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Association of Brain Reward Response With Body Mass Index
and Ventral Striatal-Hypothalamic Circuitry Among Young Women
With Eating Disorders

Guido K. W. Frank, MD; Megan E. Shott, BS; Joel Stoddard, MD; Skylar Swindle, BS; Tamara L. Pryor, PhD

Supplemental content
IMPORTANCE Eating disorders are severe psychiatric disorders; however, disease models
that cross subtypes and integrate behavior and neurobiologic factors are lacking.

OBJECTIVE To assess brain response during unexpected receipt or omission

of a salient sweet stimulus across a large sample of individuals with eating disorders and
healthy controls and test for evidence of whether this brain response is associated with the
ventral striatal-hypothalamic circuitry, which has been associated with food intake control,
and whether salient stimulus response and eating disorder related behaviors are associated.

DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional functional brain imaging study,
young adults across the eating disorder spectrum were matched with healthy controls at a
university brain imaging facility and eating disorder treatment program. During a sucrose
taste classic conditioning paradigm, violations of learned associations between conditioned
visual and unconditioned taste stimuli evoked the dopamine-related prediction error.
Dynamic effective connectivity during expected sweet taste receipt was studied to
investigate hierarchical brain activation between food intake relevant brain regions.

The study was conducted from June 2014 to November 2019. Data were analyzed

from December 2019 to February 2020.

MAIN OUTCOMES AND MEASURES Prediction error brain reward response across insula and
striatum; dynamic effective connectivity between hypothalamus and ventral striatum;
and demographic and behavior variables and their correlations with prediction error brain
response and connectivity edge coefficients.

RESULTS Of 317 female participants (197 with eating disorders and 120 healthy controls),

the mean (SD) age was 23.8 (5.6) years and mean (SD) body mass index was 20.8 (5.4).
Prediction error response was elevated in participants with anorexia nervosa (Wilks A, 0.843;
P =.001) and in participants with eating disorders inversely correlated with body mass index
(left nucleus accumbens: r = -0.291; 95% Cl, -0.413 to -0.167; P < .001; right dorsal anterior
insula: r = -0.228; 95% Cl, -0.366 to -0.089; P = .001), eating disorder inventory-3 binge
eating tendency (left nucleus accumbens: r = -0.207; 95% Cl, -0.333 to -0.073; P = .004;
right dorsal anterior insula: r = -0.220; 95% Cl, -0.354 to -0.073; P = .002), and trait anxiety
(left nucleus accumbens: r = -0.148; 95% Cl, -0.288 to -0.003; P = .04; right dorsal anterior
insula: r = -0.221; 95% Cl, -0.357 to -0.076; P = .002). Ventral striatal to hypothalamus
directed connectivity was positively correlated with ventral striatal prediction error in eating
disorders (r = 0.189; 95% Cl, 0.045-0.324; P = .01) and negatively correlated with feeling out
of control after eating (right side: r = -0.328; 95% Cl, -0.480 to -0.164; P < .001; left side:
r=-0.297; 95% Cl, -0.439 to -0.142; P = .001).

CONCLUSIONS AND RELEVANCE The results of this cross-sectional imaging study support Author Affiliations: Department of

that body mass index modulates prediction error and food intake control circuitry in the Psychiatry, University of California at
brain. Once altered, this circuitry may reinforce eating disorder behaviors when paired San Diego, San Diego (Frank, Shott,
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University of Colorado, Anschutz
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Eating Disorder Care, Denver,
Colorado (Pryor).
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ating disorders are severe psychiatric disorders with

high mortality.! Anorexia nervosa (AN) is character-

ized by severe underweight with intermittent binge
eating or purging episodes; individuals with bulimia nervosa
(BN) are at normal to high weight and regularly binge and
purge. Binge-eating disorder (BED) is associated with binge-
eating episodes and frequently elevated body weight.? Eat-
ing disorders that do not meet full criteria for those diagno-
ses have been recognized as specific subgroups within the
other specified feeding and eating disorders (OSFED) cat-
egory of the DSM-5. Food restriction, episodic binge eating,
or purging vary across the diagnostic groups, whereas body
dissatisfaction and drive for thinness are typically elevated
across all eating disorders, as are anxious traits and sensitiv-
ity to salient stimuli. Identifying how those behaviors are
associated with particular biologic mechanisms could help
create a better understanding of the underlying eating
disorder pathophysiologic factors and development of spe-
cific treatments.? To adopt a dimensional conceptualization
of eating disorder specific behaviors and neurobiologic fac-
tors, we recruited individuals across the eating disorder
spectrum and applied the prediction error construct from
the National Institute of Mental Health Research Domain
Criteria (RDoC) project.*

