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Abstract 

A smooth response sur face algorithm is developed as an elaborate data mining technique 

for analyzing gene expression data and constructing gene regulatory network. A three-

dimensional smooth response surface is generated to capture the biological relationship 

between the target and activator-repressor. This new technique is applied to functionally 

describe triplets of activators, repressors and targets, and their regulations in gene 

expression data.  A diagnostic strategy is built into the algorithm to evaluate the scores of 

the triplets so that those with low scores are kept and a regulatory network is constructed 

based on this information and existing biological knowledge. The predictions based on 

the identified triplets in two yeast gene expression data sets agree with some 

experimental data in the literature.  It provides a novel model with attractive 

mathematical and statistical features that make the algorithm valuable for mining 

expression or concentration information, assist in determining the function of 

uncharacterized proteins, and can lead to a better understanding of coherent pathways. 

 

Keywords : activator-repressor-target model; data mining; diagnostic strategy; gene 

expression profiling.
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Introduction 

 

The rapid advance of genome-scale sequencing is a driving force in the development of 

methods to exploit this information.  The knowledge of the coding sequences of virtually 

every gene in an organism, for instance, has enabled the development of technology to 

simultaneously monitor the expression of all the genes.  Microarrays use either cDNA 

clones or PCR products and print them robotically onto a glass microscope slide surface.  

In contrast, Affymetrix GeneChip system designs oligonucleotides based on sequence 

information and synthesizes them in situ on the solid support using light-directed, solid-

phase combinational chemistry.   These arrays are hybridized under stringent conditions 

with a complex sample representing mRNAs expressed in the test cell or tissue.   By 

doing so, the technology measures the expression level of thousands of genes 

simultaneously using the oligonucleotides bound to a silicon surface. The results from 

these expression profiling technologies are quantitative and highly parallel, thereby 

allowing us to take an accurate snapshot of the workings of the cell in a particular state. 

 

Cells regulate the expression of their genes in response to environmental changes.  

Normally this regulation is beneficial to the cell, protecting it from starvation or injury.  

However, errors in this regulation can lead to serious diseases ranging from cancer to 

heart disease.  The pharmaceutical industry is beginning to recognize that gene regulation 

can be useful for both assaying drugs and as a source for new molecular targets--

assuming the regulatory network is well understood.  As such, changes in gene 

expression patterns can be used to assay drug efficacy throughout the drug discovery 
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process.  One assay that takes advantage of the existing level of sequence information 

and is complementary to sequence and genetic analysis is gene expression profiling.  

Expression profiling assays generate huge data that are not amenable to simple analysis.  

A great challenge in maximizing the use of these data is to develop algorithms to 

interpret and interconnect results for different genes under different conditions.   

 

Most existing methods for analyzing gene expression data are classical and modern 

statistical clustering techniques, which group genes with similar expression patterns.  It 

includes the methods and applications of hierarchical clustering (1, 4, 8, 11, 15), and self-

organizing map (6, 16, 18).  The clustering methods, which only distinguish between 

those genes that have the same and different expression profiles, cannot fully reveal the 

complex cell regulatory network. Recently, a fuzzy logic approach (19) is proposed to 

generate a connected network of genes using gene expression data. The fuzzy logic 

algorithm provides a way to transform precise numbers into qualitative descriptions, then 

analyze this qualitative data using heuristic rules, and finally transform a qualitative 

descriptor in the heuristic solution back into a precise number. 

 

To improve and extend the fuzzy logic algorithm, a smooth response surface (SRS) 

algorithm is introduced and developed as a more elaborate data mining technique with 

attractive mathematical and statistical features for analyzing gene expression data.  

Response surface methodology focuses on the relationship between the response and the 

input factors in the study of a process or system and is widely used in manufacturing and 

high-tech industries.  It can be used to optimize the response or to understand the 
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underlying mechanism (10, 20).  For the present study, a smooth mathematical model is 

proposed to describe a biological model that governs the qualitative relationship between 

an activator gene, a repressor gene and a target gene.  A quantitative statistical approach 

is developed that can efficiently extract information from gene expression data to bear on 

the activator-repressor-target model. The SRS algorithm uses a 3D response surface as a 

graphic representation of a high-dimensional decision matrix (i.e. nn × decision matrix as 

n tends to infinity), and leads to a direct process of plug- in quantitative expression data. 

