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Executive Summary 

The dynamic user-optimal (DUO) departure time and route choice problem is to 

determine travelers’ best departure times and route choices at each instant of time. In 

a previous paper, we presented a route-based two-level optimal control model for the 

DUO departure time/route choice problem. However, this model is not appropriate 

for large scale transportation networks because some degree of route enumeration is 

necessary to solve the model. In this paper, we present a link-based variational in- 

equality (VI) formulation for the DUO departure time/route choice problem so that 

route enumeration can be avoided in both the formulation and the solution procedure. 

The model extends our previous VI model for the DUO route choice problem to the 

case where both departure time and route over a general road network must be chosen 

simultaneously. By proving the necessity and sufficiency of this VI, we establish the 

equivalence of the VI formulation and the link-based DUO departure time/route choice 

conditions. 
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1 Introduction 

Advanced traveler information systems (ATIS) can provide real-time information re- 

garding incidents and traffic congestion to assist travelers in selecting their best de- 

parture times and routes. The exploration of dynamic travel choice models has been 

motivated by the development of such ATIS systems. The objective of such models is 

to investigate the optimal strategies for choosing departure times, modes and routes in 

real-time. 

In this paper, we consider an ideal situation where all travelers are equipped with 

navigation devices and fully comply with the dynamic user-optimal criterion when 

choosing routes and departure times based on predictive traffic information. We present 

a dynamic, user-optimal departure time and route choice model for a general network 

with multiple origin-destination pairs. We model this choice problem by specifying that 

a given number of travelers are ready for departure between each origin-destination pair 

at time zero. However, their departure times may be delayed to reduce their overall 

travel costs. 

The choice of departure time has been addressed by several researchers, including 

Hendrickson and Plank (1984), who developed work trip scheduling models. De Palma 

et a1 (1983) and Ben-Akiva et a1 (1984) modeled departure time choice over a simple 

network with one bottleneck using the general continuous logit model. Mahmassani 

and Herman (1984) used a traffic flow model to derive the equilibrium joint departure 

time and route choice pattern over a parallel route network. Mahmassani and Chang 

(1987) further developed the concept of equilibrium departure time choice and pre- 

sented the boundedly-rational user-equilibrium concept under which all drivers in the 

system are satisfied with their current travel choices, and thus feel no need to improve 
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their outcome by changing decisions. 

The above effort has been limited to solving departure time choice problems for 

simple networks. In order to tackle departure time choice problems for larger net- 

works, several models have recently been proposed by various researchers using dif- 

ferent approaches on dynamic traffic networks. Janson (1992) formulated a dynamic 

user-equilibrium traffic assignment model in which trips have variable departure times 

and scheduled arrival times. Ran et a1 (1992) formulated a two-level optimal control 

program for the dynamic user-optimal (DUO) departure time/route choice problem for 

a multiple origin-destination network. Friesz et a1 (1993) presented a joint departure 

time and route choice model using the variational inequality approach. Smith and 

Ghali (1992) also considered this problem using microscopic representation of vehicle 

streams. 

Similar to static transportation network formulations, the variational inequality 

(VI) approach could provide general formulations for dynamic transportation network 

problems, compared to mathematical program and optimal control approaches. The 

earliest variational inequality problem was a static user-optimal route choice prob- 

lem, which was formulated by Smith (1979). Later on, Dafermos (1980) developed 

an elastic demand model with disutility functions using the variational inequality ap- 

proach. An elastic demand model with demand functions was introduced by Dafermos 

and Nagurney (198413). Fisk and Boyce (1983) also presented a set of alternative VI 

formulations for network equilibrium travel choice problems. Nagurney (1993) summa- 

rized the modeling and algorithmic aspects of VI models for static traffic assignment 

problems. Recently, fiiesz et a1 (1993) formulated a VI model for the simultaneous 

departure time/route choice problem. Smith (1993) also presented a route-based VI 

formulation using the packet representation of vehicle groups. Both dynamic mod- 
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els are route-based, which need explicit route enumeration in both formulation and 

solution. 

Because the dynamic traffic flow does not have constant flow rate during propaga- 

tion over links and routes, the route-based VI can not be transformed into a link-based 

VI. Thus, it is very difficult to develop a solution algorithm for a route-based VI with- 

out explicit route enumeration. Figure 1 shows a 5 x 5 one-way square grid network 

with N = 25 nodes and L = 40 links. We count the routes from node 1 to node 25 

(both are on the diagonal line) and the total number of routes is 70. 

