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Abstract

Background—The gold standard for mapping nerve fiber orientation in white matter of the 

human brain is histological analysis through biopsy. Such mappings are a crucial step in validating 

non-invasive techniques for assessing nerve fiber orientation in the human brain by using diffusion 

MRI. However, the manual extraction of nerve fiber directions of histological slices is tedious, 

time consuming, and prone to human error.

New Method—The presented semi-automated algorithm first creates a binary-segmented mask 

of the nerve fibers in the histological image, and then extracts an estimate of average directionality 

of nerve fibers through a Fourier-domain analysis of the masked image. It also generates an 

uncertainty level for its estimate of average directionality.

Results and Comparison with Existing Methods—The average orientations of the semi-

automatic method were first compared to a qualitative expert opinion based on visual inspection of 

nerve fibers. A weighted RMS difference between the expert estimate and the algorithmically-

determined angle (weighted by expert's confidence in his estimate) was 15.4 degrees, dropping to 

9.9 degrees when only cases with an expert confidence level of greater than 50% were included. 

The algorithmically-determined angles were then compared with angles extracted using a manual 

segmentation technique, yielding an RMS difference of 11.2 degrees.
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Conclusion—The presented semi-automated method is in good agreement with both qualitative 

and quantitative manual expert-based approaches for estimating directionality of nerve fibers in 

white matter from images of stained histological slices of the human brain.

Keywords

Histology; White matter; Nerve fibers; orientation map; Fiber tracking; Nerve fibers Orientation; 
Fourier Transform; Average orientation

1. Introduction

Diffusion Magnetic Resonance Imaging (dMRI) is an imaging technique that measures the 

properties of water diffusion in tissues, and has revolutionized the study of brain anatomy. 

Prior to the development of dMRI, traditional approaches to study white matter could only 

be done post-mortem. The impact of diffusion MRI techniques on the study of neurological 

disease has been widespread.

Diffusion MRI techniques can produce estimates of water diffusivity in multiple directions, 

allowing the estimation of a “diffusion tensor” for each imaged voxel that is directly related 

to the potentially anisotropic restriction of water diffusion [1, 2, 3]. This is termed Diffusion 

Tensor Imaging, or DTI. The restriction of water diffusion is influenced by underlying 

microstructural anatomy. In white matter, fiber bundles contribute the most to anisotropic 

diffusion [2, 4]. The linearity of successively adjacent diffusion tensors is calculated to 

reconstruct fiber bundles. Disease-related changes in the fiber bundles can thus be identified, 

as (for example) demonstrated in recent studies of Alzheimer's disease [5, 6, 7, 8, 9, 10, 11]. 

Further studies have shown a direct relationship between white matter fiber structure and 

AD cognitive impairment [5, 9, 11, 12].

Validation of DTI is crucial for assessing its reliability and accuracy of measuring white 

matter diffusion. The algorithms that approximate the underlying white matter architecture 

need to be accurate. For obvious reasons, a true anatomical comparison for DTI validation is 

not feasible clinically in humans, but has been attempted in phantom [13, 14] and animal 

studies [15, 16]. Examples include tractography validation with excised rat spinal cords [17] 

and enhancement of the optic tracts by the injection of manganese ions [14].

In studies of human white matter structure and fiber reconstruction, references to anatomical 

correlates have been qualitative, referring only to already established histological anatomy 

(e.g., [18]). In AD, white matter degeneration measured with DTI is associated with the 

progression of cognitive impairment [5, 9, 11, 12]. However, validation of white matter 

segmentation in DTI has been mostly limited to qualitative comparisons of results to known 

anatomical connectivity by a skilled neuroanatomist. There is no resource that exists to 

permit a direct comparison of DTI data to the underlying white matter architecture.

The creation of a methodology for the direct comparison of DTI data with actual underlying 

white matter architecture is an extraordinarily difficult problem. This paper focuses on one 

aspect of this problem: namely, the detection of two-dimensional vectors representing white 

matter fiber orientations in stained histological sections of the post-mortem human brain.
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Tissue sections stained specifically for white matter fibers provide qualitative directionality 

of tracts, but the systematic measurement of the orientation of fibers in histological slices 

such that they can eventually be directly compared to DTI data is challenging. Examples of 

published techniques seeking to validate diffusion MRI with histology include those using 

2D structure tensors [19, 20, 21], Fourier analysis [22], wavelet decomposition [23], oriented 

filtering [24], micrographs [25], and template matching [26]. While the resolutions 

achievable with DTI are much lower than those in images of histological sections, and DTI 

inherently provides three-dimensional information, the extraction of two-dimensional 

directionality of white matter tracts from images of histological slices is nevertheless an 

important step in a direct comparison of DTI data to the underlying white matter 

architecture.