Brain reward circuits have been repeatedly implicated in
eating disorders, and altered reward learning may play a par-
ticularly important role.® In reward learning, the difference
between an expectation and outcome yields a prediction
error, a dopamine-associated signal that reinforces new
associations.®” The direction of the prediction error is indi-
cated by its sign, which indicates a better (positive) or worse
(negative) outcome than expected. The absolute value re-
flects the degree of deviation of the outcome from the expec-
tation and is related to surprise or conceptualized as a moti-
vational salience signal.®° The dopamine system adapts in
opposite directions to extremes of food intake.'°3 Food re-
striction enhances dopamine circuit activity*!* and exces-
sive food intake downregulates dopamine circuit activity,!?
which could be relevant for eating disorder pathophysiologic
factors.'®'® Studies in AN found elevated prediction error re-
sponse to taste and monetary stimuli compared with healthy
controls but a lower response in small studies in individuals
with BN and individuals with overweight.?°2® Those studies
suggested that the prediction error signal is inversely corre-
lated with eating disorder behaviors from restrictive to loss
of control food intake (binge eating).?* Furthermore, predic-
tion error response was positively correlated in adolescent
AN with ventral striatum-hypothalamus directed effective
connectivity, a circuitry that has been associated with food
intake control.??

For consistency with the RDoC approach, we studied a
large group of individuals with eating disorders, varying on a
spectrum of restrictive undereating to loss-of-control over-
eating. To validate previous results, we also recruited a healthy
control group. First, we hypothesized that we would find in-
verse correlations between prediction error response and eat-
ing disorder behavior from undereating to overeating, as re-
flected in body mass index (BMI) and binge eating severity.
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Key Points

Question Is brain reward response associated with specific
behaviors across the eating disorder diagnostic spectrum?

Findings In this cross-sectional functional brain imaging study of
197 women with anorexia nervosa, other specified feeding and
eating disorders, bulimia nervosa, and binge eating disorder and a
matched cohort of 120 healthy controls, brain salience response
was significantly inversely correlated with body mass index and
binge eating severity and positively correlated with ventral
striatal-hypothalamic circuitry.

Meaning Results of this study suggest that eating disorder
behaviors change brain reward processing, which may alter
food intake control circuitry and reinforce the individual's
eating disorder behavior.

This hypothesis would support basic and translational sci-
ence research by externally validating a core behavioral di-
mension via its associations with reward-responsiveness.
Second, we hypothesized that effective connectivity would be
directed from the ventral striatum to the hypothalamusin the
eating disorder sample. This hypothesis would support a po-
tential trait mechanism across eating disorders to attempt to
control eating drive.?* Third, we hypothesized that associa-
tions between biological and behavioral data may help de-
velop a model to explain how traits, eating disorder behav-
iors, and neurobiologic factors interact and reinforce the often
chronic nature of eating disorders.?”

Methods

Participants

The Colorado Multiple institutional review board approved
the study. All participants provided written informed con-
sent. We recruited 197 women with an eating disorder: 69
AN restricting subtype, 22 AN binge-eating/purging subtype,
17 OSFED atypical AN subtype, 17 OSFED purging disorder
subtype, 56 BN, 3 OSFED binge-eating subtype, and 13 binge
eating disorder (BED). Participants with eating disorders
were recruited from eating disorder partial hospitalization
specialty care (EDCare Denver or Children’s Hospital Colo-
rado) within the first 2 weeks of treatment, to mitigate
effects of acute starvation or dehydration.?® Following RDoC
instructions, we recruited any interested patient with eating
disorders who was admitted to treatment. In addition, we
recruited 120 women as healthy controls (HCs) through local
advertisements. The study was conducted from June 2014 to
November 2019. Data were analyzed from December 2019 to
February 2020. This study followed the Strengthening the
Reporting of Observational Studies in Epidemiology (STROBE)
reporting guideline for cross-sectional studies.

