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ARTICLE INFO ABSTRACT
Article history: Puberty is governed by the secretion of gonadotropin releasing hormone (GnRH), but the roles and iden-
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various reproductive neural gene systems change before and during puberty, and in relation to one another,
is not well-characterized. We detailed the daily pubertal profile (from postnatal day [PND] 15 to PND
30) of neural Kiss1 (encoding kisspeptin), Kiss1r (kisspeptin receptor), Tac2 (neurokinin B), and Rfirp (RFRP-
3, mammalian GnIH) gene expression and day-to-day c-fos induction in each of these cell types in developing

ﬁ?ggf;js' female mice. Kiss1 expression in the AVPV/PeN increased substantially over the pubertal transition, reach-
Kisspeptin ing adult levels around vaginal opening (PND 27.5), a pubertal marker. However, AVPV/PeN Kiss1 neurons
Kiss1 were not highly activated, as measured by c-fos co-expression, at any pubertal age. In the ARC, Kiss1 and
RFRP-3 Tac2 cell numbers showed moderate increases across the pubertal period, and neuronal activation of Tac2/
GnIH Kiss1 cells was moderately elevated at all pubertal ages. Additionally, Kiss1r expression specifically in GhRH
NKB neurons was already maximal by PND 15 and did not change with puberty. Conversely, both Rfrp ex-

pression and Rfrp/c-fos co-expression in the DMN decreased markedly in the early pre-pubertal stage.
This robust decrease of the inhibitory RFRP-3 population may diminish inhibition of GnRH neurons during
early puberty. Collectively, our data identify the precise timing of important developmental changes -
and in some cases, lack thereof - in gene expression and neuronal activation of key reproductive neu-
ropeptides during puberty, with several changes occurring well before vaginal opening.

© 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction Semaan and Kauffman, 2013). Mutations in several of these systems

have resulted in disrupted puberty in humans and animal models.

The onset of puberty is generally defined as the activation of the
previously-dormant neuroendocrine reproductive axis (Grumbach,
2002; Ojeda and Skinner, 2006; Plant and Witchel, 2006), re-
flected by increased secretion of gonadotropin-releasing hormone
(GnRH). Several upstream hypothalamic circuits have been impli-
cated in the control and modulation of GnRH secretion, but how
and when these various reproductive circuits change during de-
velopment to potentially time and trigger pubertal GnRH secretion
is poorly understood (Kauffman, 2010; Ojeda et al., 2006, 2010;
Richter, 2006; Tena-Sempere, 2012; Terasawa et al., 2013). Recog-
nized upstream regulators of GnRH neurons range from stimulatory
systems, like kisspeptin and neurokinin B (NKB), to inhibitory
systems, such as GABA and RFRP-3 (the mammalian homolog of
GnlIH), not to mention epigenetic factors (Lomniczi et al., 2013;
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For example, puberty is impaired in humans or mice lacking
kisspeptin (encoded by Kiss1) or its receptor (Kiss1r) (de Roux et al.,
2003; Lapatto et al., 2007; Seminara et al., 2003). Similarly, NKB can
stimulate the reproductive axis (Billings et al., 2010; Wakabayashi
et al.,, 2010), and humans with mutations in the gene for NKB, Tac2,
fail to progress through puberty (Topaloglu et al., 2009; Young et al.,
2010).

Developmental alterations in gene expression, protein synthe-
sis, neuronal activation, and secretion of reproductive modulators
are likely to be critical aspects driving pubertal progression. However,
to date, pubertal changes in most reproductive neural systems have
not been examined in sufficient temporal detail. Most studies have
only compared gene or protein expression differences before and after
puberty, or in some cases at just one or two single points during
the pubertal period (which can last several weeks in rodents and
years in primates). Thus, little is known about detailed, sequential
changes during and throughout puberty. For example, whereas Kiss1
expression and kisspeptin-immunoreactivity are higher in the AVPV/
PeN nucleus of adults compared to prepubertal rodents (Clarkson
and Herbison, 2006; Clarkson et al., 2009; Han et al., 2005; Semaan
et al., 2010; Takase et al., 2009; Takumi et al., 2011; Walker et al.,
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2012), the specific developmental pattern during multiple sequen-
tial days of the pubertal period itself remains underexplored. Data
regarding pubertal changes in the kisspeptin population in the ARC
similarly lack detailed temporal resolution, with most studies simply
comparing prepubertal versus adult animals without focusing in
detail on multiple pubertal ages in between. Moreover, the re-
ported pubertal patterns of Kiss1 changes (or lack thereof) in the
ARC are highly conflicting, often owing to inconsistencies and dif-
ferences in experimental design, species, sexes, specific age(s)
examined, methodology (e.g., qPCR versus in situ hybridization versus
immunohistochemistry), and type of measure reported (e.g., cell
number versus total expression levels) (Bentsen et al., 2010; Gill et al.,
2010, 2012; Han et al., 2005; Lomniczi et al., 2013; Navarro et al.,
2012; Takase et al., 2009; Takumi et al., 2011; Walker et al., 2012).
The same caveats and limitations, in terms of inconsistencies in ages,
sexes, and measures examined, also apply to newer identified re-
productive players. For example, Tac2, which is coexpressed in
virtually all ARC Kiss1 cells, has been compared between pre-
pubertal and pubertal rodents and found to be higher in the latter
(Gill et al., 2012; Navarro et al., 2012), but the temporal resolution
of the observed changes were not studied in detail (only every 4-8
days), nor were temporal changes in Tac2 levels compared to changes
in other reproductive genes or pubertal markers (e.g., vaginal
opening). Likewise, RFRP-3, an inhibitor of the mammalian repro-
ductive axis (Anderson et al., 2009; Ducret et al., 2009; Kriegsfeld
et al., 2006; Wu et al., 2009), has been examined thus far at only
sparse stages of development, and not yet during puberty. Inter-
estingly, Rfrp expression in the mouse brain is higher in juveniles
than adults (Poling et al., 2012), but exactly when or in what manner
Rfrp expression levels change in peri-pubertal animals is unknown.

