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Many emerging applications require hardware acceleration due to their growing

computational intensities. These accelerated designs use heterogeneous hardware, such as

GPUs, FPGAs and multi-core CPUs to process the intensive computations at a higher rate.

The first part of this work provides two paradigms of hardware accelerated biomedical

applications. These paradigms achieved 115X and 273X speedups respectively.

Developing these paradigms taught us that, in order to efficiently utilize the

heterogeneous accelerators, the designer needs to carefully investigate which device is

the most suitable accelerator for a particular computing task. In addition, the designer
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needs to effectively optimize the computations to fully exploit the computing power

of the selected accelerator. This process is called design space exploration (DSE).

Heterogeneous DSE requires multiple programming skills for these different types of

devices.

In recent years, there is a trend to use one unified programming language for

multiple heterogeneous devices. The SDKs and hardware synthesis tools have enabled

OpenCL as one unified language to program heterogeneous devices including GPUs,

FPGAs, and multi-core CPUs. However, one major bottleneck for DSE still exists. In

contrast to GPU and CPU OpenCL code compilation, which only consumes several

milliseconds, implementing OpenCL designs on a FPGA requires hours of compilation

time. Moreover, merely tuning a few programming parameters in the OpenCL code

will result in an abundance of possible designs. Implementing all these designs requires

months of compilation time. Exploring the FPGA design space with brute force is

therefore impractical.

The second part of this work addresses this issue by providing a machine learning

approach for automatic DSE. This machine learning approach automatically identifies the

optimal designs by learning from a few training samples. In comparison with other state-

of-the-art machine learning frameworks, this approach reduces the amount of hardware

compilations by 3.28X, which is equivalent to hundreds of compute hours. This work

also provides a data mining method that enables the machine to automatically use the

estimation data to replace the time consuming end-to-end FPGA training samples for

DSE. Mining these estimation data further reduces the amount of hardware compilations

by 1.26X.
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Chapter 1

Introduction

1.1 Overview

1.1.1 Optimization of Hardware Accelerated Designs

Numerous emerging applications from a variety of domains require computing

systems that are capable of processing intensive data at a high rate. However, the

general purpose Central Processing Units (CPU) are usually incapable of providing the

required computing performance for these applications. Therefore, in order to meet the

performance requirement, hardware acceleration is highly desirable. Several applications

that used hardware acceleration are enumerated as follows: (1) many real-time detection

and tracking tasks [1, 2, 3, 4, 5, 6] require accelerated computer vision systems; (2)

bioinformatics applications [7, 8, 9, 10, 11, 12] require accelerated computing systems

to process lengthy genetic sequences; (3) some database applications [13, 14, 15, 16, 17]

require hardware accelerators to achieve higher throughput; (4) multiple cryptographic

applications need hardware accelerators to reduce the compute time of those complex

encryption/decryption operations [18, 19, 20, 21]; (5) many biomedical systems [22, 23,

24, 25, 26] require hardware accelerators to achieve the real-time processing rate.

These applications use heterogeneous hardware to accelerate the computationally

intensive processes. Graphics Processing Units (GPU) and Field-Programmable Gate

1
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Arrays (FPGA) are two types of typical heterogeneous hardware accelerators. Both the

GPU and FPGA accelerate computations by utilizing parallelism. The GPU architecture

contains many parallel cores that run in the Single Instruction, Multiple Data (SIMD)

fashion. The FPGA provides a customizable architecture where the designers can

implement parallelism such as pipelines and replicated computing units.

In order to achieve the high performance goal, the hardware accelerated designs

need to be carefully optimized. The essence of this optimization task is to restructure

and tune the code in a particular way to map the application onto those parallel hardware

features efficiently. On the GPU, the programmer needs to map the original sequential

software code to the SIMD architecture by assigning the computation tasks to a massive

group of threads [27, 28, 29, 30]. The programmer also needs to carefully manage

the memory access pattern of the code to efficiently fit the process on the memory

hierarchy of the architecture. On the FPGA, the designer is responsible for customizing

the architecture to fulfill the computation task. Due to the hardware design nature of

the FPGA implementation, it requires the designer to optimize the architecture on a low

level. For example, the designer needs to make decisions on the depth of a pipeline or

the bit-width of a register [31, 32, 33, 34, 35, 36, 37].

This dissertation presents several research results on the problem of how to

effectively explore the optimizations for hardware accelerated designs. In the first

part, I will provide two hardware acceleration paradigms in two emerging application

domains: one high throughput genetic sequencing system and one cardiac physiology

image processing system. The second part of this dissertation presents a methodology

using machine learning to automatically explore the optimization strategies for hardware

accelerated designs.
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1.1.2 Hardware Accelerated Paradigms

In Chapter 2, I will present a paradigm of the hardware accelerated DNA de novo

assembly. De novo assembly is a widely used methodology in bioinformatics. However,

the conventional short-read de novo assembly is incapable of reliably reconstructing the

large-scale structures of human genomes [38] due to the ambiguity caused by repetition of

the nucleobases (i.e. “A”,“T”,“G” and “C”). In recent years, a novel assembly technology

has been proposed. This new technology aligns the DNA strings based on the uniquely

identifiable patterns of optical labels instead of the nucleobases. In contrast to the four

letter nucleobases, these optical patterns are arbitrary floating point numbers. For this

reason, these optical patterns are unlikely to have repetitions. Thus, this enables reliable

large-scale de novo assembly. Despite its advantage in large-scale genome analysis, this

new technology requires a more computationally intensive alignment algorithm than its

conventional counterpart. For example, the run-time of reconstructing a human genome

is on the order of 10,000 hours on a sequential CPU. Therefore, in order to practically

apply this new technology in genome research, accelerated approaches are desirable. The

results of this work are three different accelerated approaches, multi-core CPU, GPU and

FPGA. Against the sequential software baseline, the multi-core CPU design achieved a

8.4× speedup while the GPU and FPGA designs achieved 13.6× and 115× speedups

respectively. This work also provides the details of the manual design space exploration

for this application on these three different devices. In addition, this work compares these

devices in performance, optimization techniques, prices and design efforts.

In Chapter 3, I will present a FPGA-GPU-CPU heterogeneous hardware architec-

ture for a biomedical image process application – real-time optical mapping. Real-time

optical mapping is a technique that can be used in cardiac disease study and treatment

technology development to obtain accurate and comprehensive electrical activity over the
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entire heart [39, 40]. It provides a dense spatial electrophysiology. Each pixel essentially

plays the role of a probe on that location of the heart. However, the high throughput

nature of the computation causes significant challenges in implementing a real-time

optical mapping algorithm. This is exacerbated by high frame rate video (order of 1000

fps) for many medical applications. Accelerating optical mapping technologies using

multiple CPU cores yields modest improvements, but still only performs at 3.66 frames

per second (fps). A highly tuned GPU implementation achieves 578 fps. A FPGA-only

implementation is infeasible due to ultra-large intermediate data arrays generated by

the optical mapping algorithm. The main result of this work is the real-time system

accelerated by a FPGA-GPU-CPU architecture running at 1024 fps. This represents a

273× speedup over a multi-core CPU implementation.

Developing these paradigms taught us that the heterogeneous design space explo-

ration (DSE) is extremely difficult. In many cases, each type of device requires a unique

programming or design skill. Thus, in order to explore multiple acceleration devices

for a given application, the designer needs to implement the application using multiple

different languages. For example, in order to implement the paradigms described in

Chapters 2 and 3, we used multiple programming languages such as C++, CUDA, Verilog

and OpenMP. Using some of these design languages such as Verilog is especially tedious

due to its low level nature. According to our firsthand development experience, it takes

months of development time to implement one application on all these different devices.

In recent years, there is a trend of using one unified language to program all types

of heterogeneous devices. The improvement of High Level Synthesis (HLS) tools allows

the designer to use software language to program FPGAs. The state-of-the-art HLS

tools are capable of automatically converting programs written in high level languages,

such as C, CUDA and OpenCL [41, 42, 43, 44, 45, 46, 47, 48], to FPGA accelerated

implementations. The OpenCL-to-FPGA synthesis tool is especially appealing since
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OpenCL software SDKs have already been available for CPUs and GPUs. This means

the designer can use one unified language to program all three heterogeneous devices.

In order to achieve a high performance FPGA design, the programmer needs to tune

multiple parameters and primitives in the high level code [49, 50, 51, 52, 53, 54]. Tuning

these parameters and primitives creates a great number of possible designs. The HLS

compilation process is time consuming due to the Place and Route (PnR) stage of the

tool chain. PnR assigns the application functionalities onto the actual hardware logic and

connects them physically. Multiple subproblems in this PnR task have been proven to

be NP-hard [55, 56]. This process usually consumes multiple hours for a typical design.

Thus, the brute force DSE method that implements and evaluates all these possible

tunings may consume months of compilation time. This issue motivates the second part

of this dissertation - machine learning automation.

1.1.3 Automatic Machine Learning Design Space Exploration

As discussed in Section 1.1.2, SDKs and hardware synthesis tools have provided

a push forward to enable OpenCL as a unified language to program heterogeneous

platforms such as GPUs, FPGAs, and multi-core processors. However, one major

bottleneck of the system level OpenCL-to-FPGA design tools is their extremely time

consuming synthesis process (including place and route). The design space for a typical

OpenCL application contains thousands of possible designs even when considering a

small number of design space parameters. It costs months of compute time to synthesize

all these possible designs into end-to-end FPGA implementations. Thus, it is impractical

to explore a large amount of possible designs by implementing and evaluating them.

One direction to address this issue is to build analytical models to describe the

design objectives, e.g. performance and hardware resource utilization. Using these

models, one can evaluate the designs without implementing them. There exists many
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analytical models [57, 58, 59, 60, 61] for GPU architectures. However, in contrast

to GPUs, the reconfigurable FPGA devices do not have fixed architectural features.

Therefore, it is unlikely to build an analytical model to describe all FPGA designs. There

only exist a few FPGA analytical models for particular domains of designs [62, 63]. The

effectiveness of these models is moderate since the actual FPGA performance depends

on many low level factors and design tool chain operations. These factors are usually

nonlinear and sometimes even random (e.g. the random numbers used in the place and

route stage). Therefore, it is extremely difficult to analytically describe the final output

of a high level design. Moreover, these models only target several specific types of

operations. They are not available for most applications on the FPGA.

Another direction is to build a machine to automatically learn the design space

of each particular application by a small number of sampled training designs. However,

most of the existing machine learning approaches focus on how to predict the model

of the design space accurately. This is not the goal of optimization. The actual goal of

optimization is to find the “good” designs. It is unnecessary to model the entire design

space since it is useless to obtain the performances of those “bad” designs. Thus, the

existing machine learning approaches are not suitable for FPGA DSE problems. To

address this issue, in Chapter 4, we propose a novel machine learning approach - Adaptive

Threshold Non-Pareto Elimination (ATNE). Instead of focusing on regression accuracy

improvement, ATNE focuses on understanding and adapting to the inaccuracy. ATNE

provides a Pareto identification threshold that adapts to the estimated inaccuracy of the

regressor. This approach results in a more efficient DSE. For the same prediction quality,

ATNE reduces the amount of required compilations by 3.28× (hundreds of compilation

hours) against the other state of the art machine learning frameworks [64, 65] for FPGA

DSE. In addition, ATNE is capable of identifying the Pareto designs for certain difficult

design spaces which the other existing frameworks are incapable of exploring effectively.
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The ATNE approach uses the real FPGA implementations as the training data.

Obtaining these training data still consumes a great amount of time due to the PnR stage

in compilation. Is there any method to further reduce the time consumption? To answer

this question, we investigated how to use pre-Place and Route (pre-PnR) estimation data

for FPGA DSE in Chapter 5. We obtained one type of estimation data by running those

FPGA OpenCL designs on the GPU. Although the GPU and FPGA are two different

compute platforms, they are both dictated by the OpenCL programming model. The

OpenCL design on the FPGA contains many GPU-like architectural features such as

SIMD, compute unit parallelism, and local/global memory hierarchy. It is therefore

reasonable to believe that if one uses OpenCL programming language on both devices,

the GPU and FPGA design spaces will share a certain level of similarity. In contrast

to implementing a design on the FPGA, it is significantly cheaper to compile a GPU

program (milliseconds compilation on the GPU vs. hours of synthesis time on the FPGA).

For these reasons, it is possible to use the GPU results to replace the FPGA training data

for DSE.

We also obtained other types of estimation data from the pre-PnR stages of

the OpenCL-to-FPGA compilation tool chain. These data contain some high level

information of the application. Therefore, they can be used to roughly estimate the final

FPGA implementation. Generating these estimations requires significantly less time than

obtaining the real FPGA measurements does. Therefore, using these estimation data to

partially replace the real FPGA training data could reduce the time consumption further.

The estimations are not identical to actual FPGA measurements, i.e., there exists some

level of inaccuracy (potentially substantial differences) in the estimation data. For this

reason, an intelligent data mining approach is proposed in Chapter 5 to effectively extract

useful information from the estimation data to improve FPGA DSE. We implemented

this approach and evaluated it with 10 end-to-end FPGA benchmarks. The evaluation
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results indicate that our approach effectively reduces the sampling complexity by 1.26×,

which reduces the DSE by hundreds of compute hours.

1.2 Contributions

The primary contributions of this work are enumerated as follows.

A hardware accelerated optical labeled DNA sequence alignment system:

This work is the first attempt to accelerate the large-scale genome assembly on hardware.

The work provides an end-to-end FPGA accelerated design and a GPU accelerated im-

plementation. In addition, this work provides a comparison and design space exploration

of the multi-core CPU, GPU and FPGA. This work has been published and is described

in Chapter 2.

A FPGA-GPU-CPU heterogeneous architecture for real-time optical cardio-

electrophysiology: This includes a FPGA-GPU-CPU heterogeneous hardware acceler-

ated system that provides real-time optical mapping. This also includes an analysis of

how to efficiently partition and assign the application to different hardware accelerators.

This work has been published and is described in Chapter 3.

A robust machine learning approach for OpenCL-to-FPGA Design Space

Exploration: This includes a mathematical model to investigate how the machine

learning technology should be applied in the system level FPGA DSE task. This work also

provides a novel approach which reduces the synthesis complexity by 3.28× compared

with other state of the art approaches. This work used 10 end-to-end OpenCL applications

(real performance data from applications running on the FPGA, not just reports from the

synthesis tool) to verify the effectiveness of the proposed approach. This work has been

published and is described in Chapter 4.

A data mining approach that uses pre-Place and Route estimation data for

OpenCL-to-FPGA Design Space Exploration: This work investigated the question of
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whether one can use estimation data for FPGA DSE by providing empirical studies on

several possible approaches. The output of this work is a data-mining approach that

effectively extracts the useful information from the estimated results for FPGA DSE.

1.3 Dissertation Outline

The dissertation is organized as two parts. Chapters 2 and 3 in Part I present

the two manually designed hardware acceleration paradigms. Chapter 2 details the

first paradigm: hardware accelerated approaches for a DNA sequence alignment algo-

rithm. Chapter 3 focuses on the details of the second paradigm: a FPGA-GPU-CPU

heterogeneous system for real-time cardiac physiological image processing.

Chapters 4 and 5 in Part II focus on the investigation of how to use machine

learning to automate OpenCL-to-FPGA design space exploration. Chapter 4 describes a

novel machine learning approach for the OpenCL-to-FPGA DSE. Chapter 5 discusses

the question of whether one can use the pre-PnR estimation data to further improve the

efficiency of the DSE.

Chapter 6 concludes this work. Chapter 7 describes several possible future

directions of this topic.
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Manual Design Approaches
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Chapter 2

Hardware Acceleration Approaches for
Optical Labeled DNA Alignment

2.1 Background and Motivation

The ability to construct de novo assemblies is widely pursued for medical and

research purposes. These de novo assemblies are especially invaluable in the studies of

structural variations of genomes [66]. However, the conventional short-read technology

based de novo assemblies provide structural information only on a micro-scale (< 1,000

bases per fragment). They are not capable of reconstructing the large-scale structures of

human genomes [38]. This is due to the fact that using the short-read based assembly

leads to ambiguity when these large-scale (> 100,000 bases per fragment) genomes

have frequent structural repetitions (typical medium to large genomes contain 40 - 85%

repetitive sequences [67]).

In recent years, research has shown that a novel optical label based technology is

able to overcome this limitation of the short-read technology [68]. This novel technology

fluorescently labels the DNA molecule strings at the locations where a specific nucleobase

combination appears (e.g. label wherever the combination GCTCTTC appears, as

demonstrated in Fig. 2.1(A)). Then the labeled DNA molecules are linearized by being

passed through a nanochannel device. These linearized strings with labels are imaged

11
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by a CCD camera as demonstrated in Fig. 2.1(B). In the image field, on each string, the

physical distances between every two labels are measured and collected. This process

results in a uniquely identifiable sequence-specific pattern of labels to be used for de novo

assembly. As opposed to the four letters, these arbitrary physical distances are unlikely to

contain structural repetitions. Therefore, this optical method enables the reconstruction

of the large-scale genomes for modern bioinformatic studies. In genomic studies, N50

is a widely used metric to measure the ability of a technology to assemble large-scale

structures. Research results show that this novel optical assembly enhances the N50 by

two orders of magnitude compared to the short-read assembly [38].