Participants were right-handed without history of head
trauma, neurological disease, major medical illness, bipolar
disorder, psychosis, or current (past 3 months) substance use
disorder. The healthy controls were studied during the first
10 days of the menstrual cycle to reduce potential hormonal
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variations. For eating disorders, treatment stage was the
primary variable we controlled for, but we recorded days
from last menstrual cycle as a proxy to test for hormonal
variation.

Assessments

Psychiatric diagnoses were assessed using the Structured
Clinical Interview for DSM-5 by a doctoral-level interviewer.?”
Participants completed the Eating Disorder Inventory-3 (EDI-3)
for drive for thinness (intense fear of weight gain), bulimia
(tendency to engage in binge eating), body dissatisfaction (dis-
contentment with size of body regions),?® Revised Sensitiv-
ity to Punishment and Reward Questionnaire,?® State-Trait
Anxiety Inventory,3° Temperament and Character Inventory
for Novelty Seeking and Harm Avoidance,*' and Beck
Depression Inventory-I1°2; participants blindly rated sugar
solutions for sweetness and pleasantness using a 9-point
Likert scale. A subset of participants (eating disorder, n = 128,
HC, n = 84) completed the Eating Expectancy Inventory for
eating leads to feeling out of control.>?

Brain Imaging Methods

Functional Magnetic Resonance Imaging

Between 7:00 AM and 9:00 aM on the study day, participants
with eating disorders ate their meal-plan breakfast and HC ate
a quality-matched and calorie-matched breakfast (Table 1).
Brain imaging was performed between 8:00 AM and 9:00 AM
using the 3-T Signa (General Electric Company) or Skyra 3-T
scanner (Siemens) (eMethods 1 in the Supplement). A scan-
ner covariate was included in the multivariate analysis of
covariance model for imaging group contrasts.

Taste Reward Task

The design of this study was adapted from O’Doherty et al**
(eMethods 2 and eFigure 2 in the Supplement). Participants
learned to associate 3 unconditioned taste stimuli (1 molar
sucrose solution, no solution, or artificial saliva) with paired
conditioned visual stimuli. Each conditioned visual stimulus
was probabilistically associated with its unconditioned
taste stimulus such that 20% of sucrose and no solution
conditioned visual stimuli trials were unexpectedly followed
by no solution or sucrose unconditioned taste stimuli,
respectively.

Functional Magnetic Resonance Imaging Analysis

Image preprocessing and analysis were performed using
Statistical Parametric Mapping, version 123° (Wellcome Trust
Centre for Neuroimaging). Images were realigned to the first
volume, normalized to the Montreal Neurological Institute
template, smoothed at 6-mm full width at half maximum
gaussian kernel. Data were preprocessed with slice time cor-
rection and modeled with a hemodynamic response con-
volved function using the general linear model, including tem-
poral and dispersion derivatives. A 128-second high-pass filter
(removing low-frequency blood oxygen level dependent sig-
nal fluctuations), motion parameters (as first-level analysis
regressors), and the SPM FAST (prewhitening attenuation of
autocorrelation effects) were applied.3®

jamapsychiatry.com
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Prediction Error Analysis

Each participant’s prediction error signal was modeled based
on trial sequence (absolute of positive and negative predic-
tion error) and regressed with brain activation across all
trials20-21:34 (eMethods 3 in the Supplement). We extracted
mean parameter estimates across all voxels from 5 pre-
defined anatomical regions of interest (ROIs) bilaterally, based
on ROIs that differentiated groups previously?3: bilateral
dorsal anterior insula (automated anatomical labeling Atlas®”),
ventral anterior insula,?” caudate head,*” ventral striatum,>®
and nucleus accumbens.>®

Effective Connectivity Analysis

We extracted ROI functional activation for trials of expected
receipt of 1 molar sucrose solution (n = 80).%° The Tetrad-V*!
was used to infer effective connectivity with independent mul-
tisample greedy equivalence search and linear non-gaussian
orientation, fixed structure search algorithms. We extracted
edge coefficients for ventral striatum-hypothalamus (hypo-
thalamus ROI, SPM12 WFU_PickAtlas extension*?) connectiv-
ity to test for correlations with behavior or PE values based
on our previous studies?® (eMethods 4 in the Supplement).