This is particularly important as DTI techniques improve and are extended, and the ability to 

infer white matter structure on a finer scale increases. Identifying fiber directionality in 

histological slices has typically involved manual assessment of fiber direction by a trained 

observer, and is tedious, slow, highly labor intensive, and fatiguing. Furthermore, 

reproducibility may be poor [27, 28].

In this paper, we present an algorithm for the semi-automated assessment of fiber 

directionality from high-resolution images of stained histological sections of the post-

mortem human brains. Images of histological sections are divided into subsections which we 

term “panels”. The algorithm then extracts both an average two-dimensional directionality 

for each panel and an estimated uncertainty level for the directionality vector. The algorithm 

is rapid and computationally efficient, and is based on a Fourier-domain analysis of a color-

thresholded image of each panel.

We assessed the performance of the algorithm by having a trained neuroanatomist assess the 

directionality in six histological slices (each from a different post-mortem brain) divided into 

a total of 300 sub-regions of varying dimensions. The weighted 1 RMS difference between 

the algorithmically-determined values and the expert-determined values was then calculated 

to give an indication of algorithmic performance. We further compared the performance of 

the algorithm to the angles extracted using a time and labor intensive manual segmentation 

technique. In both cases, the RMS difference was below 16 degrees, and dropped to below 

10 degrees in the qualitative comparison against the expert opinion when only panels where 

the expert ascribed 50% or greater confidence to his estimate were included in the analysis.

2. Materials and Methods

Tissue preparation and imaging: Formalin fixed hippocampal specimens were blocked in 

the coronal plane with a thickness of 2.5mm and embedded in paraffin. The tissue was 

obtained from the Neuropathology Core at the David Geffen School of Medicine at UCLA. 

Sections were cut in 10 micron sections using a Leica rotary microtome and then stained 

with Luxol Fast Blue/cresyl violet, which stains white matter fibers dark blue and nuclei 

deep purple. After preparation and staining, each histological slice was scanned using a 

1weighted by the confidence of the neuroanatomist on his determination of the directionality
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Leica SCN400 slide scanner at 20× magnification and panels were visualized using the 

Leica Virtual Microscopy (Leica Biosystems Inc., Germany).

Terminology: In this manuscript, we will refer to a high resolution image of a stained slice 

as a “histological slice”. Histological slices are then subdivided into regions of interest, 

“ROIs”, that we wish to analyze in more detail. Finally, each ROI is subdivided into 

“panels”, each of which is analyzed for average directionality of white matter tracts across 

the panel. In other words, our algorithm will operate at the panel level, identifying a single 

2D vector representing average directionality for that panel, along with a single estimate for 

the uncertainty of the direction for that panel.

2.1. Algorithm

A representative panel from a ROI in the white matter of a histological slice is shown in 

Figure 1. Nerve fibers tend to be dark blue or purple on these stained histological images. 

Our algorithm attempts to (1) isolate or segment the nerve fibers in the panel, (2) construct 

an angular histogram that represents the dominance of nerve fiber orientation in each 

direction, and (3) extract an “average” directionality from the angular histogram, along with 

an estimate for the uncertainty in the directionality.

2.1.1. Segmentation of nerve fibers in a panel—Segmentation of the nerve fibers in a 

panel can be accomplished by a threshold based algorithm applied after the panel image is 

mapped to an appropriate color space. Human vision is perceptually uniform, meaning that 

we can distinguish the nerve fibers from other structures because variations in color across 

nerve fibers are relatively small compared to the color differences between completely 

different structures. From an algorithmic point of view, we can automate this process more 

accurately by choosing a color space for the images which minimizes color variations across 

nerve fibers while preserving a stark difference in color between nerve fibers and other 

structures [29, 30]. The RGB color space (the default for our histological slices) is not well 

suited for the proposed segmentation algorithm. However, the LAB color space is 

perceptually uniform [31, 32, 33, 34, 35], and a better choice for our algorithm.

The LAB color space consists of 3 channels: a luminosity channel and two color channels. 