Figure 1: An Example Grid Network 

Table 1 illustrates the increase of links and routes with the increase of nodes in 

such a grid network. Basically, the number of links increases linearly with the increase 

of nodes. However, the number of routes increases exponentially with the increase 

of nodes. For example, when there are only N = 100 nodes, the number of routes 

is 48,620. When there are N = 400 nodes, the number of routes is over 3.5 x 1O1O. 

We note that the routes in these one-way grid networks are efficient routes in terms 
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of Dial's definition (Dial, 1971), i.e., any node on the route takes the vehicles further 

away from the origin and closer to the destination. From Table 1, we can conclude 

that explicit route enumeration is infeasible for large networks. 

Table 1: Number of Nodes, Links and Routes 

Number of Nodes N 

3.5 x lo1' 48,620 3432 924 252 70 20 6 2 . Number of Routes 
760 180 112 84 60 40 24 12 4 Number of Links L 
400 100 64 49 36 25 16 9 4 

Recently, Ran and Boyce (1995) presented a link-based VI model for ideal DUO 

route choice problem so that explicit route enumeration can be avoided in both the 

formulation and the solution procedure. This approach allows the dynamic VI route 

choice model to be applied to realistic transportation networks. Using a similar ap- 

proach, we extend the dynamic route choice model to include departure time choice 

as well. A link-based ideal dynamic user-optimal (DUO) departure time/route choice 

model is presented for a network with multiple origin-destination pairs in this paper. 

Since this VI model is link-based, it has computational advantages over the route-based 

models. 

In Section 1, the network constraints for the dynamic traffic network model are first 

introduced. In Section 2, we present the definition of DUO and its corresponding DUO 

departure time/route choice conditions. The dynamic traffic network constraints are 

summarized in Section 3. Then, a general link-based variational inequality formulation 

of the DUO departure time/route choice problem is proposed. Proofs of necessity and 

sufficiency are given to establish the equivalence of the VI model and the link-based 

DUO departure time/route choice conditions. Finally, discussion on the VI departure 
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time/route choice model is presented and some future studies are proposed. 

2 Dynamic Network Constraints 

Here, we consider a network with multiple origins and destinations. The traffic network 

is represented by a directed graph with nodes and directed links. A node can represent 

either an origin or a destination, or simply an intersection. The index r denotes an 

origin node and the index s denotes a destination node. 

Consider a fixed time period [O,T] where T is the time sufficient for all persons 

departing during the peak period to complete their trips. We define 

za(t)  = number of vehicles traveling on link a at  time t ;  

x r ( t )  = number of vehicles traveling on link a with 
origin r and destination s at time t. 

All variables with superscripts rs denote the variables with origin T and destination s. 

We have by definition that 

T S  

vu. 

Let ua(t) denote the inflow rate into link a at time t and va(t)  denote the exit flow 

rate from link a at  time t. The inflows and exit flows, ua(t) and va(t), are both control 

variables. The state variable for link a is the number of vehicles xu(t)  on link a. The 

state equation for link a can then be written as 

dx;T,S ( t )  
dt 

-- - uY(t) - .?(t) Vu, r, s. 

We assume that the number of vehicles on link a at initial time t = 0 equals zero: 

xY(0)  = 0, Vu, T ,  s. (3) 
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Thus, the number of vehicles on link a at any time t is 

We require that all variables are nonnegative at all times: 

Denote the departure rate from origin node T toward destination node s at  time t as 

f '"(t), which is a function of time; f,'"(t) denotes the departure rate on route p .  fiS(t) 

and f r s ( t )  are control variables to be determined according to the actual travel time 

between the origin and the destination. The flow conservation at node j ( j  # r, s) for 

each 0-D pair requires that the flow exiting from links pointing into node j at  time t 

equals the flow entering links which leave node j at  time t. Thus, the flow conservation 

equations can be expressed as 

where A(j) is the set of links exiting node j ,  and B ( j )  is the set of links entering node 

Assume there are P routes from origin r to destination s (these can be generated 

as needed). Denote the indicator parameters 6;; as 

1 if link u is on route p between 0-D pair ( r ,  s) 
0 otherwise. 

Flow conservation at origin node r relates the departure rates (f '"(t) and f,'"((t)) to the 

flow entering each link emanating from the origin. These flow conservation equations 

for origin T can be expressed as 

S$fp'"(t) = uY(t)  Qr, s; r # s; a E A ( T ) ;  
P 
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f;"t) = f'"(t) Vr, s; r # s. 
P 

Denote the cumulative number of vehicles departing from origin T to destination s 

from time 0 to t as the state variable FrS( t ) .  In our joint departure time and route 

choice problem, a given number of vehicles are scheduled to depart from each origin r 

to each destination s at  the initial time 0. But some may delay their departure times. 