Statistical Analysis

Statistical analysis was performed with SPSS 27 software (IBM).
Data were tested for normality with Shapiro-Wilk test and
ranked and normalized using Rankit procedure if nonnor-
mally distributed.** Demographic and behavior data were ana-
lyzed using analysis of variance, and post hoc analyses were
Bonferroni corrected. Multivariate analysis of covariance and
correlation analyses were used to test effect sizes of potential
confounding categorical or continuous variables such as co-
morbidity, medication use, or age. Variables associated with
the primary outcome variable brain response were included
in a group-comparison multivariate analysis of covariance
and estimated marginal means post hoc comparisons Bonfer-
roni corrected. Partial n2 was calculated for effect size in ad-
dition to power calculations. Pearson correlation analysis
was used to test associations between behavior and brain ac-
tivation, CIs were calculated using bootstrap (1000 samples)
and results were multiple comparisons controlled using false
discovery rate.** All P values were 2-tailed, and a P value
less than .05 was considered statistically significant.

. |
Results

Demographic and Behavioral Variables

Of 317 female participants (197 with eating disorders and 120
healthy controls), the mean (SD) age was 23.8 (5.6) years and
mean (SD) BMI (calculated as weight in kilograms divided by
height in meters squared) was 20.8 (5.4). eTable 1 in the
Supplement provides demographic and behavioral data for
all groups. To increase power for comparison with HC, we
combined restrictive and binge-eating/purging AN sub-
groups (AN, severe food restriction), OSFED atypical AN and
purging disorder subgroups (OSFEDr, intermediate restric-
tive eating, normal BMI), and OSFED binge-eating and BED
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P value Post hoc differences
NA

.10

Statistic
x2=6.1

MANOVA analysis
Partial n2

BED (n = 16)
NA

7 (43.8)

BN (n = 56)
33(58.9)

OSFEDr (n = 34)
24 (70.6)

AN (n = 91)
44 (48.4)

Mean (SD)
HC (n = 120)

Antidepressant use,

Variable
No. (%)

Table 1. Participant Demographic and Behavioral Characteristics (continued)

jamapsychiatry.com

.35 NA

x2=3.3

NA

14 (15.4) 6(17.6) 7(12.5)

Antipsychotic use,

No. (%)

NA
NA
NA
NA

a1
.36
12

x2=6.0
x2=3.2

NA
NA
NA
NA

4(25)

31(55.4)
8(14.3)

20(58.8)

8(23.5)

43 (47.3)

MDD, No. (%)
0CD, No. (%)

2(12.5)
4(25)

10 (11.0)

2=58
2=79

19 (33.9)
42 (75.0)

17 (18.7) 12 (35.3)
21(61.8)

59 (64.8)

PTSD, No. (%)

.047

6(37.5)

Anxiety disorder,

No. (%)
Abbreviations: AN, anorexia nervosa, restricting subtype and binge/purge subtype; BED, binge eating disorder

and other specified eating disorder, binge eating subtype; BMI, body mass index (calculated as weight in

© Eating Disorder Inventory-3.

9Intolerance of Uncertainty Scale.

kilograms divided by height in meters squared); BN, bulimia nervosa; HC, healthy control; MANOVA, multivariate
analysis of variance; NA, not applicable; OCD, obsessive-compulsive disorder; OSFEDr, other specified eating

disorder restricting subtypes; PTSD, posttraumatic stress disorder.

€ Sensitivity to Punishment and Sensitivity to Reward Questionnaire.

f State-Trait Anxiety Inventory.

84; AN, n = 49; OSFEDr,

8 Eating Expectancy Inventory (a subset of participants completed the EEI: HC, n

2 Temperament and Character Inventory.

=7).

33;BN,n=39;BED,n

n=

b Beck Depression Inventory 2.