We found that segmentation was most robustly done on the luminosity channel image, 

although sometimes information from the two color channels can improve segmentation on 

the luminosity channel. Our segmentation algorithm consists of the following four steps, 

which are summarized in Figure 2:

1. Convert all histological panels from RGB to LAB.

2. Apply a threshold on the luminosity channel of the first panel using maximum 

and minimum thresholding values manually determined by the user to separate 

nerve fibers from surrounding structures.

3. If this simple luminosity-channel thresholding fails to effectively segment nerve 

fibers, then a threshold is applied on one of the color channels to identify non-

nerve fiber structures. This can then be subtracted from the luminosity-channel 

thresholded image to improve segmentation of nerve fibers.
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4. Once the above steps are completed, we are left with a binary image that 

contains both actual nerve fibers and some undesired structures (i.e., blood 

vessels and glia). Fortunately, true nerve fibers tend to occupy a much larger 

contiguous area than the undesired structures introduced in this process. In this 

final segmentation step, the areas of contiguous structures in the binary image are 

computed, and those below a minimum threshold (which are unlikely to be nerve 

fibers) are deleted.

The segmentation step is now done, yielding a binary mask indicating where nerve fibers are 

in the panel. Figure 3 illustrates the steps described above to make a binary mask of nerve 

fibers from a representative panel.

2.1.2. Construction of orientation-based angular histogram—Once the 

segmentation step is done, we analyze the angular distribution of all of the nerve fibers 

identified in a given panel. However, the identification of a single “direction” for each 

identified nerve fiber is not easily done. Our algorithm employs a Fourier-domain technique 

for estimating the dominance of different directions in the segmented image, allowing the 

construction of an orientation-based angular histogram for each panel. This histogram can 

then be analyzed to identify the average directionality in the panel. The spread of the angular 

distributions across the panel can be used to derive an estimate of the uncertainty for the 

average directionality in the panel.

The presence of sharp edges in a given direction in an image manifests as increased energy 

in the high spatial frequencies of the Fourier representation of the image. This increase is in 

angular regions perpendicular to the direction of sharp edges in the image domain. This is 

illustrated in Figure 4(a-d). Thus, by analyzing the angular distribution of energy in the high 

spatial frequencies in the Fourier domain, we can identify directions present in the 

segmented image of a panel, and estimate how strongly each of those directions is 

represented.

To produce an angular histogram for a given panel, the following steps are performed:

1. Take the 2D Discrete Fourier Transform (DFT) of the panel.

2. Mask out the low spatial frequencies in the DFT image of the panel (equivalent 

to applying a high-pass filter to the original panel image).

3. Divide the remaining portion of the image into “angular windows” as illustrated 

in Figure 5. Once divided, we sum the energy in each window, and use these 

sums to form an orientation-based histogram where the intensity of the histogram 

at a given angle is equal to the image energy found within the corresponding 

angular window.

Variable parameters for this process include the cut-off spatial frequency of the high-pass 

filtering step rc (measured in pixels in the Fourier domain image), the angular window width 

α, and the angular spacing ΔΨ between sliding-angular-window bins (Figure 5). Note that α 
maps to the angular extent of each bin in the angular histogram. We use Ψ to denote the 
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angle of a radial line passing through the center of an angular window. The algorithm thus 

analyzes angular windows with Ψ ranging from 0 to 179 degrees in increments of ΔΨ.

Let F(kx, ky) = ℱ{f(x, y)} represent the 2DFT of the thresholded panel image, where kx and 

ky are spatial frequencies in the x and y directions respectively. The energy, ε, in an angular 

slice of angular width α centered at angle Ψ is then given by:

(1)

where M and N are the width and height of the image (in pixels), and rc is the cut off radius 

(also in pixels).

Again, it is important to note that the orientation of the nerve fiber edges in the masked 

image are perpendicular to the observed orientation of the edges in the Fourier domain. The 

dominant direction of each of the panels is apparent as a line of increased energy in the 

Fourier domain at an angle perpendicular to the dominant direction in the panel. This line in 

the Fourier domain results from the sharp edges that are present in the mask image.

Note that the angular window size α, cut-off frequency rc, and angular increment ΔΨ should 

be carefully chosen to yield the best results for a given application. For example, increasing 

window size reduces angular resolution and smooths the energy histogram distribution. 

Increasing the cut-off frequency rc changes the strength of the dominant directions. 

Changing angular spacing alters the histogram resolution. Note that the angular histogram 

can be visualized either as a standard cartesian histogram or as a polar histogram.