In contrast, the fuzzy logic method uses some heuristic rules in a decision matrix, and 

consists of a stepwise process of fuzzification, decision-making and defuzzification. 

Advantages of the SRS algorithm over fuzzy logic approach include noise tolerance, 

computational efficiency, and simpler data processing (i.e., from stepwise process to 

direct plug- in).  

 

The SRS algorithm was used to analyze two yeast expression data gathered from the 

Affymetrix GeneChip system and cDNA microarray. By using yeast gene expression data 

collected at different time points of the cell cycle, we were able to identify many 

regulatory elements and their target genes within the cell that work together to maintain 

and control certain cellular processes.  Many cases are validated by available 

experimental results, including the signaling network controlling anaerobic and aerobic 

growth and cell proliferation.  These results suggest that the SRS technique can indeed 

identify biologically relevant connections between sets of genes, which can in turn help 

describe the complex web of interactions that regulate gene expression.  
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Methods 

 

Gene regulatory model.  Transcriptional regulation has been extensively studied in both 

prokaryotic and eukaryotic organisms.  In many cases, initiation of transcription is 

controlled by the promoter and its upstream regulatory elements.  DNA binding proteins 

recognize these promoter sequences and activate or repress gene expression through their 

interactions with promoter and RNA polymerase (12).  In developing the SRS algorithm, 

we employed the activator-repressor-target (ART) model to search for triplets of genes 

A, B and C under which, the concentration of the target gene C should be high when the 

activator A is high and the repressor B is low. Conversely, when the concentration of the 

repressor B is high and the activator A is low, the concentration of the target C is low. 

These qualitative, or heuristic, rules are similar to the judgement calls made by expert 

systems in data interpretation and  can be used to describe the expected behaviors in more 

complicated biological models in the future. Most importantly, it can be used by 

combining with more compact and explicit mathematical formulae to extend a decision 

matrix in the fuzzy logic algorithm to a high-dimensional decision matrix in the proposed 

SRS algorithm. 

 

Gene expression data sets. Public domain GeneChip and cDNA microarray data 

describing the yeast cell cycle (2, 4) were chosen to validate the SRS algorithm.  

 

Data processing flowchart. The data processing flowchart of the SRS algorithm is 

illustrated in Fig. 1. The input parameters and functions are shown in Table 1, which 
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describe mathematical and statistical constraints that are required for normalization and 

computation in the algorithm. The imputation and gene filtering steps are applied to 

remove noise from the data to ensure that the expression data is above the noise level and 

the observed signal change in the data is significant. In the SRS model, we define a three-

dimensional response surface as a function of a pair of genes, which builds a relationship 

between the target and activator-repressor. First, a transformation step maps the data into 

the 3D response surface space, which describes the relationship for the triplet of 

activator-repressor-target. For each triplet of genes (A, B, C), a lack-of- fit formula is used 

to filter the triplets from the initial screening.  Then a diagnostic method is developed to 

further refine the selected triplets. A final score, based upon the strength of the triplet 

interrelationship, is defined in order to rank the triplets.   

 

A US patent application is filed on the SRS algorithm and the series number is 

A0000407L1. Copies of the program are available upon request to the authors. 

 

Smooth response surface model. To fit the expression data into the response surface 

model, first, the raw data over the time points are transformed into the interval [0,1] such 

that the minimum and maximum values for each gene are 0 and 1 respectively. We define 

a three-dimensional smooth response surface given by ),( BAS , that is a piecewise linear-

quadratic polynomial on [0,1]× [0,1]. It describes a surface in 3D unit cell as shown in 

Fig. 2, and can be used to describe the biological relationship between the target and 

activator-repressor genes.  The triplets that follow the activator-repressor-target 

relationship should lie closely to the response surface. 
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The 3D response surface may be interpreted as a graphic representation of a high 

dimensional decision matrix.  After transformation, the normalized values A and B are 

broken into various classes, from “LOW” (if it is close to 0) to “HIGH” (if it is close to 

1) or in the between (if it is around 0.5). The function ),( BAS  maps two normalized 

values A and B onto a 3D surface, in order to describe a surface response value C whose 

value also ranges from “LOW” to “HIGH” in association to the two given values A and 

B. It uses some heuristic rules to facilitate decision-making. As seen in Fig. 2, a triplet 

)),(,,( BASBA  represents the biological relationship that follows the pattern of a target 

),( BAS  controlled by an activator A and a repressor B as described in the activator-

repressor-target model. The response surface captures the biological model with features 

such as compactness, simplicity and visualization.  

