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The impulsive effects of momentum transfer on the

dynamics of a novel ocean wave energy converter

Christopher A. Diamonda, Oliver M. O’Reillya,∗, Ömer Savaşa

aDepartment of Mechanical Engineering, University of California at Berkeley, Berkeley

CA 94720, USA

Abstract

In a recent paper by Orazov et al. (“On the dynamics of a novel ocean

wave energy converter,” Journal of Sound and Vibration 329 (24) (2010)

5058–5069), a wave energy converter (WEC) was proposed. The converter

features a mass modulation scheme and a simple model was used to examine

its efficacy. Unfortunately, the simple model did not adequately account for

the momentum transfer which takes place during the mass modulation. The

purpose of the present paper is to account for this transfer and to show that

the WEC equipped with a novel and more general mass modulation scheme

has the potential to improve its energy harvesting capabilities.

Keywords:
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1. Introduction

In a recent paper [1] a novel wave energy converter (WEC) was proposed.

The WEC featured a mass modulation scheme to improve the traditional

energy harvesting capabilities of the WEC which employed resonant tuning.
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Subsequent works [1, 2, 3, 4] on the mass modulated energy harvester an-

alyzed the dynamics of a simple model for the WEC and implemented and

tested the mass modulation scheme in a prototype device. After reviewing

the experimental results in [3], it became apparent that the model presented

in [1] and analyzed in [2, 4] was deficient. The deficiency was the failure

to account for the impulse induced by the mass modulation system on the

WEC.

The purpose of the current paper is to present a modified model for the

mass modulated WEC, to comment on the changes to the results in [1] this

modification produces, and to present a new mass modulation scheme which

demonstrates the efficacy of a mass modulation scheme to improve the energy

harvesting capabilities of a WEC.

2. A Generalized Model for a Mass Modulated WEC

y(t)F sin (ωf t)

CHD

Ba K
M (1 + µ)

M (1 + µ)M

M

ẏ

y

m = m(y, ẏ, t)

S

S
S

S
α

β

Figure 1: Schematic for a model for the mass modulated energy converter. The mass m

of the oscillator depends on the sign of y and ẏ: m = M (1 + µ) or m = M . The most

general case is shown; the rays S correspond to the locations in the state space where

water is either trapped or released.
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Previous work laid out motivation for the basis of our model; it has been

known that parametric excitation through time variance of key parameters

can produce mechanical amplification in the response of a resonator. Sub-

sequently, a model was created to represent a WEC that incorporated an

added mass effect twice within each cycle; this sort of parametric variance

indicates a hybrid dynamical system, which are known to have unexpected

complexity (which we expected to increase harvested power) and a tendency

toward instability (which was to be avoided). More in-depth background

may be seen in [1, 2, 3] for the interested reader.

Departing from what was considered previously, we endeavored to create

a general mathematical model for the conditions upon which the system’s

mass is modulated. By varying parameters in this model, we could deter-

mine the optimal regions (in phase space) to ’add’ mass and then analyze

this ’optimal’ case numerically. As shown in Figure 1, the revised model

can be considered as a simple mass-spring-dashpot system equipped with a

state-dependent mass. Following the dictates laid out in the introduction,

switching conditions were devised that are visualized in Figure 1. Between

angle α in the phase plane (defined off of the positive y-axis) and angle β

(defined off of the ray created by α, called S) the mass of the system is equal

to (1 + µ)M ; this is repeated between α+ π and β + π. In all other regions,

the mass is equal to M . If we define a coordinate θ for the state space,

θ = arctan

(

y

ẏ

)

where 0 ≤ θ < 2π, (1)

then the equation of motion for the model features a set of differential equa-
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tions

(1 + µ)Mÿ + Cẏ +Ky = F sin(ωf t), α < θ < α + β or α < θ − π < α + β

Mÿ + Cẏ +Ky = F sin(ωf t), otherwise.