2.1.3. Orientation estimation from orientation-based angular histogram—Once 

an orientation-based histogram is generated for each panel, we can extract a simple average 

orientation and an estimate of the uncertainty for that panel. While it is tempting to simply 

find a weighted mean of the histogram (similar to finding the statistical mean of a 

probability mass function), this can produce undesired results if a peak is centered near 0 

and/or 180 degrees as in (Figure 6(b)). This problem can be avoided by extending the 

angular histogram to cover a range of 0 to 359 degrees (effectively replicating it twice). We 

then calculate the mean and standard deviation of a sliding window with a 180 degree width, 

starting with a window from 0 to 179 degrees and finishing with a window from 180 to 359 

degrees. We then choose the window that has the lowest standard deviation, as illustrated in 

Figure 6(c). In most cases, this will concentrate a directional peak towards the center of the 

angular window, and yield more accurate results when a peak is clustered near the edges of 

the 0 to 179 degree window.

Once the sliding window that yields the minimum standard deviation is identified, the 

average orientation for the panel is then simply computed as the weighted mean of the 

angular histogram over that minimum standard deviation window. We use the standard 

deviation of the angular histogram over the minimum standard deviation window as our 

measure of the uncertainty, where a smaller standard deviation indicates a higher level of 
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confidence in our angular estimate. After extracting the average orientation from the angular 

histogram for a panel, other useful information can be extracted from the histogram based on 

the degree to which it is uni-modal vs. multi-modal.

2.2. Manually marking fibers

For comparison, we manually marked fiber directions in 50 panels using the following 3-

step process. First, vector lines were drawn close to the nerve fibers using the Neurolucida 

(Microbrightfield Bioscience, Vermont) such that the length and the direction of the lines 

represented the respective dimensions of the nerve fibers. We used the operational definition 

of nerve fibers as being visually discernible from a clear beginning and end within the plane 

of the tissue section. An angular orientation histogram from 0 to 179 degrees was then 

created, with bins centered at each degree. The height of each bin was the total sum of the 

lengths of the lines within the angular range of each bin. We then followed the same 

procedure as described in section 2.1.3 to estimate the average orientation and find the 

standard deviation.

3. Experimental setup

The algorithm described above were implemented in MATLAB (The Math-Works, Inc., 

Massachusetts). We describe other aspects of our experimental set up below.

3.1. Selection of algorithmic parameters

Selection of threshold—Minimum thresholds were manually chosen for six stained 

batches. Staining variations from batch to batch can be significant, so this step is important 

for tuning algorithmic performance. Minimum thresholds were chosen such that the 

thresholded images contain a minimum amount of undesired structures (i.e., blood vessels 

and glia). The binary masked images of the undesired structures and the nerve fibers were 

compared visually, one by one, to the original non-masked images of the panels. The 

thresholding values that matched the location and width of the undesired structures and the 

nerve fibers in the panel (by visual inspection) were chosen.

Selection of α, rc, and ΔΨ—In our experiments, other algorithmic parameters were 

determined by evaluating eight panels with one dominant nerve fiber orientation and sixteen 

panels with at least two dominant nerve fiber orientation across a range of parameter values. 

The resulting angular orientation histograms of each of the 24 panels were then visually 

inspected, and a determination made on which sets of parameters best yielded angular 

histograms with dominant peaks around the expert's assessment of fiber orientation in the 

corresponding panels. Parameter values were varied as follows: rc was varied from 2 to 25 

pixels (in 1 pixel increments) while fixing α = 1 degree and ΔΨ = 1 degree. A visual 

inspection was then performed to determine a good value of the cut-off frequency rc. This 

value of rc was then used going forward, and the value of α was varied from 1 to 6 degrees 

(in 1 degree increments) while keeping ΔΨ = 1. A visual inspection was then performed to 

determine the best value of α. Finally, the process was repeated with rc and α fixed at the 

previously-determined values, and ΔΨ was varied. For the histological panels examined, the 

Nazaran et al. Page 7

J Neurosci Methods. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



following values were found to yield reasonable results, and were then used in all 

subsequent experiments: α = 2 degrees, rc = 15 pixels, and ΔΨ = 1 degree.