(B)

…ATGCGCTCTTCCATGAATGCGAGCGCTCTTCTGAACA…

Label Label
DNA 

Fragment 
String:

(A)

21.3224
kb

Length 
Measurement

9.6584
kb

Figure 2.1. Demonstration of the optical labeling process. (A) Fluorescent labels
attached to “GCTCTTC”. (B) The real image field of labeled DNA fragments from a
microscopy CCD camera. The strings are linearized DNA fragments. The glowing dots
are fluorescent labels. The numbers in kilo-bases(kb) are examples of physical distance
measurement between labels.

The task of the de novo assembly is reconstructing the genome from a set of

DNA fragments. The most computationally intensive part of this task is the algorithm

that aligns every pair from the DNA fragment set. This pair-wise alignment algorithm
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for the optical assembly is fundamentally different from the short-read alignment. In

the conventional short-read based process, as depicted in Fig. 2.2 (A), the alignment

algorithm is applied on the strings with “A”,“C”,“G” or “T” DNA nucleobase letters.

As opposed to the short-read letters, the new optical method aligns the locations of

the fluorescent labels on the strings shown in Fig. 2.2 (B). Aligning these arbitrary

numbers obtained from a human genome takes nearly 10,000 hours on a sequential CPU.

Moreover, research [69] has shown that the resolution of the optical label method can be

further enhanced by adding multiple types (colors) of labels.

GGCGCTGCCGGATGT
GCGCTGCCGGATGTC

CGCTGCCGGATGTCA
GCTGCCGGATGTCAGTA

GGCGCTGCCGGATGTCAGTA

Short-Read 1:
Short-Read 2:
Short-Read 3:
Short-Read 4:

Reconstructed:

Labeled Str1:
Labeled Str2:
Labeled Str3:
Labeled Str4:

Reconstructed:

(A)

(B)

2.6849
kb

11.9716
kb

2.6849
kb

7.1463
kb

10.9385
kb

2.6849
kb

11.9716
kb

11.9716
kb

11.9716
kb

7.1463
kb

7.1463
kb

7.1463
kb

10.9385
kb

Figure 2.2. Comparison of the conventional and the novel de novo assembly methods.
(A) Alignment process in the conventional short-read based method. (B) Alignment
process in the novel optical label based method. Each dot represents a fluorescent label.

Therefore, accelerating this alignment algorithm is desired not only for the

purpose of shortening the process time but also for enabling this optical based technology

in genome studies that require high resolutions.

In this chapter, we present three accelerated approaches for the optical labeled
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DNA fragment alignment using multi-thread CPU, GPU and FPGA. These designs are

compared against a single thread sequential CPU implementation.

The rest of the chapter is organized as follows. We discuss related work in

Section 2.2. We describe the alignment algorithm in Section 2.3. This is followed

by descriptions of the accelerated designs in Section 2.4. Experimental performance

results are provided in Section 2.5. We compare the hardware accelerators in Section 2.6.

Section 2.7 summarizes this chapter.

2.2 Related Work

Multiple accelerated approaches for short-read assembly have been proposed in

recent years. Olson et al. have proposed a multi-FPGA accelerated genome assembly

for short-reads in [7]. They accelerated the alignment algorithm on the FPGAs for the

reference guided genome assembly with 250× and 31× speedups reported against the

software implementations BFAST and Bowtie respectively. Varma et al. have presented a

FPGA accelerated de novo assembly for short-reads in [8]. They chose to accelerate a pre-

processing algorithm on the FPGA to reduce the short-read data for the CPU assembly

algorithm. They reported a 13× speedup over the software. They also proposed an

improved FPGA implementation exploiting the hard embedded blocks such as BRAMs

and DSPs in [70]. Attempts have also been made to accelerate genome assembly on

GPUs. Aji et al. have proposed a GPU accelerated approach for short-read assembly

in [71]. They reported a 9.6× speedup. Liu et al. proposed a GPU accelerated DNA

assembly tool - SOAP3 [72] which achieves 20× speedup over Bowtie.

Although these approaches have improved the performance of the short-read

assembly significantly, they are limited to micro-scale genomes. There is still no high

performance solution for large-scale genome structure analysis. Our implementations

provide an accelerated solution for this large-scale genome task.
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Our implementations are fundamentally different from these previous efforts

because they employ the novel optical label based genome assembly. Our accelerated

designs differ from the previous short-read approaches in two ways: 1) the data in the

optical method requires more precision bits than conventional four letters (A,C,G,T)

do; 2) the physical label locations require a different alignment algorithm [73] from

the traditional Smith-Waterman. Most short-read methods employed the traditional

Smith-Waterman algorithm which computes each score matrix element from its three

immediately adjacent elements. The algorithm in our optical label based method com-

putes each element from a 4×4 area as demonstrated in Fig. 2.5. These differences not

only increase the computational intensity but also require a different hardware parallel

strategy from the ones proposed in these previous short-read based works. To the best

of our knowledge, our implementations are the first attempt to accelerate the large-scale

genome assembly using GPUs and FPGAs.

2.3 Alignment Algorithm

Our goal is to align every pair of floating point number arrays which represent

the physical distances of the optical labels on the DNA fragments. As shown in Fig. 2.3,

for arrays X and Y , we decide whether the alignment (X j aligned to Yi) is valid based on

three evaluations. Firstly, as shown in Fig. 2.3 (A), we need to evaluate the similarity

between X j and Yi, which is intuitive. Secondly, as depicted in Fig. 2.3 (B), we need to

evaluate the boundary offset penalty. When X j is aligned to Yi, the leftmost ends of X

and Y may create an offset. Large offsets produce unwanted gaps in the DNA assembly.

A valid alignment should have minimum offset. The third evaluation is to calculate the

similarities between X j’s neighbors and Yi’s neighbors as demonstrated in 2.3 (C). The

necessity of this evaluation is also intuitive. Even if X j is very similar to Yi, the alignment

is not valid if the other elements of the two arrays are dissimilar.
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Figure 2.3. Array alignment: assume X j aligned to Yi, (A) evaluate the similarity between
X j and Yi; (B) evaluate the boundary offset penalty when X j aligned to Yi; (C) evaluate
the similarities between X j’s neighbors and Yi’s neighbors.

These intuitive evaluations of the alignment are realized by a dynamic program-

ming method specifically modified for the optical DNA analysis by Valouev [73]. The

overall flow diagram of the algorithm is demonstrated in Fig. 2.4. The algorithm aligns

two arrays X and Y of optical label positions by computing a likelihood score matrix

and finding the maximum within this matrix. Each score represents the likelihood of

a possible alignment between X and Y . Assuming the sizes of the input arrays are M

and N, the algorithm computes a M×N score matrix as depicted in Fig. 2.5. The

computation of each element in the matrix requires local scores. The black square in the

figure shows an example of a local score. Those elements near the edges, shown as the

grey regions in the figure, also require boundary scores. Thus, the alignment algorithm

consists of three steps: 1) compute the boundary scores as described in Algorithm 2.1;

2) compute the local scores as described in Algorithm 2.2; 3) find the best score and its

correspondent (i, j) in the score matrix as shown in lines 10 - 12 of Algorithm 2.2. If

the best score passes the threshold, then we find an alignment between X and Y with X j
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aligned to Yi using a trace-back operation. In our hardware accelerated approaches, we

keep the trace-back operation on the host PC. We therefore only describe the best score

computation in detail as follows.

Accelerator

Boundary 
Score

Local 
Score

Max Score 
Search

Path 
Trace

DNA 
Frag. 

arrays

Align-
ment

PC

Accelerate the most computationally intensive stage

Avoid intensive device – PC data transfer

Figure 2.4. Overall algorithm and its hardware partitioning. We accelerate the local score
stage due to its computational intensity. In our partitioning, we also assign the boundary
score and max score search stages to the accelerator to avoid intensive device-PC data
communication.

The computation of the boundary scores is described in Algorithm 2.1. In the

algorithm, to compute a boundary score element located at (i, j), we firstly compute

its leftmost offset Lxi, j or Lyi, j as shown in lines 13 - 22. Then we compute an “end”

likelihood and several mixed likelihoods as shown in lines 23 - 33. We choose the

maximum among these likelihoods to be the boundary score for this position. This

process is iterated, as shown in lines 4 and 12, to produce the boundary scores for the

top 4 rows and the leftmost 4 columns of the score matrix. An identical boundary score

algorithm is also applied on the rightmost offsets of the input arrays to fill the bottom 4

rows and the rightmost 4 columns of the score matrix. These boundary score locations

are visualized in Fig. 2.5.

We compute a local score to represent the similarity between X j and Yi as well as

the similarities between X j’s neighbors and Yi’s neighbors. In Algorithm 2.2, to compute

each local score scorei, j, we generate 16 score candidates correspondent to its upper-

left 4× 4 neighbors (refer to Algorithm 2.2 lines 5 - 9). Each of the 16 candidates is
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computed by adding a local likelihood (this represents the similarity between X j and Yi)

to its correspondent previous score (this represents the similarity between X j’s neighbors

and Yi’s neighbors) from the 4×4 area (the shaded area in Fig.2.5). The score in scorei, j

is updated with the maximum among all these 4×4 candidates. This process is iterated

M×N times to generate the complete score matrix as shown in lines 3 and 4. Then

we find the highest score within the matrix (lines 10 - 12), which represents the best

alignment for X and Y . This highest score is used in the post processes to complete the

genome reconstruction.

Optical Label Location Array X

O
p

tical Lab
el Lo

catio
n

 A
rray Y

…

…

…

…

…
Boundary 
Score

Local
Score

Candidate Score
=Previous Score + Likelihoodlocal
(Data Dependency) 

…

Y
i

XjX1 XMY
1

Y
N

iterate j
iterate i

Figure 2.5. Visualized pair-wise alignment process. The 2D array represents the like-
lihood score matrix. Each (i, j) element in the matrix is a likelihood score for aligning
X j with Yi. The top, bottom, left and right grey regions represent the boundary score
computations. The black square and the shaded area displays one iteration of the dynamic
programming process. The computations for the black square have data dependencies
to the shaded area. The arrows show that this computation is iterated to fill the entire
matrix.

The likelihood functions in Algorithm 2.1 and 2.2 are derived from an error model

proposed in [73]. The functions Likelihoodlocal(x,y,m,n) and Likelihoodend(x,m,n) are

computed as shown in Equations 2.3 and 2.4 respectively. The Likelihoodlocal(x,y,m,n)

function consists of two terms: the bias value BXY (provided in Equation 2.1); the maxi-

mum between the penalty value (provided in Equation 2.2) and a constant POutlierPenalty.
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The values of the constants used in Equations 2.1 - 2.4 are empirically tuned to suit

the optical experiment [73]. Changing these values does not influence the computing

speed of the algorithm. Therefore, without the loss of generality, in our implementations,

we tuned these constants to suit our experiment input data - a synthetic human genome.

These constant values are listed in Table 2.1.

Let F represent the number of DNA fragments of an assembly process. Let M

be the number of labels on the fragment. The algorithm requires O(F2N2) times of

Likelihoodlocal operations to complete an assembly process. The DNA fragment pool

typically has 100,000 - 1,000,000 arrays. A typical input array length (M or N) is 15 -

100 elements. Therefore, the number of Likelihoodlocal operations, in a human genome

assembly process, is on the order of 1015. The total amount of computations requires

more than 10,000 hours on a sequential CPU.

Each element of the input arrays represents a distance, which is on the order of

thousands of bases, between two neighboring optical labels on the actual DNA fragment.

The synthetic data used in our implementations is designed to simulate these properties

of the real-world human genomes. Since the data ranges and array lengths are similar, the

computation performance tested with this synthetic data reflects the performance with

the real-world genomes.

Our focus is to accelerate this pair-wise algorithm which aligns the optical

labeled DNA molecule fragments to construct the contigs in the assembly process.

The scaffolding process, using optical labeled contigs, is not a computationally intensive

operation which can usually be performed on a sequential computer in 10-30 minutes.

biasXY = [max(0,x−δ )+max(0,x−δ )]∗B+B
′

(2.1)
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pen =C− (x− y)2

V ∗ (x+ y)
−Pmiss ∗ (m+n)− [max(0,x−δ )+max(0,x−δ )]∗R (2.2)

Likelihoodlocal(x,y,m,n) = biasXY +max(pen,P) (2.3)

Likelihoodend(x,m,n) = 2∗max(0,x−δ )∗Bend +B
′
end−Pmiss ∗ (m+n−2) (2.4)
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Algorithm 2.1: The Boundary Score Algorithm
Input :Two arrays of optical label locations X , Y ; Sizes of the input arrays 1 : M,

1 : N
1 Likelihoodlocal(x,y,m,n) local likelihood function
2 Likelihoodend(x,m,n) end likelihood function
3 Likelihoodmix(x,y,m,n)= Likelihoodend((x+ y)/2,m,n)+

Likelihoodlocal(x,y,1,1)−Likelihoodlocal((x+ y)/2,(x+ y)/2,1,1) mixed local
and end likelihood function

4 for i = 1 to N do
5 Lxi, j = 0, Lyi, j = 0
6 if i≤ 4 then
7 jmax = M
8 end
9 else

10 jmax = 4
11 end
12 for j = 1 to jmax do
13 if X j < Yi then
14 while Yi−YLyi, j > X j do
15 Lyi, j ++
16 end
17 end
18 else
19 while X j−XLxi, j > Yi do
20 Lxi, j ++
21 end
22 end
23 scorei, j =

Likelihoodend(min(X j,Yi), j+1−max(1,Lxi, j), i+1−max(1,Lyi, j))
24 if X j < Yi then
25 for k = Lyi, j to i−1 do
26 scorei, j = max(scorei, j,Likelihoodmix(X j,Yi−Yk, j, i− k))
27 end
28 end
29 else
30 for k = Lxi, j to j−1 do
31 scorei, j = max(scorei, j,Likelihoodmix(X j−Xk,Yi, j− k, i))
32 end
33 end
34 end
35 end

Output :Score matrix score[1 : N][1 : M] filled with boundary scores in the top 4
rows and leftmost 4 columns
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Algorithm 2.2: The Dynamic Programming Score Algorithm
Input :Two arrays of optical label locations X , Y ; Sizes of the input arrays 1 : M,

1 : N; Score matrix score[1 : M][1 : N] with boundary scores filled
1 Likelihoodlocal(x,y,m,n) local likelihood score function
2 scorebest =−∞

3 for i = 1 to N do
4 for j = 1 to M do
5 for g = max(1, i−4) to i−1 do
6 for h = max(1, j−4) to j−1 do
7 scorei, j =

max(scorei, j,Ag,h +Likelihoodlocal(x j− xh,yi− yg, j−h, i−g))
8 end
9 end

10 if scorei, j > scorebest then
11 scorebest = scorei, j, jbest = j, ibest = i
12 end
13 end
14 end

Output :Best score scorebest ; The X and Y indices of the best score jbest and ibest

Table 2.1. Constant values for score functions

Constant Value
V 0.0449
δ 0.0010
B −0.0705
B
′

0.9144
Pmiss 1.5083

R −0.0931
P −8.1114

Bend 0.0226
B
′
end 0.3992
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2.4 Accelerated Designs

We partitioned the algorithm by accelerating some parts on the hardware and

keeping some parts on the PC. This partitioning strategy is depicted in Fig. 2.4. The

most computationally intensive stage of the algorithm is the local score computation.

Therefore, in our partitioning, we accelerated the local score computation on the hardware.

The two stages, boundary score computation and maximum score search, are not as

computationally intensive as the local score stage. However, these two stages have

significantly intensive data communication with the local score stage. In order to avoid

this communication bottleneck between the PC and the hardware accelerator, we also

assigned these two stages on the accelerator. The path trace stage consists of control

intensive operations. Therefore, we kept this stage on the PC.

…

…

…

…

…

…

…

1) Align 
multiple 
pairs in 
parallel

2) Compute 
multiple score 
matrix elements 
in parallel

3) Compute the 
likelihood scores 
in parallel

Figure 2.6. Possible parallelism in the algorithm.

We identified three levels of possible parallelism in the algorithm (from coarse-

grained to fine-grained): 1) align multiple pairs in parallel; 2) compute multiple elements
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(rows or columns) in the score matrix in parallel; 3) compute the 16 likelihood scores

for each score element in parallel. These three levels and their hierarchy are depicted in

Fig. 2.6. Particular computation and data reuse patterns exist in each level of possible

parallelism. These patterns create tradeoffs in hardware accelerated designs.

When using level 1 parallelism (processing multiple pairs in parallel), each pair is

data independent. Therefore, data communications or synchronization between parallel

processes do not exist. However, it requires more computing resource to manage multiple

alignments concurrently as well as more storage resource for intermediate data (e.g.

multiple score matrices). On the other hand, the other two levels of parallelism (levels 2

and 3) provide more opportunities to share or reuse the data between the parallel processes

due to their finer granularity. However, these two fine-grained levels of parallelism may

introduce performance challenges such as higher synchronization overhead on processors

and placement and route complexity on FPGAs. These complex architectural tradeoffs

create design space exploration problems. We explored these design spaces to determine

the proper level or combination of levels of parallelism to match the architectural features

on the hardware. We also applied multiple optimization techniques on each design. We

applied SIMD instructions and multi-thread techniques on the CPU design. For the GPU

design, we tuned the CUDA code to tackle the data dependency caused by the local

score computation. We also implemented a low level FPGA design due to the inefficient

resource utilization provided by the state of the art high level synthesis tools. In the

following sections, we describe the design space explorations and the optimal designs in

detail.

