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53Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy

54Universités Paris VI et VII, Laboratoire de Physique Nucléaire H.E., F-75252 Paris, France
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231801-3
We have performed a search for the decays B� ! J= p� and B0 ! J= pp in a data set of �88:9�
1:0� � 106 ��4S� decays collected by the BABAR experiment at the PEP-II e�e� storage ring at the
Stanford Linear Accelerator Center. Four charged B candidates have been observed with an expected
background of 0:21� 0:14 events. The corresponding branching fraction is �12�9

�6� � 10�6, where
statistical and systematic uncertainties have been combined. The result can be interpreted as a 90%
confidence level (C.L.) upper limit of 26� 10�6. We also find one B0 candidate, with an expected
background of 0:64� 0:17 events, implying a 90% C.L. upper limit of 1:9� 10�6.

DOI: 10.1103/PhysRevLett.90.231801 PACS numbers: 13.25.Hw, 12.39.Jh, 12.39.Mk
published by CLEO [1] and BABAR [2], and preliminary
results have been presented by Belle [3]. One of the

the e e center-of-mass frame, pCM, when compared to
distributions predicted by nonrelativistic QCD (NRQCD)
Studies of the inclusive production of charmonium
mesons in B decays at the ��4S� resonance have been
interesting features observed by all three collabora-
tions is an excess of J= mesons at low momentum in

� �
231801-3
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calculations [4]. Figure 1 (from Ref. [2]) shows pCM for
J= mesons produced in B decay after subtraction of the
component due to the decay of heavier charmonium
states. The excess below 0:8 GeV=c corresponds to a
branching fraction of approximately 6� 10�4, 8% of
the total direct J= production.

Possible sources of the excess include an intrinsic
charm component of the B [6] or the production of an
sdg hybrid [7] in conjunction with a J= . Another pos-
sibility [8] is that the excess is from decays of the form
B! J= baryon antibaryon. The rate of these decays
could be enhanced by the intermediate production of an
exotic state allowed by QCD but not yet observed, in-
cluding nuclear-bound quarkonium (a cc pair bound to a
nucleon), baryonium (a baryon-antibaryon bound state),
or a pentaquark (a baryon containing five quarks). If such
resonances were narrow, the other particle in the decay
would be monoenergetic in the B rest frame. Note that the
J= spectrum in Fig. 1 would not directly display such
narrow distributions because it is measured in the e�e�

center-of-mass frame. The difference between pCM and
p	, the J= momentum in the B rest frame, has an rms of
0:12 GeV=c due to the motion of the B.

This Letter presents searches for the decays B� !
J= p� and B0 ! J= pp in a sample of 81:9 fb�1 col-
lected by the BABAR detector. Note that the latter decay
is Cabibbo suppressed relative to the former. Charge con-
jugation is implied throughout.

BABAR operates at the PEP-II e�e� storage ring,
which collides 9:0 GeV electrons on 3:1 GeV positrons
to create a center-of-mass system with energy 10:58 GeV
moving along the z axis with a Lorentz boost of �� 

0:55. ��4S� production makes up approximately 23% of
the total hadronic cross section.
FIG. 1. Center-of-mass momentum of J= mesons produced
directly in B decays (points) [2]. The histogram is the sum of
the color-octet component from a recent NRQCD calculation
[4] (dashed line), which includes multibody final states, and the
color-singlet J= K�	� component from simulation [5] (dotted
line). Normalizations of the curves have been constrained to fit
the data.

231801-4
The BABAR detector is described in detail in Ref. [9].
The trajectories of charged particles are reconstructed
and their momenta measured with two detector systems
located in a 1.5-T solenoidal magnetic field: a five-layer,
double-sided silicon vertex tracker (SVT) and a 40-layer
drift chamber (DCH). The tracking fiducial volume cov-
ers the polar angular region 0:41< �< 2:54 rad, which is
86% of the solid angle in the center-of-mass frame. The
transverse momentum resolution is 0.49% at 0:3 GeV=c
and 0.59% at 1 GeV=c.

