSION AND CHANNEL CODING ANALYSIS

We start our discussion by providing an analysis of the trans-
mission system and the wireless fading channel.

A. Transmission and Fading Channel Analysis

First, we focus on the analysis of the wireless fading channel.
We rely on the so-called Rayleigh model with a fading factor
to describe the wireless channel. We note that the output signal
of such a channel can be related to its input signal as

(1)

where indicates the noise signal. Further, we recall that for
a multipath slow fading Rayleigh wireless channel, the per bit
average received signal-to-noise ratio is expressed as

(2)

where denotes the expectation operator, has a Rayleigh
distribution, is the transmission energy per symbol in-
terval, and is the one-sided spectral density of the white
Gaussian noise. We note that while the transmission energy per
symbol interval is the same as the transmission symbol energy
in the case of a one transmit antenna system, it is split in half
between the two symbols transmitted at each symbol interval
in the case of a double-transmit antenna system. Nevertheless,
we note that (2) can be properly applied to the cases of both
single and double-transmit antenna systems. In our discussion
below, we consider the fact that the asymptotic behavior of the
symbol error rate for large values of can be described
as where and represent coding
gain and diversity gain, respectively. Next, assuming a slow
fading Rayleigh channel and utilization of the L-PSK modula-
tion scheme, we calculate closed-form expressions describing
the symbol error rate of a multiple-transmit multiple-receive
antenna system. Starting from [15, eq. (9.15)] of the work of
Simon et al. with the choice of and
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, the
symbol error rate of a single transmit receive antenna system
using maximum ratio combining (MRC) can be calculated as

(3)

We note that (3) holds under the assumption that the fading is
identically distributed with the same fading parameter and the
same for all of the channels associated with the transmit
and individual receive antennas. Further, we note that diversity
gain is in the order of the product of the transmit and the receive
antennas. Hence, a single transmit receive antenna system
has a diversity gain of order . The closed-form solution to the
integral of (3) is expressed as

(4)

where , and
. Noting that the number

of bits per symbol is related to the number of signal points
in the constellation as , the result of (4) for a
single-transmit single-receive antenna system where
and QPSK modulation where and is expressed as

(5)

Similarly, the result of (4) for a single-transmit double-receive
antenna system where and QPSK modulation is ex-
pressed as

(6)

where . We observe that the symbol
error rate of a single-transmit double-receive antenna system is
improved compared to that of a single-transmit single-receive
antenna system due to the receive diversity gain. Next, we
investigate the symbol error rate for multiple-transmit antenna
systems. We consider the space-time block codes (STBCs)
of [1] and [19] as they have been adopted by WCDMA and

CDMA2000 wireless standards. We note that STBCs achieve
the maximum diversity gain. Recalling that the diversity gain
is in the order of the product of the transmit and the receive
antennas, we note that a double-transmit single-receive antenna
system achieves the same diversity gain as a single-transmit
double-receive antenna system. Under the assumption of a
fixed total amount of power available at the transmitter, in each
symbol interval the power is split equally between the two
antennas for a double-transmit single-receive antenna system.
On the contrary, in the case of a single-transmit double-receive
antenna system, only one symbol is transmitted in each symbol
interval and the total energy is allocated to it. Therefore, taking
into consideration the results of [18], the efficiency of the
former scheme suffers a 3 dB loss with respect to that of the
latter scheme from the standpoint of the coding gain. Hence,
by replacing with in (6), one can obtain the
symbol error rate of a double-transmit single-receive antenna
system utilizing QPSK modulation as

(7)

where . Under the same line of
reasoning, one can obtain the symbol error rate of a double-
transmit double-receive antenna system. Replacing with

in QPSK results from a single-transmit quad receive
antenna system yields

(8)

where and is the element lo-
cated at row and column of matrix defined as follows:

We also note that various BPSK results can be obtained similarly
by setting in (4). We finish this section by noting that
the per symbol average signal-to-noise ratio is related
to the per bit average signal-to-noise ratio as

. Consequently, for the choice of normalization factors
, the relationship holds.