Previous examinations of reproductive gene differences primar-
ily before and after puberty have left a critical gap regarding
information on successive daily changes during and throughout the
pubertal period. Furthermore, most previous reports have only
studied one protein/gene, and it is therefore unknown how differ-
ent reproductive factors (kisspeptin, NKB, RFRP-3, etc.) change during
puberty in relation to one another. Here, we studied key develop-
mental changes in gene expression and neuronal activation of
multiple reproductive neural systems (Kiss1, Tac2, Rfrp) on a refined
temporal level - day-by-day - throughout the pubertal period, and
compared these day-by-day changes in one gene system to changes
in another. We asked (1) which reproductive genes, or neuronal ac-
tivation of those neurons, change first during the pubertal process
and when? (2) Are specific changes in gene expression or neuro-
nal activation gradual over the pubertal period, or is there an acute,
rapid increase (or decrease) on a specific day(s)? (3) What is the
temporal relationship between pubertal changes in different gene
systems (e.g., between kisspeptin and RFRP-3) or to status of vaginal
opening (VO), an oft-used external marker of female “puberty” in
rodents?

2. Materials and methods
2.1. Animals

C57BI6 mice were housed at the University of California, San
Diego on a 12-12 light-dark cycle (lights off at 1800 h) with food
and water available ad libitum. Female mice, generated from 7
breeder pairs, were weighed at postnatal day (PND) 15 (day of
birth =PND 1) and again daily starting at weaning (PND 20). Weaned
females were housed in groups of 2-3. Vaginal opening (VO), a
commonly-used external marker of puberty, was monitored daily
from the time of weaning until sacrifice. Mice were sacrificed at PND
15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or, for comparison, in
adulthood (8-9 weeks; in diestrus stage) (n = 6-8 mice/group). To
avoid litter effects, each age group contained mice from at least 3

different litters. All animals were sacrificed between 1100 h and
1300 h, and blood and brains collected. Blood was collected using
Microtainer separator tubes and the serum was isolated for hormone
measurements. Individual serum blood samples were assayed for
LH by the University of Virginia’s Ligand Assay Core (Charlottes-
ville, VA), using a sensitive mouse sandwich radioimmunoassay with
a limit of detectability of 0.04 ng/ml and intra-assay variation of 7%.
Brains were immediately frozen on dry ice and stored at -80 °C. All
experiments were conducted with approval of the local Animal Care
and Use Committee.

2.2. Single-label in situ hybridization (ISH)

Frozen brains were cut on a cryostat into five sets of 20 um sec-
tions encompassing the entire forebrain and hypothalamus, thaw-
mounted onto Superfrost plus slides, and stored at —80 °C. Single-
label ISH was performed as previously described (Gottsch et al., 2004;
Kauffman et al., 2007; Semaan et al., 2012). Riboprobes utilized were
Kiss1 (Gottsch et al., 2004), Kiss1r (Poling et al., 2012), Tac2 (Kauffman
et al,, 2009), and Rfrp (Poling et al., 2012). Briefly, 1 complete set
of slide-mounted sections spanning the entire AVPV/PeN (Plates 26—
32 in the Franklin and Paxinos mouse stereotaxic atlas), ARC (Plates
41-52), or DMN (Plates 41-51) was fixed in 4% paraformalde-
hyde, pretreated with acetic anhydride, rinsed in 2x SSC (sodium
citrate, sodium chloride), delipidated in chloroform, dehydrated in
ethanols, and air-dried. Radiolabeled (P3*) antisense riboprobe
(0.05 pmol/ml) was combined with yeast tRNA, heat-denatured,
added to hybridization buffer, and applied to each slide (100 ul/
slide). Slides were put in a humidity chamber at 55 °C for 17 h. The
slides were then washed in 4x SSC, placed into RNAse treatment
for 30 min at 37 °C, and washed in RNAse buffer without RNase at
37 °C for 30 min. After a wash in 2x SSC at room temperature, slides
were washed in 0.1x SSC at 62 °C, dehydrated in ethanols, and air-
dried. Slides were then dipped in Kodak NTB emulsion, air-dried,
and stored at 4 °C for 6-8 days (depending on the assay) before being
developed and cover-slipped.

2.3. Double-label ISH

Double label ISH was performed as described previously (Di
Giorgio et al., 2014; Kim et al., 2013; Poling et al., 2012; Robertson
et al., 2009). Briefly, slide-mounted brain sections were treated sim-
ilarly to single-label ISH with the following modifications.
Digoxigenin (DIG)-labeled antisense mouse Gnrh, Kiss1, Tac2, or Rfrp
cRNA were synthesized with DIG labeling mix (Roche). Radio-
labeled (33P) antisense c-fos or Kiss1r (0.05 pmol/ml) and DIG-
labeled (1:500) riboprobes were combined with tRNA, heat
denatured, and dissolved together in hybridization buffer. The probe
mix was applied to slides (100 pl/slide) and hybridized at 55 °C over-
night. After the 62 °C washes on day 2, slides were incubated in
blocking buffer for 1 h at room temperature and then incubated over-
night at room temperature with anti-DIG antibody conjugated to
alkaline phosphatase [(Roche) diluted 1:500]. Slides were then
washed with Buffer 1 and incubated with Vector Red alkaline phos-
phatase substrate (Vector Labs, CA) for 1 h at room temperature. The
slides were then air-dried, dipped in emulsion, stored at 4 °C, and
developed 7-10 days later, depending on the assay.