(2)

In (2), K is the stiffness coefficient, C is the overall damping coefficient (com-

posed of the sum of the hydrodynamic damping CHD and applied power take-

off damping Ba), M is the mass, µ is the mass modulation parameter, and

the superposed dot denotes the time derivative: ẏ = dy
dt
. The pair of differ-

ential equations in (2) are coupled by a switching condition at the switching

boundary S which models the momentum transfer due to the change in mass.

Generally, the change in momentum at a switching boundary is equivalent

to an impulse on the system at that point, or

M+ẏ+ −M−ẏ− = f.

Here, ẏ− is the velocity just before the phase flow (y(t), ẏ(t)) pierces the

switching boundary S, ẏ+ is the velocity at the instant when the phase flow

exits the switching boundary S, with M+ and M− defined similarly. As f is

the result of fluid/body interactions that are difficult to characterize analyt-

ically, we approximate f as some portion of the pre-boundary momentum:

f = −(1 − ǫ)M−ẏ−.

It follows that

M+ẏ+ = ǫM−ẏ−,

where (1− ǫ) is a (constant) coefficient indicating the amount of momentum

loss across S. By varying ǫ’s value, we may estimate the varying effect of
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the impulse f without actually explicitly determining it. The precise value

of ǫ for a particular WEC will reflect the efficiency of the water entrapment

mechanism. In [1, 2, 4], the case ǫ = (1 + µ) was exclusively considered. This

prescription for ǫ can be questioned on physical grounds because it implies

that a positive impulsive force is needed to achieve the mass modulation:

this force is absent from physical realizations of the WEC; so we then expect

that without external momentum impulse ǫ ≤ 1. Such a prescription makes

sense intuitively, as one would not expect an increase in momentum across

any switching boundary without external forcing. With this in mind, we may

consider two cases for the switching condition. The first pertains to when

fluid is trapped (and mass is effectively added):

(1 + µ)Mẏ+ = ǫMẏ−. (3)

When fluid is released (and mass is effectively removed), the switching con-

dition is

Mẏ+ = ǫ (1 + µ)Mẏ−. (4)

This condition pertains to the case when the phase flow passes through the

switching boundary S and the mass changes from (1 + µ)M to M .

The system (2)-(4) is known as a hybrid dynamical system and exhibits

dynamics which are distinct from those found in single degree-of-freedom

models for WECs and other energy harvesting devices that are discussed in,

for example, [5, 6]. We note that when the stiffness K, damping C and mass

M coefficients for this model are prescribed for a prototype WEC design,

they will contain contributions from hydrostatic and structural elements. In

addition, the parameter µ should not be confused with the added mass due
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to hydrodynamic effects. The latter mass is crudely lumped into the mass

parameter M in the simple model.

In our discussion of the dynamics of (2)-(3), we will use the dimensionless

parameters δ and ω, dimensionless force amplitude f , and a dimensionless

time τ :

δ =
C

2
√
KM

, ω =

(

√

M

K

)

ωf , f =
F

Kℓ
, τ =

(

√

K

M

)

t. (5)

Here, ℓ is a length scale.

3. Stability in the Unforced System

(a) (b) (c)

M (1 + µ)

M (1 + µ)

M (1 + µ) M (1 + µ)

M (1 + µ)

M

M

M

MM

M

M

ẏẏ ẏ

yy y

Figure 2: Three examples of mass modulation schemes denoted respectively as (a), Scheme

I, (b) Scheme II, and (c) Scheme III. Scheme I is featured in the experimental work in [3],

Scheme II is the case considered in [1, 2, 4], and Scheme III is an optimal energy harvesting

scheme.