Original Investigation Research

groups (BED, loss of control eating, elevated BMI). Combined
subgroups were similar in BMI and psychological measures
(Table 1; eFigure 1 in the Supplement). The overall age range
was narrow across groups, but significantly lower in AN and
OSFEDr and higher in BED compared with HC. BMI was
lower in AN compared with the remaining groups and higher
in BED compared with AN, OSFEDr and BN. High and low
lifetime BMI showed similar patterns. Regular menses
occurred in 16 participants with AN (18%, mean [SD] 15 [7]
days from last cycle), 17 with OSFEDr (50%, mean [SD] 16 [8]
days), all with HC (mean [SD] 6 [3] days), 33 with BN (59%,
mean [SD] 12 [8] days), and 6 with BED (38%, mean [SD] 10
[6] days). Novelty seeking was lower in AN vs HC, BN and
BED; harm avoidance, depression, drive for thinness, body
dissatisfaction, bulimia, eating leads to feeling out of con-
trol, intolerance of uncertainty, reward and punishment sen-
sitivity, and state and trait anxiety were higher in eating dis-
order groups vs HC. Sucrose pleasantness was lower in
OSFEDr vs HC and AN. Frequency of weekly binge eating
and purging episodes was higher in BN vs remaining groups.
Breakfast calories were similar across groups.

Correlations between behavior data were consistent with
previous research (eTable 2 in the Supplement). EDI-3 body dis-
satisfaction and EDI-3 drive for thinness were significantly posi-
tively correlated with scores for harm avoidance (body dissat-
isfaction r = 0.345; 95% CI, 0.222-0.456; P < .001; drive for
thinness r = 0.357; 95% CI, 0.210-0.482; P < .001), depres-
sion (body dissatisfaction r = 0.436; 95% CI, 0.294-0.562;
P < .001; drive for thinness r = 0.378; 95% CI, 0.237-0.508;
P <.001), intolerance of uncertainty (body dissatisfaction
r=0.274; 95% CI, 0.138-0.396; P < .001; drive for thinness
r = 0.400; 95% CI, 0.274-0.507; P < .001), sensitivity to pun-
ishment (body dissatisfaction r = 0.335; 95% CI, 0.201-
0.459; P < .001; drive for thinness r = 0.354; 95% CI, 0.201-
.492; P < .001), and trait anxiety (body dissatisfactionr = 0.448;
95% CI, 0.322-.566; P < .001; drive for thinness r = 0.480;
95% CI, 0.333-0.598; P < .001). EDI-3 bulimia was signifi-
cantly positively correlated with BMI (r = 0.516; P < .001).

Forty-five HC and 40 participants with eating disorders
took oral contraceptives (x? = 16.329; P < .001). Use of antide-
pressant or antipsychotic medication, or comorbidity with ma-
jor depression, obsessive-compulsive disorder, or posttrau-
matic stress disorder were not differentially distributed
between eating disorder groups, but comorbid anxiety disor-
der was (x? = 7.935; P = .047).

Brain Response-Behavior Correlations

In the HC group, correlations between age, BMI, or behavior
and brain imaging values were not significant or were not found
after multiple comparison correction.

The eating disorder group showed significant correla-
tions between BMI (left nucleus accumbens: r = -0.291;
95% CI, -0.413 to -0.167; P < .001; left ventral anterior in-
sula: r = -0.208; 95% CI, —0.339 to -0.070; P = .004), binge-
eating frequency (left nucleus accumbens: r = -0.183; 95% CI,
-0.312 to -0.055; P = .01; left ventral anterior insula:
r = -0.084; 95% CI, -0.212 to -0.047; P = .26), EDI-3 bulimia
(left nucleus accumbens: r = -0.207; 95% CI, -0.333 to -0.073;
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Table 2. Correlation Between Regional Prediction Error Response, BMI, Binge Frequency, and EDI-3 Bulimia Score

Correlation coefficient (95% CI)

P Binge frequency P P P

Region BMI value (weekly) value EDI-3 bulimia value Trait anxiety value

Right dorsal anterior insula -0.228 (-0.366 to .001 -0.159 (-0.286 to .03 -0.220 (-0.354 to .002 -0.221(-0.357 to .002
-0.089) -0.022) -0.073) -0.076)