2.4. Quantification and statistical analysis

ISH slides were analyzed with an automated image processing
system (Dr. Don Clifton, University of Washington) by a person blind
to the treatment group. For single-label experiments, the soft-
ware counted the number of silver grain clusters representing cells,
as well as the number of silver grains in each specific cell cluster
(a semi-quantitative index of mRNA content per cell) (Chowen et al.,
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1990). A relative measure of total mRNA for a specific gene in a brain
area was determined by multiplying the total number of cells in that
region by the relative amount of mRNA content per cell (Kim et al.,
2013; Navarro et al., 2011). Cells were considered positive when the
number of silver grains in a cluster exceeded that of background
by threefold. For double-label assays, red fluorescent DIG-containing
cells were identified under microscopy and the grain-counting soft-
ware quantified the number of silver grains overlying each cell.
Signal-to-background ratios for individual cells were calculated, and
a cell was considered double-labeled if its ratio was >3 (Di Giorgio
et al., 2014; Kauffman et al., 2014; Navarro et al., 2011).

For each gene, we quantified total cell number, relative mRNA
level per cell, and total relative levels of mRNA in the entire brain
region, as any one or more of these different measures might change
during puberty. All data are expressed as the mean + SEM for each
group. Differences in group means were assessed via overall ANOVA
or 2-way ANOVA with post-hoc analysis determined by Fisher’s LSD
test. Statistical significance was set at p <0.05. Correlation analy-
sis between genes was performed via determination of Pearson’s
correlation coefficient and analyzed for significance with Fisher’s
I to z test (p <0.05).

3. Results
3.1. Somatic and hormonal measures before and during puberty

Body weight and the occurrence of VO (an external morpho-
logical indicator of female puberty) were measured before and during
the pubertal transition (at PND 15 and every day from PND 20 to
PND 30). Body weight steadily increased from PND 15 through PND
30, and the average age of VO was ~PND 28 (range of VO occur-
rence: PND 26-30; Fig. 1). LH levels in serum increased from PND
15 to PND 20 and remained elevated thereafter throughout the pu-
bertal period (p < 0.05; Fig. 1).

3.2. AVPV/Pen Kiss1 expression in female mice before and
during puberty

Previous developmental studies measured Kiss1/kisspeptin ex-
pression across largely spaced intervals of time, either before and after
puberty or on just 1 or 2 days of the entire pubertal period. Here we
examined a more detailed, day-by-day pubertal profile of Kiss1 mRNA
expression, looking separately at the AVPV/PeN and ARC popula-
tions. In the AVPV/PeN, Kiss1 neuron cell number increased steadily
and substantially throughout the peripubertal ages examined, peaking
to adult levels around the time of mean VO (~PND 27; Fig. 2). The
relative level of Kiss1 mRNA/cell and total Kiss1 mRNA levels in AVPV/
PeN also increased steadily across the pubertal period with a similar
pattern (Fig. 2). Restricting additional analysis to just the age range
when VO was observed (PND 26-30), we determined that, indepen-
dent of age, the levels of AVPV/PeN Kiss1 expression did not differ
between females that had or had not already displayed VO at the time
of sacrifice (termed pre-VO and post-VO, respectively; Fig. 2E-G).

3.3. Developmental profile of Kiss1 and Tac2 expression in the ARC
before and during puberty

Prior data on rodent ARC Kiss1 expression during peri-pubertal
stages are fairly inconsistent, confounded by differing or sporadic
ages of analyses, with some reports of pubertal increases in Kiss1
expression and other reports of no changes (Gill et al., 2010; Lomniczi
et al., 2013; Navarro et al., 2012; Takase et al., 2009; Takumi et al.,
2011). Here, we found that the number of Kiss1 neurons in the ARC
rose moderately and significantly over the pubertal transition,
showing initial increases around PND 24 and reaching adult levels
around the time of VO, with older pubertal ages (PND28-30) being
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Fig. 1. Somatic and endocrine measures in peri-pubertal female mice. (A) Body weight
of female mice over peri-pubertal development. (B) % of female mice displaying vaginal
opening (VO), an external marker of puberty in rodents, at various developmental
ages. (C) Mean serum LH levels in peri-pubertal females at different ages.

significantly higher than earlier pubertal ages (PND 20-22) (p < 0.05;
Fig. 3A and B). Intriguingly, unlike the pattern of cell number, the
relative amount of Kiss1 mRNA per cell in the ARC was highest at
PND 15, and dropped significantly by PND 20 (p < 0.01), remain-
ing unchanged at all pubertal ages afterward (Fig. 3C). Levels of total
relative Kiss1 mRNA in the ARC region were also high on PND 15
and dropped significantly by PND 20 (p < 0.05; Fig. 3D); total ARC
Kiss1 levels then remained at this lower level from PND 20 to PND
25, after which they increased again and were significantly higher
during most of the VO period (p < 0.05; Fig. 3D). When looking at
females sacrificed just during the VO period (~PND26-30) and com-
paring pre-VO versus post-VO status, ARC Kiss1 cell number showed
a strong trend for being higher after VO than before VO that just
missed statistical significance (p = 0.054), Fig. 3E). Kiss1 mRNA/
cell and total ARC Kiss1 levels did not differ between pre-VO and
post-VO during the ages of the VO period (Fig. 3F and G).