A feature of the hybrid dynamical system (2)-(4) or, moreover, any hybrid

dynamical system, is the potential for oscillations y(t) to become unbounded

even in the absence of forcing (F = 0); in such a system the unforced system’s

stability is indicative of the forced system’s stability–hence our interest in the

F = 0 case. To examine this behavior we follow the arguments used in [1] to
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Figure 3: Schematic of the phase flows for the pair of hybrid systems corresponding to (a)

Scheme I and (b) Scheme II. In both figures, the set B denotes the positive ẏ axis, the

point zn labeled with a disk is the starting point for the orbit and the solid disk is the

point zn+1 where this trajectory first returns to intersect B. In (a) a hypothetical case

where the origin is unstable is shown, while the origin in (b) would be classified as stable.

examine the stability of the origin of the unforced hybrid system. Referring to

Figure 2, three distinct mass modulation schemes are considered. In the first,

which we refer to as Scheme I, there is only one instance of mass entrapment

and release and in the second, which we refer to as Scheme II, there are two

such instances. The system discussed so far in the literature correspond to

the Scheme II with the questionable condition ǫ = 1 + µ. The third case,

Scheme III, corresponds to a case where the energy harvesting was found to

be optimal, as explained in Section 4.

The boundedness of solutions to (2)-(4) with F = 0 can be readily as-

sessed using a Poincaré map. Referring the reader to Figure 3, an initial

condition (0, ẏ0) starting on the positive ẏ axis is considered. Then, by using

the piecewise exact solutions for the unforced system, the behavior of the
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trajectory (y(t), ẏ(t)) can be determined. After a given period of time, the

trajectory traverses the positive ẏ axis and the evolved value of ẏ0 can be

recorded and the process is repeated. We denote the sequence of values of ẏ

by the variable z1, . . . , zn, . . . with z1 = ẏ0 and define a Poincaré map:

zn = pzn−1, n ∈ Z
+. (6)

If |p| < 1, then the Poincaré map is non-expansive and zn → 0 as n → ∞.

In this case, we can state that the solutions to the equations of motion for

(2)-(4) with F = 0 remain bounded and the origin is stable.

3.1. Scheme I

For Scheme I, the Poincaré map can be expressed as

zn+1 =

(

ǫh

1 + µ

)2

zn, (7)

where the function h is

h = h (µ, δ) =
1

ωn1

e(−δT2)e(−δ1T1). (8)

In (8), the times of flight T1 and T2 are the smallest strictly positive solutions

of

sin (ωd1T1) =

(

ωd1

δ1

)

cos (ωd1T1) , sin (ωdT2) = −
(ωd

δ

)

cos (ωdT2) , (9)

and the dimensionless damping parameter and frequencies featuring in (8)

and (9) are

δ1 = δω2
n1
, ωn = 1, ωn1

=
1√
1 + µ

, ωd =
√
1− δ2, ωd1 = ωn1

√

1− δ2ω2
n1
.

(10)
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These parameters feature prominently in the piecewise analytical solutions

that can be obtained for the hybrid system.1

3.2. Scheme II

For Scheme II, the Poincaré map can be expressed as

zn+1 =

(

ǫq

1 + µ

)

zn, (11)

where the function q is

q = q (µ, δ) =
1

ωn1

e(−δT3)e(−2δT2)e(−δ1T1) (12)

In this equation, the time of flight T3 is the smallest strictly positive solution

of

sin (ωdT3) =
ωd

δ
cos (ωdT3) . (13)

3.3. Scheme III

For Scheme III, the Poincaré map can be expressed as

zn+1 = (ǫk (1 + µ))2 zn, (14)

where the function k is

k = k (µ, δ) = ωn1
e(−δ1T5)e(−δT4). (15)

In (15), the times of flight T4 and T5 are the smallest strictly positive solutions

of

sin (ωdT4) =
(ωd

δ

)

cos (ωdT4) , sin (ωd1T5) = −
(

ωd1

δ1

)

cos (ωd1T5) .