2.4.1 Multi-core CPU

In the CPU design, we firstly improved the locality of the program by dictating the

compiler to store the highly reused variables in the CPU registers. We then parallelized
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the algorithm by inserting OpenMP directives. The performance is highly correlated with

the granularity of the iterations in the algorithm. We evaluated the fine-grained strategy

which processes multiple rows and columns in parallel on the multiple CPU cores. The

evaluation results indicated that it is expensive to synchronize and exchange fine-grained

data among the cores. The multi-core CPU is more suitable for the coarse-grained

parallelism. Therefore, we chose to align multiple pairs in parallel on the multi-core

CPU.

We divided the total workload into several sets of alignment tasks and assigned

each of the sets to a CPU core as demonstrated in Fig. 2.7. When one CPU core

finishes its current alignment workload, it can start aligning another pair immediately

without synchronizing with the other CPU cores. This setup does not create “dead”

parallel processes or threads when the input array sizes change during the run-time.

Therefore, all the CPU cores are completely occupied during this process. In addition,

within each core, the process is in a sequential fashion which is suitable for control

dominated operations such as the boundary score computation. We also forced functions

Likelihoodlocal(x,y,m,n) and Likelihoodend(x,m,n) to be static and inlined in order to

provide more optimization opportunities for the compiler.

The computations of the Likelihoodlocal function provide us an opportunity to

utilize the CPU SSE SIMD instructions. Therefore, we program the Likelihoodlocal

function to process 4 elements with a SIMD fashion using “ m128” type of its intrinsic

operands.

2.4.2 GPU

The GPU design consists of three CUDA kernels, invoked from a C++ host code.

The CUDA kernels accelerate the alignment algorithm to keep the intermediate data on

the GPU during the process. The C++ host program only sends the input DNA arrays to
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Figure 2.7. Multi-core CPU accelerated design. Assume there are S pairs of optical
arrays to be aligned and the CPU has T cores.

the first kernel and receives the output maximum score from the third kernel.

There are multiple options for CUDA kernel design based on different levels

of granularity. We firstly evaluated the coarse-grained only strategy on the GPU. The

evaluation shows that coarse-grained parallelism is significantly bounded by a low GPU

occupancy. Therefore, to fully utilize the GPU parallel computing power, we added

fine-grained parallelism in our design. The GPU design computes multiple rows and

columns in fine-grained parallel within each GPU thread-block. The design also utilizes

multiple thread-blocks to align multiple pairs in coarse-grained parallel. Computing

the 16 candidates in parallel is not efficient on the GPU since it requires a 16-element

reduction process which creates idle threads frequently.

We partitioned the algorithm into three CUDA kernels 1) boundary score kernel;

2) dynamic programming kernel; 3) maximum score search kernel. We chose this kernel

partitioning because these parallelized computations require GPU global synchronization

after 1) and 2).

In the boundary score kernel design, we fully parallelized the computations due

to the data independency. The GPU thread arrangement is: assigning the boundary

score computation for each element (lines 12 - 30 in Algorithm 2.1) to one GPU thread;

assigning the boundary score computations of each alignment to one GPU thread-block.

With this design, we maximized the GPU parallel resource occupancy. Moreover, since

this design assigns all the computations of an alignment to the same thread-block, we
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Listing 2.1. Pseudo Code for Dynamic Programming GPU Kernel
1 / / gr idDim . x=number o f a l i g n m e n t s
2 / / b lockDim . x=N , blockDim . y=4
3 g l o b a l void p a r 4 c o l k e r n e l ( /∗ i n p u t / o u t p u t argument s ∗ / )
4 {
5 i n t a l i g n o f f s e t =M∗N∗ b l o c k I d x . x ;
6 / / sh ar ed mem d e l e c r a t i o n
7 / / move i n p u t X , Y a r r a y s from g l o b a l memory t o s har ed memory
8 f o r ( i n t c o l i d =0; c o l i d <M; c o l i d ++)
9 {

10 i f ( t h r e a d I d x . y ==0)
11 {
12 /∗ use f e e d b a c k s c o r e t o compute t h e l e f t m o s t c a n d i d a t e s and f i n d

t h e max f o r c o l i d +3∗ /
13 }
14 e l s e i f ( t h r e a d I d x . y ==1)
15 {
16 /∗ use f e e d b a c k s c o r e t o compute t h e 2nd l e f t c a n d i d a t e s and f i n d

t h e max f o r c o l i d +2∗ /
17 }
18 e l s e i f ( t h r e a d I d x . y ==2)
19 {
20 /∗ use f e e d b a c k s c o r e t o compute t h e 2nd r i g h t c a n d i d a t e s and f i n d

t h e max f o r c o l i d +1∗ /
21 }
22 e l s e i f ( t h r e a d I d x . y ==3)
23 {
24 /∗ use f e e d b a c k s c o r e t o compute t h e r i g h t m o s t c a n d i d a t e s and f i n d

t h e max f o r c o l i d ∗ /
25 / / o u t p u t t h e s c o r e f o r c o l i d
26 / / f e e d b a c k s c o r e [ t h r e a d I d x . x ]= s c o r e f o r c o l i d
27 }
28 s y n c t h r e a d s ( ) ;
29 }
30 }

were able to store the intermediate data in the shared memory to minimize the memory

access delay in the computations.

The pseudo code of the dynamic programming kernel is described in Listing 2.1.

We parallelized the score element computations using N×4 threads in each thread-block.

The candidate score computation for each matrix column requires 4 previous columns

as described in line 7 of Algorithm 2.2. Parallelizing this part of the algorithm is a

challenging task due to this data dependency. We overcame this issue by dynamically

assigning the columns of the score matrix to 4 groups of threads. As described in Listing
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2.1, we used threadIdx.y to partition N×4 threads into 4 groups. They form a software

pipeline. Each thread group is only responsible for a specific candidate computation

(leftmost, 2nd left, 2nd right or rightmost). By increasing col id, we stream the columns

of the score matrix into this pipeline.

… … … …
threadIdx.y: 0 1 2 3

th
read

Id
x.x: 0

 …
N

-1

11 10 9 8

software pipeline:

feed
b

ack co
lu

m
n

7

col_id: 
8 9 1011

…

… … … …

Group 0 Group 1 Group 2 Group 3

score  under computation

candidate score

feedback score

left-most candi. 2nd left candi. 2nd right candi. right-most candi.

col 8 
stream 

out

col 12 
stream 

in

thread groups 
partitioned by 
threadIdx.y:

Figure 2.8. Visualized GPU kernel for dynamic programming, assuming the score matrix
size is M×N. N rows × 4 columns of score elements are computed concurrently. For
example, columns 8,9,10 and 11 are computed concurrently. At the given state in the
example, column 11 is assigned to the threads whose threadIdx.y = 0. Then the leftmost
candidates of column 11 are computed using the previously computed data in column
7. Similarly, columns 10,9 and 8 are assigned to threadIdx.y = 1, threadIdx.y = 2 and
threadIdx.y = 3 respectively. N is set to a multiple of 32 to ensure each warp has the
threads with the same threadIdx.y.

The example in Fig. 2.8 shows a snapshot of this software pipeline when the

GPU is processing columns 8, 9, 10 and 11. These columns are assigned to the different

stages (thread groups) of the pipeline: column 11 to group threadIdx.y = 0; column 10
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to threadIdx.y = 1; column 9 to threadIdx.y = 2; column 8 to threadIdx.y = 3. The

computations in the pipeline stages threadIdx.y = 0− 3 are leftmost candidates, 2nd

left candidates, 2nd right candidates and rightmost candidates respectively, as shown in

the shaded blocks in Fig. 2.8. In the snapshot, these computations all require the data

from column 7 which has already been computed in the previous col id iteration (refer

to the “for” loop in Listing 2.1). Once the computations in the snapshot are finished, the

data in column 8 is then ready. With the data from column 8, the pipeline streams a new

column (column 12 in the snapshot) by increasing the iteration index col id. These 4

thread groups execute different instructions to implement the 4 stages of the pipeline. In

order to fit this design on the GPU SIMD architecture, we ensured the threads of each

GPU warp to execute the same instruction by extending N to a multiple of 32.

Once the dynamic programming kernel finishes computing the score matrix, the

third kernel searches the matrix to find scorebest , ibest and jbest . We implemented this

maximum score search kernel using the reduction approach. We kept the reduction

process of each alignment within one thread-block. Therefore, this process does not

require the expensive global synchronization on the GPU. Then, we created multiple

thread-blocks to concurrently process the reductions for multiple alignments. We also

applied shared memory and efficient warp arrangement in the reduction.

2.4.3 FPGA

Similar to the GPU, the FPGA also accelerates the algorithm by processing the

computations in a parallel fashion. The FPGA is a customizable architecture. There

are usually two ways to implement the parallelism on the FPGA: 1) replicate a logic

module multiple times to physically create multiple parallel data paths; 2) pipeline the

architecture to process the multiple data concurrently in a streaming fashion. A high

performance design requires a proper decision on which technique is used to implement
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each of the three levels of the algorithmic parallelism. Moreover, due to the FPGA

resource constraints, a feasible design also requires the proper number of replications

in each level of parallelism. There exists many possible settings of choices of parallel

techniques and numbers of replications. In order to reduce the size of the design space,

we firstly constructed a reasonable structure of the FPGA design based on heuristics. Fig.

2.9 depicts this FPGA structure. Due to the algorithmic data dependency, it is impossible

to replicate parallel data paths for both row and column dimensions. Therefore, we

chose to only replicate the row parallel data paths (level 2 parallelism)and pipeline the

column dimension (level 2 parallelism). We replicated the likelihood score units (level

3 parallelism) to sustain the throughput of this full pipeline in the column dimension.

We also replicated the entire alignment module multiple times (level 1 parallelism) to

maximize the overall throughput. We then permutated the numbers of parallel paths in

this structure to find the optimal setting.

Implementing multiple RTL designs to measure the performances of these per-

mutations requires a significant amount of effort. Therefore, exploring the FPGA design

space using RTL designs is inefficient in terms of the development complexity. Instead

of manually implementing multiple RTL designs, we propose a method using Vivado

HLS which enables rapid FPGA implementations to explore different parallel structures.

We restructured the original software C code, as described in Listing 2.2, into the

format that represents the parallel hardware structure. We firstly constructed a function

lkh score() to implement the likelihood score computation in equation 2.3. To implement

the full pipeline, we restructured the local score computation code into a function

pipeline unit() with 4 pipeline stages. Lines 35 - 39 describe a line buffer used to feed the

input into this pipeline. We then call pipeline unit() in the alignment module() function.
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Listing 2.2. Pseudo Code for local score element computation function in HLS C code
1 void l k h s c o r e ( /∗ argument d e c l a r a t i o n ∗ / )
2 {
3 / / compute l i k e l i h o o d s c o r e as shown i n e q u a t i o n r e f {equ : s f u n c t i o n }
4 }

6 void p i p e l i n e u n i t ( /∗ argument d e c l a r a t i o n ∗ / )
7 {
8 # pragma HLS ALLOCATION i n s t a n c e s = l k h s c o r e l i m i t =16
9 / / u se HLS ALLOCATION d i r e c t i v e t o c o n t r o l t h e number o f l k h s c o r e

r e p l i c a t i o n s

11 /∗ d e c l a r e b u f f e r i n g v a r i a b l e s f o r t h e 4 s t a g e s (4 columns ) ∗ /

13 /∗ c a l l l k h s c o r e ( ) t o compute l i k e l i h o o d s c o r e s f o r 0 − 3 columns ∗ /

15 / / p i p e l i n e
16 /∗ s t a g e 0 : max f o r column 0 ∗ /
17 /∗ s t a g e 1 : max f o r column 1 ∗ /
18 /∗ s t a g e 2 : max f o r column 2 ∗ /
19 /∗ s t a g e 3 : max f o r column 3 ∗ /
20 }

22 void a l i g n m e n t m o d u l e ( /∗ argument d e c l a r a t i o n , e . g . i n p u t : DATA TYPE x ∗ / )
23 {
24 # pragma HLS ALLOCATION i n s t a n c e s = p i p e l i n e u n i t l i m i t =5
25 /∗ use HLS ALLOCATION d i r e c t i v e t o c o n t r o l t h e number o f p i p e l i n e u n i t

r e p l i c a t i o n s ∗ /

27 /∗ d e c l a r e x , y l i n e b u f f e r s :
28 e . g . DATA TYPE x0 , x1 , x2 , x3 , x4 ; ∗ /

30 f o r ( /∗ i t e r a t e row i n d e x ∗ / )
31 {
32 f o r ( /∗ i t e r a t e column i n d e x ∗ / )
33 {
34 / / up da t e t h e x l i n e b u f f e r
35 x4=x3 ;
36 x3=x2 ;
37 x2=x1 ;
38 x1=x0 ;
39 x0=x ;
40 /∗ c a l l p i p e l i n e u n i t ( x0 , x1 , x2 , x3 , x4 , . . . ) ∗ /
41 }
42 }
43 }

45 void t op modu le ( /∗ argument d e c l a r a t i o n ∗ / )
46 {
47 # pragma HLS ALLOCATION i n s t a n c e s = a l i g n m e n t m o d u l e l i m i t =2
48 /∗ use HLS ALLOCATION d i r e c t i v e t o c o n t r o l t h e number o f a l i g n m e n t m o d u l e

r e p l i c a t i o n s ∗ /

50 /∗ c a l l a l i g n m e n t m o d u l e ( ) ∗ /
51 }
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We replicated multiple instances of lkh score(), pipeline unit() and alignment module()

to generate parallel data paths in the three levels. Finally, we used function top module()

to wrap up these sub-modules. This new C code structure eases the scheduling task for

the HLS tool to generate efficient architectures.
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Parallel Settings

HLS Evaluation for FPGA Design Space Exploration

1) Number of multiple pairs
in parallel

2) Number of multiple rows
in parallel

3) Number of likelihood
scores in parallel

Throughput per area
(normalized)

Figure 2.10. FPGA design space exploration using HLS. Evaluations of 10 different
designs on the Xilinx VC707 FPGA board (Design A - J). Throughput per area for each
design is normalized to the lowest value.

We permutated the numbers of the three levels of data path replications in the

restructured C code by modifying the limit parameter in the HLS ALLOCATION directives.

We evaluated 10 different settings by running the entire HLS design tool chain including

the placement and route phase. Fig. 2.10 depicts the evaluations of these HLS designs.

The experimental results indicate that design H achieves the highest throughput efficiency

among all the evaluated designs. We then implemented design H in RTL to further

improve the resource efficiency.

Our RTL FPGA design consists of two modules: 1) boundary score module and

2) dynamic programming and maximum score module. To achieve a high throughput,

we fully pipelined the FPGA architecture to output a new likelihood score every clock

cycle. The two modules are able to run concurrently in a streaming fashion.

The architecture of the boundary score module is described in Fig. 2.11. In

this figure, we demonstrate the boundary score module by only showing an example

computing the scores at the 4th top row. The other rows and columns are identical to this

example. We replicated this architecture 16 times to process the top 4 rows, bottom 4
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rows, left 4 columns and right 4 columns of boundary scores in parallel. This boundary

score module is fully pipelined and consists of control logic (the black blocks in the

figure), arithmetic units (the grey blocks), muxer and a shifting register for X . The

control logic and arithmetic units correspond to Algorithm 2.1. The shifting register is

for accessing XLxi, j and Xk as shown in lines 17 and 28.

X[j]>Y[4]?
Y[4]

X[j]
X Shifting Buffer

(10 Regs)

Y[1], Y[2], Y[3] Y[4]-Y[3]<X[j]?
Y[4]-Y[2]<X[j]?
Y[4]-Y[1]<X[j]?

Lxi,j= Lxi,j+1
X[j]-X[Lxi,j]

<Y[4]?

Lyi,j

llhend

Lxi,j

llhmix

Max(Lxi,j,
Lyi,j)

Min(X[j],Y[4])

j=j+1

k<Max(Lxi,j,Lyi,j)?k=k+1

1
2
3

X[k]

Maxmix

Y[k]

X[j], Y[4]

llhend>Maxmix?

Boundary
Score

j

k

X array (BRAM)

llhmix>Maxmix?

Figure 2.11. FPGA boundary score module. The control logic corresponds to Algorithm
2.1. A shifting register storing 10 elements of X is used for accessing XLxi, j and Xk
efficiently. llhend and llhmix represent the likelihood score modules for Likelihoodend
and Likelihoodmix.

The design of the dynamic programming module is described in Fig. 2.12. This

architecture consists of 5 major pipeline stages as shown in Fig. 2.12. Stage 0 computes

16 (4×4) Likelihoodlocal functions in parallel. These Likelihoodlocal modules are fully

pipelined. Stages 1 - 4 compute the maximums of the leftmost, second left, second right

and rightmost columns of candidates, respectively.