We next analyzed pubertal changes in Tac2 mRNA, which
encodes the reproductive neuropeptide NKB and is coexpressed in
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Fig. 2. Kiss1 expression in the AVPV/PeN of female prepubertal and pubertal mice. (A) Representative images of Kiss1 expression, determined by ISH, in the AVPV/PeN of
female mice. 3V, third ventricle. (B) Mean numbers of Kiss1 neurons in the AVPV/PeN, (C) mean relative Kiss1 mRNA content per neuron in the AVPV/PeN, and (D) mean
relative total KissT mRNA in the AVPV/PeN of female mice between PND 15 and PND 30, with adult diestrus female (PND 56) shown for comparison. The gray shading denotes
the period when VO, an external marker of puberty, was observed (PND 26-30). (E-G) Kiss1 cell numbers, mRNA per cell, and total mRNA in the AVPV/PeN in just the female
mice sacrificed during the VO period (PND 26-30; denoted by the gray shaded area in the other graphs) and analyzed based on status of VO at time of sacrifice, indepen-

dent of age. Different letters denote significantly different from each other.

virtually all ARC Kiss1 cells (often termed KNDy cells). As with ARC
Kiss1 cell number, we found a modest gradual increase in Tac2 cell
number in the ARC throughout the peri-pubertal ages examined
(p <0.05; Fig. 4B), with cell number reaching adulthood levels around
PND 24. Similar gradual increases in the level of Tac2 mRNA per cell
were also observed, reaching adult levels around PND 28 (p < 0.05;
Fig. 4C). Likewise, total Tac2 mRNA levels in the ARC nucleus

demonstrated a moderate increase at later pubertal ages com-
pared to younger juvenile and peripubertal animals (PND 15, 20,
21, 22) (p < 0.05; Fig. 4D), culminating in adult levels around PND
24. During just the ages of the VO period, Tac2 cell number and total
Tac2 expression were significantly higher in post-VO females versus
pre-VO females, independent of age during this particular period
(p<0.05; Fig. 4E and G).
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in the other graphs) and analyzed based on VO status at time of sacrifice, independent of age. #, non-significant trend (p = 0.054).

3.4. Kiss1 neuronal activation in female mice before and
during puberty

The pubertal profile of Kiss1 neuronal activation has not yet been
determined for any species, and could change independent of pu-
bertal changes in gene expression. Whereas Kiss1 levels in the AVPV/
PeN increased markedly throughout the pubertal period (Fig. 2), cfos-
Kiss1 coexpression in the AVPV/PeN was very minimal at all
peripubertal ages, being typically <5% on most days examined
(Fig. 5B). Moreover, no differences in cfos/Kiss1 co-expression in the
AVPV/PeN were noted in females of differing VO status during the
VO period (Fig. 5D).

Similar analyses were performed in the ARC for Kiss1 (“KNDy”)
neuronal activation by measuring the numbers of these ARC neurons

co-expressing cfos at each age. A moderate number of ARC Kiss1 cells
co-expressed cfos at any given age, greater than that observed in
the AVPV/PeN Kiss1 population. However, the degree of Kiss1 neu-
ronal activation in the ARC did not fluctuate significantly throughout
the peri-pubertal ages examined, remaining around 18-20%, nor was
there any alteration in the level of ARC Kiss1-cfos co-expression based
on VO status (Fig. 5C and E).

3.5. Kisspeptin receptor expression exclusively in GnRH neurons in
mice before and during puberty

An important aspect of kisspeptin’s potential effects on puberty
is its ability to activate GnRH neurons via signaling through Kiss1r.
We therefore examined the successive day-by-day pattern of Kiss1r
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mMRNA levels exclusively in GnRH neurons across the peripubertal
transition. On PND 15, the percent of Gnrh neurons co-expressing
Kiss1R was maximal and already at adult levels (Fig. 6); Kiss1r-
Gnrh coexpression levels did not change at all across the pubertal
period or in relation to VO (Fig. 6). In addition, the relative levels
of Kiss1r mRNA specifically in GnRH neurons were not different at
any age between PND 15 and PND 30 and were identical during all
pubertal ages to adulthood levels (Fig. 6).

3.6. Peripubertal decreases in Rfrp expression and neuronal
activation in the DMN of female mice

The neuropeptide RFRP-3 can inhibit the reproductive axis
(Anderson et al., 2009; Ducret et al., 2009), and Rfrp cell number
is lower in adulthood than in juvenile mice (Poling et al., 2012).

We determined exactly when this developmental reduction occurs
and whether Rfrp neuronal activity was similarly changed during
puberty. Interestingly, both the number of Rfrp neurons and total
Rfrp mRNA in the DMN region were highly elevated on PND 15
and dropped significantly around PND 20-21 to adult levels (p < 0.05;
Fig. 7B and D). The relative level of Rfrp mRNA in each cell re-
mained generally constant (Fig. 7C). During the VO period (~PND26-
30), females who had already undergone VO demonstrated
significantly lower Rfrp cell number and total Rfrp mRNA
levels versus pre-VO females, independent of age (p < 0.01; Fig. 7E
and G).

In addition to the marked peripubertal decreases in Rfrp expres-
sion levels, the activational status of Rfrp neurons, as measured by
c-fos co-expression, also decreased substantially between PND 15
and PND 20 (p<0.05; Fig. 8A and B), remaining relatively
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Fig. 5. Kiss1 neuronal activation during female peri-pubertal development. (A) Representative images of cfos mRNA expression (silver grains) in Kiss1 neurons (red fluo-
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female’s status of VO. Different letters denote significantly different from each other.

constant thereafter with a slight non-significant trend for further
decreases in the later pubertal period.

3.7. Correlation analysis of peri-pubertal reproductive
gene expression

To further analyze the relationship between the various brain
measures studied across the pubertal transition in our female mice,
we performed a correlation analysis of neural reproductive gene
expression and neuronal activation during the pubertal period.
Table 1 depicts the Pearson correlation coefficients, demonstrat-
ing several significant correlations between the various gene systems
during the pubertal period. Some pubertal gene measures were

strongly negatively correlated (e.g., Rfrp and AVPV/PeN Kiss1 cells;
Rfrp neuronal activation levels and Tac2 cell number, etc), whereas
others were strongly positively correlated (e.g., ARC Kiss1 cells and
ARC Tac2 mRNA; Rfrp mRNA and Rfrp neuronal activation, etc.)
(Table 1).