3.2. Qualitative validation of the semi-automated method

A qualitative evaluation of the semi-automated method was performed by an expert 

neuroanatomist (J.J.W.) in the following manner. Panels were drawn from ROIs in six 

histological slices (from six different subjects, 1 histological slice per subject). The 

performance of the algorithm was tested across 134 randomly-selected panels of different 

physical dimensions (692mm × 692mm and 776mm × 776mm) all rendered to 512 × 512 

pixels to ascertain how the algorithm performed across two different physical panel 

dimensions (These 134 panels were selected from data sets 6 and 7 of Table I.) The 

neuroanatomist was first shown all 134 panels, and asked to visually inspect each panel and 

assign a dominant nerve fiber direction to each panel. In addition, he was asked to assign a 

confidence level from 0 (least confident) to 1 (most confident) in his estimate of 

directionality for each panel. These expert-determined directionalities were then subtracted 

from the corresponding algorithmically-determined values, and a weighted root-mean-

square (RMS) value determined across the 134 panels. The weightings used were the expert-

assigned confidence estimates.

A second qualitative experiment was performed in which the neuroanatomist was shown the 

algorithmically-determined directions and uncertainty levels for each of a sample of 300 

panels drawn from these panels summarized in Table 1. He was then asked to make a binary 

determination, yes or no, on whether the algorithmically-determined directionality and 

confidence estimate was reasonable based on his expert visual inspection of the 

corresponding panel. He was also shown the algorithmically-generated angular histograms 

for each panel, and asked to make a binary determination on whether the dominant nerve 

fiber direction (if any) visually evident to him on the polar histogram was reasonably 

captured in the algorithmically-determined angular estimate.

3.3. Quantitative comparison of the semi-automated method to manual segmentation

A quantitative comparison of our semi-automated method to a manual-segmentation-based 

method was then performed using a single histological slice from a single subject (dataset 6 

in Table 1). Two trained graduate anatomy students manually marked 2 fibers for a ROI in 

the histological slice. Then, the ROI was divided into 50 panels, each with a size of 512×512 

pixels matrix and physical panel size of 500mm×500mm. An angular histogram was then 

produced based on the manual marking containing 180 bins over the range of 0 to 179 

degrees. The values in each bin corresponded to how many lines in the panel were marked in 

that angular direction, weighted by the length of the marked lines (corresponding to the 

visually-determined length of the nerve fiber) as previously described. Once these angular 

histograms were produced from the manually-marked panels, the average directionality and 

uncertainty level was extracted from these histograms using the same algorithm (described 

above) used in the semi-automated technique.

2Manually segmenting fibers using operational definition of dark blue stained curvilinear structures with a distinguishable beginning 
and end.
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The semi-automated algorithm was then performed on each of the 50 panels, and average 

directionality and uncertainty levels extracted. The parameters in sub-section 3.1 were used 

for the semi-automated algorithm. The two angular estimates for each panel (those from the 

manual marking and those from the semi-automated algorithm) were then subtracted, and a 

root-mean-square (RMS) value determined across all 50 panels.

4. Results

4.1. Qualitative validation of the semi-automated method

The weighted RMS difference between the expert neuroanatomist directionality 

determinations and the semi-automatic algorithm for the 134 panels studied was 15.4 

degrees. However, when only panels were taken into consideration with an expert-

determined confidence level of 50 percent or more, the weighted RMS difference dropped to 

9.9 degrees.

The qualitative binary determination of the expert neuroanatomist across the 300 panels 

revealed that the expert was in all cases comfortable with the directionality estimates of the 

algorithm, and that the algorithmically-produced angular histograms revealed the structure 

he expected to see based on visual inspection of the panel in all cases. While we recognize 

the limitations of this kind of comparison, the results did give us confidence in the ability of 

the algorithm to produce what would be deemed reasonable estimates based on expert 

evaluation of the panel under consideration.

Finally, for illustration of algorithmic performance, a region of interest containing 123 

panels is shown in Figure 7, with average orientation shown as a line for each panel. The 

length of the line indicates the uncertainty of the confidence in the angular estimate (with 

longer lines indicating a lower level of uncertainty). In addition, the polar histograms and the 

average orientation for four panels are illustrated.

4.2. Quantitative comparison of the semi-automated method to manual segmentation

The RMS difference in average directionality was calculated across the 50 panels manually 

segmented and found to be 11.2 degrees.