We replicated the described architecture 5 times to process 5 rows of scores in

parallel. After the last column of the current 5 rows, the next 5 rows will enter this

architecture to continuously fill the pipeline. The output of all the rows are passed to a
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pipeline maximum module to find scorebest , ibest and jbest . We chose to process 5 rows

in parallel to match the throughput of the boundary score module. The two modules are

thus able to run in a streaming fashion without idling.

As depicted in Fig. 2.12, the results of Stage 0 are delayed by the registers to feed

Stages 2 - 4 at the correct cycles. Shown in the figure, the computation for score[i][ j+3]

is at Stage 1; score[i][ j+2] is at Stage 2; score[i][ j+1] is at Stage 3; score[i][ j] is at Stage

4. These stages are all using score[i−1 : i+3][ j−1]. score[i−1 : i−4][ j−1] are the

scores created and stored in the BRAMs during the computation of the previous 5 rows.

score[i : i+3][ j−1] are created from the previous cycle as a feedback loop. Therefore,

in order to keep the pipeline outputting new data every cycle with the constraint of this

feedback loop, we designed a combinational logic to compute the 4 parallel additions

and the “Max 5 to 1” operation within one clock cycle.

We used fixed point numbers and arithmetic in the FPGA design. Due to the

data range, we used 26 bits for the scores and 18 bits for the input arrays, both with 10

decimal bits. These fixed point numbers can represent the optical labeled fragments up

to 1,000,000 bases. This range covers most human genome assembly applications. In

the score functions, we implemented the divisions using lookup tables.

Since the RTL implementation is more resource efficient compared with the HLS

implementation, we were able to replicate the overall alignment architecture 5 times to

align 5 pairs of DNA molecules concurrently. In the HLS design, we were only able to

replicate this architecture 2 times. We enhanced the resource efficiency by more than

200% using the RTL design.
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2.5 Results

The input data for the alignment algorithm in our experiment consists of 16642

DNA molecule fragments. Each fragment contains 5 – 182 labels. The range of the

distances between labels is 500 – 3.79×105 bases.

We tested the multi-core CPU design on a 3.1GHz Intel Xeon E5 CPU with 8

cores. The CPU design was compiled with O3 GCC optimizations. The GPU design was

tested on a Nvidia Tesla K20 Kepler card. The FPGA design was implemented and tested

on a Xilinx VC707 FPGA development board. The input data used in our experiments is

a set of synthetic human genome sequences.
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Figure 2.13. Performance of the accelerated designs. Speedup factors against the single
CPU baseline implementation. Throughput is defined as the number of DNA molecule
pairs that a design is able to process in 1 sec.

Fig. 2.13 presents the performance of our implementations. The baseline is a

highly optimized C++ program without any parallelism. The average time for aligning

two optical labeled molecules is 42.486µs in the baseline implementation. The run-

times for the boundary score, dynamic programming and maximum score operations are

9.351µs, 30.594µs and 2.541µs respectively.
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The OpenMP parallelized C++ program consumes 5.04µs aligning a pair of

molecules on an 8 core CPU with hyper-thread technology on each core. The performance

of this multi-core implementation achieves a 8.4× speedup which is proportional to the

number of cores. The extra 0.4× speedup is contributed by hyper-thread. The CPU SSE

SIMD technique boosts the performance with a 11× speedup against the baseline.

Our GPU implementation was written using the Nvidia CUDA 6.5 SDK. The

GPU runs at a base frequency of 706 MHz and has 2496 CUDA cores. We varied the

number of input alignments per host-device data transfer transaction from 10 to 10240

to investigate how the GPU design performs. As shown in Fig. 2.14 (B), the dynamic

programming kernel converges to the minimal run-time after increasing the number

of alignments per transaction to 2560. The boundary kernel and the max reduction

kernel converge to their minimums when the number of alignments per transaction

hits 640. The data copying operation from the device to host keeps speeding up with

the increase of the number of alignments. This is due to the fact that the output array

only contains very few data (each alignment only generates one max score, and two

indices of the X and Y arrays) which never saturates the memory transaction bandwidth.

However, the dynamic programming kernel dominates the overall run-time. Therefore,

as a consequence, the overall performance saturates the max throughput after increasing

the number of alignments to 2560.

The best performance of the GPU design is at 3.116µs per alignment with a 13.6×

speedup against the baseline. The run-time for the boundary score, dynamic programming

and maximum score kernels are 0.940µs, 1.484µs and 0.494µs respectively. The data

transferring time between the host memory and GPU memory is 0.198µs.

The FPGA design was built using Xilinx ISE 14.7 in Verilog. The FPGA design

was implemented on a Xilinx Virtex 7 VC707 board receiving input and sending output

using RIFFA [74] (configured as a x8 Gen 2 PCIe connection to the PC). We also
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investigated how the FPGA design performs when changing the number of alignments

per RIFFA transaction between the host CPU and the FPGA. We also varied the number
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of alignments per transaction from 10 to 10240. The simulated design generates the ideal

throughput of the FPGA acceleration module. We measured the bandwidth of RIFFA by

sending the data to the FPGA and receiving the same data back to the host without doing

any computation on the FPGA. We only measured the host to device bandwidth since the

transfer from the device to host contains very few data. As shown in Fig. 2.14 (A), the

actual FPGA performance is significantly lower than the simulated ideal performance

due to the RIFFA bandwidth limit when the number of alignments is between 10 and 640.

After the number of alignments reaches 5120, the actual FPGA performance converges to

its maximum which is slightly lower than the ideal performance due to the host software

overhead.

Our FPGA experimental result shows the best throughput at 2.7 million pairs of

molecules per second or equivalently 0.367µs per alignment. Thus, the FPGA imple-

mentation achieves a 115× speedup against the baseline. Our FPGA implementation

runs at a frequency of 125 MHz. Table 2.2 lists the resource utilization of the entire

design including the PCIe communication logic. The design occupied 89% of the slices

on the FPGA. In order to meet the timing constraint with such a high logic utilization,

we used “SmartXplorer” to permutate multiple placement and route strategies in ISE.

Since we used fixed-point number representation in the FPGA design, compared to the

baseline floating-point design, we observed a 0.019% error which is negligible in real

applications.

Table 2.2. FPGA design resource utilization on VC707

Slice Reg. Slice LUT. BRAM DSP48E
150412 251979 159 2280

24% 82% 15% 81%
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2.6 Hardware Comparison

Table 2.3 presents the summary of the comparison between the three hardware.

We compare the performances and prices of the hardware accelerators.

Table 2.3. Hardware Comparison

Accelerator Multi. Core
CPU

GPU FPGA

Parallel
Architecture

Coarse-grain cores Massively parallel
threads

Replicated paths

Solution for data
dependency

NA Thread/Warp
strategy

Manually design
full pipeline &

single-cycle logic
Customized

Operator
NA NA Look up table

division
Customized
Bit-width

No No Yes

Frequency 3.1 GHz 706 MHz 125 MHz
Performance 8.4× 13.6× 115×

DSE
& Develop Effort

2 weeks 3 months 9 months

Price $2,000 $3,200 + $2,000 $3,495 + $2,000
Performance per $

(aligns/sec/$)
99.2 61.7 495.5

2.6.1 Performance

Although the multi-core CPU has the highest operating frequency among the

three hardware, it achieves the lowest speedup. This is due to the fact that the multi-core

CPU has very limited parallel computing resources: 8 cores with hyper-thread. These

cores are not closely coupled in the architecture. Frequently synchronizing these cores

for fine-grained parallel computations becomes significantly expensive. Therefore, we

were only able to utilize these cores to align multiple molecule pairs in a coarse-grained

parallel fashion. The SSE SIMD extension provides a limited level of fine-grained
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parallelism. The CPU 128-bit SIMD extension does not provide dedicated SIMD units to

achieve massive fine-grained parallelism.

The GPU, as opposed to the multi-core CPU, has a SIMD architecture that

supports fine-grained parallelism. We therefore observed a higher speedup on the GPU.

However, the control dominated boundary score computations introduce a significant

amount of diverse instructions which harm the parallelism in the SIMD architecture. The

GPU accelerates the dynamic programming algorithm by 20× while it only accelerates

the boundary score algorithm by 10×. Compared with the GPU, each CPU coarse-

grained parallel core is processing each alignment in a sequential fashion which has more

advantage in dealing with the control dominated instructions. Moreover, the array size

differences create multiple inactive threads. With the CUDA profiler “nvvp”, we observed

that these inactive threads occupy more than 45% of the GPU computing resource due to

the control branch diversities. Compared with the GPU design, the multi-core CPU and

the FPGA suit this feature of the algorithm better. The multi-core CPU coarse-grained

parallelism avoids inactive threads. Unlike the GPU threads issued before the program

starts and unchangeable during the run-time, the FPGA pipeline terminates and moves

on to the next array when the current array finishes during the run-time. These unsuitable

GPU features limit the performance for the alignment algorithm.

On the FPGA architecture, the customized logic avoids the diverse instruction

issue in the boundary score algorithm. In the dynamic programming module, the pipeline

on the FPGA is spatial. The data is transferred from one logic to the next logic using on-

chip registers. In opposition, in the GPU design, we implemented a similar optimization

using warps (different threadIdx.y) as shown in Listing 2.1 and Fig. 2.8. Each GPU

warp represents a logic module on the FPGA. Unlike the spatial pipeline, the GPU

warps are scheduled temporally. The data is not transferred spatially between warps. In

contrast, the warps read or write the data on the shared memory. Although these warps
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are designed to be processed efficiently on the GPU, the FPGA spatial pipeline still

outperforms the GPU warps without the overhead from scheduling and memory access.

Moreover, the boundary score module stores its output in the low latency BRAM on the

FPGA. The dynamic programming module can then access these boundary scores within

one clock cycle. As opposed to the FPGA, the GPU dynamic programming kernel reads

the boundary scores from the global memory with a higher latency. For these reasons,

the FPGA implementation achieves the highest performance.

2.6.2 Hardware Prices

The prices of the acceleration hardware vary significantly depending on the

complexities of the devices. The devices used in our implementations belong to the

high-end category. The Xilinx VC707 FPGA evaluation board costs about $3,495 [75].

The Nvidia K20 GPU can be purchased for $3,200. These high-end GPUs and FPGAs

have comparable prices. The high-end CPU, Intel Xeon E5 has a relatively lower price

which is roughly $2,000. In our comparison, we added the CPU price to the cost of the

GPU and FPGA accelerated systems since both of them used the CPU as a host to send

and receive data. In our application, the performances per dollar are 99.2 aligns/sec/$,

61.7 aligns/sec/$ and 495.5 aligns/sec/$ for the multi-core CPU, GPU and FPGA

respectively.

2.7 Summary

In this chapter, we have addressed the necessity to accelerate the optical label

based DNA assembly. We have presented three different accelerated approaches: a multi-

core CPU implementation, a GPU implementation and a FPGA implementation. We have

also presented the detailed design space explorations for these three approaches. The

speedups over the sequential CPU baseline are 8.4×, 13.6× and 115× for the multi-core



45

CPU, GPU and FPGA respectively. Using spatial pipelines, the FPGA design has been

customized to suit the algorithm more efficiently than the other two hardware. The

tradeoff to this performance efficiency on the FPGA is its significant design complexity

in comparison with the approaches on the other two hardware.
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Chapter 3

FPGA-GPU-CPU Heterogeneous Ar-
chitecture for Real-time Cardiac Physi-
ological Optical Mapping

3.1 Background and Motivation

Optical mapping technology has proven to be a useful tool to record and investi-

gate the electrical activities in the heart [39, 40]. Unlike other cardio-electrophysiology

technologies, it does not physically interfere with the heart. It provides a dense spatial

electrical activity map of the entire heart surface. Each pixel acts as a probe on that

location of the heart. Variation in pixel intensity over time is proportional to the voltage

at that location. Thus a 100×100 resolution video is equivalent to 10,000 conventional

probes. This produces more accurate and comprehensive information than conventional

electrode technologies.

The process of optical mapping involves processing video data to extract biologi-

cal features such as depolarization, repolarization and activation time. The challenge in

this process is primarily in the image conditioning. Raw video data contains appreciable

sensor noise. Direct extraction of biological features from the raw data yields results too

inaccurate for most medical use. Therefore, the process includes an image conditioning

algorithm, which has been presented and validated by Sung et. al [76]. The effect of this

46
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image conditioning is shown in Fig. 3.1.

Real-time optical mapping is useful and potentially necessary in a wide range of

applications. One domain is real-time closed loop control systems. This includes dynamic

clamp [77, 78], and the usage of tissue-level electrophysiological activity to prevent the

onset of arrhythmia [79, 80]. These systems offer the unique ability to understand the

heart dynamics by observing real-time stimulus/response mechanisms over a large area.

Another domain of applications is immediate experimental feedback. The ability to see

the optical mapping results during the experimental procedure can significantly reduce

both the duration of the experiment and the required number of experiments.

Achieving real-time optical mapping is computationally challenging. The input

data rate and the required accuracy for biological features results in a throughput on

the order of 10,000 fps. At such high throughput, a software implementation takes

39 mins to process just a second of data. Even a highly optimized GPU accelerated

implementation can only reach 578 fps. A FPGA-only implementation is also infeasible

due to the resources required for processing intermediate data arrays generated by the

optical mapping algorithm.

In this chapter, we propose a real-time FPGA-GPU-CPU heterogenous architec-

ture for cardiac optical mapping that runs in real-time, capturing 100×100 pixels/frame

at 1024 fps with only 1.86 seconds of end to end latency. Experimental parameters and

data are based on the experiments by Sung et. al [76]. Our design has been implemented

on an Intel workstation using an NVIDIA GPU and a Xilinx FPGA. The implementation

is a fully functioning end to end system that can work in an operating room with a suitable

camera.

The rest of the chapter is organized as follows. We discuss related work in

Section 3.2. In Section 3.3, we describe the optical mapping algorithm in detail. We

discuss algorithm partitioning decisions in Section 3.4. We describe the design and
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(a) 

(b) 

1 sec 

1 sec 

Figure 3.1. Image conditioning effect (left: the grayscale image of a random frame,
right: the waveform of a random pixel over time). (a) before image conditioning. (b)
after image conditioning.

implementation of the heterogenous architecture in Section 3.5. In Section 3.6, we present

the experimental results and accuracy of our implementation. Section 3.7 summarizes

this chapter.

3.2 Related Work

The optical mapping process involves three types of computations: spatiotemporal

image processing, spectral methods, and sliding-window filtering that can result in

performance challenges. A variety of approaches have been proposed to accelerate image
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processing algorithms that have one or more of these computations. There are FPGA

and GPU accelerated approaches for real-time spatiotemporal image processing [81, 82].

Govindaraju et. al have analyzed the GPU performance on spectral methods [83]. Pereira

et. al have presented a study of accelerating spectral methods using FPGA and GPU

[84]. Many sliding-window filtering applications have been presented in the past [35, 85].

None of the approaches described above combine all three of the computations as in the

optical mapping algorithm.

Several FPGA-GPU-CPU heterogeneous acceleration systems have been pro-

posed in recent years. Inta et. al have presented a general purpose FPGA-GPU-CPU

heterogeneous desktop PC in [86]. They reported that an implementation of a normalized

cross-correlation video matching algorithm using this heterogeneous system achieved

158 fps with 1024×768 pixels/frame. However, they ignored the throughput bottleneck

of the PCIe which is critical in real-time implementations. Bauer et. al have proposed

a real-time FPGA-GPU-CPU heterogeneous architecture for kernel SVM pedestrian

detection [87]. However, instead of having spatiotemporal image processing and spectral

methods (across frames), this application only has computations within individual frames.

We present a stage level algorithm partitioning according to the computational

characteristics and data throughput. To the best of our knowledge, the system presented

in this chapter is the first implementation of a real-time optical mapping system on a

heterogenous architecture.

3.3 Optical Mapping Algorithm

Fig. 3.2 (a) depicts an overview of the algorithm. Video data is provided by a

high frame rate camera. The input video data is zero score normalized to eliminate the

effects of varying background intensities. After normalization, there are two major noise

removing facilities: a phase correction spatial filter and a temporal median filter.
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3.3.1 Normalization

Normalization is performed for each pixel in a temporal fashion, across frames.

In our experiments the input video arrives at 1024 fps. Normalization is performed on

each second of video, disjointly. To compute the normalization base value for pixel

location, we find the weighted mean of the largest three values in the temporal array. We

can then normalize each pixel in the frames using Equation 3.1 with the correspondent

normalization base value.

normed. pixel = 100
−(raw pixel−base val.)

base val.
(3.1)

3.3.2 Phase Correction Spatial Filter

The action potential is distributed as a waveform on the heart surface. Thus, if

we merely apply a Gaussian spatial filter on the video data, we will lose the critical depo-

larization properties (the sharp edges of the waveform in cardiac physiology). Therefore,

a phase correction algorithm needs to be applied to cause the pixels in the window to be

in phase before the Gaussian spatial filter.

The phase correction spatial filter operates as a sliding window function across

the entire frame, where each operation uses all frames across time (see Fig. 3.2 (b)).

Fig. 3.2 (c) illustrates an example 5×5 Gaussian filter.