Left dorsal anterior insula -0.228 (-0.360 to .001  -0.166 (-0.290 to .02 -0.209 (-0.344 to .003 -0.241(-0.370to .001
-0.103) -0.031) -0.066) -0.095)

Right ventral anterior insula  -0.129 (-0.255 to .07 -0.129 (-0.261 to .08 -0.152 (-0.289 to .03 -0.166 (-0.320 to .02
0.014) -0.001) -0.014) -0.011)

Left ventral anterior insula -0.208 (-0.339 to .004 -0.084(-0.212to .26 -0.143 (-0.282 to .047 -0.166 (-0.315to .02
-0.070) 0.047) 0.010) -0.001)

Right caudate head -0.217 (-0.361 to .002  -0.054(-0.189 to 47 -0.172(-0.304 to .02 -0.137(-0.293 to .06
-0.069) 0.085) -0.032) 0.038)

Left caudate head -0.287 (-0.412 to <.001 -0.142(-0.274to .05 -0.233(-0.351to .001 -0.162(-0.290 to .02
-0.152) -0.010) -0.121) -0.019)

Right ventral striatum -0.214 (-0.341 to .003  -0.057 (-0.186 to 44 -0.174 (-0.308 to .02 -0.065 (-0.229 to 37
-0.078) 0.063) -0.037) 0.109)

Left ventral striatum -0.222 (-0.349 to .002  -0.068(-0.198 to .36 -0.148 (-0.283 to .04 -0.102 (-0.240 to .16
-0.088) 0.061) -0.002) 0.046)

Right nucleus accumbens -0.248 (-0.383 to <.001 -0.145(-0.275to .048 -0.176 (-0.296 to .01 -0.096 (-0.246 to .19
-0.103) -0.009) -0.048) 0.070)

Left nucleus accumbens -0.291(-0.413 to <.001 -0.183(-0.312to .01 -0.207 (-0.333 to .004 -0.148 (-0.288 to .04

-0.167)

-0.055)

-0.073)

-0.003)

Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); EDI-3, Eating Disorder Inventory-3.

P =.004; left ventral anterior insula: r = -0.143; 95% CI, —0.282
to —0.010; P = .047), trait anxiety (left nucleus accumbens:
r =-0.148;95% CI, -0.288 to —-0.003; P = .04; left ventral an-
teriorinsula: r = -0.166; 95% CI, -0.315to -0.001; P = .02), and
prediction error response (Table 2; eFigure 3 in the Supple-
ment). In a partial correlation analysis, significant correla-
tions between regional prediction error response and BMI were
found when controlling for binge-eating frequency (left nucleus
accumbensr = -0.192; 95% CI, -0.315 to -0.059; P = .01; right
nucleus accumbens r = -0.178; 95% CI, -0.324 to -0.025;
P = .02;left caudate head r = -0.237; 95% CI, -0.368 to -0.095;
P = .001; right caudate head r = -0.205; 95% CI, -0.348 to
-0.056 P = .01; left ventral striatum r = -0.196, 95% CI, -0.329
to -0.059; P = .01; right ventral striatum r = -0.198; 95% CI,
-0.334t0-0.056; P = .01; left dorsal anteriorinsular = -0.154;
95% CI, -0.277 to —0.036; P = .04; right dorsal anterior insula
r =-0.153; 95% CI, —0.286 to —0.017; P = .04; left ventral an-
terior insula r = -0.193; 95% CI, —-0.319 to -0.061; P = .01), or
EDI-3 bulimia (left nucleus accumbens r = -0.213; 95% CI,
-0.330 to -0.088; P = .003; right nucleus accumbens
r =-0.190; 95% CI, -0.322 to -0.051; P = .01; left caudate
head r = -0.200; 95% CI, -0.321 to -0.074; P = .005; right
caudate head r = -0.157; 95% CI, -0.287 to —0.017; P = .03; left
ventral striatum r = -0.178; 95% CI, —-0.299 to -0.047; P = .01,
right ventral striatum r = -0.151; 95% CI, -0.275 to -0.014;
P = .04; left dorsal anterior insula r = -0.151; 95% CI, -0.264
to -0.034; P = .04; right dorsal anterior insula r = -0.144;
95% CI, -0.257 to —0.023; P = .045; left ventral anterior in-
sular = -0.164; 95% CI, -0.290 to -0.035; P = .02), although
significant correlations with bulimia or binge frequency
were not found after controlling for BMI. Number of days
from last menstrual cycle was not significantly correlated
with prediction error response in any group. Exploratory
analysis of the combined sample did not improve results
(eMethods 5 in the Supplement).
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Effective Connectivity

Effective connectivity was directed in HC from hypothala-
mus to ventral striatum. In the eating disorder sample, effec-
tive connectivity was directed from ventral striatum to hypo-
thalamus (Figure 1). eFigure 4 in the Supplement shows
individual graphs for AN and BN groups.