5. Discussion

We are encouraged by the performance of the semi-automated approach in the various 

comparisons conducted, and believe that it could be a valuable additional tool in the ongoing 

effort to validate the accuracy of DTI techniques using histology. The results of the 

algorithm are in reasonable agreement with those obtained through visual inspection by the 

expert anatomist, and are in even better agreement when compared only to panels in which 

the expert expressed a high degree of confidence in his estimate. Furthermore, the results 

were in good agreement with the much more labor and time intensive manual segmentation 

technique. However, it is important to note that validation of an algorithm such as this is 

inherently limited by the lack of a gold standard with which to compare. The comparison 

studies shown are a first step in this process, and future work is needed to more fully validate 

the algorithm against the wide variety of other techniques that can be applied to the same 
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problem. It is beyond the scope of this paper (intended to introduce the algorithm and 

provide a basic demonstration of its utility) to provide a more exhaustive comparison against 

the broad range of other competing techniques.

We were further encouraged by the purely qualitative and binary assessment performed by 

our expert anatomist. The trained human eye is very good at identifying approximate fiber 

directions, and identifying dominant direction(s) from angular histograms. While not a 

conclusive or quantitative measure of performance, the assessment of a trained expert 

anatomist that the algorithm was in all trial cases producing a direction that was reasonable 

based on his visual perception is encouraging.

We made the further observation during the outlined studies that a low uncertainty level was 

produced by the algorithm in panels that clearly had a dominant orientation evident through 

visual inspection. For panels that exhibit more than one dominant nerve fiber orientation 

(again through visual inspection), the angular histogram exhibited the expected multiple 

peaks, and the algorithm yielded a higher level of uncertainty in the direction estimate. The 

qualitative opinion of the expert neuroanatomist was that visual inspection of the angular 

histograms in conjunction with the corresponding panel revealed not only the dominant 

nerve fiber direction(s) of the panel, but also less dominant directions that were not 

immediately obvious from inspection of the panel itself. While the comparisons indicate 

reasonably good agreement between expert opinion, manual segmentation, and the proposed 

semi-automated algorithm, the differences observed could arise from the ability of the semi-

automated algorithm to measure subtle directional trends not obviously visible to the human 

eye.

The differences between the manual segmentation and semi-automated techniques may also 

be due to the very different ways in which the two algorithms go about creating the angular 

histograms. Nevertheless, for panels that exhibit a single strong dominant direction, the polar 

histograms extracted from the manual segmentation technique were visually very similar to 

those extracted from the semi-automated algorithm. In some cases, however, both algorithms 

yielded very different looking polar histogram shapes, but a very similar dominant direction. 

In these cases, the manual segmentation technique is likely simply not marking relatively 

small or non-dominant nerve structures that appear in the semi-automated technique. In 

cases where the directionality estimate from the manual segmentation diverged significantly 

from the estimate using the semi-automated algorithm, a post hoc informal inspection by the 

expert anatomist of both analyses was performed. In these cases, the anatomist concluded 

that the estimate of the semi-automated algorithm was more accurate in a significant 

majority of cases. Irrespective of these slight variations in performance, the presented 

Fourier-domain technique appears to be a viable substitute for manual segmentation 

techniques or expert assessment, and has the potential to be very rapid as the only manual 

step is tuning the thresholding values for each batch of histological slices.

The proposed technique has some clear limitations. As the variability of the nerve fiber 

orientations increases, the standard deviation for the panel also increases and the average 

orientation measurement is less likely to be a good representation of the different 

orientations existing in a panel. An additional limitation of the technique is sensitivity to 
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lighting and variations in staining. A more thorough study of the effects of these variations 

on algorithmic performance is needed, but was not possible with our limited dataset and is 

beyond the scope of this paper. Finally, another clear limitation of the algorithm is its 

inability to accurately assess through-plane fiber directionality, given the 2D nature of the 

images of these thin histological slices. It also should be noted that better techniques may 

exist for locating the dominant direction of the angular histogram (such as through peak 

detection algorithms), and the technique could be extended in the future to attempt to 

identify multiple dominant directions in the angular histograms.

Future work should focus on (1) further validation of the algorithm through more thorough 

comparisons with other techniques, (2) assessment of the sensitivity of the algorithm to 

lighting and variations in staining (i.e., Luxol Fast Blue/cresyl violet versus Luxol Fast Blue/

hematoxylin and eosin), and (3) evaluation of potential improvements in the interpretation of 

the produced angular histograms.