3.3.3 Phase Correction Algorithm

In order to correct the phases of the pixels, the phase difference must be computed

between the center pixel and all of its surrounding neighbors in the filter window. We

can calculate this difference using a bit of signal processing theory as presented by Sung

et. al [76].

This phase correction operation is illustrated graphically in Fig. 3.2 (d). First, the
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frame arrays are interpolated by a factor of 10 using an 81 tap FIR filter. This provides a

higher resolution for phase differences. Then pairs of temporal arrays are compared, the

center pixel array and a neighbor pixel array. The arrays are converted into the Fourier

domain by a FFT. After that, the neighbor FFT array is conjugated and multiplied with

the center FFT array. The result of the multiplication is converted back into time domain

by an IFFT. The index of the pulse in the IFFT array represents the phase difference.

After finding the phase difference, the interpolated neighbor array is shifted by the

relative position/time difference and down sampled by 10 to obtain the phase corrected

neighbor array. Usually, the phase correction algorithm requires two long input arrays to

obtain accurate phase difference result. In our implementation, the length of the input

arrays is chosen to be 1024 because this is an empirically good tradeoff between the

precision and runtime performance [76].

3.3.4 Temporal Median Filter

The temporal median filter is applied at the end to further remove noise after the

phase correction spatial filter. The temporal median filter replaces each pixel with the

median value of its temporal neighbors within a 7-element tap. After filtering, the image

is conditioned and ready for analysis.
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Figure 3.2. Optical mapping algorithm. (a) Overview of the image conditioning algo-
rithm. (b) Visualization of the rolling spatial phase correction filter on the entire video
data. (c) Visualization of a phase correction spatial filter window. Arrows on the pixels
represent phase shifting (correction). (d) Visualization of the phase correction algorithm.
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3.4 Application Partitioning

Partitioning a high throughput video application requires careful analysis at design

time. Our initial design was to accelerate the software version of the algorithm developed

by Sung et. al [76] using a FPGA. However, the algorithm operates on a second’s worth

of captured data at a time. This became problematic for our FPGA as the phase correction

FFT would need to support a length of 32 K (1024 frames, interpolated to 10,240 frames,

then padded out to 32 K frames). A single FFT core of this size would consume nearly

all the resources of our FPGA. Piecewise execution of the FFT was considered, but was

quickly discarded in favor of using a GPU.

Using a GPU matched well with the large array and massively parallel operations.

But the frame interpolation and peak search computations are data flow barriers in the

algorithm. This causes poor GPU performance. This phenomenon is discussed in [88],

where a GPU implementation of the optical mapping algorithm achieves a rate about half

as fast as real-time.

We chose instead to design a heterogenous system with both a GPU and FPGA.

This allowed us to map the portions of the design that can benefit from deep pipelining

and small buffers to the FPGA. Steps requiring large buffers with massively parallel

operations leveraged the GPU. Finally, coordination, low throughput, and branching

dominated tasks were assigned to the CPU. Table 3.1 shows our partitioning decisions.

The granularity of our partition is based largely on the algorithm blocks, illustrated

in Fig. 3.2(a). In addition to the inherent strengths of different hardware in our system,

the I/O bandwidth between portions of the algorithm drove many of our design decisions.

Limited bandwidth interconnects can make it challenging to quickly and efficiently

transfer data between the GPU, FPGA, and CPU. Thus, we attempted to move data as

little as possible while matching algorithmic blocks to the most appropriate device.



54

Video is captured using the FPGA. The FPGA also performs frame interpolation

and normalization of base values. This decision was based on the fact that we can

pipeline the interpolation on the FPGA so that interpolated frames would be produced

concurrently with camera input.

Our FPGA-PCIe connection is limited to a single PCIe lane (bandwidth limit

of 250 MB/s). Thus we represented pixels using 8 bits of precision. However, the

normalization step uses 32 bit floating point numbers. To adapt, we decomposed the

normalization step into a calculation of base values and normalization of pixels. We

compute the the base values on the FPGA and reordered the algorithm to perform

normalization on the GPU. The reordered algorithm is equivalent to the original algorithm.

However, representing pixels with 8 bits introduces errors in the result. We demonstrate

that the error is tolerable in Section 3.6.3.

The FFT, conjugate multiplication, and IFFT computations run on the GPU.

Massive data parallelism in each butterfly stage of the FFT and IFFT improves core

occupancy on the GPU’s SIMD architecture.

Instead of calculating the relative positions between all pixels and their neighbors,

we calculate partial relative positions and use the fact that they are transitive between

pixel array pairs to optimize the process. It results in reducing redundant computation

by 5×. For I/O bandwidth reasons, we perform the peak search on the GPU, but chose

to allocate the relative phase difference conversion to the CPU. The phase difference

conversion is a low throughput and intensively branched process aiding the peak search.

We describe this optimization in Section 3.5.3.

The final processing steps are run on the GPU: phase shifting, 2D spatial Gaussian

filter, and temporal median filter. The GPU already has the interpolated frame data stored

in memory at this point, so it is the obvious location to shift the pixel arrays and perform

filtering.
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3.5 Design and Implementation

3.5.1 Overall System

The architecture of the system is shown in Fig. 3.3. It illustrates which portions

of the optical mapping algorithm run on which hardware. The shaded boxes encapsulate

computation groups. The architecture is designed to run continuously on a system with

constant camera input. Thus, it runs in a pipelined fashion. Group 1© runs in a pipelined

stage concurrently with groups 2©, 3© and 4© in a separate pipeline stage.

Camera data is captured by the FPGA at a rate of 1024 fps and up sampled

(interpolated) to 10,240 fps. Frames of interpolated data and normalization base values

are DMA transferred to the host workstation’s GPU over a PCIe connection. This

represents computation group 1©. The GPU normalizes the pixels then performs a

FFT, conjugate multiplication operation, and IFFT on arrays of pixels across frames

(temporally). The result of this spectral processing produces large 32 K length arrays

for each pixel location. The max value in each array is found using a max peak search

over all the data. The output of this group 2© is the relative position of the max values

in each array. These relative positions are used to calculate the absolute positioning for

each pixel array. This is performed on the CPU in group 3©. The CPU is used because

it is faster to transfer the data out of the GPU, iterate over it on the CPU and transfer it

back, than to utilize only a few cores on the GPU. Once calculated, the absolute positions

are sent back to the GPU where they are used to shift each array temporally. The arrays

are shifted and then down sampled back to 1024 fps. The rest of computation group 4©

consists of a 2D Gaussian filter and a temporal median filter to remove noise.
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3.5.2 FPGA Design

FPGA processing is performed in a streaming fashion. For temporal interpolation,

only 8 frames of video are buffered. This buffering is necessary for the FIR filter. The

most challenging aspect of the FPGA design is keeping the FIR filter pipeline full. The

pixel data arrives from the camera in a row major sequence, one frame at a time. The

FIR interpolation filter operates on a sequence of pixels across frames. Each interpolated

frame must be produced one pixel at a time, using the pixels from the previous frames.

This means filling the FIR filter with previous values for one pixel location, capturing

interpolated pixels for 10 cycles, then re-filling the pipeline with a temporal sequence for

another pixel location. Most of the time is spent filling and flushing the FIR filter (80 out

of every 90 cycles).

To avoid this inefficiency, we parallelized the FIR filter with 9 data paths and

staggered the inputs by 10 cycles. This allows the FIR filter to produce valid output every

cycle from one of the 9 data paths. The output is then used to calculate the normalization

base values and both are DMA transferred to the host workstation over a PCIe connection.

We used the RIFFA [89] framework to connect the FPGA to the host workstation (and

thus the GPU).

3.5.3 GPU Design

We designed each component on the GPU as an individual CUDA kernel. Kernels

use global memory for inter-kernel coordination and for I/O data transfer. Using multiple

computation dedicated kernels can improve performance over a single monolithic kernel.

The data access strategies and thread dimensions can vary from kernel to kernel to

more closely reflect the computation. This results in overall faster execution of all the

components.

In the design of each kernel, we fully parallelized each stage to obtain the highest
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GPU core occupancy. We implemented the normalized pixel calculation, conjugate

multiplication, and phase shift using straight forward element-wise parallelism. The

spatial Gaussian filter and temporal median filter use window/tap-wise parallelism. We

used the cuFFT library provided by NVIDIA to implement the 32 K element FFT and

IFFT operations. The peak search is implemented as a CUDA reduction, which uses

memory access optimizations such as shared memory, registers, and contiguous memory

assignment.

The FFT, conjugate multiplication, IFFT, and peak search are the major com-

ponents of the algorithm on the GPU. Each requires ultra-high throughput and their

performance is directly related to the amount of data they must process. We were able

to reduce the throughput requirements for these computations, and thus improve perfor-

mance, with the aid of the CPU. To do so, we created two stages, a lean peak search and

a relative phase difference conversion (RPDC) to replace the original peak search stage.

The lean peak search only calculates the necessary peaks by the same reduction method

used in the original peak search stage. The RPDC converts the result of the lean peak

search stage to the full phase difference by using the fact that relative differences are

transitive. For example, we calculate the phase difference between pixel arrays a and b,

and between arrays b and c using lean peak search. Let these differences be tab and tbc

respectively. Then tac = tab− tbc. This optimization reduces the throughput in the FFT,

conjugated multiplication, IFFT and peak search by 5×. The RPDC is a low-throughput

computation, dominated by branching logic. This would execute with low efficiency on

the GPU’s SIMD architecture. We therefore implemented the relative phase conversion

stage on the CPU shown as 3© in Fig. 3.3.
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Figure 3.3. FPGA-GPU heterogenous architecture. (a) Algorithm execution diagram
with throughput analysis. (b) Computation groups running concurrently in the system.
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60

3.6 Results and Analysis

3.6.1 Experimental Setup

We use the same experimental parameters described by Sung et. al [76] to guide

our experiments. Input video is 100×100 resolution 8 bit grayscale video.

All our experiments are run on an Intel i7 quad-core 3.4 GHz workstation running

Ubuntu 10.04. The FPGA is connected to the workstation via x1 PCIe Gen1 connector.

We use a Xilinx ML506 development board with a Virtex 5 FPGA. All FPGA cores

were developed using Xilinx tools, ISE and XPS, version 13.3. The GPU is an NVIDIA

GTX590 with 1024 cores.

Our heterogenous design is controlled by a C++ program and compiled using

GCC 4.4 and CUDA Toolkit 4.2. The C++ program interfaces with the CUDA API and the

RIFFA API [89] to access the GPU and FPGA respectively. It provides simulated camera

to the FPGA and coordinates transferring data to and from the FPGA and CPU/GPU.

3.6.2 Performance

Our design can execute both stages (group 1© and groups 2©, 3©, and 4©) concur-

rently as stage one executes on the FPGA and stage two executes on GPU/CPU. Stage

one can process a second’s worth of video in 0.82 seconds, at a rate of 1248 fps. However

since the camera only delivers data at a rate of 1024 fps, the FPGA takes a full second to

complete stage one. Transfer time is masked by pipelined DMA transfers. Thus at the

end of one second, effectively all the data from stage one is in CPU memory. The GPU

executes all computations in stage two in 0.86 seconds. Because an entire second’s worth

of data must be processed in at a time in stage two, the total latency is 1.86 seconds from

the time the camera starts sending data until the time a full second’s worth of processed

data is available in CPU memory. This only affects latency. Both stages execute at,
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or faster than real-time. A video of our FPGA-GPU-CPU implementation working on

captured data can be found at: http://www.youtube.com/watch?v=EfvXenkiGAA.

We compare our performance against the original serial software implementation,

an optimized C++ multi-threaded software implementation, and an optimized GPU

implementation in Fig. 3.4.
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Figure 3.4. The performance of the FPGA-GPU-CPU heterogenous implementation in
comparison to the original Matlab, the OpenMP C++, and the GPU only implementation.
.

The original serial software implementation was designed and published by Sung

et. al [76]. The authors did not provide execution times for a full second’s worth of

data. However, running the same software on our i7 workstation takes 39 mins for

one second’s worth of data. To attempt a more fair comparison that uses all the cores

of a modern workstation, we implemented an optimized C++ version (with the same

algorithm implemented on the heterogeneous system). This version uses the OpenMP

API to parallelize portions of the application across multiple cores. The optimized

C++ program also used direct access tables to avoid computation such as trigonometric

functions and the FFT output indices. This implementation took 4.6 mins to perform the

http://www.youtube.com/watch?v=EfvXenkiGAA
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same task. This is equivalent to 3.66 fps. We feel that this is an appropriate baseline for a

software comparison. Our FPGA-GPU-CPU design runs 273× faster that an optimized

C++ software version.

An optimized GPU implementation is described fully in [88]. It represents months

of optimization tuning. It performed at a respectable rate of 578 fps. But it would have to

be nearly twice as fast to achieve real-time performance. Additionally, like all the other

implementations except the FPGA-GPU-CPU implementation, it would require the use

of a frame capture device to be used in any real world scenario. This is a detail often

overlooked when comparing performance.
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Figure 3.5. Error of the output of the optical mapping image conditioning (blue line)
and error in repolarization analysis (red line). For any point (x,y) on the curve, the x
represents the error in percentage scale while the y represents the percentage of pixels
whose errors are greater than x.
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3.6.3 Accuracy

As described in Section 3.4, the 8 bit representation of pixels (instead of 32 bit)

introduces errors to the result. Algorithmic parameters limit processing of pixel arrays to

those with values above 60 and with variance above 2. This limits the amount of error

any one pixel can incur to 0.83 % when using 8 bits instead of 32 and rounding to the

nearest integer. However the normalization base value may be arbitrarily close to to any

pixel value. Therefore, the normalized error for any pixel is unbounded. Indeed, this is

evident in Fig. 3.5. Some of the pixel locations show relatively significant errors. For

example, about 13.8% of pixels have error greater than 10%. In practice however, we

show that this is not as significant to the medical analysis.

We applied the repolarization extraction algorithm described in [76] on both

the FPGA-GPU-CPU and baseline CPU implementation outputs. Fig. 3.5 shows the

repolarization error. This error is significantly lower than the image conditioning error.

Only 2.6% of the repolarization analysis have error greater than 10%. This result indicates

that using an 8 bit representation of interpolated pixels only slightly impacts biomedical

features that would be extracted from the output.

3.7 Summary

We have addressed the challenge of real-time optical mapping for cardiac elec-

trophysiology and presented a heterogeneous FPGA-GPU-CPU architecture for use in

medical applications. Our design leverages the stream processing of a FPGA and the

high bandwidth computation of a GPU to process video in real-time at 1024 fps with an

end to end latency of 1.86 seconds. This represents a 273× speedup over a multi-core

CPU OpenMP implementation. We also discussed our partitioning strategy to achieve

this performance.
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Chapter 4

Re-thinking Machine Learning for
OpenCL Design Space Exploration on
FPGAs

4.1 Background and Motivation

FPGAs have demonstrated multiple advantages as a heterogeneous accelerator

in many different high performance computing tasks [28, 7, 90, 91, 92, 93]. One of the

greatest challenges to implement FPGA accelerated systems is the design complexity due

to the nature of hardware design. Recently, system-level (or high-level) synthesis tools

have effectively addressed this challenge by replacing the register-transfer level (RTL)

design technique with software languages (C++, OpenCL) [42, 43, 94, 95, 96, 97, 98].

The adoption of OpenCL is especially appealing since the language has been widely

utilized to program other heterogeneous accelerators such as multi-core CPUs and GPUs.

With the state of the art OpenCL synthesis tools, heterogeneous system designers are

now able to achieve a longtime desired goal – to program different devices with a single

unified language.

Although the OpenCL-to-FPGA tools have significantly reduced the design

complexity, one major bottleneck still exists in design space exploration (DSE) due to the

extremely long synthesis runtime of these tools. The compilation process of the software

66
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OpenCL code running on the processors (CPUs or GPUs) usually only consumes several

milliseconds. In contrast to the software compilation, implementing an OpenCL design

on the FPGA usually requires multiple hours for a high performance workstation to

complete the hardware synthesis (including place and route) process. Moreover, the size

of the design space grows exponentially with the number of the tunable parameters in

the design. For example, the designer can generate thousands of different designs for a

simple matrix multiplication by tuning the parameters in the OpenCL code. Synthesizing

all of these designs (demonstrated in Fig. 4.1) for the brute force DSE is impractical

since the process consumes thousands of computing hours.

One solution to this challenge is the machine learning technology which predicts

the Pareto-frontier (“good” designs) based on a small training sample. The small training

sample reduces the required synthesis time significantly. However, using machine

learning is risky. Machine learning may incorrectly exclude some actual Pareto designs

in its predicted output. Most of the existing machine learning frameworks attempt to

accurately model how the design objective functions respond to the tunable parameters in

the designs. This track of effort does not enhance the eventual goal of seeking the “good”

designs.

To address this issue, we re-thought how to use machine learning for system

level DSE on FPGAs. We propose a framework - Adaptive Threshold Non-Pareto

Elimination (ATNE) which takes a fundamentally different track from the other existing

attempts. Instead of focusing on improving the conventional accuracy of the learner,

our work focuses on understanding and estimating the risk of losing “good” designs

due to learning inaccuracy. The goal of ATNE is to minimize this risk.