B. Loss and Channel Coder Analysis

Having specified the symbol error rate based on the channel
characteristics, we propose utilizing a Reed–Solomon channel
coder that converts information symbols into an

-symbol block as the result of appending parity
symbols. Assuming and respectively denote source
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and channel coding bit rates, we note that utilizing such
a channel coding scheme introduces a channel code rate

. The scheme also allows for
correcting symbol errors. In order to
calculate the error rate of a block utilizing an coder,
we consider the single-state Bernoulli, the two-state Gilbert
[6], and the two-state Gilbert–Elliott [3] error models. We note
that while the first model represents a memoryless channel, the
other two represent channels with memory. It is also important
to note that the second model is a special case of the third
model.

The single state Bernoulli model is the simplest model de-
scribing symbol loss in a memoryless channel. In the Bernoulli
model, one assumes that the probabilities of loss among dif-
ferent symbols are temporally independent. Noting the fact that
losing more than symbols from transmitted symbols results
in a block loss, the probability of block loss, also known as the
residual symbol error rate, for the Bernoulli model is given by

(9)

where is the symbol error rate.
As pointed out in many research articles, a multipath fading

wireless channel typically undergoes burst loss representing
temporally correlated loss. The two-state Gilbert loss model
provides an elegant mathematical model to capture the loss
behavior of ever-changing channel conditions. In the Gilbert
model, symbol loss is described by a two-state Markov chain
as described in Fig. 2. The first state , known as the GOOD
state, represents the loss of a symbol with probability
or no symbol loss at all, while the other state , known as the
BAD state, represents the loss of a symbol with probability

. The GOOD state also introduces a probability
of staying in the GOOD state and a probability of
transitioning to the BAD state while the BAD state introduces
a probability of staying in the BAD state and a
probability of transitioning to the GOOD state. The
parameters and can be typically measured from the ob-
served loss rate and burst length. In [20], we study temporally
correlated loss behavior of IP packet networks employing the
two-state Gilbert loss model. In that article, we show that for
the Gilbert loss model, the closed-form expression for the
probability of receiving exactly symbols from transmitted
symbols is given by

(10)

The probability of receiving exactly symbols from trans-
mitted symbols and winding up in the GOOD state
is given by

Fig. 2. Two-state Gilbert loss model with the state transition probabilities 1�
P and 1� P for P =  and P = �. The symbol loss probabilities are
specified by e = 0 and e = 1.

(11)

for , steady state probability of the GOOD state
, and steady-state probability of the

BAD state . Similarly, the probability
of receiving exactly symbols from transmitted symbols and
winding up in the BAD state is given by

(12)

The initial conditions for (11) and (12) are expressed as follows:

(13)

While our model is of special interest from the standpoint of
providing an analytical lower complexity solution to a power
optimization problem such as the one proposed in [13], we
take a step further in this study by utilizing the Gilbert–Elliott
loss model to best describe the loss behavior of a wireless
channel. We note that the two-state Gilbert–Elliott loss model
is a generalization of the two-state Gilbert loss model with
nontrivial symbol loss error probabilities and , where

. In [9], we provide effective ways of measuring the
parameters of the Gilbert–Elliott loss model. Further, the work
of [17] describes how different methods of capturing memory
in analog communication channels such as Doppler’s shift in
Rayleigh fading or Jake’s fading model can be related to cap-
turing memory in digital communication channels such as the
Gilbert–Elliott model. For the Gilbert–Elliott loss model, the
probability of receiving exactly symbols from transmitted
symbols is still described by (10). However, the recursive
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probabilities of receiving exactly symbols from transmitted
symbols and winding up in the GOOD state and the BAD state
are respectively given by

(14)

and

(15)

for and the initial conditions

(16)

Utilizing (10) along with (14) and (15) for the Gilbert–Elliott
model, the probability of a block loss is given by

(17)

It is also important to note that using the two-state Gilbert–
Elliott model calls for changing (2) in order to distinguish
between the symbol error rates of the GOOD state and the
BAD state. Assuming denotes the expectation of the
square of the envelope in the GOOD state, the average received
signal-to-noise ratio of the GOOD state is expressed as

(18)

Similarly, the average received signal-to-noise ratio of the BAD
state is expressed as

(19)

where and the other parameters are the
same as in (2).

III. SOURCE CODING AND DISTORTION ANALYSIS

In this section, we focus on the source coding and the distor-
tion analysis. In order to validate our model, we first provide an
analysis of distortion utilizing a Gauss–Markov source model
and then continue with an experimental video source model.