(16)

1The expression (10)5 for ωd1
corrects a typographical error in the expression for this

frequency that is present in [1, 2].
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ǫ = 0.8

ǫ = 0.9

ǫ = 1.0

δ

µ

stable

0
0

0.15

1

Figure 4: Stability boundaries in the δ − µ plane for the unforced response of the hybrid

system featuring Scheme III. As ǫ gets smaller, the stable region of the µ−δ plane increases

in size. For various values of ǫ, µ, and δ, the boundaries were obtained with the assistance

of (19).

The dimensionless damping parameter and frequencies featuring in (15) and

(16) are presented in (5) and (10).

3.4. Bounded and unbounded responses of the unforced system

We can now readily analyze the growth or decay of solutions to the un-

forced system. For the first two mass modulation schemes, we observe that

the solutions will always remain bounded provided ǫ ≤ 1. To see this we

observe from (7) and (11) that as µ ≥ 0,

q ≤ 1

ωn1

=
√

1 + µ, h2 ≤ 1

ω2
n1

= 1 + µ. (17)
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With the expressions for p featuring in the Poincaré maps, we note that

ǫ

1 + µ
q ≤ ǫ√

1 + µ
,

(

ǫ

1 + µ

)2

h2 ≤ ǫ

1 + µ
(18)

In conclusion, if ǫ ≤ 1, then the origin will never be unstable; fortuitously, this

corresponds exactly to the physically realizable values for ǫ available to our

system. This result is in contrast to our earlier works [1] where we erroneously

assumed that ǫ = 1+µ. It is interesting to note that the momentum transfer

modeled by (3) has a stabilizing effect on the system.

In contrast to the above cases, the third mass modulation scheme, Scheme

III, can promote the growth of unbounded unforced responses. To see how

this can be the case, we observe from (11) that

p = (ǫk (1 + µ))2 = ǫ2 (1 + µ) e(−2δ1T5)e(−2δT4). (19)

Depending on the values of ǫ, µ and δ, p can be greater than 1 and unbounded

solutions of the hybrid system become possible. The regions in the δ − µ

parameter space where p > 1 for various values of ǫ can be seen in Figure 4.

4. Efficacy of the Modulation Scheme

In order to buttress the assertion that Scheme III is optimal, we must

choose a metric by which the efficacy of any scheme may be measured. Here,

similar to our earlier work [1], we take the power generated by our WEC as

proportional to the velocity across the damping element Ba – or that such

an element models a simple power take-off. As such, the nondimensional

average power that can be harnessed from the oscillator (2)-(3) is defined as

Pav =
Ba

2T
√
KM

∫ T

0

(

du

dτ

)2

dτ, (20)
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where u = y/ℓ is the dimensionless vertical displacement of the system and

T is a period of integration which is much larger than 2π/ω.

Ignoring, for the moment, the stability analyses of Section 3 we look at

(3). This relation reveals that even with the ’best-case’ value for parameter

ǫ, i.e. ǫ = 1 (which would correspond to no boundary momentum loss), any

non-zero value of pre-boundary velocity ẏ− and added mass µ would result

in a post-boundary velocity ẏ+ such that |ẏ+| < |ẏ−|; plainly, that adding

mass, in tandem with the conservation of momentum, will reduce velocity.

Similarly, it can be seen that the mass releasing boundary (4) will have

the opposite characteristic–a velocity ’jump’ corresponding to the release of

mass. Intuitively, then, it makes sense that at the boundary associated with

(3) we desire zero velocity and thus no momentum loss; at (4) we desire the

maximum absolute velocity to profit most from the momentum ’jump’ when

mass is released. These desires correspond to choices of α = π
2
and β = π

2
:

numerical simulations of power harvested with variance of α and β, along

with various other system parameters, confirm this is the optimal case. So

α = π
2
and β = π

2
is optimal (illustrated in Figure 2 (c)), and it is this case

that will be considered.