To the best of our knowledge, our work is the first attempt to investigate machine

learning aided system level (or high-level) DSE with real performance data from

end-to-end (the synthesis process includes the place and route stage) applications
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running on the FPGA.

The rest of this chapter is organized as follows. We review the state of the art

machine learning frameworks for hardware DSE problems in section 4.2. We formulate

the problem in section 4.3. In section 4.4, we provide the theoretical foundation for

ATNE. In section 4.5, we describe the ATNE algorithm. We report the evaluation results

in section 4.6. We summarize the chapter in section 4.7.

4.2 Related Work

In recent years, researchers have been applying machine learning algorithms

on hardware DSE problems such as IP core generation[99] and timing results[100].

The high-level design is processed by more layers of the design tool-chain. Moreover,

high-level designs are usually written in “software-like” styles. It is more difficult to

predict how a high-level parameter would affect the low-level architecture. Therefore,

applying machine learning on high-level DSE is a different task than those addressed in

the existing low-level tuning frameworks.

Researchers have also attempted to use machine learning to aid high-level DSE.

Liu and Carloni proposed a framework using experimental design in [65]. This type of

framework focuses on seeking the sampling that describes the design space accurately.

The second type of the existing frameworks are uncertainty sampling based. Zuluaga et

al. proposed an active learning algorithm that iteratively samples the design which the

learner cannot clearly classify in [64].

Most of these existing frameworks focus on how to learn an accurate model to

describe the design space. The learning accuracy improves the quality of the models

that describe how the design space responds to specific tuning parameters. However,

this effort may still not be enough to improve the probability of correctly identifying the

Pareto-set, which is the ultimate goal of DSE.
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Figure 4.1. The visualization of the design space of the matrix multiplication application
in the objective space using the OpenCL-to-FPGA tool. The red dots are the Pareto-
frontier.

Our approach explores a fundamentally different track from these existing works.

Instead of further improving the learning accuracy, we chose to understand and estimate

the inaccuracy of the learner. Based on the estimated inaccuracy, we adaptively choose a

threshold to improve the quality of Pareto design identification.

4.3 Problem Formulation

In this section, we firstly introduce the concepts of the design space and the

Pareto-frontier. Then we formulate the problem that our framework tackles.

Design space and objective space: We refer to the programming choices in

the OpenCL code as tunable knobs. The examples of knobs and their impacts on the

hardware architecture are listed in Table 4.1.
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Table 4.1. Tunable Knobs in the OpenCL Code and Their Impacts on the Hardware
Architecture

Number OpenCL Knob Impact on HW Arch.
1 Num. SIMD SIMD parallel width & mem. BW
2 Num. comp. unit Num. parallel ctrl. & mem. BW
3 Unroll factor module replic. mem. access pattern
4 Local buffer height and width BRAM partition & access pattern
5 Num. private variables Num. registers
6 Vectorization Width SIMD parallel width
7 Num. work-items per group ctrl. logic
8 Data size per work-item Data locality

For a given application which owns K knobs in the OpenCL code, we use deno-

tation x = (x1,x2,x3, ...,xK) to refer to a knob setting. All possible knob settings for a

given OpenCL code form D = {k} (called design space). The designers usually evaluate

the FPGA designs with multiple objectives (e.g. throughput, logic utilization) which

can be represented by functions φ(x) = (φ1(x),φ2(x), · · · ,φM(x)): D 7→ R. Then the

objective space is the image of the design space: φ(D)⊂ RM. Fig. 4.1 demonstrates the

design space image in the objective space of the matrix multiplication application.

Pareto-frontier: In DSE, the goal is to make trade-offs on the Pareto-frontier

(“good” designs). Here, we provide the formal definition of the Pareto-frontier. We use

canonical partial order “≺” in RM to represent one design is inferior in all objectives

to another: φ(x) ≺ φ(x′) iff φi(x) < φi(x′), 1 ≤ i ≤ M. The Pareto-frontier P ⊆ D is

defined as: P = {x ∈ D | ∀x′ ∈ D,φ(x)� φ(x′)}. The red dots in Fig. 4.1 demonstrate

the Pareto-frontier of the matrix multiplication design space.

Problem Formulation: Given an OpenCL application, predict P synthesizing

the minimal number of designs in D.

Prediction quality: We use average distance from reference set(ADRS)[101] as

the metric to evaluate the prediction quality of the framework. ADRS is defined as :
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ADRS(Pgt ,Ppred) =
1
|Pgt | ∑

pgt∈Pgt

min
ppred∈Ppred

d(pgt ,ppred),

where

d(pgt ,ppred) = max
m=0,1,...M

(
0,

φm(pgt)−φm(ppred)

φm(pgt)

)
.

4.4 Re-thinking Machine Learning for System Level
FPGA DSE

In this section, we firstly reveal a pitfall in the existing machine learning ap-

proaches for FPGA DSE. Then we provide some theoretical results as the foundation of

ATNE.

4.4.1 Pitfall: attempting to learn more accurately

The main effort of most existing machine learning frameworks in hardware DSE

focuses on how to regress the design objective functions more accurately. Improving the

regression accuracy certainly generates more precise models to describe the objective

function. However, this strategy has a pitfall in the further Pareto design prediction.

Here, we provide empirical results using the matrix multiplication example to

demonstrate this pitfall. We used transductive experimental design (TED) technology

[102] to sample the design space of an OpenCL matrix multiplication code on the FPGA.

We used the random forest (RF) algorithm to learn two objective functions – performance

and logic resource utilization. We directly use the regressed functions to identify the

Pareto designs (i.e. those predicted as inferior to at least one design are considered

non-Pareto). We measure two metrics: (1) mean square error (MSE) to illustrate the

regression accuracy of the objective functions; (2) percentage of x such that x ∈ Pgt and

x /∈ Ppred to illustrate how many actual Pareto designs are not selected by the learner. We
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Figure 4.2. Demonstration of the pitfall of improving learning accuracy. Improving the
MSE does not improve the misprediction of Pareto designs.

tested multiple training sample sizes (5%, 10%, 15% ... 85% of the entire design space)

to generate regressed functions with different accuracies.

As shown in Fig. 4.2, improving the regression error does not necessarily improve

the correctness of the Pareto prediction. Moreover, even when we sampled 85% of the

design space to train the learner, the learner still mispredicts approximately 60% of the

Pareto points. This means if we follow the conventional track to focus solely on the

learning accuracy, the designer may still miss more than half of the “good” designs!

4.4.2 Re-thinking: understanding the error from the learner

We investigated how the learner inaccuracy affects the final Pareto design predic-

tion quality. We still use RF as an example for the regresser. The RF takes several designs

as a training sample to learn the design objective functions. Let φ̂ denote the design

objective function vector regressed by the RF. Let T denote the number of decision trees

in the RF. The RF algorithm produces the final output by computing an arithmetic mean

of the outputs of all the trees:
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φ̂=
1
T

T

∑
t=1

φ̂t .

Each tree of the forest is trained on an independently and randomly selected

bootstrap of the training data. The outputs of all the trees should independently have

the same distribution. Therefore, according to the central limit theorem, the output of

the RF is normally distributed (even though we specifically selected RF as the learner

here, our theoretical result still stands as long as the output of the learner is an arithmetic

mean of i.i.d. random variable). Since the difference between two normally distributed

random variables is still normally distributed, for any two designs x and x′, the difference

φ̂(x)− φ̂(x′) is also normally distributed.

With this reasoning, we can describe φ̂(x)− φ̂(x′) as a normally distributed

random variable when we apply RF to regress the objective functions of a design space.

The expectation and the variance of this random variable are determined by the training

data and how we train the forest (the parameter setups of the RF). With the aid of this

mathematical model, we can analyze how the regressor (RF) affects the Pareto prediction.

Assuming we use the regressed objective functions to identify the Pareto designs,

the conventional threshold is:

x /∈ Pgt , if ∃x′ ∈ D s.t. φ̂(x)≺ φ̂(x′).

The cumulative distribution function (CDF) of φ̂m(x′)− φ̂m(x) is demonstrated in

Fig. 4.3. Assuming x is incorrectly predicted as inferior to x′ by the RF, the expectation

of φ̂m(x′)− φ̂m(x) should be greater than 0. According to the monotonicity of the normal

distribution CDF, we can show that Pr[φ̂m(x′)− φ̂m(x)≤ 0] is less than 50%. If variance

of φ̂m(x′)− φ̂m(x) decreases, this probability of correcting the misprediction becomes

even lower (shown by the “dot” curve). Therefore, training a more stable learner may
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Figure 4.3. CDF of φ̂m(x′)− φ̂m(x)

decrease the probability for the actual Pareto design to be identified.

An apparent solution to this issue is to lift the threshold from 0 to δ (a vector of

thresholds for multiple design objectives):

x /∈ Prelaxed , if ∃x′ ∈ D s.t. φ̂(x)+δ ≺ φ̂(x′)

With this δ, the probability for the learner to think an actual Pareto design x is

not inferior to x′ becomes Pr[φ̂m(x′)− φ̂m(x)≤ δm]. Due to the monotonicity of the CDF,

this new probability is definitely greater than Pr[φ̂m(x′)− φ̂m(x)≤ 0]. However, lifting

this threshold δ increases the probability for the framework to output those non-Pareto

(“bad”) designs. For this reason, we name this output set Prelaxed meaning “relaxed”

Pareto-set. An extreme case of this side-effect is all non-Pareto designs are selected into

this Prelaxed by lifting the threshold beyond the necessity. Then the framework outputs

the entire design space which is equivalent to the brute force approach. Therefore, in
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order to predict the Pareto designs efficiently, the framework requires an appropriate δ .

We describe this appropriate δ in Theorem 1.

Let µm and σm denote the expectation and variance of φ̂m(x′)− φ̂m(x) respectively.

Let er f−1 denote the inverse Gauss error function (Gauss error function is used in the

expression of normal distribution CDF function). We describe our theoretical result as:

Theorem 1 The m component of the minimal threshold δ to guarantee Pr[x∈Prelaxed|x∈

Pgt ]≥ α is

δm = max
∀x∈Pgt , ∀x′∈D

(µm +σm
√

2er f−1(2α−1)).

The proof of Theorem 1 is straightforward – use the quantile formula of the

normal distribution and its monotonicity. We describe how to practically estimate this

minimal threshold in lines 8 to 17 of Algorithm 4.1.

4.5 ATNE Algorithm

We describe ATNE in Algorithm 4.1. ATNE actively samples data and iteratively

eliminates the non-Pareto designs. Although ATNE uses two existing technologies, active

learning and experimental sampling, we applied these technologies with a completely

novel strategy. The major novelty of the ATNE algorithm is the three stages (lines 8 to

33 in Algorithm 4.1): (1) estimate δ, (2) elimination and (3) active sampling. The stages

initial sampling and model learning only serve as the starting point for the other three

stages. We describe each stage in detail in the rest of this section.

Initial Sampling: At the initial state, we use TED to sample the designs purely

based on the knob setting information. TED has been proven effective for this task in [65].

This initial stage only serves as a starting point for the δ estimation and elimination stages.

We only sample 6 designs (minimum for the first round of random forests regression).
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Algorithm 4.1: The ATNE Algorithm
Input : Design space D; Number of initial samples Sinit ; Target final size of

Prelaxed : S f inal; Target correctness probability α; Number of forests F ;
Minimal number of candidates for δ estimation: C

1 Prelaxed = D, L = /0

Initial Sampling
2 initially sample the designs L=TED(D,Sinit)
3 while |Prelaxed |< S f inal do
4 set of designs to be eliminated E = /0

Model Learning
5 for f = 1 to F do
6 regress φ̂ f on L using random forest f
7 end

Estimate δ
8 ∆candi. = /0
9 for ∀x and ∀x′ ∈ Prelaxed ∩L do

10 µ̂x,x′ =
1
F ∑

F
f=1 φ̂ f (x′)− φ̂ f (x)

11 σ̂x,x′ =
√

1
F ∑

F
f=0(φ̂ f (x′)− φ̂ f (x)− µ̂x,x′)2

12 δx,x′ = µ̂x,x′+ σ̂x,x′
√

2er f−1(2α−1)
13 if µ̂x,x′ > 0 and ground truth x is superior to x’ then
14 ∆candi. = ∆candi.∪{δx,x′}
15 end
16 end
17 δ = max(∆candi.)

Elimination
18 E = /0
19 for ∀x and ∀x′ ∈ Prelaxed do
20 if φ̂ f (x′)− φ̂ f (x)≺ δ and |∆candi.| ≥C then
21 E = E ∪{x}
22 end
23 end
24 Prelaxed = Prelaxed−E

Active Sampling
25 sample the design x̂ that is most difficult to eliminate in Prelaxed
26 synthesize x̂, L = L∪{x̂}
27 end
28 synthesize designs in Prelaxed− (Prelaxed ∩L)
29 Ppred = brute force Pareto-frontier search on Prelaxed ∪L

Output : predicted Pareto set Ppred
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Model Learning (Regression): The random forest is suitable for the discrete

nature of the design knob settings. Therefore, we chose RF for regression. As described

in lines 5 to 7 of Algorithm 4.1, we train multiple RFs with the sampled designs instead of

a single forest. Using these trained forests, we can estimate the µ and σ of the distribution

of φ̂m(x′)− φ̂m(x) for the next stage. Also, the regressed objective functions are used for

eliminating the non-Pareto designs.

Estimate δ: Estimating an appropriate δ aids the framework to find the Pareto

designs accurately and efficiently. The theoretical minimal δ is provided by Theorem 1.

However, in reality, the framework cannot obtain the real distribution as in the theorem.

Therefore, we use the sampled data to estimate this δ. We compute the approximate

µ and σ from the regressed results of the F forests as shown in lines 10 to 12 of the

algorithm. Among all the sampled data, we only collect those “under-estimated” (i.e.

the forests predict this design is inferior to another design when in fact the ground truth

design is non-inferior, as shown in line 13) ones to compute the δ candidates. In order to

maximize the probability Pr[x ∈ Prelaxed|x ∈ Pgt ]), we then select the greatest candidate

to be the estimated δ.

Elimination: The elimination happens only when the number of δ candidates

is greater than the parameter C (shown in line 20). This prevents the case when the

framework does not have enough ground truth data to estimate δ. When the framework

has enough ground truth to estimate δ, it eliminates the designs that meet the criteria

φ̂ f (x′)− φ̂ f (x)≺ δ. As discussed earlier, using this criteria, the algorithm is unlikely to

eliminate the ground truth Pareto designs. The size of Prelaxed iteratively decreases. The

transition of this elimination process is visualized in Fig.4.4. As shown in this example,

the eliminated designs are mostly non-Pareto in each iteration.

Active Sampling: The traditional active sampling aims to provide the data to

refine the learner [103, 64]. However, as discussed in Section 4.4, this traditional strategy
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(a) (b) (c)

Figure 4.4. Transition of eliminating the predicted non-Pareto designs. The grey dots
represent the eliminated designs (set E). The green dots represent set Prelaxed). (a) initial
state; (b) iteration = 15; (c) iteration = 80.

may not serve the DSE goal effectively. In contrast to traditional active sampling, our

strategy in ATNE focuses on mitigating the side-effect that δ increases Pr(x ∈ Ppred|x /∈

Pgt). We select the design that has the highest Pr(x ∈ Ppred|x /∈ Pgt). Therefore, in order

to eliminate this design quickly, we synthesize it to enable its elimination by using the

ground truth data.

4.6 Results

In this section, we firstly describe the experimental setup. Secondly, we compare

the prediction quality of ATNE against the other state of the art frameworks.

4.6.1 Experimental Setup

We selected 8 OpenCL applications: matrix multiplication (MM), Sobel filter,

FIR filter, histogram (HIST), discrete cosine transform (DCT), breadth-first search

(BFS), sparse matrix-vector multiplication (SpMV), and the Needleman-Wunsch (NW)

algorithm. For BFS and SpMV, we used two different input data sets. Therefore, we

created 10 benchmarks in total. The synthesis processes of these applications include the

place and route stage. Collecting the ground truth data of all 10 design spaces costs us

more than 10000 computing hours (5 months using 3 high-end 8-core workstations). We
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Table 4.2. Details of OpenCL Benchmarks

Application Domain Specification Tuning
knobs

MM matrix operation 1024×1024 1 - 8
Sobel sliding window 1080p 1,2,4-8
FIR sliding tap 128 taps 1,2,4,5,7,8

HIST global sum 256 bins 2-5,7,8
DCT transformation 8×8 block 1 - 8
BFS graph operation sparse and

dense graph
1 - 8

SpMV sparse matrix density: 0.5%
and 50%

2 - 8

NW dynamic
programming

string length:
512

1 - 8

Tuning Knobs: 1) #SIMD, 2) #Units, 3) Unroll Factor, 4) Local
Memory size, 5) #Registers, 6) Vectorization Width, 7) #Work-
items, 8) Data Size per Work-item

use these ground truth data to evaluate the prediction quality of ATNE.

These benchmarks represent several common computation patterns in high per-

formance computing. We also applied multiple widely used OpenCL programming

techniques. We tuned multiple OpenCL parameters, such as blocking size, SIMD width,

and local array size to generate a considerable design space for each benchmark. The

details of these benchmarks are listed in Table 4.2.