4. Discussion

Several hypothalamic circuits have been implicated in govern-
ing the timing and progression of maturation of the reproductive
axis, converging on GnRH neurons to trigger puberty onset. The
kisspeptin system, along with NKB, is strongly implicated in
pubertal development in mammals, including humans (de Roux
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et al,, 2003; Lapatto et al., 2007; Seminara et al., 2003; Topaloglu
et al., 2009, 2012; Young et al., 2010). Yet, despite their proposed
involvement in the developmental maturation of reproductive ca-
pabilities, how these various reproductive neural systems
change developmentally has primarily been compared before and
after puberty (Clarkson et al., 2009; Gill et al., 2012; Navarro et al.,
2004; Poling et al., 2012; Takumi et al., 2011), with far less
analysis on their changes during and throughout puberty, either
on their own or in relation to one another. Here, we provide the
first detailed, day-by-day peripubertal gene expression profiles in
developing female mice, as well as neuronal activation patterns
via c-fos co-expression, in several key neural populations influenc-
ing GnRH.

4.1. Kisspeptin in the AVPV/PeN

Sexual maturation is impaired in humans and mice with mu-
tations in the Kiss1r or Kiss1 genes (de Roux et al., 2003; Seminara
et al., 2003; Topaloglu et al., 2012), and exogenous kisspeptin ad-
ministered to prepubertal animals induces various aspects of puberty
(such as increased LH secretion or VO) (Navarro et al., 2004; Shahab
et al., 2005). Although in vivo secretion of neuropeptides in mice,
especially at younger ages, is nearly impossible to study, work per-
formed in non-human primates demonstrated increased kisspeptin
secretion at later stages of puberty versus before puberty (Guerriero
et al., 2012). Moreover, ex vivo kisspeptin secretion from hypotha-
lamic explants is higher in female pubertal monkeys compared to
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juveniles (Keen et al., 2008). However, the neuroanatomical source
of this pubertal kisspeptin secretion (AVPV/PeN versus ARC) remains
unclear, as does the timing of endogenous kisspeptin’s develop-
mental onset. Previous studies in mice indicated that AVPV/PeN Kiss1
mRNA and kisspeptin protein are undetectable prior to PND 10 and
15, respectively (Clarkson et al., 2009; Semaan et al., 2010), and then
increase from PND 15 to adulthood, as assessed every 5 days of age
(Clarkson et al., 2009). As in mice, AVPV/PeN kisspeptin cells in rats
are not detectable on or before PND 8, but are present by the next
age examined (PND 22), and are even higher in adulthood (Takumi
et al.,, 2011). Yet in these previous studies, it remained unclear if
AVPV/PeN kisspeptin/Kiss1 gradually increases across puberty or if

this increase happens quickly at a potentially important age or pu-
bertal stage. Likewise, whether the increase in AVPV/PeN kisspeptin/
Kiss1 occurs before, at, or after changes in other genes was not
previously determined. Using a detailed, day-by-day pubertal anal-
ysis of Kiss1 mRNA expression, our present findings demonstrate
that Kiss1 cell number, Kiss1T mRNA per cell, and total Kiss1T mRNA
levels in the AVPV/PeN markedly, but consistently and gradually,
increase from PND 15 through PND 30. The daily increases in AVPV/
PeN Kiss1 expression occur well before VO and finally resembled
adulthood levels around the period of VO (by PND 26-29, depend-
ing on the specific measure). The AVPV/PeN kisspeptin system has
been implicated in the preovulatory LH surge in adult females, but
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at present has not yet been linked functionally to puberty. Thus,
whether these robust pubertal increases in AVPV/PeN Kiss1 levels
are involved in puberty onset or progression currently remains
unknown. Interestingly, while AVPV/PeN Kiss1 levels increased con-
sistently with age, AVPV/PeN Kiss1 did not vary with VO status at
ages specifically during the VO period, suggesting that Kiss1 in-
creases at that particular period are age-dependent and may not
relate to puberty or VO status.

To provide additional insight, we also examined whether the neu-
ronal activation of the AVPV/PeN Kiss1 population also changed with
pubertal status. At all developmental ages examined, c-fos co-expression
in Kiss1 AVPV/PeN cells was very minimal and did not change over the

Table 1

pubertal period. Thus, despite dramatic increases in Kiss1 levels through-
out the pubertal transition, AVPV/PeN Kiss1 neurons do not appear to
be activated, as reflected by cfos induction, during this developmen-
tal period, at least at the specific times of day examined. This lack of
AVPV/PeN Kiss1 neuronal activation at early and mid-pubertal ages is
in alignment with the proposed role of these particular Kiss1 neurons
not as drivers of pulsatile GnRH but as generators of the preovulatory
GnRH/LH surge, an event which does not first occur until the very end
of puberty, typically signifying attainment of reproductive capability.
Of note, we only studied c-fos and therefore cannot rule out that other
less commonly-used markers of neuronal activation might reveal a dif-
ferent result with respect to AVPV/PeN Kiss1 neuronal activation.

Correlation matrix showing correlation analysis of neural reproductive gene expression and neuronal activation during the pubertal period of female mice. Values shown
are Pearson correlation coefficients, which can range from -1.0 to 1.0, with positive and negative values reflecting a positive correlation or negative correlation, respective-
ly. Values in bold (positive) or italic (negative) are statistically significant (p < 0.05); non-bold, non-italic values are not statistically significant.