Thus, we have additional boundary conditions as follows: 

I' f '" ( t )d t  = F'"(T) is given Vr, s. 

Also, denote F,'"(t) as the cumulative number of vehicles that have departed from origin 

T toward destination s along route p .  Then, we have an additional state equation for 

each origin T 

Also, at initial time t = 0, 

Denote the arrival flow rate at destination node s from origin node T at time t as 

ers ( t ) ,  which is also a control variable. The control variable e y ( t )  denotes the arrival 

rate on route p .  Flow conservation at destination node s relates the arriving flow (e '"(t)  

and e C ( t ) )  to the flow exiting each link leading to  destination s at  time t. Thus, the 

flow conservation equations for destination s can be expressed as 

e y ( t )  = ers ( t )  Vr, s; s # r. 
P 

Denote the cumulative number of vehicles arriving at  destination s from origin r at 

time t by the state variable E'"(t); E,PS(t) denotes the cumulative number of vehicles 

7 



arriving at destination s from origin r along route p at time t. Thus, we have an 

additional state equation for each destination s 

dEp'" ( t )  
d t  

= e;(t) 

At the initial time t = 0, 

1330)  = o VP, r, s. 

These variables must be nonnegative at all times: 

Finally, we define flow propagation constraints to ensure that entering and exiting 

flows as well as vehicles remaining on links, are consistent with the actual link travel 

times. Define ~ , ( t )  as the actual travel time over link a for vehicles entering link a at 

time t .  ~ ~ ( t )  is assumed to be dependent on the number of vehicles xa( t ) ,  the inflow 

ua(t)  and the exit flow va(t) on link a at time t. Let x:i(t) denote the number of 

vehicles on link a using route p between 0 -D  pair r s  at time t. By definition, 

For any intermediate node j # T on route p ,  denote a subroute p" as the section of route 

p from node j to destination s. For any link a E B ( j ) ,  vehicles on link a using route p 

at any time t must result in either: 

1. extra vehicles on downstream links on subroute 8 at time t + ~ , ( t ) ,  or 

2. increased exiting vehicles at the destination at time t + ~, ( t ) .  

It follows that 
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We refer the reader to Ran et a1 (1993) for more details. 

Furthermore, two other formulations of the flow propagation constraints (18) could 

be provided to help readers understand the properties of these constraints. For link a, 

the summation of the cumulative number of vehicles entering link a during time period 

[0, t] and the number of existing vehicles at initial time 0 must equal to the cumulative 

number of vehicles exiting link a during time period [0, t + ~ ~ ( t ) ] .  It follows that 

Taking derivative of the above equation with respect to time t ,  it follows that 

uZ(t)  = [1+ y] v;yt + Tu@)] Vu, r, s. 

Similarly, the number of vehicles on link a at time t must equal to  the cumulative 

number of vehicles exiting link a during time period [t, t + 7,(t)] .  It follows that 

Equations (20) and (21) are two other types of link flow propagation constraints, which 

are equivalent to (18). The merit of (20) is that this constraint depends only on in- 

flow and exit flow, and the link flow conservation constraint (2) is combined in this 

constraint. Thus, the variable x y ( t )  and any constraint associated with x y ( t )  can be 

avoided in the formulation. The merit of (21) is to show that the x y ( t )  are always 

nonnegative as long as the vL"(t) are nonnegative, allowing thereby to skip the nonneg- 

ativity constraint for xy ( t ) .  However, in order to maintain consistency with our other 

dynamic network models, the flow propagation constraint (18) is used in this paper. 

Table 2 summarizes our notation, which is identical to that in Ran et a1 (1993), except 

for the addition of the variables f rs( t )  and F"(t). 
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Table 2: Summary of Decision Variables 

number of vehicles traveling on link a at time t * 
inflow rate into link a at  time t ** 
exit flow rate from link a at time t ** 
departure rate from origin T to destination s at time t ** 
cumulative number of vehicles departing from origin T to destination s at time t * 
arrival rate at destination s from origin T at time t ** 
cumulative number of vehicles arriving at destination s from origin T at time t * 
actual travel time over link a for vehicles entering link a at  time t 

*: state variable 

**: control variable 

3 The Combined Departure Time/Route Choice 
Problem 

A number of vehicles are ready to depart at the initial time 0, but these drivers may 

prefer to delay their departure times in order to reduce their driving time. Drivers 

are assumed to make their departure time choices so as to minimize their individual 

disutility functions defined on travel time and pre-trip delay. Of course, the change of 

departure flow rates will change the traffic in the network so that the travel times for 

other travelers could change. 