Results for the numerical simulation of (2)-(3), specifically in the case of

Scheme III, are shown in Figures 5 and plots of average harnessed power Pav

for several combinations of added mass µ and damping δ are shown in Figure

6. The prominent feature of the phase diagram in Figure 5 is the jump in

velocity at the moment of mass entrapment (i.e., at the switching boundary

ẏ > 0 and y = 0). The simulations show that the simplified excitation

scheme, while not as effective as the originally proposed version, is still able
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y−4 4

ẏ

−5

5

Figure 5: Phase portrait of system configured to Scheme III (α = π

2
, β = π

2
), with ω = 1,

δ = 0.08, µ = 0.5, f = 1, and ǫ = 0.8. Notice the velocity jump attributable to the

switching conditions (3)-(4) along the red dotted line.

to generate an increase in oscillation amplitude and improve the harnessed

power (see Figure 6) over a non-mass modulated buoy WEC.

5. Conclusions

It may be noted that due to the model being directly excited by a wave

induced force f(t), instead of seismically excited by an incident wave of

amplitude A(t), its efficiency may not be directly compared to results from

[5, 7, 8]: methods in said papers would necessitate the ability to specify both

a WEC volume V and incoming wave amplitude A. Our scheme does not

require a specific geometry but rather assumes that the mass modulation

may be accomplished in varied geometries through different means; once a

desired geometry is specified, a frequency transfer function may be produced
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Figure 6: Average nondimensional power Pav for Scheme III (α = π

2
, β = π

2
), as in Figure

2 (c), as a function of driving frequency ω for various values of µ and δ. Selected values of

damping parameter δ are indicated on the figure and the switching boundary momentum

loss ǫ = 0.8. For these simulations,
√

K/M = 1 and the non-dimensional forcing f = 1.

In (a) δ = 0.08 and in (b) δ = 0.12.

allowing for the relation between the force f(t) in the model and incoming

wave amplitude A. In other words, the simplicity and flexibility of the scheme

which allow for its adaptation in many situations effectively disallows a direct

comparison with existing metrics.

It is still desirable to compute the efficiency of the scheme in terms of

the power applied by the wave force f(t). As the input wave amplitude is

not known, it suffices to use the simple assumption that the power of the

force is Pin = f(t) · dy
dt
, noting that as the mass modulation scheme changes

the dynamics of the system, Pin will change for different choices of µ. As

can be seen from Figures 6 and 7, added mass lowers the resonant frequency
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Figure 7: Comparison of average nondimensional power applied to the model Pin (dotted

lines) and average nondimensional power collected Pav (solid lines) for same selections of

parameters as in Figure 6; the blue lines correspond to µ = 0 and the red lines to µ = 0.75.

(a) Recovers 64.64% of the input power across the shown frequency range, with µ = 0.75;

with µ = 0 it recovers 48.51%. (b) Recovers 59.31% with µ = 0.75 and 49.03% with µ = 0.

of the system and increases (past a certain value of µ) the power that may

be harvested compared to the non-modulated case (i.e, µ = 0 and ǫ = 1).

Additionally, from Figure 7, the scheme changes the dynamics of the system

such that the maximum available power is shifted lower in the frequency

range and the power band is more narrow than the µ = 0 case. However,

within the confines of the power available to both schemes, the added mass

case captures a higher percentage of that power than the µ = 0 case.

As discussed in [3], experimental realizations of Scheme II turned out to be

very difficult to achieve and this lead to the implementation of Scheme I in [3].

Unfortunately, this simpler mass modulation scheme was not very effective
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in improving the energy harvesting capabilities of a WEC. The analysis of

the new Scheme III that we have presented has the potential to produce

the desired energy harvesting improvements. To this end, we are currently

developing a more complex, two degree-of-freedom (DOF) model which more

accurately models a WEC along with its fluid-structure interactions. In

addition, efforts are underway to design an experimental implementation of

Scheme III. The design of this mechanism will leverage our earlier designs

that are discussed in [3].
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