 

For each triplet (A,B,C), the fitted value of a target gene C is given by ),(ˆ BASC = . If 

the activator-repressor-target relationship is strong, the residual, CC −ˆ , should be small. 

The residual sum of squares measures the overall variation in C that is not explained in 

the response surface model.  Then the lack-of- fit function ),,( CBART , i.e., the ratio of 

the residual sum of squares and the total sum of squares, describes the proportion of 

variation in C that is not captured by the 3D response surface. A small value of lack-of-

fit indicates that there is a strong activator-repressor-target relationship among A, B and 

C.  To save storage and computation, only those triplets whose lack-of- fit values do not 

exceed a given constant RT are kept.   
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After the initial filtering, a diagnostic strategy ),,( CBADiag  is applied to check the 

reliability of triplets. For each triplet (A, B, C), ),,( CBADiag  measures robustness of the 

fitted model.  It is observed that the intensity measurement of gene expression at one or 

two time points may deviate from the model and suggest that the measurement may be 

faulty and should be treated as an outlier.  If such a value occurs at the i-th time point, 

then ),,()( CBART i , i.e., the lack-of- fit of (A, B, C) when the i-th time point (or the i-th 

column) is left out, will differ greatly from RT(A,B,C). ),,( CBADiag provides a 

summary measure over all time points for a given triplet.  A larger Diag value would 

suggest that the information for the triplet is unreliable and should be removed for further 

consideration.  This step leads to the criteria for selecting triplet 

candidates: RTCBART ≤),,( and DiagC) Diag(A,B, ≤ , where RT and Diag are 

constants as specified by users. 

 

A final score is defined to measure the strength of the triplet interrelationship. Score (A, 

B, C) is a function of the lack-of-fit value and the diagnostic measure, and focuses 

primarily on the RT(A,B,C) value and secondly on the Diag(A,B,C) values.  Triplets with 

low values of RT(A,B,C)  and Diag(A,B,C)  will have low scores indicating a close 

relationship among A, B and C. 

 

Results  

 

GeneChip data on yeast cell cycle.  The SRS algorithm is applied to a public 

oligonucleotide GeneChip data set that studied gene expression profiles during the yeast 
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cell cycle (2).  The data were collected at 17 time points for 6457 genes on the 

Affymetrix Ye6000 chip. The fluorescence intensities are used for analysis. First, 

negative and small positive values, which are due to measurement error and thus not 

reliable, are imputed. The lowest 5% values are replaced by the 5th percentile over all 

genes for each time point. The 5th percentiles of fluorescence intensities vary from tens to 

twenties over the 17 time points. Next, genes are filtered such that the maximum fold-

change (i.e., ratio of the maximum and minimum values over the 17 data points) is at 

least 3 and maximum intensity is at least 100. After filtering, 1,514 genes are retained and 

processed by the SRS algorithm to form a triplet candidate pool. There are 28,023 

triplets, out of 9105.3151215131514 ×≈××  possible triplets, whose RT(A,B,C) values 

were found to be less than 0.1. Fig. 3 shows the best 9 fitting triplets from the initial 

screening.  However, the low lack-of- fit scores, except for the first triplet, are caused by 

the extreme values at the 90-minute point.  Therefore, most of these triplets are not 

reliable and should not be interpreted as having a potential biological interrelationship. 

These unreliable triplets have very large Diag values (>7.2) and are filtered out by the 

diagnostic procedure.  Finally, 20,500 triplets with diagnostic measures less than 2 are 

selected and scored. Table 2 lists top 20 scoring triplets with known functions and Fig. 4 

shows the first 9 triplets in graphics. 

 

In order to evaluate the algorithm, the best scoring triplets were examined to see if they 

make biological sense. A complete table of all the triplets can be obtained from the 

authors.  Fig. 5 shows a connected network of all triplets that have known functions.   

Within this network, many predicted activator-repressor-target relationships have been 
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confirmed by published experimental results (3).  Looking at a few of common targets in 

this network, most associated regulatory genes either carry similar cellular functions or 

are involved in the same cellular process.  For example, CDC9 encodes an ATP-

dependent DNA ligase and is an essential gene for cell division and DNA recombination.  