A. Analysis of Distortion Based on the Gauss–Markov Source
Model

In this subsection, we provide an analysis of the distortion
utilizing the so-called Gauss–Markov model. We note that the

analysis of this section is provided as a proof of concept. In the
next section, we provide an analysis for a more realistic model
using an experimental H.263 video source coding model.

For the source coding analysis of this section, we use a first-
order Gauss–Markov source with a variance and a corre-
lation coefficient . As described in [5], utilizing such a model
for a transform coder introduces an operational distortion-rate
function in the form of

(20)

where is the block length of the transform coder, is a con-
stant depending on the quantizer used for the transform coeffi-
cients, and is defined in the previous section. We note that
the Gauss–Markov model of (20) is reduced to a pure Gaussian
source model by setting . Hence, the following discussion
is also applied to a pure Gaussian source. For a Gauss–Markov
source, any symbol associated with an unrecovered block at the
channel coder is best represented by the Gaussian mean. Such
a representation results in an average distortion of . Con-
sequently, the overall distortion at the decoder is calculated by
taking the average of block recovery and block loss distortions
multiplied by their associated probabilities. Assuming a block
loss probability of , the overall distortion total is cal-
culated as

total
(21)

Again, we note that the probability of a block loss can be cal-
culated from (9) and (17) in the case of utilizing the Bernoulli
loss model and the Gilbert (or the Gilbert–Elliott) loss model,
respectively.

B. Analysis of Distortion Based on an Experimental H.263
Video Source Model

Here, we provide an analysis of distortion utilizing a more
realistic H.263 compliant source coder. For the source coding
analysis of this section, we rely on the experimental results of
Stuhlmuller et al. [16]. The experimental distortion model of
[16] consists of two components and respectively im-
posed by the source encoder and the channel noise. The model
relies on an INTRA update scheme forcing a macroblock (MB)
to be coded in the INTRA-mode after every MBs and re-
sulting in a source encoder distortion of

(22)

where is the INTRA rate, is the encoding bit rate
in kilobits per second (kbps), and is the distortion in terms of
the mean square error per source sample. The measurements of
[16] also suggest that the distortion-rate parameters , , and

depend linearly on the percentage of INTRA coded macro
blocks , as shown by the following equations:

(23)
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The model parameters , , , , , and
characterize the coding of the input video sequence with the
given motion-compensated H.263 encoder in baseline mode. It
is important to note that the parameters highly depend on the
spatial detail and the amount of motion in the sequence.

Reference [16] also proposes that the video coder distortion
caused by transmission errors is expressed as

(24)

where leakage describes the efficiency of loop filtering to re-
move the error and describes the sensitivity of the video
decoder to an increase in error rate. In addition, the the proba-
bility of a block loss can be calculated as described in
the previous section. The overall distortion total at the video
decoder is then calculated as

total (25)

IV. POWER OPTIMIZATION

In this section, we focus on power optimization of a mobile
device used in a wireless media system with space-time block
codes. Recalling that the overall power consumed in a mobile
device is associated with source coding, channel coding, and
transmission, we first introduce individual terms expressing the
consumed power of different components. We then proceed with
the formulation of the power optimization problem and the so-
lution to it.

A. Power-Optimization Formulation

The first power consumption component of the underlying
wireless system is the source encoder. We consider the power
consumption of the source encoder in the case of utilizing both
the Gauss–Markov source of Section IV-A and the video source
of Section IV-B.

We start by considering the power consumption of the
Gauss–Markov source encoder of Section IV-A. Considering
the fact that the encoder rate is the dominant factor of the power
consumption of a Gauss–Markov source encoder, we express
the power consumption of such a source encoder as a linear
function of the encoder rate, i.e.