The OpenCL-to-FPGA tool we used is Altera OpenCL SDK 14.1. The exper-

imental board is Terasic DE5-net with an Altera Stratix V FPGA. We choose the two

most important design metrics – throughput and logic utilization (ALMs) as the learning

objectives.

We configure the parameters of ATNE as follows: we set Sinit = 6 (only as a

starting point, the main sampling process relies on the active learning stage of ATNE);

we set the target size S f inal = 5 as a reasonable synthesizing time. We empirically

set the parameter C to 12. We set the number of forests F = 10. We ran ATNE with
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multiple α’s to evaluate the prediction qualities of ATNE for different synthesis costs.

The RF algorithm we used is the Matlab MEX version converted from the Fortran version

designed by Breiman [104]. We configured the number of trees to 50 and the bootstrap

coefficient to 0.37 for the RF.

4.6.2 Prediction Quality

Fig. 4.6 visualizes the Pareto prediction results produced by ATNE. The synthesis

complexities required to produce these results are also listed in Fig. 4.6. The framework

identified most of the Pareto designs as shown in the figure.

We quantify the prediction quality of ATNE using ADRS calculated by the

normalized ground truth data. We compare the ADRS qualities of ATNE against the

other two state of the art frameworks PAL[64] and TED[65]. As shown in Fig. 4.7, we

report the ADRS vs. sampling complexity of all three frameworks. From the figure, it

is obvious that ATNE outperforms the other two frameworks. More specifically, we set

the accuracy threshold ADRS≤ 0.01 meaning the predicted Pareto points are inferior

to the ground truth Pareto points no more than 1% for any design objective. For a

real-world design task, this means we find a design that is almost the optimal. The

results in Fig. 4.7 indicate that our ATNE framework achieves less prediction errors with

lower sampling complexities for most of the benchmarks. Especially for FIR, ATNE

achieves ADRS≤ 0.01 with a significantly low sampling complexity while the other two

frameworks are incapable of achieving such a prediction quality. In addition, for multiple

benchmarks other than FIR, TED and PAL are incapable of achieving ADRS≤ 0.01. In

contrast to TED and PAL, ATNE reaches this ADRS threshold for all benchmarks. Since

all 10 benchmarks have very different design spaces (as shown in Fig. 4.6), this result

indicates the robustness of ATNE for the DSE problem of multiple types of applications.

Moreover, ATNE significantly reduces the sampling complexity. The minimal
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sampling complexities required to reach ADRS≤ 0.01 are reported in Fig. 4.5. In

comparison with PAL and TED, ATNE reduces the sampling complexity by 1.29×,

1.24×, 1.34×, 1.11×, 1.02×, 2.30× and 4.12× for MM, Sobel, HIST, BFS Sparse,

BFS Dense, SpMV 0.5% and NW respectively. For FIR and HIST, TED and PAL are

incapable of achieving ADRS≤ 0.01. Therefore, for these two benchmarks, we compare

ATNE against the brute force method, i.e. 100% complexity. Only for SpMV 50%, ATNE

consumes 0.02× more sampling complexity than PAL does. On average, ATNE reduces

the sampling complexity by 3.28× against PAL and TED. Since each synthesis run takes

hours, these speedups could save hundreds of computing hours for the designers.
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4.7 Summary

In this chapter, we presented a machine learning framework – ATNE for the

design space exploration on the OpenCL-to-FPGA tool. ATNE applies a novel strategy of

machine learning on the system level FPGA DSE task. We evaluated the effectiveness of

ATNE using 5 end-to-end OpenCL applications running on the actual FPGA board. The

experimental results indicate that ATNE outperforms the other state of the art frameworks

by 3.28× in sampling complexity for the same prediction accuracy. ATNE is also capable

of identifying the Pareto designs for the difficult design spaces which the other existing

frameworks are incapable of exploring effectively.
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Chapter 5

Can One Use Pre-PnR Estimation
Data to Aid FPGA Design Space Ex-
ploration?

5.1 Background and Motivation

In contrast to GPU and CPU OpenCL code compilation, which only consumes

several milliseconds, implementing OpenCL designs on an FPGA requires hours of

compute time. Moreover, merely tuning a few programming parameters in the OpenCL

code will result in an abundance of possible designs (as demonstrated in Fig. 5.8).

Implementing all these designs requires months of compilation time. Due to this fact,

exploring the FPGA design space with brute force is almost impossible. Even performing

hundreds of FPGA synthesis runs is prohibitive. In order to address this problem, machine

learning framework in Chapter 4 has been developed to automatically predict the “good”

(Pareto) designs by implementing and sampling only a small number of designs.

Although the GPU and FPGA are two different compute platforms, they are

both dictated by the OpenCL programming model. The OpenCL design on the FPGA

contains many GPU-like architectural features such as SIMD, compute unit parallelism,

and local/global memory hierarchy. It is therefore reasonable to believe that if one uses

OpenCL programming language on both devices, the GPU and FPGA design spaces will

85
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share a certain level of similarity. In contrast to implementing a design on the FPGA, it is

significantly cheaper to compile a GPU program (milliseconds compilation on the GPU

vs. hours of synthesis time on the FPGA). Therefore, one can easily obtain the GPU

performance for a substantial number of the FPGA designs. Based on these observations,

we aim to answer the question: Can one use the GPU performance as an estimation to

reduce the amount of implementations required for the FPGA design space exploration

(DSE)?

In addition to GPU performance, one can quickly obtain the pre-place and route

(pre-PnR) hardware utilization report and pre-PnR estimated throughput, which are

generated quickly during the beginning stages of the OpenCL-to-FPGA tool chain.

Therefore, we developed another question: Can one also use these estimation data to

reduce the implementation time in the FPGA DSE?

In this chapter, we answer these questions. To the best of our knowledge, this

work is the first attempt to mine estimation such as GPU performance and pre-PnR results

to aid FPGA DSE. Our approach reduces the sampling complexity for FPGA DSE by a

factor of 1.26× against the other state-of-the-art approaches.

The remainder of the chapter is organized as follows. In Section 5.2, we review

related work. In Section 5.3, we provide a high-level description of the problems that we

investigated. We provide more detailed empirical studies for these problems in Section

5.4. We describe the algorithm for our approach in Section 5.5. In Section 5.6, we

provide a theoretical analysis to determine an important parameter in our algorithm. We

evaluate the effectiveness of our approach in Section 5.7. Section 5.8 summarize the

chapter.
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5.2 Related Work

The topic of this chapter covers two areas of study. One area is using machine

learning for hardware DSE. In recent years, researchers have been investigating how to

use machine learning techniques to aid high-level synthesis DSE [65, 64]. The main

idea of these studies is to predict the entire design space by sampling a small number

of implementations. These previous works effectively reduced the compute time of the

synthesis tools. However, these works only tried to use data from the target architecture

(e.g., FPGA). These existing methods overlook the opportunity to use the training data

from another architecture that is similar to the target architecture, which may provide

a further reduction of the DSE time. Our work is not merely an extension of these

machine learning frameworks. In this chapter, we use machine learning to research a

more fundamental architecture/EDA question, while the contributions in [65, 64] focus

on building a machine learning algorithm for FPGA DSE.

The second area of related work is investigating the performance probabilities

between different architectures that can be programmed with the OpenCL language.

In recent years, researchers have proposed multiple automated porting tools such as

[105, 106, 107]. These tools study the differences among various processors (e.g., CPUs

and GPUs). These studies have not addressed the OpenCL DSE problem on the FPGAs.

Moreover, these studies are solving the problem of how to mitigate the differences

between the architectures instead of how to mine the valuable similarities between

different architectures.

In this chapter, we address these questions that are overlooked by the previous

studies. Our approach focuses on extracting the useful information from the similarities

between different architectures. We also studied how to use the extracted information to

aid the existing machine learning DSE frameworks.
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5.3 Overview

The OpenCL programming model provides the designer multiple tunable parame-

ters such as size of local memory arrays, vector widths, and unroll factors. Modifying

these parameters results in different performance. In the remainder of this chapter, we

will refer to these tunable parameters as “knobs”. For an OpenCL-to-FPGA design, these

knobs also determine the hardware utilization. Therefore, for a given FPGA application,

tuning these knobs can generate a space which consists of many designs with different

performances and hardware resource utilizations as shown in Fig. 5.8. The goal of DSE

is to find the Pareto designs for an application.

In the remainder of this chapter, we will refer to GPU performance, pre-PnR

throughput estimation, and pre-PnR resource utilization estimation as estimation data

since they can be used to roughly estimate the real designs on the FPGA. Generating

these estimations requires significantly less compute time than obtaining the real FPGA

measurements does. However, the estimations are not identical to actual FPGA mea-

surements, i.e., there exists some level of inaccuracy (potentially substantial differences)

in the estimation data. For these reasons, the possibility of whether one can use the

estimation data for FPGA DSE is unclear. The focus of this chapter is to investigate this

problem.

We divided this broad problem into several more specific questions. The first

question is: “Can one directly replace the real FPGA data with the estimation data for

DSE?” The answer is “no”. The benefit of this approach is that it requires no PnR process

except for the final implementations of its predicted Pareto designs. However, a serious

issue exists in this approach – the predicted Pareto points may not be the true Pareto

designs of the actual FPGA implementations. Therefore, using this approach may result

in implementing the sub-optimal designs and ignoring the optimal ones. We provide a
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more detailed study on this issue in Section 5.4.2.

The second question is an extension of the first one: “Starting from the output of

the first approach, can one permutate the knobs to conduct a local search around these

predicted Paretos?” The answer is still “no”. It is a complex procedure to permutate

multiple knobs for the local search. In fact, in order to achieve the real Pareto designs, one

needs to specifically tune multiple knobs in the right direction to particular values. Due

to this fact, the local search may require several hundreds of real FPGA implementations.

This defeats the original purpose of using estimation data to save compute time.

The estimations provide us a mixture of correct and incorrect information for

the real FPGA design space. This is the main cause of the issues in the previous

two approaches. Based on this observation, the third question is: “Can one mine the

estimation data to find the useful information for FPGA DSE?” Our final evaluation

results in Section 5.7 provide a positive answer to this question. More details of how to

build the data mining method are provided in Section 5.4.3.

Fig. 5.1 provides a brief overview of our approach. We built a method to mine

the estimations and inject the extracted useful information into an existing machine

learning framework. The data mining method extracts the order information, i.e., whether

design A outperforms design B. We use the order information to identify the non-Pareto

designs and remove them. In this way, the framework can avoid wasting compute time

on implementing these non-Pareto designs.

As shown in Fig. 5.1, our estimation mining approach works independently

from the machine learning framework. It shares the same sampled FPGA data with the

machine learning framework. Therefore, our approach can be connected to various types

of machine learning frameworks with almost no modification. In this chapter, we chose to

connect our estimation mining approach with the machine learning framework in chapter

4 to build a full demonstrative working flow.
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Figure 5.1. Flow diagram of the FPGA DSE process using estimation data. The blue
blocks show the existing machine learning framework without using estimation data. The
green blocks represent the estimation data mining method.

5.4 Can One Use Estimation Data for FPGA Design
Space Exploration?

The discussion in this section consists of several empirical studies for the answers

to the questions we introduced in Section 5.3.

5.4.1 Experimental Setup

For the experiments in the rest of this chapter, we use the 10 benchmarks as

described in Section 4.6. We implemented the entire design space for each benchmark

on the GPU and FPGA to collect the ground truth data. For the FPGA data, we used

Altera OpenCL SDK 14.1 to generate end-to-end implementations on the Terasic DE5-

net FPGA; this process required more than 6 months on 3 high-end workstations. We

also used the “compile only” command flag of the Altera OpenCL SDK to generate the

pre-PnR hardware utilization and throughput estimation data; this process required less

than one week. We used the OpenCL SDK attached in CUDA 7.5 toolkit to measure the

performance of these benchmarks on an Nvidia Kepler K20 GPU; this process required
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less than 3 days. The compute time for collecting the estimation data is negligible in

comparison to the compute time for end-to-end FPGA implementations.

5.4.2 Can one directly use the Pareto points from the estimated
data?

The first approach we investigated is to directly use the Pareto designs from

the estimated design space, as if these estimated Pareto designs are the optimal on the

FPGA. In this approach, we only use the estimation data, without any FPGA ground truth

samples, to construct an objective space. Fig. 5.2 (a) provides an example of such an

estimation objective space generated by using GPU performance and pre-PnR hardware

utilization data. Then, we compute the Pareto designs (blue cross in Fig. 5.2 (a)) of the

estimation space. These estimated Pareto designs are considered as the final FPGA DSE

output. However, the results in Fig. 5.2 (b) indicate that this approach may not be able to

reach the optimal FPGA designs. Some these estimated Pareto designs (blue crosses) are

located quite far away from the real FPGA Pareto points (red dots).

In order to quantify the ineffectiveness of these falsely estimated Pareto designs,

we use average distance from reference set (ADRS) [101] metric. ADRS measures the

distance between the falsely estimated Pareto points (blue crosses) and the real Pareto

points (red dots) in Fig. 5.2 (b). Therefore, the smaller the ADRS that an approach

achieves, the better prediction quality it provides. We conducted this study using the

10 benchmarks. For each benchmark, we tested the GPU performance and pre-PnR

throughput estimation as two different types of performance estimations. For hardware

utilization estimation, we used pre-PnR results from the tool. As a comparison reference

without using any estimation data, we tested the machine learning approach described

in Chapter 4 on these benchmarks. Fig. 5.3 reports the ADRS results for these tests.

From our experience, an application usually has more than 10 FPGA Pareto designs.
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Figure 5.2. Example of directly using estimation data to find the Pareto frontier. (a)
Estimated objective space by directly using GPU performance and Pre-PnR resource
utilization report (blue crosses: estimated Pareto designs.). (b) Real FPGA objective
space. Blue crosses in (b): the locations of the estimated Pareto designs in the real
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Figure 5.3. Prediction errors (ADRS) of 3 different approaches: using the GPU per-
formance, the pre-PnR throughput estimation and a state-of-art learning algorithm (the
learning algorithm only samples the FPGA data and requires no estimation data).

This means if the ADRS is more than 0.01, the entire predicted Pareto set will have a

total error of more than 10%. Therefore, we set ADRS≤ 0.01 as the error threshold for

acceptable predictions (highlighted on the y-axis in Fig. 5.3).
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From results in Fig. 5.3, we observed the approach that directly uses estimated

Pareto points fails to achieve acceptable predictions for most applications. In most

cases, using machine learning without estimation data outperforms the approaches using

estimations in terms of prediction error. For certain cases such as BFS Sparse, SpMV

0.5% and NW, the estimated Pareto points achieved acceptable errors (≤ 0.01). However,

these results are false appearances of effectiveness. This is caused by the extremely

inaccurate estimation spaces. For example, in Fig. 5.4 (a), the designs in the estimation

space are located in two vertical lines. All the designs on one of the lines are predicted

as Pareto points. The designer receives a significantly large amount of predicted Pareto

points (the massive blue cross set in Fig. 5.4 (b)). This massive Pareto prediction

set has a great chance to contain all of the real Pareto designs. However, it is not an

intelligent approach. Consider an extreme version of this situation: if the estimation

predicts all designs as Pareto, the ADRS error becomes 0, but it is equivalent to using

brute force since it requires the designer to implement the entire design space on the

FPGA. Implementing all these estimated Pareto designs defeats the original purpose of

using estimation to reduce the FPGA PnR compute time.

In the BFS Sparse example, the estimation data outputs 90 Pareto points. The

number of the actual FPGA Pareto designs is only 6. This means the designer needs to

implement all 90 of those designs on the FPGA and manually identify the 6 real Pareto

points among them. Using the machine learning approach in Chapter 4 can achieve a

comparable error, while it only requires 36 FPGA implementations. Therefore, in this

case, although the estimation data provides an accurate Pareto prediction, it requires

more compute time for FPGA PnR instead of reducing it.

In summary, it is unreliable to directly use the estimated data for FPGA DSE.

Moreover, although the approach achieves an acceptable error result in a few cases, the

cost of implementing all of its output defeats the purpose of the prediction. Due to these
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Figure 5.4. An example of extremely inaccurate estimation space. (a) Estimation
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predicted as Pareto points. (b) Real FPGA objective space. Only 6 designs (red dots) are
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reasons, our answer is “no, one cannot directly use the estimated data to find FPGA

Pareto points”.

5.4.3 Can one mine the estimation data for FPGA DSE?

As mentioned in Section 5.3, the quick answer is “yes”. Here, we provide a more

detailed answer to this question by showing the process of how we built the approach

for estimation data mining. We use the GPU and FPGA performances as an example

to describe this approach. In this example, the GPU performance is the estimation

while the FPGA performance is the ground truth. We assume the designer has the GPU

performance data of the entire design space since one can quickly compile and run

the program on the GPU. We also assume the designer only has a few sampled FPGA

performance data due to the time consuming implementation process on the FPGA.