AVPV AVPV ARC ARC ARC ARC Rfrp Rfrp AVPV ARC Rfrp

Kiss1 Kiss1 Kiss1 Kiss1 Tac2 Tac2 cells total neural neural neural

cells total cells total cells total mRNA activat. activat. activat.

mRNA mRNA mRNA

AVPV Kiss1 cells 0.884 0.422 0.206 0.399 0.469 -0.521 -0.560 -0.200 0.228 -0.383
AVPV Kiss1 total mRNA 0.884 0.296 0.105 0.329 0.410 -0.455 -0.495 -0.204 -0.270 -0.301
ARC Kiss1 cells 0.422 0.296 0.782 0.537 0.546 -0.058 -0.067 -0.090 -0.120 -0.364
ARC Kiss1 total mRNA 0.206 0.105 0.782 0.301 0.328 0.263 0.246 -0.030 -0.051 -0.191
ARC Tac2 cells 0.399 0.329 0.537 0.301 0.898 -0.211 -0.243 -0.132 -0.107 -0.354
ARC Tac2 total mRNA 0.469 0.410 0.546 0.328 0.898 -0.241 -0.277 -0.224 -0.019 -0.322
Rfrp cells -0.521 -0.455 -0.058 0.263 -0.211 -0.241 0.883 0.114 0.123 0.379
Rfrp total mRNA -0.560 -0.495 -0.067 0.246 -0.243 -0.277 0.883 0.050 0.176 0471
AVPV Kiss1 neural activat. -0.200 -0.204 -0.090 -0.030 -0.132 -0.224 0114 0.050 0.041 0.006
ARC Kiss1 neural activat. 0.228 -0.270 -0.120 -0.051 -0.107 -0.019 0.123 0.176 0.041 0.091
Rfrp neural activat. -0.383 -0.364 -0.364 -0.191 -0.354 -0.322 0.379 0471 0.006 0.091
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4.2. Kisspeptin and NKB in the ARC

Unlike in the AVPV/PeN, ARC Kiss1 expression is readily detect-
able prenatally and at birth in rodents, and continues to be expressed
throughout postnatal development (Cao and Patisaul, 2011; Kumar
et al., 2014; Poling and Kauffman, 2012). However, previous data
regarding peripubertal changes in ARC Kiss1 gene expression are
either lacking, incomplete, or conflicting. Some studies report small
increases in ARC Kiss1 expression around early puberty (Bentsen
et al., 2010; Takase et al., 2009) and a more dramatic pubertal in-
crease has also recently been reported (Lomniczi et al., 2013).
Conversely, other studies have reported no major differences in ARC
Kiss1 levels between juvenile and adult rodents (Gill et al., 2010;
Han et al, 2005; Navarro et al.,, 2012), leaving the issue unre-
solved. Here, our detailed day-by-day assessment determined that
between PND 20 and PND 30, the number of ARC Kiss1 neurons
and total levels of Kiss1 mRNA in the ARC increased moderately,
with significant increases first evident around PND 24-26 and the
overall increase from PND 20 to PND 30 being ~25%. However, in-
terestingly, the amount of Kiss1 mRNA per cell in the ARC was highest
at PND 15; between PND 15 and PND 20, the level of KissT mRNA
per cell dropped ~27% and, correspondingly, the total KissT mRNA
in the ARC also decreased during this pre-pubertal stage. This de-
crease in Kiss1 levels per cell may be due in part to increasing
estradiol levels during puberty, since estradiol is known to repress
Kiss1 expression in the ARC (i.e., negative feedback) (Smith et al.,
2005). It is not clear if or how the pre-pubertal decrease
in ARC Kiss1 levels relates to the triggering pubertal onset, but sug-
gests that enhanced kisspeptin synthesis per cell occurs well
before the pubertal period. Intriguingly, this matches the fact
that female mice lacking estradiol negative feedback in kisspeptin
cells initiate very early VO, evident around PND 15 (Mayer et al.,
2010).

Kiss1 neurons in the ARC highly co-express Tac2, encoding NKB
(Goodman et al., 2007; Navarro et al., 2009; Rance and Bruce, 1994)
(the so-called KNDy neurons). NKB can stimulate LH secretion, likely
by triggering kisspeptin secretion (Billings et al., 2010; Navarro et al.,
2009; Wakabayashi et al., 2010), and mutations in the NKB system
impair puberty (Topaloglu et al., 2009; Young et al., 2010). Re-
cently, it was shown that Tac2 mRNA in the MBH of mice (measured
with qPCR of MBH dissections) is higher in pubertal than pre-
pubertal mice (Gill et al., 2012), and another study in female rats
reported increased MBH Tac2 levels before puberty and in the later
pubertal period, but no changes in between (measured every 4-6
days) (Navarro et al., 2012). In both cases, the temporal resolu-
tions of these potentially important developmental increases were
not studied in detail, nor were Tac2 levels compared to changes in
other genes or pubertal markers. A further limitation of these pre-
vious findings was that analyses were done on MBH brain dissections,
which encompass portions of neighboring non-ARC brain regions
which also express Tac2, thereby lacking anatomical resolution. In
our present study, we used ISH to focus solely on the ARC Tac2 pop-
ulation (i.e., KNDy neurons) and documented a steady, moderate
increase in Tac2 cell number and total Tac2 mRNA levels in the ARC
across the peripubertal period, being ~30-35% higher at later pu-
bertal ages (PND 28-30) than at PND 15. Between PND 20 and PND
30, total ARC Tac2 mRNA expression increased by ~30%, which is
similar in magnitude to a previous report studying just those two
ages using qPCR (Gill et al., 2012). In the present study, an addi-
tional comparison of mice before and after VO status, during just
the age period when VO is observed, demonstrated notable age-
independent increases in both ARC Tac2 and Kiss1 cell numbers, as
well as total Tac2 expression, which correlated with VO status. This
suggests that elevations in Tac2 and Kiss1 in the ARC may be a good
indicator of VO status and, hence, pubertal progress. Unlike Tac2 and
Kiss1 gene expression, neuronal activation of ARC KNDy cells did

not change significantly over the pubertal period. However, overall
neuronal activation levels were notably higher in the ARC Kiss1 versus
AVPV Kiss1 cells at all pubertal ages analyzed, suggesting that ARC
Kiss1 cells exhibit more neural activity in general at this peripubertal
period than AVPV Kiss1 cells, regardless of gene expression levels.
The functional significance of this regional Kiss1 difference in neu-
ronal activation is not yet known, but may relate to the proposed
involvement of the ARC, but not AVPV/PeN, in driving GnRH pulses
(which increase at puberty).