In reality, drivers' choices of departure time and route are interrelated decisions. 

Given a desired arrival time, say at  the workplace, choice of departure time depends 

on the driver's estimate of en route travel time. Likewise, choice of route depends on 

the travel times of alternative routes, which also may vary by time of day. 
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3.1 Departure Time Choice 

We first consider the departure time choice problem. A disutility function IArS(t) based 

on departure times is defined for travelers departing from origin T to destination s at 

time t .  This disutility function represents a weighted sum of 

1. waiting time at the origin node; 

2. driving time during the trip; 

3. a “bonus” for early arrival or a penalty for late arrival. 

Denote ~ “ ( t )  as the minimal travel time experienced by vehicles departing from origin 

T to destination s at time t. FS(t)  is a functional of all link flow variables at time t ,  i.e., 

FS(t)  = ~ ‘ ~ [ u ( w ) ,  ~ ( w ) ,  ~ ( w ) ,  t] where w 2 t. This functional is neither a state variable 

nor a control variable, and it is not fixed; moreover, it is not available in closed form. 

Nevertheless, it can be evaluated when u(w) ,  v(w)  and Z ( W )  are temporarily fixed (as 

in a Frank-Wolfe algorithm), which is all that is required for solving the model. 

We define one unit of disutility to equal one unit of in-vehicle driving time, and one 

unit of waiting time prior to departure to be equivalent to a units of disutility (a  5 1). 

a could be negative since staying at home has positive utility. Since all travelers are 

able to depart at time 0, at is the disutility for a departure at time t due to waiting. 

Furthermore, we assume there is a desired arrival time interval [tf, - A,,, tf, + A,,] 

for travelers at each destination s, where tts is the center of the required arrival time 

interval (e.g. work start time) associated with travelers departing from origin T toward 

destination s. A,, represents the arrival time flexibility at  destination s for travelers 

departing from origin T toward destination s. 

We also define the disutility for early or late arrival as follows 
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io y1 [t + V S  ( t )  - t,*, + A;J2 if t + F ( t )  < t;, - A;, (Early arrival) 

y2[t + ?,(t) - t:, - AfJ2 if t + ?,(t) > t:, + A:, (Late arrival) 

where t is the departure time of travelers and 71, 7 2  are parameters (72  >> a).  y1 

is negative because early arrival should be encouraged instead of discouraged. This 

if It + F ( t )  - t:,/ 5 A;, 

arrival time disutility function is shown in Figure 2. Thus, the disutility function for 

the joint departure time and route choice problem is constructed as 

where t is the departure time of travelers. Note that the arrival time disutility function 

Vrs  can be dropped if no desired arrival time interval is prespecified. 

Arrival BonusPenalty 

Time t 

Figure 2: Arrival Time Disutility 

The dynamic user-optimal departure time choice conditions require that for each 

0-D pair rs at any time t ,  if there is a positive departure flow f'"(t) > 0, the disutility 

UTS(t)  must equal the minimal T S  disutility UEin over time t .  Furthermore, if the 

departure flow fTs( t )  equals zero at time t ,  the disutility Ur5( t )  at time t must be 

greater than or equal to the minimal T S  disutility Ugin. The DUO departure time 
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choice conditions can be written as 

where the asterisk denotes that the travel disutility is computed using DUO departure 

flows. 

3.2 Ideal DUO Route Choice 

We then consider the route choice problem. The actual travel time ~,[x,(t), ua(t) ,  va(t)], 

or simply ~ , ( t ) ,  over link a is assumed to be dependent on the number of vehi- 

cles xa( t ) ,  the inflow ua(t) and the exit flow va(t)  on link a at time t. We assume 

the travel time ~ , ( t )  on link a is the sum of two components: 1) a flow-dependent 

cruise time gla[xa(t) ,  ua(t)]  over the uncongested part of link a and 2) a queuing delay 

g2,[za(t), va( t )]  at the end of link a. It follows that 

The two components gla[xCa(t ) ,  ua(t)] and g2a[~a(t), va(t)] of the time-dependent link 

travel time function ra[xa ( t ) ,  ua(t),  t~, ( t )]  are assumed to be nonnegative and differen- 

tiable with respect to x,(t>, ua(t) and za( t ) ,  t~,@), respectively. 

Since we are considering a continuous time problem and assuming a link travel time 

function with queuing delay, the flow propagation constraints presented in Section 1 

automatically guarantee that the first-in first-out (FIFO) requirement can be satisfied. 