We chose to predict the pair-wise order (e.g., design i outperforms design j) for
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the FPGA design space. Each pair has a correspondent element in the order correlation

matrix shown in Fig. 5.5 (a). The order correlation represents whether the pair has the

same order or opposite orders on the GPU and FPGA. If we know the order correlation

of (i,j), we can accurately use the GPU performance data to calculate the order between

designs i and j on the FPGA. Furthermore, if we know every value in the order correlation

matrix, we can calculate the FPGA Pareto points. Therefore, we built a data mining

approach to predict this order correlation matrix.

However, since the order matrix is a mixture of −1’s and 1’s, it is impossible

to predict each element accurately from a few samples. As a solution to this challenge,

we used clustering to divide the matrix into smaller groups. We compute the GPU

performance difference between every two designs as shown in Fig. 5.5 (b). In this

way, each design pair has a correspondent element in this GPU performance (estimation)

difference matrix. We cluster the estimation difference matrix. After clustering, each

pair is assigned into a group (shown as the blocks in Fig. 5.5 (b)). Now, we move

back to the order correlation prediction problem. As shown in 5.5 (c), some of these

groups contain the pairs whose order correlation values are all −1’s or all 1’s. In each

of these groups, one can sample a few values and predict the rest (the x’s in Fig. 5.5

(c)). The predicted values reveal the orders between designs on the FPGA without

actually implementing the correspondent designs. Similarly, one can use this procedure

on the pre-PnR hardware utilization estimation. Eventually, with both performance and

pre-PnR hardware utilization orders, one can determine which designs are non-Pareto

and eliminate them to speedup the FPGA DSE process.

In the following experiment, we investigate whether the clustering method is

effective with all 10 of our benchmarks. We quantify the effectiveness of the clustering

by measuring how many non-Pareto points the method can determine. In the experiment,

we also used two types of data: the GPU data against the Pre-PnR throughput in this
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study to compare their effectiveness. This experiment is not the evaluation of the entire

working flow. In this experiment, we did not connect the data mining method with the

machine learning framework as shown in Fig. 5.1. We only investigate whether the

clustering is capable of dividing the order matrix into pure groups and whether one can

use the information in the pure groups to identify non-Pareto designs. The evaluation of

the full flow in Fig. 5.1 can be found in Section 5.7.

The experimental results in Fig. 5.6 indicate that our clustering method is effective.

We also observed the more groups we divide the data into, the more effective this method

is. According to this observation, we developed Algorithm 5.2. More details of the

algorithm can be found in Section 5.5. From further experiments, we observed that

Algorithm 5.2 is usually capable of creating more than 1000 groups which provide a high

possibility to discover non-Pareto points. To answer the question we introduced earlier,

yes, one can mine the estimation data for FPGA DSE by using the clustering approach.

The results in Fig. 5.6 also indicate that the GPU performance is a better type

of estimation data than the pre-PnR throughput estimation. The pre-PnR estimation

does not take into account the run-time behavior such as memory accesses, inter module

communication, and branches on the architecture. Therefore, for certain applications, the

GPU performance estimates the FPGA behavior more accurately than pre-PnR estimation

does. However, for certain applications, the FPGA performance highly depends on how

the designer customizes the hardware (e.g., the number of control unit replications). In

contrast, the fixed architecture on the GPU is incapable of estimating such a hardware

customization. In these situations, the pre-PnR throughput report estimates the FPGA

behavior more effectively since it has better knowledge about the hardware customization.

The results for BFS Sparse and SpMV 50% in Fig. 5.6 indicate this phenomenon.
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Figure 5.5. Our data mining approach: cluster, sample and learn the order information.
(a) The order correlation matrix between the GPU data and FPGA data. The value
represents whether the pair has the same order or opposite orders on the GPU and FPGA.
Note this matrix is the objective of the data mining. (b) Clustering on the GPU data
difference matrix. The element (i, j) in the matrix is the difference of the GPU data
between designs i and j. (c) Use the cluster result from (b) to divide the order matrix into
smaller groups. Some of these smaller groups have pure value of all −1’s or 1’s. This
provides a possibility to predict the values of a group based on a few samples.
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5.5 Algorithms

In this section we describe the estimation data mining algorithm. The overall

data mining algorithm is described by Algorithm 5.1. The algorithm consists of three

stages (correspondent to the three stages within “Mine the Est. Data” block in Fig. 5.1):

(1) clustering; (2) predicting the order correlation between the estimation and FPGA

data; (3) using the order information to find non-Pareto points. The clustering step is a

recursive function described in Algorithm 5.2. The predicting step is described by lines 7

- 18 in Algorithm 5.1. The step of using the order information to identify the non-Pareto

points is described by lines 19 - 29 in Algorithm 5.1.

The data mining algorithm takes the estimation data of all designs and the FPGA

data of a few sampled designs as input. The algorithm firstly computes the estimation

difference between every two designs to obtain matrices MPdi f f and MHdi f f for perfor-

mance and hardware utilization respectively. The next step is to fill the order correlation

matrices MPorder and MHorder with 0’s since the values of these elements are all unknown

without the FPGA samples. In the next step, scan all the sampled FPGA data, if design i

and j are both sampled, then compute the values for (i,j) in MPorder and MHorder. After

calling the clustering procedure (described in Algorithm 5.2), each of the element in the

order correlation matrices belongs to a specific group. Lines 7 - 18 show the procedure

of predicting the values (predict those x’s demonstrated in Fig. 5.5 (c)) in each group.

The algorithm scans all the groups (depicted by the blocks in Fig. 5.5). In each group,

two conditions are checked: if the number of the sampled data is above a threshold Nth in

this group; if the sampled values are all −1’s or all 1’s. If both conditions are met, then

we predict all the unknown values in that group are the same as the sample value. The

threshold Nth is to guarantee that we have enough samples to accurately predict those

unknown values. If a group does not have at least Nth sample, we choose to leave those
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values unknown. We provide a theoretical analysis of why Nth works and how to compute

a proper Nth in Section 5.6.

We use these predicted orders to identify non-Pareto designs. As described by

lines 19 - 29 in Algorithm 5.1, we loop through all pair-wise orders. In each iteration,

we check one design is superior to another design in both performance and hardware

utilization. If the check is positive, then put the inferior design in the non-Pareto set. The

estimation mining approach will provide this non-Pareto set to the overall process shown

in Fig. 5.1.

Recursive Clustering: The input of Algorithm 5.2 are order correlation matrix

and estimation difference matrix for all the pairs in the design space. The functionality

of this algorithm is to cluster these pairs. The algorithm recursively calls the clustering

function to split each parent group into 2 groups only if the number of samples in that

parent group is greater than Nth, as shown in lines 5 - 6 of Algorithm 5.2. When the

number of samples < Nth, the recursion terminates. As output, this algorithm generates a

group ID for each pair to indicate which group the pair and its correspondent element in

the order correlation matrix belong to. This clustering algorithm is called twice in lines

5 and 6 in Algorithm 5.1 for clustering the performance and hardware utilization data

respectively.
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Algorithm 5.1: Estimation Data Mining Algorithm
Input :Performance Est. Estp; Hardware Utilization Est. Esth; Sampled FPGA

Performance Sp; Sampled FPGA Hardware Utilization Sh
1 Compute differences of estimations MPdi f f (Perf.) and MHdi f f (HW Util.)
2 Initialize the order correlation matrices MPorder (Perf.) and MHOrderCorr (HW Util.)

with all 0’s
3 Compute MPOrderCorr(i, j) if i and j found in Sp

4 Compute MHOrderCorr(i, j) if i and j found in Sh
5 GIDP =ClusterRecur(MPOrderCorr,MPDi f f )
6 GIDA =ClusterRecur(MAOrderCorr,MADi f f )
7 for g = 1 to max(GIDP) do
8 Compute sampling threshold Nth
9 if The number of (MPOrderCorr(GIDP == g)! = 0) ≥ Nth then

10 if all of (MPOrderCorr(GIDP == g)! = 0) ==−1 then
11 MPOrderCorr(GIDP == g) =−1
12 end
13 if all of (MPOrderCorr(GIDP == g)! = 0) == 1 then
14 MPOrderCorr(GIDP == g) = 1
15 end
16 end
17 end
18 Compute MAOrderCorr(GIDA == g) in the same way
19 NonP = /0
20 for i = 1 to number of designs do
21 for j = 1 to number of designs do
22 if MPOrderCorr(i, j)∗MPDi f f (i, j)< 0 and

MHOrderCorr(i, j)∗MHDi f f (i, j)< 0 then
23 Add i in NonP
24 end
25 if MPOrderCorr(i, j)∗MPDi f f (i, j)> 0 and

MHOrderCorr(i, j)∗MHDi f f (i, j)> 0 then
26 Add j in NonP
27 end
28 end
29 end

Output :The predicted non-Pareto set NonP
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Algorithm 5.2: Recursive Clustering
1 Procedure ClusterRecur(MOrderCorr, MDi f f )
2 Compute sampling threshold Nth using equation 5.2
3 if Number of samples in M is greater than the threshold n then
4 Cluster on MDi f f into 2 groups, obtain matrix of group ID – GIDtmp

5 GIDle f t =ClusterRecur(MOrderCorr(GIDtmp == 1),MDi f f (GIDtmp == 1))
6 GIDright =ClusterRecur(MOrderCorr(GIDtmp == 2),MDi f f (GIDtmp ==

2))
7 GIDout put = combining (GIDle f t) and GIDright

8 end
9 else

10 GIDout put = matrix of all 1’s
11 end
12 Return GIDout put
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5.6 Analysis: Determine Nth

In Algorithm 5.2 we recurse until the number of samples is less than the threshold

Nth. If we set Nth too low, it may result in using very few sample data to guess a huge

group of unknown data (e.g. using 1 sample to guess a group of 1000 elements). However,

if we set Nth too high, the recursive process may terminate too soon to create enough

groups. This reduces the chance for the algorithm to find and eliminate the non-Pareton

points efficiently (see Fig. 5.6). Therefore, it is important to determine an appropriate

Nth.

The sampling process within each group can be mathematically modeled as

drawing boolean samples without replacement. Therefore, its underlying probability

distribution is hypergeometric:

P(X = k) =
CK

k CN−K
n−k

CN
n

(5.1)

where Ci
j is “i choose j”, N = the population size, K = the number of 1’s versus −1’s in

the population, k = the number of 1s drawn, and n = the total number of samples.

Under this model the ideal threshold n is the answer to the question, “With a

fixed likelihood 1−β , what is the minimum number of samples n for which I am likely

with probability 1−β to draw all 1’s even though the population contains (εN) −1’s

and (1− εN) 1’s?” To see this more clearly, note that we are attempting to determine

how likely it is that we have been tricked by our sampling limitations into thinking that a

cluster is either entirely composed of 1’s, or vice versa. We use a recursive numerical

method described in equation 5.2 to solve this problem.

f (x) :=


x if N!(K̂−x)!

K̂!(N−x)!
≤ β or x = N

f (x+1) otherwise
(5.2)
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where K̂ = bN(1− ε)e. We let the user of our tool provide β and ε as two parameters

describing how much error is acceptable for the DSE. Then, we can take the β and ε into

the numerical method to produce the appropriate Nth.

5.7 Evaluation Results

We evaluated the effectiveness of the overall process (Fig. 5.1) on the 10 bench-

marks. In the experiment, we set β = 0.24, ε = 0.1. We used the Matlab hierarchical

clustering built-in function. In the function, we configured the clustering metric to inner

squared Euclidean distance.

Fig. 5.8 provides a visualization of the predictions by using the GPU performance

as the estimation. Here, we choose to demonstrate the runs which achieved ADRS≤ 0.01.

As shown in the figure, although these designs are significantly different from each other

(even different input data create different design spaces for the same application: e.g.

BFS and SpMV), our approach successfully used the GPU performance to find most of

the real FPGA Pareto designs.

Next, we report the amount of sampling complexity that our approach reduces.

Our comparison baseline is the machine learning approach from Chapter 4, which does

not use any estimation data (only the blue part in Fig. 5.1). There exists a parameter

α (introduced in Chapter 4) that controls the trade-off between the prediction error and

sampling complexity. For each benchmark, we tuned this α from 1−0.4 to 1−0.4×0.511

to generate a variety of results with different sampling complexities and prediction errors

as shown in Fig. 5.9. We also tested two types of performance estimations: GPU

performance and pre-PnR estimation. The results in Fig. 5.9 show, for most applications,

the mining approach consumes less sampling complexities and achieves comparable

prediction qualities in comparison with the baseline approach.

Fig. 5.7 shows the minimal complexities to achieve an ADRS≤ 0.01 of these
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The colored numbers (green for GPU performance, blue for pre-PnR throughput estima-
tion) represent the complexity reductions in comparison with the baseline.

approaches. For all 10 benchmarks, in comparison with the baseline, the GPU per-

formance approach reduces the sampling complexity by 1.26× on average, while the

pre-PnR estimated throughput achieves a complexity reduction of 1.11× on average.

This result indicates that our approach saves more PnR time than an extremely efficient

state-of-the-art machine learning tool does for FPGA DSE. The reduction factor 1.26×

means one could save more than hundreds of compute hours by using this approach.
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5.8 Summary

We investigated the possibility of using estimation data such as GPU performance

and pre-PnR results to aid FPGA DSE. We proposed a data mining method that extracts

the useful information from the estimations with clustering and sampling techniques. We

evaluated the effectiveness of our method with 10 benchmarks. Our GPU performance

mining approach successfully achieves comparable or even better prediction errors

in comparison with the approach not using estimations, while reducing the sampling

complexity by 1.26×, i.e. hundreds of compute hours. Therefore, our answer to the

question in the title is: Yes, with an intelligent data mining approach, one can use the

GPU performance data for FPGA DSE.
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Chapter 6

Conclusion

Optimizing the hardware accelerated designs requires the programmer to explore

different implementations on different heterogeneous devices. This dissertation has

presented several research results for this DSE problem. This dissertation has provided

two heterogeneous hardware accelerated paradigms. The first paradigm of a hardware

accelerated DNA sequence alignment technology showed a 115× speedup against the

software. The second paradigm demonstrated a FPGA-GPU-CPU heterogeneous archi-

tecture which accelerates a biomedical imaging application by 237×. According to our

firsthand experience, these heterogeneous devices require different types of programming

skills.

Recently, there is a trend to use one unified programming language for different

heterogeneous devices. The OpenCL-to-FPGA tools allow the designer to program FPGA

with OpenCL. Along with GPU and CPU OpenCL SDKs, the OpenCL-to-FPGA tool

enables the possibility of using one unified language to program all three heterogeneous

devices. However, the compilation time of the OpenCL-to-FPGA tool creates the second

bottleneck for DSE. Using the brute force method to explore the entire design space

consumes months of compilation time.

To address this issue, this dissertation has provided an automatic approach that

uses machine learning for efficient OpenCL-to-FPGA DSE. The machine learning ap-
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proach can identify the optimal designs by learning from very few training samples.

This machine learning approach reduces the amount of required compilations by 3.28×

(hundreds of compilation hours) against the other state of the art machine learning frame-

works for FPGA DSE. In addition, a data mining approach is proposed to utilize the

estimation data for FPGA DSE. This data mining approach further reduces the amount

of required compilations by 1.26×.



Chapter 7

Future Directions

There exist many possible research directions in the hardware acceleration design

space exploration problem. I will provide several directions that could be explored using

the machine learning approaches proposed in this dissertation.

Quantify the Difficulty of Design Space Exploration: Chapter 4 presents the

sampling complexities of different design spaces. For effective design space exploration,

some design spaces require more sampling complexity than others do. This is due to the

fact that some design spaces are sparse (i.e. containing more outliers) than the others.

Therefore, the first possible direction is to develop a methodology that can identify the

exploration complexity of a given design space. This study contains two aspects. The

first aspect is to investigate the proper metric that can quantify the exploration complexity

of the design space. The second aspect is to investigate the effective method that uses

very few samples to estimate such a metric.

Quantify the Effectiveness of Estimation Data: The second possible direction

is to extend the study of using Pre-PnR estimation data. There exist many different

estimation data such as estimated LUT, DSP and Register utilizations as well as the clock

frequency estimation. Moreover, in other Pre-PnR stages such as RTL emulation, there

exists performance estimation such as number of clock cycles. These estimations predict

the Post-PnR data with different accuracies. Quantifying how accurate these estimation
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data are for different applications will provide the designers a reference for using these

estimation data. A robust data mining methodology that can automatically learn the

accuracies of these different estimation data and use them effectively is highly desired.

Learning the Underlying Architecture Features for Input-Data Sensitive

Operations: The performance of some applications is data sensitive. For example,

the SpMV and BFS applications in Chapter 4. With different input data, the application

produces a different design space. This requires the machine learning algorithm to re-

sample the new design space. This fact creates a significant overhead especially in those

systems where the input data change dramatically. The third direction is therefore to

develop a methodology that can automatically learn the underlying architecture properties

for the data sensitive design spaces.

Explore and Quantify the Effectiveness of Other Estimations: The fourth

possible direction is the most ambitious: develop a machine learning approach that could

learn a domain of applications. This idea is to imitate the human designer with machine

learning. The human designer usually learns the tuning skills from other similar designs.

The goal of this direction is to train a machine with the ground truth data of a type of

application e.g. sliding window. The trained machine can later effectively tune a brand

new sliding window application based on the knowledge from this domain. A possible

method for this problem is to use deep learning.
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