The energies deposited by charged tracks and photons
are measured by a CsI(Tl) calorimeter (EMC) in the
fiducial volume 0:41< �< 2:41 rad (84% of the center-
of-mass solid angle) with energy resolution at 1 GeV of
2.6%. Muons are detected in the IFR, a multilayer device
of resistive plate chambers located in the flux return of
the solenoid. The DIRC, a Cherenkov radiation detector,
is used to identify charged particles.

We select B candidates of interest in a BB-enriched
sample. Events in the sample are required to have visible
energy E greater than 4:5 GeV and a ratio of the second to
the zeroth Fox-Wolfram moment [10], R2, less than 0.5.
Both E and R2 are calculated from tracks and neutral
energy deposits in the respective fiducial volumes noted
above. The same tracks are used to construct a primary
event vertex, which is required to be located within 6 cm
of the beam spot in z and within 0:5 cm of the beam line.
The beam spot rms size is approximately 0:9 cm in z,
120 �m horizontally, and 5:6 �m vertically.

There must be at least three tracks in the fiducial
volume satisfying the following quality criteria:
they must have transverse momentum greater than
0:1 GeV=c, momentum less than 10 GeV=c, at least 12
hits in the DCH, and approach within 10 cm of the beam
spot in z and within 1:5 cm of the beam line. Studies with
simulated data indicate that these criteria are satisfied by
96% of generic BB events.
B� ! J= p� candidates are formed by combining

J= , proton, and � candidates. J= candidates must
have mass in the range 2:950–3:130 GeV=c2 if recon-
structed in the e�e� final state or 3:060–3:130 GeV=c2

in ����.
One of the two electrons from the J= must satisfy the

following (‘‘tight’’) requirements. It must have an energy
deposit in the EMC between 89% and 120% of its mo-
mentum, a Cherenkov angle in the DIRC within 3� of
expectation for an electron, a lateral moment of the
energy deposit [11], LAT, between 0.1 and 0.6, an A42

Zernike moment [12] less than 0.11, and an energy loss
in the DCH consistent with expectation. Less stringent
(‘‘loose’’) requirements are imposed in the selection of
the second electron: we require an energy deposit in the
EMC of at least 65% of its momentum and place a less
restrictive requirement on DCH energy, with no require-
ments on LAT or A42. Whenever possible, photons radi-
ated by an electron traversing material prior to the DCH
231801-4
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(0.04 r.l. at normal incidence) are combined with the
track [2].

At 1:5 GeV=c, a typical lepton momentum, the tighter
criteria have an efficiency of 91% with a pion misidenti-
fication probability of 0.13%. The looser criteria give 98%
efficiency with 3% pion misidentification.

Muon candidates must deposit less than 0:5 GeV in the
EMC (2.3 times the minimum-ionizing peak) and have a
pattern of hits in the IFR consistent with the trajectory of
a muon. The total amount of material penetrated must be
greater than 2 interaction lengths and must be within 2
interaction lengths of the value expected for a muon. The
muon identification efficiency at 1:5 GeV=c is 77% with a
pion misidentification probability of 11%.

Proton candidates are selected with a likelihood
method that uses the energy deposited in the SVT and
the DCH, and the Cherenkov angle and number of pho-
tons observed in the DIRC. They are also required to fail
the tight electron identification criteria. At a typical mo-
mentum of 300 MeV=c, the selection efficiency is greater
than 98% with a kaon misidentification probability less
than 1%.

The � is reconstructed from a proton, which
must satisfy the above criteria, and an oppositely charged
track, assumed to be a pion. It must have mass be-
tween 1.10 and 1:14 GeV=c2 and a vertex that is separated
from the J= vertex by at least 2 mm. The angle between
the � momentum and the vector from the J= vertex to
the � vertex must be less than 90� in the laboratory
frame.

Geometrical vertex fits are performed on the resulting
B� candidates, of which approximately 68% are rejected
by a requirement on the quality of the fit.
B0 ! J= pp candidates are formed from J= candi-

dates and an oppositely charged pair of proton candidates.
Approximately 83% of resulting candidates fail a require-
ment on the quality of a vertex fit.