We note that the FIFO requirement may be violated in a discrete time situation. In 

Ran (1993), it was suggested to define the time interval lengths and link lengths ap- 

propriately so that the FIFO constraint can also be satisfied in discrete models. We 

13 



note that the traditional BPR functions are not applicable in a dynamic traffic net- 

work problem where time-dependent queuing and spillback problems occur. A set of 

time-dependent link travel time functions for signalized arterial links has been pro- 

posed by Ran et al (1992). Those link travel time functions are similar to the above 

general link travel time functions. It is our intention to employ realistic link travel time 

functions when our VI departure time/route choice model is implemented on realistic 

transportation networks. 

Consider the flow which originates at node r at  time t and is destined for node s. 

There is a set of routes { p }  between 0-D pair (r,  s). Define r,'"(t) as the travel time 

actually experienced over route p by vehicles departing origin r toward destination s 

at  time t. We use a recursive formula to compute the route travel time r,'"(t) for all 

allowable routes. Assume route p consists of nodes (r ,  1, - - , i, j, e ,  s). Denote ~ , j ( t )  

as the travel time actually experienced over route p from origin r to node j by vehicles 

departing origin r at time t. Then, a recursive formula for route travel time ~ i ~ ( t )  is: 

q ( t )  = q ( t )  + Ta[t + .p'i(t)] Qp, r, j ;  j = 1,2,  - e ,  s; 

where link a = ( z , j ) .  Note that the actual link travel time ~ , ( t )  is determined by the 

present link flow variables, whereas the actual route travel time ~ i j ( t )  would depend 

on the future flow variables of downstream links as well. 

We propose a definition of DUO that reflects the ideal route choice behavior of 

travelers as in Ran et a1 (1992). The formulation of the ideal DUO route choice 

problem will be based on the underlying choice criterion that each traveler uses the 

route that minimizes his/her actual travel time when departing from the origin or any 

intermediate node to his/her destination. 

Ideal DUO: If, for each 0-D pair at each instant of time, the actual travel 
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times experienced by travelers departing at the same time are equal and 

minimal, the dynamic trafic flow over the network is in an ideal dynamic 

user-optimal state. 

The ideal DUO is sometimes termed predictive DUO. Because it is associated with 

a predictive optimum state of the network traffic flow. Unlike in the previous dynamic 

route choice models, we now write the equivalent mathematical inequalities for the 

ideal DUO definition using link and node variables, as suggested by Ran and Boyce 

(1995). 

Define V i *  ( t )  as the minimal travel time actually experienced by vehicles departing 

origin T to node i at time t ,  the asterisk denoting that the travel time is computed 

using ideal DUO traffic flows. For link u = (2, j ) ,  the minimal travel time rrj* ( t )  

from origin T to j should be equal to or less than the minimal travel time rri'(t) from 

origin r to i plus the actual link travel time r,[t + rri*(t)] at  time instant [t + rri*(t)]. 

Furthermore, for each 0 -D pair rs, if any departure flow from origin T at time t enters 

link a = (i, j )  at the earliest clock time [t + rri* ( t ) ] ,  or uz[ t  + rri* ( t ) ]  > 0, the ideal 

DUO route choice conditions require that the minimal travel time rrj*(t) for vehicles 

departing origin T toward node j at time t should equal the minimal travel time rri* ( t )  

for vehicles departing from origin T to i plus the actual link travel time ~ , [ t  + rri' ( t)]  

at time instant [t + rri* ( t ) ] .  The link-based ideal DUO route choice conditions can be 

summarized as follows: 

rri* ( t )  + r,[t + rri* (t)]  2 rrj* ( t)  vu = (2, j ) ,  r ;  

[ P *  ( t)  + r,[t + rri* (t>l - rrj* (t)] uy* [t + rri* ( t ) ]  = o vu = (2, j ) ,  T ,  s; 

uy[ t  + TTi* (t)] 2 0 vu = (2, j ) ,  T ,  s. 
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We note that a similar set of link-based ideal DUO route choice conditions were 

proposed by Kuwahara and Akamatsu (1993). In their formulation, they use a different 

representation of departure/arrival times for traffic flows. 

4 A Link-Based Variational Inequality Formula- 
t ion 

Define U as the set of link inflows uy(.)  and departure flows f T s ( - ) ,  i.e., U = (u,f). 