Four of the identified regulators (i.e., SMC1, NIP29, BTT1 and NUM1) are functionally 

related.  SMC1 acts as a positive regulator and is a chromosomal ATPase family member. 

Like CDC9, SMC1 is involved in chromosome structure and segregation.  Another 

positive regulator is NIP29 that is a structural protein for microtubule nucleation and 

spindle body duplication.  For the two negative regulators, BTT1 has repressor effects on 

the expression of several genes and NUM1 functions in nuclear migration and 

microtubule polymerization. 

 

Another major node in this predicted network highlights HAP1.  The transcription factor 

HAP1 has been shown to repress the nuclear encoding cytochrome gene CYC7 under 

anaerobic growth and activate CYC7 under aerobic growth.  The prediction suggests that 

HAP1 repress CYC7, which in turn accurately predicts that the cells used in this data set 

were primarily grown under anaerobic conditions.  Two other gene products, FAA1 and 

HES1 that are involved in cellular lipid metabolism and ergosterol biosynthesis have also 

been implicated in HAP1 regulation in the literature (14). 

 

In addition, the SRS algorithm uncovered relationships for SPO13, CBF2 and YGP1.  

SPO13 acts as a transcriptional activator and controls meiotic chromosome segregation.  

CBF2 is a centromere-binding factor in a multisubunit kinetochore protein complex.  
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YGP1 codes for a glycoprotein synthesized in response to nutrient limitation.  The 

common theme in these gene products is their functions in cell proliferation and cell 

division.  As expected, many genes associated with each of them have been shown to 

carry similar functions.      

 

The same data set was analyzed by fuzzy logic (19).  We compared the analysis results of 

the fuzzy logic and the SRS methods.  In the fuzzy logic approach, 1,898 genes (30%) 

that have at least 3 fold-change and maximum intensity 30 were retained.  A simple 

network of six genes was constructed from about 470,000 triplets (0.007% of all possible 

triplets). The analysis took about 200 hours on an 8-processor SGI Origin 2000.  In 

contrast, in the SRS approach, 1,451 genes (23%) that have at least 3 fold-change and 

maximum intensity 100 were retained for the SRS algorithm.  A complex network was 

constructed from 20,500 triplets (0.0006% of all possible triplets). The analysis took 

about only 4 hours.  The conclusion is that the SRS algorithm is more conservative, more 

reliable and significantly more efficient in computation. 

 

Microarray data on yeast cell cycle.  The SRS algorithm is also applied to a yeast cDNA 

microarray data set, which were collected at 15 time points of the yeast cell cycle by 

using a 2,467-gene microarray (4).  The Cy5/Cy3 fluorescence ratios are used for 

analysis.  First, the missing values are imputed and replaced by the average of the 

previous and following time points.  The replacement is carried out one gene at a time.  A 

gene is filtered out if it has two or more consecutive missing time points. After 

imputation, the data set is filtered using the criterion of minimum fold-change of 3. This 
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leads to 830 genes which are analyzed by the SRS algorithm.  There are 2,393 triplets 

whose RT(A, B, C) values  are less than 0.1 and Diag(A,B) measures are less than 2.  

These 2,393 triplets are scored for further investigation. 

 

In order to evaluate and validate the results predicted by the SRS algorithm, the best 

scoring triplets that have known functions were examined first. Within the network 

illustrated in Fig. 6. many predicted activator-repressor-target relationships have been 

implicated in published results (17, 22).  For example, RSR1 is a RAS GTPase involved 

in bud site selection.  The predicted RSR regulators include CDC45, POL2, DPB2, SWI5 

and RPM2 and these proteins also function in budding and cell proliferation.  ASF1 

causes depression of many silent chromosomal loci when overexpressed in a cell.  

Because of its broad functionality, a large number of triplets have been found with ASF1 

in them. ASF1 represents a major node in the network of Fig. 6, suggesting  that its 

associated proteins may have diverse cellular roles. Comparing to the GeneChip data, 

fewer triplets can be explained by existing yeast genetic knowledge.  This may primarily 

be caused by the difference in experiment design.  In addition, because we do not have 

access to the original intensity values of the experiment, no data filtering is performed 

based on expression level.  Fold change ratios for some of the genes with low level of 

expression might not be reliable.  Further experimentation is needed to explore these 

predicted relationships. 