4.3. Kisspeptin receptor in GnRH neurons

In addition to Kiss1, changes in the kisspeptin receptor, Kiss1r,
may also be involved in pubertal maturation, though this has re-
ceived little attention. Although kisspeptin administered to
prepubertal rodents and monkeys induces various aspects of pre-
cocious puberty (Navarro et al., 2004; Shahab et al., 2005), low
kisspeptin doses are less effective at stimulating gonadotropin se-
cretion and GnRH neuronal firing activity in juvenile than adult
rodents (Castellano et al., 2006; Han et al., 2005), suggesting that
kisspeptin has a reduced ability to activate the GnRH system before
puberty. Moreover, in rats of both sexes and female monkeys, though
not male mice, hypothalamic Kiss1r expression is higher in adult-
hood than in juveniles (Han et al., 2005; Navarro et al., 2004; Shahab
et al., 2005). However, in almost all cases, Kiss1r was measured in
whole hypothalamus, rather than in specific cell-types, prevent-
ing identification of which specific neuronal populations the changes
occur in. Here, we determined that the level of Kiss1r expression
specifically in Gnrh neurons in female mice is already at maximal
adult levels by PND 15 and does not vary during any stage of the
pubertal transition. A recent mouse study utilizing lacZ expres-
sion as a proxy for Kiss1r reported that at some undetermined point
between PND 5 and PND 20, there was a significant increase in the
number of GnRH cells expressing Kiss1r (Herbison et al., 2010). Our
data suggest that this previously-reported developmental in-
crease in Kiss1r-GnRH coexpression occurs before PND 15, because
no change in the percent of Kissir-Gnrh colocalization was ob-
served in our mice after this age.

We also found that, like the prevalence of Kiss1-Gnrh
colocalization, the relative amount of Kiss1r mRNA in Gnrh neurons
showed minimal variation during the pubertal period and was vir-
tually equivalent to adult levels at all pubertal ages examined. This
suggests that the ability for kisspeptin to signal to its receptor is
already present and maximal well before external markers of puberty
(such as VO) occur. Previous studies that reported increases in hy-
pothalamic Kiss1r levels between juvenile life and adulthood
measured Kiss1r in whole hypothalamus and therefore combined
multiple hypothalamic regions and cell-types that may express this
receptor. Our present ISH data allow for cell-type specificity and
clearly demonstrate no significant pubertal increases in Kiss1r spe-
cifically in GnRH neurons. This indicates that the previously-
reported developmental increase occurs in non-GnRH cells, the
identity and function (reproductive or otherwise) of which remain
to be determined.

4.4. RFRP-3 in the DMN

In contrast to kisspeptin and NKB, which stimulate the repro-
ductive axis, RFRP-3 is characterized as an inhibitor of reproductive
hormone secretion (Anderson et al., 2009; Ducret et al., 2009).
Because puberty onset could include modulation of an upstream
“brake” on GnRH secretion, we assessed whether Rfip neurons (which
are located exclusively in the DMN) show notable changes before
or during puberty. Neural Rfrp expression in mice was previously
examined at a few developmental ages, with total Rfrp cell number
being higher in juveniles than adults (Poling et al., 2012), but it was
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unknown exactly when and how Rfip levels change in post-juvenile
(i.e., pubertal) mice. Strikingly, we found that both the number of
Rfrp neurons and total Rfrp mRNA dropped significantly, by 30% and
40%, respectively, between PND 15 and PND 21, after which they
stabilized at adult levels. This large decrease in Rfrp expression over
the course of a few days may point to this particular peripubertal
stage as a critical period for a reduction of RFRP-3-mediated inhi-
bition of GnRH or kisspeptin neurons (Poling et al., 2013). Notably,
this drop in Rfrp expression occurs almost a week prior to VO, sug-
gesting that hypothalamic changes in reproductive circuits occur
well before external physical signs of pubertal onset. However, in-
terestingly, during the VO period itself, mice that had already
undergone VO also had significantly lower Rfrp expression, both in
cell number and total mRNA levels (~20% reduction for each), than
mice of the same ages that had not yet shown VO. Moreover, unlike
the AVPV/PeN and ARC Kiss1 cells, the Rfrp population exhibited a
large peripubertal change in neuronal activation. In juvenile animals,
the number of Rfip cells co-expressing c-fos was dramatically higher
- by nearly twofold - than on any subsequent pubertal age exam-
ined. What is causing the Rfrp neuron activation at PND 15 but not
at older pubertal ages is currently unknown, but may potentially
comprise an integral part of the pubertal process. However, at
present, very little — if anything - is known regarding the identity
of upstream or internal factors that regulate Rfrp neurons.