Once the algorithm has been more thoroughly validated and tuned, we hope to use it to 

correlate the average directionality of nerve fibers in histological slices with the 

directionality of fiber bundles revealed using diffusion tensor MRI on the brain prior to 

histological evaluation. As previously mentioned, this is a challenging problem for a variety 

of reasons. Voxel sizes in DTI datasets will typically be 1-2mm isotropic; the histological 

slices are much thinner, and the resolution of histological images after staining is much 

higher in-plane. Furthermore, the DTI datasets reveal fiber orientation in three dimensions 

(including the through-plane direction), while the data extracted from the histological slices 

fails to capture through-plane fiber orientations. Finally, registration of thin, high-resolution 

histological images to the corresponding much lower resolution DTI data will be challenging 

due to differences in resolution and orientation, and sample warping during histological 

preparation. Nevertheless, it should be possible to validate clear in-plane fiber orientations 

observed in the DTI datasets with the corresponding histological images, and extract some 

information about through-plane directionality from series of 2D histological slices.

6. Conclusion

In this paper, we have presented a robust and semi-automated technique for extracting nerve 

fiber orientation from images of stained histological slices, along with an estimate of 

uncertainty in the extracted direction. Qualitative evaluation of the new technique by an 

expert neuroanatomist indicates that the semi-automated technique is indeed accurately 

identifying what the neuroanatomist would consider the dominant nerve fiber orientation 

based on visual inspection. Furthermore, the algorithm appears to take into consideration 

nerve fiber microstructure that is not immediately evident from rapid visual inspection. 

Quantitative comparison of the new semi-automated algorithm against a more time and labor 

intensive manual nerve fiber segmentation technique suggests that both techniques yield 

similar results, further bolstering confidence in the accuracy of the semi-automated 

approach.
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Figure 1. Histological sample of Luxol Fast Blue stained white matter in the medial temporal 
lobe
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Figure 2. 
Block diagram of the segmentation step.
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Figure 3. 
(a) A sample panel in the white matter of a histological slice. (b) Thresholding on L channel. 

(c) Detected non-nerve fiber structures on a* channel. (d) Subtraction of (c) from (b). The 

remaining white structures in (d) are expected to correspond with nerve fibers.
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Figure 4. 
(a) and (b) show two panels with different dominant nerve fiber directions; (c) and (d) show 

the magnitude of the 2D Fourier Transform of the segmented versions of figures (a) and (b), 

respectively. Regions of high energy have been illustrated by red rectangles. The fiber 

directions are perpendicular to the direction of the bright regions in the magnitude of the 

Fourier Transform. (e) and (f) represent angular orientation histograms extracted from (a) 

and (b), respectively. The peak in (e) and (f) represent the dominant nerve fiber orientation 

in (a) and (b), respectively.
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Figure 5. 
Illustration of the calculation of image energy in angular window slices of the masked DFT 

panel image. The segmented panel is high pass filtered by zeroing out the center of the 2D 

DFT (the blue circle above). The energy in the 2D DFT image is then measured across 

different angular windows (3 shown). rc is the cut off frequency, α is the angular window 

size, and Ψ is the angle of a radial line passing through the center of an angular window. In 

this figure, ΔΨ, the angular spacing between angular window slices is equal to the angular 

window size α.
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Figure 6. 
(a) A sample panel in the white matter of a histological slice. (b) The histogram from 0 to 

179 degrees yields a mean value of 104 degrees and standard deviation of 60 degrees, which 

is clearly not an accurate estimate. It is visually evident that the peak is centered closer to 

165 degrees. Periodic extension of the angular histogram and identification of the sliding 

180-degree window that yields the minimum variance across the window provides a much 

more robust way of identifying the center of the angular peak. This is illustrated in (c), 

where analysis of the mean on the 180-degree window shown in green (the minimum-

variance window) yields a much more plausible mean value of 165 degrees.

Nazaran et al. Page 20

J Neurosci Methods. Author manuscript; available in PMC 2017 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
A region of interest containing 123 panels, with the average orientation direction, calculated 

by the semi-automatic algorithm, shown as an arrow for each panel, constructed by the semi-

automatic algorithm. The length of the line indicates the uncertainty in the angular estimate 

(lowerlength indicate a lower level of confidence in the angular estimate). It should be noted 

that DTI assigns a single directionality to the population of the nerve fibers, no matter if the 

fibers are parallel with each other, or not. Therefore, here, we keep defining the 

directionality of the nerve fibers with one direction although we have crossing fibers in some 

panels.
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