(26)

where and are the linear model constants.
Next, we consider the power consumption of the video source

encoder of Section IV-B. Reference [13] proposes the following
average power consumption model for an H.263 coder

(27)

where is the weighting factor introduced to allow for the
scaling of the model based on the actual power consumption
of a particular hardware and/or software implementation, is

the frame rate, is the number of macroblocks in a frame,
and is described in Section IV-B. Further, , , and

respectively denote the energy consumed by DCT, quanti-
zation including the energy consumed by variable length coding
(VLC), and motion estimation. Assuming

(28)

equation (27) can be expressed as

(29)

where , , and are described in terms of the energy
consumptions of different source coding components, is
again the source coder INTRA rate, and again indicates
the source coding bit rate. The authors of [13] confirm that
the measured power consumptions for encoding the sequences
Containership.qcif, Foreman.qcif, MotherDaughter.qcif,
News.qcif, and SilentVoice.qcif with an H.263 encoder fit the
model parameters of (29) quite accurately. We note that the
consistency of the models of (29) and (26) is verified by noting
that when there is no motion estimation, i.e., all of the macro
block are coded in INTRA-mode with , (29) is reduced
to (26).

The second power consumption component of the underlying
wireless system is the channel coder. Reference [4] models per
bit energy consumption of a Reed–Solomon encoder
as

(30)

where is a scaling factor and is the number of bits per
symbol.

Finally, the third power consumption component of the un-
derlying wireless system is the transmitter. The total transmis-
sion power is given by

(31)

where is a scaling factor that maps the radiated energy into
the actual transmission power of a wireless device. We note
that the relative choice of the parameters , , and with re-
spect to each other can identify whether the underlying coding
techniques rely on hardware or software implementation. Using
the existing technologies, is about two orders of magnitude
greater than for both hardware and software implementations.
However, and are of the same order of magnitude for a
hardware implementation technique whereas the former is an
order of magnitude larger than the latter for a software imple-
mentation technique [13]. While we focus on a hardware im-
plementation technique in our work, investigating a software
implementation technique is also straightforward.

Having expressed all of the power consumption components
as well as the distortion terms, we now formulate our power
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optimization problem subject to distortion and rate constraints
as

total (32)

Subject total (33)

total (34)

In the rest of this section, we use the general video source model
of Section IV-B, making note of the fact that the model of (29)
can be reduced to that of (26) by setting and considering

and . We observe that for a single/multiple
transmit/receive antenna wireless system utilizing the L-PSK
modulation scheme, the objective function and inequality con-
straints of the above optimization problem can be expressed in
terms of optimization variables , , , and , as well as
some constants. The following equations illustrate the matter in
the case of a double-transmit single-receive wireless system, the
QPSK modulation scheme, the H.263 source encoder model of
Section IV-B, and the Bernoulli channel. First, the total power
is expressed as

total

(35)

Next, the distortion terms are expressed as

(36)

Finally, the symbol error rate term is expressed as

(37)

where . The derivation of the equa-
tions is similar for the L-PSK modulation relying on (29), (30),
(31) along with (22), (23), (2), (4), (9), and (24).

B. Power-Optimization Solutions

In this section, we provide a discussion of solving the opti-
mization problem formulated by (32) along with the constraint
set (33) and (34). Again considering the general form of (29),
we use the video source model of Section IV-B in the discussion
of this section. Further, we consider two scenarios.

In the first scenario, we assume that the cost function and the
constraints of the optimization problem can all be expressed in
closed form. Under the assumption of continuous differentia-
bility, this results in introducing analytical solutions. Clearly,
the case of the Bernoulli loss model and the Gilbert model are

covered under this scenario. Relying on the Lagrangian theory,
we convert the problem to an optimization problem without con-
straints. We define the Lagrangian function of (32) as

(38)
where the parameters and are the Lagrange multipliers in
the Lagrangian Equation (38). The unconstrained minimization
problem for is defined as

(39)

Conditions of Optimality: Constraint Qualifications: We
now investigate the existence of necessary and sufficient
optimality conditions also known as constraint qualifications.
For our unconstrained minimization problem

(40)

the constraint qualifications are expressed in terms of Lagrange
multiplier theory [2]. They revolve around conditions under
which Lagrange multiplier vectors satisfying the following
conditions are guaranteed to exist for a local minimum

. The local minimum satisfies

(41)

where
. Further,

for if associated with an active inequality at , i.e.,

if
otherwise

(42)

and

if
otherwise

(43)

Constraint qualifications guarantee the existence of unique La-
grange multipliers for a given local minimum if the active
inequality constraint gradients of (33) and (34) are linearly in-
dependent [2].