The constraint set K on U for our dynamic, user-optimal departure time/route choice 

problem is summarized as two parts: 

The Flow Constraints H :  

Relationships between state and control variables: 

dx'," 
d t  
-- - uT,S(t) - .;"t) Vu, r, s; 

dE,T"(t) 
d t  

= e r ( t )  Vr, s, P; 

Flow conservation constraints: 

d&f,'"(t) = u7(t) Vr, s; a E A(r);  (33) 
P 

Definitional constraints: 



CE,'"(t) = E'"(t), CF,'"(t) = F'"(t), Vr, s; 
P P 

Vr, s;  
P P 

Nonnegativity conditions: 

e;@) 2 0, firs ( t )  L 0, 

f'"t) 2 0, 

Boundary conditions: 

FTs (T)  

E , ' " ( O )  = 0, F,'"O) = 0 

given Vr, s; 

VPl r, s; z ~ ( O )  = 0, Vu, r, s. 

The Propagation Constraints P: 

The flow constraints H define a fixed positive cone, whereas the propagation con- 

straint P consists of a linear relationship depending nonlinearly on the actual travel 

times ~ , ( t ) ,  which are themselves dependent on some flow. In the flow constraints H ,  

the first three constraints (30)-(32) are state equations for each link a and for cumu- 

lative effects at  origins and destinations. Equations (33)-(35) are flow conservation 

constraints at  each node including origins and destinations. Other constraints include 
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For vehicles departing from origin r at time t ,  denote Clij*(t) as the difference 

between the minimal travel time from r to j and the travel time from origin r to node 

j via the minimal travel time route from origin r to node i and link a. It follows that 

Q L ~ *  ( t )  = P *  ( t )  + ~ , [ t  + P *  (t)] - rrj* ( t)  Vu, r ;  a = (i, j ) .  

In order to  simplify the presentation, we rewrite the combined link-based DUO 

departure time/route choice conditions as follows: 

n;j*(t) 2 0 Vu = ( i , j ) ,  r ;  (47) 

U y [ t  + TTi* ( t )]  Cly ( t )  = 0 Vu = (i, j ) ,  r, s; (48) 

u:[t + rTi' (t)] 2 o Vu = (i, j ) ,  r, s; (49) 

urs* (t)  - UZin 2 0 Vr, s; (50) 

frs* ( t)  { W S *  ( t )  - Ugin} = 0 Vr, s; (51) 

f '"(t)  2 0 'dr, s. (52) 

where UEin is the minimal rs  disutility over time t. Then, the equivalent link-based 

variational inequality formulation of DUO departure time/route choice conditions (47)- 

(52) may be stated as follows. 

Theorem 1. The dynamic traffic flow U* = (u*, f ' )  satisfying constraints (30)-(45) 

is in a DUO departure time/route choice state if and only if it satisfies the variational 

inequality: 

Cl;j* ( t)  { uY[t + TTi* ( t)]  - u;* [t + P *  ( t ) ] }  

+ Urs*(t)  {f '"(t) - . f r s*( t ) } }  d t  2 0 

V u = (u, f) satisfying constraints (30)-(45). 
rs  

(53) 
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Proof of Necessity. 

We need to prove that DUO departure time/route choice conditions (47)-(52) imply 

the variational inequality (53). We first discuss the ideal DUO route choice conditions 

(47)- (49). Multiplying inequalities (47) and (49), we have 

w Y [ t  + rri* (t)] q *  ( t )  2 0 Vu, r, s; a = ( i , j ) .  (54) 

Subtracting equation (48) from inequality (54), we obtain 

{uP,S[t + rri* (t)] - u'a"*[t + TTi* ( t ) ]}  @* ( t )  2 0 Va, T ,  s;  a = (i, j ) .  (55) 

Summing inequality (55) for all links a and all 0 -D pairs rs,  it follows that 

{ uP,S[t + rri* ( t )]  - 21:' [t + TTi* ( t ) ] }  ! -q*  ( t)  2 0 where a = (2, j ) .  (56) 
rs a 

Integrating the above inequality (56) from time zero to T ,  we have 

x x { uY[t + TTi* ( t )]  - u'a,* [t + TTi* ( t ) ]}  ny ( t )  d t  2 0 
T 

T S  a 
(57) 

We then discuss DUO departure time choice conditions (50)-(52). Multiplying 

inequalities (50) and (52), we have 

f '"(t)  {UT"*@) - U2zn} 2 0 Vr, s. (58) 

We subtract equation (51) from inequality (58) and obtain 

urs'(t) { fTS( t )  - f '"(t)} - UZZn { fTS( t )  - f q ) }  2 0 Vr, s. (59) 

Summing inequality (59) for all 0 -D pairs T S ,  it follows that 

Urs*(t)  { fTS( t )  - f r s * ( t ) }  - ugz, { fT"( t )  - fT"*( t )}  2 0 
T S  rs  
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Integrating the above inequality (60) from time zero to T ,  we have 

Urs*(t)  { f r s ( t ) - f rS* ( t ) }  d t - J T E  Uzin { frs( t ) - f rs*( t )}  d t  2 0 
T S  

or 

UT'*@) { f r s ( t )  - f'"*(t)} d t  - Ugiin J' { f r s ( t )  - frs*(t)}  d t  2 o 
rs  0 

By the definition of departure flows, we have 

T 1' frs( t )  d t  = Frs (T )  = / f r S * ( t )  d t  
0 

Thus, the second term of inequality (62) is zero and inequality (62) becomes 

LTF Urs* ( t )  { f rs( t )  - fTs * ( t ) }  dt  2 0 

Combining inequalities (57) and (63), we obtain the variational inequality (53). 