Extracted effective connectivity edge coefficients from
right ventral striatum to hypothalamus in eating disorder
correlated significantly with right-sided ventral striatum pre-
diction error response (r = 0.189; 95% CI, 0.045-0.324; P = .01);
left-sided correlation was also positive but nonsignificant
(r = 0.104; 95% CI -0.030 to 95% CI 0.231; P = .15). Edge co-
efficients correlated in eating disorders significantly in 3 ways:
first, bilaterally negatively with eating leads to feeling out of
control (right sided: r = -0.328; 95% CI, -0.480 to -0.164;
P < .001; left sided: r = -0.297; 95% CI -0.439 to -0.142;
P =.001), intolerance of uncertainty (right sided: r = -0.213;
95% CI -0.355 to -0.047; P = .004; left sided: r = -0.221;
95% CI, -0.354 to -0.080; P = .003), and sensitivity to pun-
ishment (right sided: r = -0.163; 95% CI, -0.295 to -0.011;
P =.03;leftsided: r = -0.166; 95% CI, -0.307 t0 -0.007; P = .03);
second, on the right side negatively with bulimia (r = -0.162;
95% CI, -0.291 to -0.005; P = .03), and body dissatisfaction
(r =-0.147; 95% CI, -0.279 to -0.001; P = .047); and third, on
the left side with drive for thinness (r = -0.182; 95% CI, -0.317
to-0.044; P = .01), harm avoidance (r = -0.183; 95% CI, -0.334
to -0.029; P = .01), and trait anxiety (r = -0.151; 95% CI,
-0.278 to -0.007; P = .04).

Confounding Variables Assessment on Prediction

Error Response

Multivariate analysis of covariance in the combined eating dis-
order group indicated no significant effect sizes for antide-
pressants (Wilks A, 0.930; P = .21), antipsychotics (Wilks A,
0.923; P = .145), major depressive disorder (Wilks A, 0.945;
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Figure 1. Effective Connectivity Maps Across Study Groups

E Healthy control women

The yellow arrow indicates effective dynamic connectivity in opposite directions between ventral striatum and hypothalamus. ACC, anterior cingulate cortex;
BA/BLA, basolateral amygdala; CAN, central nucleus of the amygdala; HYP, hypothalamus; L, left; OFC, orbitofrontal cortex; PFC, prefrontal cortex; R, right;

SN, substantia nigra; VMP, ventral midbrain/pons.

P = .41), anxiety disorder (Wilks A, 0.941; P = .09), or posttrau-
matic stress disorder (Wilks A, 0.943; P = .38). However, there
were significant effect sizes for scanner (Wilks A, 0.843;
P =.001), age (Wilks A, 0.897; P = .03), and obsessive-
compulsive disorder (Wilks A, 0.900; P = .04), which were
included in the prediction error group-contrast model.

Prediction Error Group Contrasts

Prediction error response significantly differentiated groups
(Wilks A, 0.843; P = .001). After Bonferroni correction,
prediction error remained elevated in AN compared with
HC, OSFEDr and BN in the left caudate head, compared
with HC and BN and BED in left nucleus accumbens, com-
pared with HC and BN in the right nucleus accumbens,
compared with HC and BED in the left ventral striatum,
and compared with BN in the left dorsal insula (Table 3;
eFigure 5 in the Supplement).

jamapsychiatry.com

|
Discussion

This cross-sectional study in a large sample of women across
the eating disorder diagnostic spectrum indicates elevated
prediction error response in AN compared with HC, BN, and
BED, which is consistent with previous studies. In eating
disorders, prediction error response was inversely correlated
with BMI and binge eating behaviors. Furthermore, ventral
striatal prediction error response correlated with effective con-
nectivity from the ventral striatum to the hypothalamus in
eating disorders, indicating an association between predic-
tion error responsiveness and strength of a circuitry that has
been associated with food intake control.**