We note that the objective function (32) defined over a
compact subset of is continuously differentiable and the
constraint gradients of (33) and (34) are linearly independent.
Finding the solution to the optimization problem is, therefore,
equivalent to finding the solution to the equation set (41)
specifying optimization variables , , , and .

Further, it is important to observe that the formulated problem
of (32) is subject to discrete constraints applied to the source
coding variable and the channel coding variable

. Solving the problem of (32) is,
hence, categorized under discrete constraint optimization prob-
lems which can be solved with the following approach. The ap-
proach is to add extra discrete constraints effectively changing
the formulation of the optimization problem from a nonlinear
programming (NLP) to a mixed integer nonlinear programming
(MINLP) in which the variables and can only take on
discrete values. In this approach, one selects the best solution
among the set of solutions to the problems obtained for different
discrete values of the optimization parameters [2].
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In the second scenario, we consider the cases in which the cost
function and/or some of the optimization constraints cannot be
expressed in closed form. This is clearly seen in the case of the
Gilbert–Elliott loss model, in which the video coder distortion
constraint of (24) cannot be expressed in a closed form. Con-
sidering the fact that constraints (33) and (34) are convex,1 we
propose deploying the sequential quadratic programming (SQP)
technique. In SQP, the necessary conditions for optimality are
represented by the Karush–Kuhn–Tucker (KKT) conditions de-
scribed as the collection of (41) and the following relationships:

(44)

A variant of the quasi-Newton method can then be used to iter-
atively find the solution to the optimization problem [14]. This
is equivalent to solving a quadratic estimation of the problem in
every iteration.

We end this section by providing an analysis of the com-
plexity for the two scenarios described above. Taking the dis-
crete constraints into consideration and assuming represents
the number of parameter combinations, the time complexity of
solving the problem of (41) for the first scenario is ,
where indicates the degree of (41). The complexity determines
the overall complexity of the solution considering the fact that
the rest of the calculations are in a lower time complexity order.
Similarly, the time complexity of solving the problem of (41)
for the second scenario is where indicates the
number of iterations and indicates the degree of the quadratic
estimation. We have observed that an average of ten and no more
than twenty iterations are required for convergence in the case of
the second scenario. The complexity results are, therefore, quite
good compared to other recursive optimization approaches such
as dynamic programming introducing a time complexity in the
order of .

V. NUMERICAL ANALYSIS

In this section, we numerically validate our results. Before
proceeding with the explanation of our numerical results, we
note that we are solving the power optimization problem for
both single and double-transmit antenna wireless systems. In the
case of a double-transmit antenna system, we assume that two
signals are transmitted simultaneously from the two transmit an-
tennas at each time slot using STBCs of [1] and [19]. In addition,
we assume that the slow fading wireless channel characterized
by a Rayleigh distribution is quasistatic and flat implying that
the path gains are constant over a frame but vary independently
from one frame to another.

Our experiments simulate a wireless environment in which
different uplink, downlink, and mobile-to-mobile transmission
scenarios are possible. However considering the power lim-
itation of mobile nodes, the scenarios of interest are uplink

1The function f : C 7�! R defined over the convex set C � R is called
convex if 8x ; x 2 C and 0 � � � 1 the inequality f(�x + (1��)x ) �
�f(x ) + (1 � �)f(x ) holds.

Fig. 3. BPSK plot of optimal power versus PSNR for single/double
transmit/receive antenna systems. A Gauss–Markov source with parameter
� = 0:9 and the Bernoulli loss model have been considered.

Fig. 4. BPSK plot of optimal power versus PSNR for single/double
transmit/receive antenna systems. A Gauss–Markov source with parameter
� = 0:9 and the Gilbert–Elliott loss model have been considered.

(mobile-to-base) and mobile-to-mobile transmissions. As-
suming a mobile node may contain one or two transmit/receive
antennas, we investigate different combinations of one or two
transmit antennas with one or two receive antennas. More
specifically, we consider four transmission scenarios: 1) a
single-transmit single-receive (ST/SR) antenna system; 2) a
single-transmit double-receive (ST/DR) antenna system; 3) a
double-transmit single-receive (DT/SR) antenna system; and
4) a double-transmit double-receive (DT/DR) antenna system.