Proof of Sufficiency. 

We need to prove that any solutions ur*[t  + ~ ~ ~ * ( t ) ]  and frs*( t )  to the variational 

inequality (53) satisfy the DUO departure time/route choice conditions (47)-(52). We 

know that the first and third ideal DUO route choice conditions (47) and (49) hold by 

definition. The fourth and sixth DUO departure time choice conditions (50) and (52) 

also hold by definition. Thus, we only need to prove that the second ideal DUO route 

choice condition (48) and the fifth DUO departure time choice condition (51) also hold. 

We first prove that the second ideal DUO route choice condition (48) always holds 

for all times t. Now let U* = (u*, f*) be a solution for the variational inequality (53) .  

For each 0 -D  pair T S ,  we can always find one minimal travel time route IC for vehicles 

departing origin r at time t ,  which was evaluated under the optimal flow pattern 

{uY*[t + Y i *  ( t ) ]} .  For this route IC, the first ideal DUO route choice condition (47) 
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becomes equality by definition. It follows that 

~ 2 ~ j *  ( t )  = rri* ( t )  + .ra[t + P' (t)]  - rrj* ( t )  = o Vu, T ,  S ;  a = ( 2 , j ) ;  a E k .  (64) 

Next, we need to find a set of feasible inflows uy[t  + rTi* ( t)]  so that the following 

equation 

uy [t + 7'2' ( t )]  SZ;~* ( t )  = o vu, T ,  s; a = (2, j )  (65) 

always holds. We choose the feasible departure flows fT" ( t )  to equal the optimal de- 

parture flows frs*(t)  for all 0 -D pairs rs at  each instant of time. Thus, the second 

term in (53) will vanish. It follows that 

LT: UT'* ( t )  {f'"(t) - fTs * ( t ) }  dt  = 0 

We also need to re-route all feasible departure flows fTs ( t )  for all 0 -D pairs at each 

instant of time. For each 0-D pair T S ,  we assign the feasible 0-D departure flow f r s ( t )  

to the minimal travel time route k ,  which was evaluated under the optimal flow patterns 

{up* [t + rTi* ( t ) ]} .  This will generate a set of feasible inflow pattern {u',"[t + ?a* ( t ) ]}  

which always satisfy equation (65) (because either SZ;j*( t )  = 0 for links on route k or 

uy[t  + rri* ( t )]  = 0 since no flow is routed onto those links which are not on route IC.) 

Summing equations (65) for all links a and all 0 -D pairs T S ,  it follows that 

Integrating the above equation, we have 

Substituting equations (66) and (68) into the variational inequality (53), it follows that 

LT S2ij* ( t )  uy*[t + T~Z*  (t)] d t  5 0 
T S  a 
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Since Oij* ( t)  and uy* [t + rTi* ( t ) ]  are nonnegative, it follows that 

for (nearly) all t. The above equation is the same as the second ideal DUO route choice 

condition (48). In other words, the second ideal DUO route choice condition (48) always 

hold for any solutions uy* [t + V i *  ( t )]  and f r s *  ( t )  to the variational inequality (53). 

Next, we prove that the fifth DUO departure time choice condition (51) always hold 

as well. For any 0 -D pair p q ,  it might be possible that UPQ* ( t )  = Ug:, for a single time 

instant t inside time interval [d- 6, d+S] where [d- S, d+S] E [0, TI, and UPQ' ( t )  > U;:, 

for a time instant t outside this time interval. Let Z4gzz be defined as: 

It follows that @'Q is different from 0 if and only if the fifth DUO departure time choice 

condition (51) is not satisfied by 0-D pair pq.  Define then a set of feasible departure 

flows fpQ(t) according to the follows: 

The flow cp"Q(t) is the flow displaced from instants t when UP** ( t )  admits high values to 

instants when UPQ*(t) admits low values. This flow needs only be positive and satisfy 

the generation constraint: 



in order that: 

iT f p q d t  = FPq(T) = 1' fpq*(t)  (75) 

Using definition (73), it follows that 

Following the above displacement of feasible departure flows defined in (73), the 

link inflows should be adjusted accordingly so as to be feasible. For each O-D pair p q ,  

we can always find one minimal travel time route k for vehicles departing origin p at  

time t ,  which was evaluated under the optimal flow pattern {u;q*[t+ rpi*  ( t)]}. For this 

route k, the first ideal DUO route choice condition (47) becomes equality by definition. 