We use two nearly independent kinematic variables [9]
to categorize B candidates: the difference between
the reconstructed and expected energy of the B candidate
in the e�e�center-of-mass frame, �E 
 �q�qB �
s=2�=

���
s

p
, and the beam-energy substituted mass, mES 
����������������������������������������������������������

�0:5s� ~ppB  ~pp��
2=E2

� � p2
B

q
. The four-momentum of

the e�e� initial state, obtained from the beam momenta,
is q� 
 �E�; ~pp��, and s � jq�j2. The four-momentum of
the reconstructed B candidate, qB 
 �EB; ~ppB�, is found by
summing the four-momenta of the three daughters, with
daughter masses constrained to accepted values [13].

The ‘‘analysis window’’ (AW) is defined by 5:2<
mES < 5:3 GeV=c2 and �0:10<�E< 0:25 GeV (B�

candidates) and �0:25<�E< 0:25 GeV (B0 candi-
dates). The �E range is smaller for the charged candi-
dates due to a kinematic cutoff in the B� ! J= p�
decay. Only candidates in the AW are considered in the
analysis. Approximately 15% of B� events and 1.5% of B0
231801-5
events contain more than one candidate, in which case we
select the one with the lowest j�Ej.

For signal events, h�Ei � 0 and hmESi � MB. We
define a signal ellipse by ��mES �MB�=�m�2 �
��E=�E�2 < S2, where the resolutions �m and �E
are estimated from simulated data to be 3:1 MeV=c2

and 6:5 MeV, respectively, for B� ! J= p�, and
2:7 MeV=c2 and 5:5 MeV for B0 ! J= pp. S 
 2:4 for
B� ! J= p� and S 
 2:2 for B0 ! J= pp.

The selection criteria for charged and neutral B candi-
dates, including the values for S, have been chosen to
minimize the 90% C.L. upper limit expected in the
absence of real signal, based on simulated signal and
background events. Approximately 90% of the back-
ground events satisfying the criteria are combinatorial
BB, in which tracks from the decays of both B mesons are
used to form the candidate. The rest are continuum
(non-BB) events. Both components are distributed
throughout the AW, and neither peaks in the signal of
either �E or mES.

We use simulated B� ! J= p� and B0 ! J= pp
events to measure the selection efficiency. The simulation
does not include exotic QCD bound states. We study the
accuracy of the simulation of the detector response by
comparing data and simulated background events in
samples similar to the final selection. We compare the
number of J= mesons reconstructed in B0 ! J= pp
candidates in which only one proton satisfies the identi-
fication criteria, and we compare the number of � bary-
ons reconstructed in B� ! J= p� candidates in which
the proton daughter of the B� is required to fail the
criteria. Based on these studies, we apply multiplicative
corrections to the efficiency of 0:97� 0:06 for J= re-
construction and 0:86� 0:14 for � reconstruction. We
also compare the distributions of the �2 of the B vertex
for candidates satisfying all other criteria and obtain
corrections of 0:98� 0:02 for B� ! J= p� and 0:90�
0:10 for B0 ! J= pp.

The efficiency for B� ! J= p�, with the J= decay-
ing to e�e� or���� and � decaying to p��, is 0:049�
0:009. The 18% fractional uncertainty includes 16% from
� reconstruction, 6% from the J= , 3% from statistical
uncertainty in the simulation, 2% from the �2 correction,
and 1% uncertainty on proton reconstruction efficiency.
Approximately 25% of signal events satisfying all other
criteria are reconstructed outside the signal ellipse.

The efficiency for B0 ! J= pp with the J= decaying
to e�e� or ���� is 0:184� 0:024. The 13% uncertainty
includes 6% from J= reconstruction, 2% for statistical
uncertainty in the simulation, 11% for the �2 correction,
and 3% for proton reconstruction.

We use world average values [13] for B�J= ! e�e��,
B�J= ! �����, and B�� ! p���.