When utilizing the Gauss–Markov source of Section IV-A,
we report our results for , indicating a highly correlated
source with a behavior close to a video source and/or a speech
source. Our experiments for the H.263 video source encoder of
Section IV-B span over source coding parameter settings as-
sociated with the sequences Containership.qcif, Foreman.qcif,



YOUSEFI’ZADEH et al.: POWER OPTIMIZATION OF WIRELESS MEDIA SYSTEMS WITH SPACE-TIME BLOCK CODES 881

MotherDaughter.qcif, News.qcif, and SilentVoice.qcif. How-
ever, we only report the results for Containership.qcif and
Foreman.qcif. In addition, we select the scaling factors

as [1,0.01,1] representing transmission systems using
hardware coding implementation.

Despite the fact that our experimentation set up is fairly
close to that of [13], we do not directly compare our results
of utilizing the video source encoder of Section IV-B with
the results reported there. This is because our model relies on
the more general Gilbert–Elliott model rather than the Gilbert
model of [16] and [13]. Furthermore, our model relates the
average received signal-to-noise ratio to a Rayleigh distribution
rather than the distance. We believe that our model is more
suitable for wireless channels due to the considerations of the
fading effects. Instead, we compare the results of utilizing
ST/SR, DT/SR, ST/DR, and DT/DR antenna systems in a
Rayleigh fading channel under both Bernoulli and Gilbert–El-
liot loss models. We also note that when the loss behavior of
the channel is characterized by the Gilbert–Elliott model, we
set to distinguish between the GOOD
state and the BAD state. In the latter case, the parameters
of the model are set to [0.998 73,0.875] indicating an
average burst length . Setting a block
length of symbols for the RS coder with BPSK
and QPSK modulations, we allow the H.263 video source
coding variable and channel coding variable to assume
values from the discrete sets and

, respectively. For a given bit rate of up to
256 kbps, indicating the achievable bit rate of the 3G wireless
standard, we plot the optimal power values obtained for max-
imum acceptable distortion measures. We map the distortion
measure to peak signal-to-noise ratio (PSNR) measure
as when comparing different
combinations of transmit and receive antennas together.

Utilizing the Gauss–Markov source of Section IV-A, Fig. 3
plots the optimal values of total, the total power for the
BPSK modulation scheme versus the PSNR. We note that the
PSNR metric is used instead of the more meaningful distortion
metric in order to provide consistency with the plots of the
video sequences provided next. The results have been obtained
for normalized values of , , , , and a channel
loss characterized by the Bernoulli model. Fig. 4 plots similar
curves for normalized values of , , , , and a
channel loss characterized by the Gilbert–Elliott model.

The most striking observation when comparing the results of
the figures is the fact that the optimal power of a DT/DR antenna
system is consistently lower than that of the rest. In addition, the
optimal power of an ST/SR antenna system is higher than that
of the rest. Comparing the optimal power of an ST/DR antenna
system with that of a DT/SR antenna system, we observe that
the former introduces a lower optimal power. Considering the
fact that the diversity gain is in the order of the product of the
transmit and the receive antennas, both schemes achieve a diver-
sity gain of order two. However, recalling the discussion of Sec-
tion III-A, we note that from the signal-to-noise ratio standpoint,
the power efficiency of the latter scheme suffers a 3-dB loss

Fig. 5. QPSK plot of optimal power versus PSNR for single/double
transmit/receive antenna systems. Containership.qcif video source and the
Bernoulli loss model have been considered.

Fig. 6. QPSK plot of optimal power versus PSNR for single/double
transmit/receive antenna systems. Foreman.qcif video source and the Bernoulli
loss model have been considered.

compared to that of the former scheme for the same transmis-
sion power. This justifies the lower optimal power of an ST/DR
antenna system compared to that of a DT/SR antenna system.

In addition, the following comments are in order. First, we
observe that plotting the optimal values of power total versus
the values of available bit rate for a fixed quality of service
PSNR or yields similar qualitative results as the ones shown
in the above figures, i.e., the optimal power curves are nonde-
creasing functions of the available bit rates . However, we
have observed that the impact of increasing the value of for
a given PSNR on the overall optimal power is not as significant
as the impact of increasing the value of PSNR for a given .
In other words, the four curves illustrated in different figures
are closer to each other. Second, comparing the results of Con-
tainership.qcif with those of Foreman.qcif, we observe similar
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Fig. 7. QPSK plot of optimal power versus PSNR for single/double
transmit/receive antenna systems. Containership.qcif video source and the
Gilbert–Elliott loss model have been considered.