Theresults support basic science studies showing that pre-
diction error response adapts to patterns of food intake.!°13
Regional prediction error response was higher the more re-
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Figure 2. Model for Interaction Between Behaviors, Body Mass Index, and Brain Function
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The solid lines indicate proposed mechanistic relationships; the broken lines
indicate indirect associations. Numeric values report Pearson correlation values.
BDI indicates Beck Depression Inventory 2; BMI, body mass index; EDI, Eating
Disorder Inventory-3; EEI, Eating Expectancy Inventory; IUS, Intolerance of
Uncertainty Scale; PE, prediction error; Sensitivity to Punishment and
Sensitivity to Reward Questionnaire; SP, Sensitivity to Punishment subscale;

TClindicates Temperament and Character Inventory-novelty seeking;
VS, ventral striatum.

2p<.001
bp < 0O1. Specific values available in eTable 2 in the Supplement.
€ P < .05. Specific values available in eTable 2 in the Supplement.

tainty, harm avoidance, drive for thinness, depression and
sensitivity to punishment, which also correlated positively
with Trait Anxiety, consistent with previous research.>”>° Body
dissatisfaction triggers drive for thinness, which reinforces
and isreinforced by anxiety, depression, and punishment sen-
sitivity, increasing poor self-esteem and further promoting
eating disorder behaviors.

Limitations

This study has limitations. The study was well powered for
group comparisons, but effect sizes were small to moderate.
Correlation analyses in the eating disorder sample showed
moderate to large or very large effect sizes, but correlation
analyses cannot prove mechanism. The prediction error model
isbased on dopamine function, but other neurotransmitter sys-
tems, such as serotonin, noradrenaline, or adenosine, are likely
factors in reward processing and behavior control in eating
disorder behaviors.®°-%? Furthermore, dopamine neuronal
function was not directly measured in this study and func-
tional magnetic resonance imaging prediction error response
is only an indirect approximation.®® Whether altered predic-
tion error response affects food intake acutely will require fur-
ther study, and inverse relationships between this brain re-
sponse and BMI may also exist in other conditions. The
hypothalamus ROI did not separate subnuclei. While HC were
studied during the first 10 days of the menstrual cycle to keep
hormonal variation low, the eating disorder population was
either amenorrheic or had more days from the last menstrual
cycle. Not having hormonal measures is a limitation, but days
from last menstrual cycle did not correlate with brain re-
sponse in either group. Because eating disorder results were
either higher or lower compared with HC, we do not believe
that there was a systemic confound. For the prediction error
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analysis, we used the unsigned (absolute) prediction error.
Pleasantness ratings for the 1 molar sucrose solution varied
from very high to very low. Unexpectedly receiving sucrose
solution could therefore be associated with positive (better than
expected) or negative (worse than expected) prediction er-
ror. Studying the absolute prediction error accounts for inter-
individual variation and measures degree of deviation from ex-
pectation, reducing effects of subjective pleasantness.®%:¢>
Our theoretical framework was primarily based on sensitiv-
ity to salient stimuli and adaptation of the related circuitry to
food intake. We believe that using the unsigned prediction
error yields more reliable results, independent from indi-
vidual value computation.

. |
Conclusions

Results of this study suggest that behavioral traits are factors
in eating disorder initiation and extremes of eating and then
alter prediction error-related reward response. This process
reinforces in opposite ways the ventral striatal-hypothalamic
food control circuitry, which is activated in response to sugar
taste as a trait in eating disorders. Clinically it therefore may
be important to implement weight gain in eating disorders in
people with underweight and weight loss in eating disorders
associated with overweight to normalize brain function
and behavior. This topic is controversial, though, and the
critical question remains what the best BMI for a person is in
this context. Furthermore, temperamental traits are biologi-
cally oriented behaviors that affect eating disorder behav-
iors. Treatment modules that specifically target those behav-
iors may be a key element to promote behavior change and
lasting recovery.
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