We estimate the mean expected background in the
signal ellipse (�B) from the number NA elsewhere in
the AW: �B 
 fNA. We obtain f, the proportionality
231801-5
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constant, from a larger sample in which only one proton
satisfies the proton identification criteria. We perform a
Kolmogorov test [14] to verify that the distribution of
candidates in the �E-mES plane is similar to the standard
selection. Comparing the regions outside the ellipse, the
test gives a probability of 0.52 for B� ! J= p� and 0.36
for B0 ! J= pp. We obtain f 
 0:0054� 0:0035 (B�)
and f 
 0:0051� 0:0013 (B0). The uncertainties are
largely statistical, but include a component (16% for B�

and 2% for B0) due to differences in the number of events
with multiple candidates.

For B� ! J= p�, NA 
 39, implying an expected
background of 0:21� 0:14 events. We observe four can-
didates in the signal ellipse (Fig. 2). The probability of
observing � 4 candidates when expecting 0:21� 0:14 is
2:5� 10�4. Three of the four are positively charged. Two
of the four J= mesons decay to e�e� and two to����.

To interpret this result as a B� branching fraction
B, we undertake a Bayesian analysis with a uniform
prior above zero. We define the likelihood for B as the
probability of observing exactly four events, including
uncertainties on the expected background, signal effi-
ciency, secondary branching fractions, and number of
��4S� decays, �88:9� 1:0� � 106. We assume the
branching fractions B���4S� ! B�B�� 
 B���4S� !
B0B0� 
 0:5.

The central value for B is the peak of the likelihood
function. We obtain ‘‘�1�’’ uncertainties from a confi-
dence interval that encloses 68.3% of the area of the
likelihood function, selected such that the likelihoods
for all values of B in the interval are larger than the
FIG. 2. (a) Distribution of B� ! J= p� candidates in the
�E-mES plane, with the signal ellipse and its projection in each
dimension (dashed lines). Histogram of candidates within
marked bands in (b) mES and (c) �E. Plots (d)–(f) Similar
quantities for B0 ! J= pp.
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likelihoods outside. The result is B�B� ! J= p�� 

�11:6�8:5

�5:6� � 10�6. We similarly obtain a 90% C.L. upper
limit of 26� 10�6.

If we consider only the statistical uncertainty, the
result would be B�B� ! J= p�� 
 �11:6�7:4

�5:3� � 10�6.
Subtracting these uncertainties in quadrature would in-
dicate contributions from systematic errors of 4:2� 10�6

and 1:8� 10�6 on the upper and lower sides, respectively.
The systematic error arises almost entirely from the un-
certainty on the signal efficiency.

The creation of a narrow QCD exotic bound state as an
intermediate resonance in the B� decay would be re-
flected as a narrow p	 distribution of the other decay
daughter. We do not observe any significant clustering in
the p	 distributions of the J= , proton, or � daughters of
the four B� candidates (Fig. 3). The resolution in p	 is
�� 20 MeV=c.

For B0 ! J= pp, there are 126 events outside the
signal ellipse, indicating an expected background of
0:64� 0:17 events, and one event in the ellipse.
Following the procedure described for B� ! J= p�,
and again assuming a uniform prior above 0, we obtain
B�B0 ! J= pp�< 1:9� 10�6 (90% C.L.). This limit is
dominated by statistical uncertainty.

In summary, we observe four B� ! J= p� candidates
in a data set of �88:9� 1:0� � 106 ��4S� decays. The
probability of the expected charged B background,
0:21� 0:14 events, producing � 4 events is 2:5� 10�4.
The branching fraction is �12�9

�6� � 10�6, where the un-
certainty includes both statistical and systematic compo-
nents. This result can be interpreted as a 90% C.L. upper
limit of 26� 10�6.

We observe one B0 ! J= pp candidate with an ex-
pected background of 0:64� 0:17, and determine a 90%
C.L. upper limit of 1:9� 10�6 on the branching fraction.

Neither final state makes a significant contribution to
the observed excess of J= mesons in inclusive B decay.
The momentum distributions of the B� daughters do not
provide evidence for QCD exotic particles produced as
narrow intermediate states.
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