Fig. 8. QPSK plot of optimal power versus PSNR for single/double
transmit/receive antenna systems. Foreman.qcif video source and the
Gilbert–Elliott loss model have been considered.

qualitative behaviors with higher optimal power values in the
case of the second sequence. The results are expected consid-
ering the higher motion of the second sequence compared to the
first. Third, we have conducted another set of experiments for
a channel loss characterized by the Gilbert–Elliott model and
an average burst length of . Although
not shown in the figures, our findings exhibit a similar quali-
tative behavior and are consistent with the reported results of
this section. Fourth, we observe a similar qualitative behavior
regardless of utilizing BPSK or QPSK. Finally, we note that the
choice of scaling factors in our reported experiments indicates
a scenario in which source and channel coders are implemented
in hardware. The results of software implementation are similar
and are not reported here.

Fig. 9. Total optimal power and its allocation among source coding, channel
coding, and transmission. An ST/SR antenna system, QPSK modulation,
Foreman.qcif video source, and the Bernoulli loss model have been considered.

Utilizing the Containership and Foreman video sequences,
Figs. 5 and 6 respectively plot the optimal values of the total
power for the QPSK modulation scheme versus the PSNR.
The results have been obtained for normalized values of ,

, and a channel loss characterized by the
Bernoulli model. Fig. 7 and Fig. 8 plot similar curves for
normalized values of , , , and a channel
loss characterized by the Gilbert–Elliott model.

At the end of this section, we study the distribution of the
power components. Fig. 9 shows a sample plot of the optimal
power components of source coding , channel coding ,
and transmission along with the total optimal power total
for an ST/SR antenna system. We provide a set of observations
that are based on Fig. 9 and similar figures not shown here
for DT/SR, ST/DR, and DT/DR antenna systems. The first im-
portant observation is that the allocation of power is qualita-
tively the same for different choices of video sources, channel
models, and number of transmit/receive antennas. The alloca-
tion of source coding power increases very little while the allo-
cation of channel coding and transmission powers increase with
much higher rates for higher QoS metrics. We have also ob-
served that the distance between the curves of and remain
the same for different choices of system parameters. The second
observation is that by increasing the number of transmit and/or
receive antennas the intersection point of the plots of transmis-
sion and source coding shifts to the right. This indicates that
less power has to be assigned to the transmission component
as the result of improving transmission efficiency. The intersec-
tion point moves from the left to the right for the combinations
ST/SR, DT/SR, ST/DR, and DT/DR antenna systems.

VI. CONCLUSION

In this paper, we presented some solutions to the general
problem of power control in wireless media systems with
multiple antennas. We provided an analysis of the underlying
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wireless system consisting of transmitting, channel, and re-
ceiving sides. Relying on our analysis results, we formulated
an optimization problem aimed at minimizing the total power
consumption of wireless media systems subject to a given
quality of service level and an available bit rate. Our formu-
lation considered the power consumption related to source
coding, channel coding, and transmission of double-transmit
antennas. While our source coding analysis used both a
Gauss–Markov source and a video source, our channel coding
analysis relied on a Rayleigh fading channel along with the
Bernoulli/Gilbert–Elliott loss models. Finally, our transmission
analysis used space-time block codes. We evaluated the perfor-
mance of our power optimized solution for both single/double
transmit/receive antenna systems and observed that utilizing a
double-transmit double-receive antenna system provided the
lowest optimal power values. The optimal power values of a
single-transmit double-receive antenna system were the next
best followed by those of a double-transmit single-receive
antenna system and a single-transmit single-receive antenna
system.

We are currently working on the expansion of our results into
the layered and replicated media scenarios as a general com-
bined framework for distributing multimedia content over the
wireless backbone. We are focusing on both coding and net-
working aspects of the problem. In addition, we are developing
novel content processing algorithms capable of providing video
summaries, thereby further reducing the power consumption of
a wireless system.
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