It follows that 

ng* ( t )  = rpi*  ( t )  + 7,[t + 7 p i *  (t)] - TQj* ( t )  = 0 vu,p ,  q; u = (2, j ) ;  u E IC. (77) 

always hold. For each O-D pair p q  at each time instant t ,  we assign the feasible O-D 

departure flow f p q ( t )  to the minimal travel time route k only, which was evaluated 

under the optimal flow pattern {u$q*[t + ~ P z * ( t ) ] } .  This will generate a set of feasible 
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inflow pattern { uzq[t + 7Pi* ( t ) ] }  which always satisfy equation (78). Summing equations 

(78) for all links a and all 0 -D pairs pq,  it follows that 

Summing equations (48) for all links a and all 0-D pairs pq,  it follows that 

u",* [t + rpZ* ( t )]  a:j* ( t )  = 0 where a = (z, j) .  (80) 
P q  a 

Subtracting equation (80) from equation (79) and integrating the resulted equation, 

we have 

I' ; a:j* ( t )  { up[t + rpi* (t)] - u",* [t + rpi* ( t ) ] }  d t  = 0 

Substituting equation (81) into the variational inequality (53), it follows that 

iT: Upq*(t)  { f p q ( t )  - fpq*( t ) }  dt  2 0 

Combining inequalities (76) and (82), we obtain 

- 2 € p Q @ p q  2 0 (83) 
P q  

Since E P ~  2 0 and @Pq 2 0, P Q  = 0 must hold. Thus, the fifth DUO departure time 

choice condition (51) is satisfied for all 0 -D pairs pq. 

Therefore, any optimal solutions {uy* [t + r'Z* ( t ) ] }  and { f "* ( t ) }  to the variational 

inequality (53) will satisfy both the second ideal DUO route choice condition (48) 

and the fifth DUO departure time choice condition (51). Since we have proved the 

necessity and sufficiency of the variational inequality (53) in the above, we state that 

(53) is equivalent to the DUO departure time/route choice conditions (47)-(52). The 

proof is complete. 
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5 Concluding Remarks 

In this paper, a link-based VI model for DUO departure time/route choice is presented. 

The necessity and sufficiency proofs of the VI model demonstrate that this model is 

consistent with the link-based DUO departure time/route choice conditions. Using a 

link-based VI formulation, explicit route enumeration can be avoided in computation. 

This feature allows our model to be applied to large-scale dynamic transportation 

networks with general link travel time functions. 

Two major constraints prevent us from applying the existing dynamic transporta- 

tion network models to ATIS systems. The first concern is the accurate representation 

of travelers’ choice behavior. In future extensions, utility functions instead of pure 

travel times should be used in route choice problems. Different perceptions and com- 

pliance with information must be investigated by stratifying travelers into multiple 

groups. The second concern is the accurate representation of traffic dynamics on each 

street link. Since the link traffic dynamics might be very complicated as pointed out 

by Newel1 (1993) and Daganzo (1994), a set of appropriate closed-form link travel 

time functions might involve the interactions of neighboring link flows. This point was 

also demonstrated in the proposed dynamic link travel time functions for arterial links 

by Ran et al. (1992). This feature prevents formulating an appropriate optimization 

model for a realistic departure time/route choice problem. Thus, the general VI for- 

mulation approach was proposed for such applications. However, the VI models would 

require more computational capability than the optimization models. 

The proposed link-based VI model for DUO departure time/route choice can be 

extended to include arrival time choice, destination choice and mode choice as well. Our 

next step is to develop efficient solution algorithms for the DUO departure time/route 
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choice VI model. We expect that the Frank-Wolfe and diagonalization techniques 

proposed by Boyce et al. (1995) and Ran et al. (1992) can be applied to solve this 

model. Other solution algorithms, such as the projection algorithm, implemented 

by Nagurney (1986) for VI models for static network equilibrium problems, are also 

extendable for our dynamic VI problem. We note that the solution algorithm for our 

DUO departure time/route choice VI model has to be implemented on an expanded 

time-space network proposed in Boyce et a1 (1995). Other important problems, such 

as incident related dynamic route choice problems and dynamic congestion pricing 

problems, will be studied as extensions of this VI model. 
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