The observed peri-pubertal decreases in Rfip levels and Rfrp neu-
ronal activation accord with the proposed role of RFRP-3 as an
inhibitor of the reproductive axis (Anderson et al., 2009; Ducret et al.,
2009), and may indicate that RFRP-3 signaling is reduced prior to,
or at, the onset of puberty in order to disinhibit the reproductive
axis. Indeed, it has been proposed that upstream networks may
control puberty through the relief of inhibition on stimulatory factors,
like kisspeptin and NKB, to allow GnRH secretion to be enhanced
at puberty (Kauffman, 2010; Lomniczi et al., 2013; Tena-Sempere,
2012; Terasawa et al., 2013). Based on our current findings, RFRP-3
signaling may be one possible aspect of inhibitory control during
puberty onset. Despite this possibility, a recent report suggested that
RFRP-3 signaling via GPR147 is not crucial for puberty onset, as
GPR147 KO mice exhibited normal puberty onset (Leon et al., 2014).
However, RFRP-3 can also bind the receptor GPR74, which was not
only intact in those KO mice but actually upregulated in some tissues,
perhaps providing compensatory pathways and maintaining func-
tional RFRP-3 signaling. Thus, whether RFRP-3 signaling plays a role
in pubertal timing still remains to be determined.

4.5. General considerations and conclusions

The present study identifies several notable changes in gene ex-
pression and neuronal activation at various stages of the pubertal
period (summarized in Fig. 9). The timing of the observed changes
is interesting for several reasons. First, not all the changes oc-
curred at the same time or over the same number of days, indicating
differential regulation of these various reproductive systems during
the peripubertal period. For example, RFRP-3 changed dramatical-
ly early in the peripubertal period but not later on, whereas ARC
Kiss1 and Tac2 changed very gradually and constantly throughout
the pubertal period. Kiss1 in the AVPV/PeN, like the ARC, changed
throughout the entire period but on a much larger scale day to day.
Second, many of the observed changes, including Rfrp and AVPV/
PeN Kiss1, occurred well before VO (Fig. 9), an external morphological
marker of puberty. Indeed, the Rfrp changes occurred over a week
before mean VO, and likewise, AVPV/PeN Kiss1 was already showing
notable increases a week before VO. These observations support the
idea that pubertal changes in the brain may actually occur much
earlier than VO, which is merely a morphological marker of “suf-
ficient” estradiol exposure and, as such, is not a good indicator of
puberty onset, but rather of pubertal occurrence or progression.
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Fig. 9. Cartoon schematic summarizing the various changes in reproductive gene
expression and neuronal activation during the pubertal transition in female mice.
(A) Summary of the changes in neural gene expression in reproductive genes during
the pubertal transition in female mice. Levels are plotted relative to typical adult
levels, which are designated by the horizontal black dotted line. (B) Summary of the
changes in neuronal activation in reproductive circuits (kisspeptin and RFRP-3 neu-
ronal populations) during the pubertal transition. Relative levels are plotted as 0-100%
of each neuronal population showing activation. In both (A) and (B), the green shaded
area designates the period when vaginal opening (VO) is observed, with the darker
green bar denoting the mean age of VO. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Though many studies of puberty in rodent models use VO as an in-
dicator of the “onset of puberty”, it appears that neuroendocrine
puberty in the brain has likely begun well before the VO event.
Whether any of the notable changes observed in the present study
actually reflect an involvement in the pubertal mechanism versus
other important physiological processes remains to be deter-
mined. Likewise, it is unknown if some of the alterations observed
are secondary responses to pubertal changes in gonadal sex ste-
roids, which presumably rise during the pubertal period, as
demonstrated in other rodents. In particular, the large AVPV/PeN
Kiss1 increases are likely due, at least in part, to rising estradiol levels
during pubertal development, as AVPV/PeN Kiss1 expression can be
strongly upregulated by activational effects of sex steroids (Smith
et al., 2005). However, current mouse estradiol assays are not sen-
sitive enough to detect very low levels of estradiol, especially at
young ages (Kauffman, unpublished observations), and we were
therefore unable to correlate serum estradiol in our pubertal mice
to changing gene expression. Regardless, many of the observed pu-
bertal changes in gene expression cannot be solely due to sex
steroids, as the different genes changed with different patterns, mag-
nitudes, and time-courses (or in some cases, did not change at all),
despite being exposed to the same hormonal milieu within each
animal. In fact, interestingly, the ARC Kiss1 and Tac2 systems in-
creased over the pubertal period, despite presumably rising sex
steroid levels (which normally inhibit these two genes, at least in
adults). In addition, we note that all animals in the present study
were sacrificed during a 2-hour time window during the day (from
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11 am to 1 pm), and gene expression levels and neuronal
activation of these various reproductive populations may change
differently (or not at all) at other circadian times outside of this
period.

Future analyses of the same neural genes in pubertal males will
be critical. Indeed, it will be informative to determine what com-
monalities and differences exist between male and female
reproductive genes, especially given known sex differences in both
normal puberty onset (earlier in females than males) and puber-
tal disorders in humans (precocious puberty is more common in
females, delayed puberty more prevalent in males). Moreover, our
study focused on gene expression and neuronal activation, but did
not measure neuropeptide protein levels. Future studies can perform
similar large-scale analysis of protein levels across puberty to com-
plement and extend our mRNA findings.

In summary, we report that multiple reproductive genes are in
flux during the peripubertal and pubertal period, with marked and
continual increases in AVPV/PeN Kiss1 expression, smaller gradual
in ARC Kiss1 and Tac2 expression, and a more rapid and sizable
drop in Rfrp expression and neuronal activation in the early portion
of the peripubertal period. The observed increases in Kiss1 and Tac2
may relate to increased stimulation of the maturing reproductive
axis, whereas the reduction in Rfip levels and neuronal activation
may reflect disinhibition of reproductive circuits to facilitate puberty
onset. Several of these changes occurred well before external mor-
phological signs of puberty, though interestingly, many of the
genes changed on quite different timescales and patterns than each
other.
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