 

Discussion 
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The validation studies show that the SRS algorithm provides a powerful data mining tool 

for analyzing gene expression data. In general, the findings of the algorithm agree well 

with published experimental results.  This should not come as a surprise, because the 

algorithm searches for relationships that fit our scientific understanding of how an 

activator, repressor, and target should interact.  By using essentially the same criteria that 

an experimenter would use to describe the regulatory function of a protein, the SRS 

algorithm approximates the thought process an expert would use in interpreting or 

analyzing this data.  However, by applying a computational algorithm to the analysis of 

the data, we have provided a process of data sorting in an unbiased manner, quickly and 

efficiently. 

 

The mathematical and statistical features make the SRS algorithm powerful and valuable 

for mining gene expression information. One of the important features is the use of a 

diagnostic strategy. It ensures that the triplets with unreliable measurements at one time 

point is filtered out and the final selected triplets would not have the biased data points. 

For the yeast GeneChip data used in the validation study, there is one extreme time point 

(i.e. 90-minute) whose dynamic range of the intensities is quite different from other time 

points.  One strategy is to remove the whole experiment from the data set (16).  

Removing the whole experiment can result in a severe loss of information as the extreme 

values only occur for some genes.  For other genes in the experiment, the information 

they carry is still valuable and should be exploited in our algorithm. The leave-one-out 

diagnostic strategy has the ability to extract useful information from that time point and 

in the meanwhile to minimize error from the noise.  To confirm this observation, we 
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apply the algorithm to a reduced data set with the 90-minute experiment removed and 

construct a new network.  The new network is similar to Fig. 5.  However, some parts are 

missing.  The new network does not contain the pathways of CDC9 and YGP1, which are 

parts of Fig. 5.  

 

Compared with the fuzzy logic approach, there are many advantages in analyzing gene 

expression data with the SRS algorithm. First, the SRS algorithm is less sensitive to noise 

because it employs a smooth response surface, while the fuzzy logic approach is more 

sensitive to noise because it makes discrete decisions (based on a discontinuous response 

surface). For example, given genes 10.0=A  and 49.0=B , if the noise causes gene 

51.0' =B , then in the SRS algorithm the fitted values of the product genes are given by 

11.0),(ˆ == BASC  and 098.0)',('ˆ == BASC , which results in the noise- induced-error 

012.0'ˆˆ =− CC , which is about 10%.  In contrast, in the fuzzy logic method, 305.0ˆ =C  

and 1475.0'ˆ =C , and the noise- induced-error is given by 1575.0'ˆˆ =− CC , which is about 

50%. This example shows the noise-induced-error in the fuzzy logic approach is more 

serious than that in the SRS algorithm. As a result, the fuzzy logic approach may miss 

important information inherent in the genes. The SRS algorithm predicts a larger and 

more complicated gene regulatory network than the fuzzy logic approach for the same 

GeneChip expression data. Secondly, the SRS algorithm is significantly more efficient in 

computation because of its mathematical simplicity and compactness. It has shown 

tremendous savings in computing time.  
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Gene expression profiling is a rapid high- throughput process that gives a large amount of 

information about the cell in a form that can be easily processed on a computer.  By using 

statistical and data mining approaches to analyzing expression profile data, it is possible 

to confirm the function of a known gene.  Moreover, because an exploratory algorithm 

like the SRS does not require biological information about the genes, genes with 

unknown functions can be included as easily as genes with known functions.  Although 

in this study the algorithm was only used to search for triplets of activator, repressor, and 

target genes, the technique is general and can be applied to other relationships and more 

complicated systems.  Examples include other classes of relationships such as co-

activators and co-repressors (12) or more complicated systems that involve genes whose 

transcription is regulated in complex ways by any number of transcription factors. 

Similarly, although the validation of this algorithm was performed using GeneChip and 

microarray data in this paper, the algorithm should work equally well with other 

expression profiling techniques 
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Figure Legends  

 

Fig. 1. The data processing flowchart of the SRS algorithm.  The imputation and gene 

filtering steps are applied to remove noise from the data. In the SRS model, a 

transformation is made to map the data into the 3D response surface space, which 

describes the relationship for the triplet of activator-repressor-target.  For each triplet of 

genes, a lack-of- fit formula is defined to filter the triplets from the initial screening.  Then 

a diagnostic method is developed to refine the selected triplets and a score, which reflects 

the strength of the triplet interrelationship, is defined to rank the refined triplets.  Finally, 

a gene regulatory network is constructed based on the top scoring triplets. 

 

Fig. 2. A 3D smooth response surface.  It is a piecewise linear-quadratic polynomial on 

[0,1]× [0,1] and is used to model the biological relationship between the target and 

activator-repressor genes. 

 

Fig. 3. The best fitting triplets without diagnostic. The graphs show the log transformed 

(base 2) concentration values of the triplets. The lack-of- fit values for these triplets are 

less than 0.017.  Except for the first triplet, all others have large Diag values (>7.2).  The 

low lack-of-fit is caused by the extreme values at the 90-minute experiment.  These 

triplets are not reliable which are indicated by the large Diag values. 

 

Fig. 4. The activator-repressor-target mechanism. The graphs show the log transformed 

(base 2) concentration values of the triplets. It captures the biological relationship among 

the triplets. When the concentration of the activator A (long-dash line) is high and that of 
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the repressor B (short-dash line) is low, the concentration of the target C (solid line) is 

high; when the concentration of A is low and that of B is high, the concentration of C is 

low.  

 

Fig. 5. A predicted gene regulatory network for the GeneChip data. It is constructed with 

the top scoring triplets of known functions and existing biological knowledge. The result 

agrees well with the literature information. 

 

Fig. 6. A predicted gene regulatory network for the microarray data. It is constructed with 

the top scoring triplets. 
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Table 1. List of input parameters and functions in the algorithm 
 

Computational parameters:  

n      number of samples (or time points) 
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
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
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


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∑
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Table 2.  Top scoring triplets with known functions from the yeast GeneChip data 
 

Rank A B C RT(A,B,C) Diag(A,B,C) Score(A,B,C) 

1179 TEC1 PDS1 YGP1 0.0553 0.48307 0.08201 

1274 GAP1 MSB1 ARE2 0.06608 0.25991 0.08325 

1339 PIR3 RNP1 CPS1 0.07207 0.16708 0.08411 

1340 HPR5 GAP1 HAP1 0.07227 0.16418 0.08414 

1380 PIR3 RNP1 FAA1 0.07604 0.1136 0.08468 

1480 RAD27 MSK1 HES1 0.06075 0.41396 0.08589 

1612 SPT21 CBF2 GPA1 0.07278 0.19939 0.0873 

1645 HES1 TWT2 HAP1 0.06965 0.25932 0.08771 

1920 TIP1 MCR1 SPO13 0.07994 0.13201 0.0905 

1947 HPR5 PEP5 HAP1 0.08003 0.13536 0.09086 

2117 TIP1 AGP1 SPO13 0.08185 0.12926 0.09243 

2226 INH1 CBF2 YGP1 0.07592 0.22926 0.09333 

2243 CYB2 CIK1 TIP1 0.07185 0.30092 0.09347 

2277 RAD27 CPS1 HES1 0.06435 0.45645 0.09373 

2503 CYB2 MCR1 SPO13 0.06806 0.40383 0.09555 

3107 HES1 GPD2 HAP1 0.08957 0.12041 0.10036 

3122 KAR3 FAA1 HAP1 0.08402 0.19595 0.10048 

3186 INH1 PDS1 YGP1 0.08022 0.25682 0.10082 

3941 IPL1 TSM1 CBF2 0.09555 0.09849 0.10497 

4273 SPO16 ASE1 SMC3 0.09026 0.18177 0.10666 
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Fig. 2. 
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Fig 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 

 

CLB1

SWI5

MSH2

SIC1

BUD4

BUD9

CDC5

RME1

CLN2

RSR1

PCL7

GAP1FAA3

PRI2

BUD3
WSC4

BUD8

YNK1

ASF1

CDC45

MSH6

ARG4

ZDS2

CLB5

DBF20

-

-

+

+

+

+

-
-

-

+

+

+

+

-

-

-

-

+

-

-

_

-

+

+

-

+

+

+

+

+

+

-

-+

+

+

-

SPT21

RPM2
COX8

CTS1

ALK1
ACE2

POL2
DUN1
DPB2

RFA1
SRO4
CLB6

NUF2 +

+

+

+

+

+

-

+
+

CHS2

BNR1
RFA3
SUR2

+ PCL2+
+

-

+

- -

-

+

-

+

-
+

CDC20

IQG1

CIK1

HHO1

ASH1

-

+

-
-

+

+

SKN1

RLF2

POL30




