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Abstract of the Dissertation

Understanding the Ecological Challenges in

California Protected Areas

Through the Lens of Remote Sensing Technologies

by

Shenyue Jia

Doctor of Philosophy in Geography

University of California, Los Angeles, 2016

Professor Thomas Welch Gillespie, Chair

Protected area (PA), usually built to address the potential ecological pressure from differ-

ent sources, aims to sustain, protect, and maintain the wilderness of nature for ecological,

economic, and scenic purposes. Establishing, maintaining, and expanding the monitor net-

work of PAs helps to enhance the ecological and biological value of these areas, especially

in the light of species decline and habitat degradation. Intensively monitored and regulated

through various administrative agencies, California keeps one of the best maintained network

of PAs in the world, which supports various studies to address the significant threats to the

preservation of wilderness from the projected warming climate and pressure from human

development, including water deficit and prolonged drought, abnormality in wildfires, urban

sprawl, and light pollution.

With the help of satellite remote sensing technologies and geospatial analysis, we can

overcome the limitation of data availability in traditional ecological studies and expand the

study of PAs to a continuous gradient both in time and space. This dissertation aims to

develop a comprehensive understanding through remote sensing technologies on three signi-

cant and linked ecological disturbance in California PAs, including the change of land cover,

the dynamic of wildfire, and the extent and intensity of human activity reflected by stable
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nighttime light. Exploiting various of remote sensing observation and its derivatives, this

study investigated the three topics through trend, seasonality, abnormality, spatial distribu-

tion, and hotspot of change to provide a cost-effective and repeatable studying paradigm for

PA managers to better understand the past and present situation, as well as the ecological

challenges of PAs. In addition, it also supplemented the study of PAs as a case study focus-

ing on a non-tropic ecosystem, which usually involves greater interaction with human thus

faces ecological pressure at a higher level.

The analysis on land cover dynamics and change from 2000 to 2015 found that many

protected areas in California have experienced an increase of brownness since 2000. PAs

with a higher coverage of greenness are associated with a higher temporal variability, mostly

because of the more complex life cycle of green vegetation and the sensitivity to the distur-

bance, possibly due to a drying climate regime. Partly linked to the gradual influence from

the drying climate, the change in the regime of wildfire may cause a more drastic change in

land cover, through the removal of aboveground biomass and its inuence on the post-wildre

regrowth. In the study focusing on California PAs from 2000 to 2013, a shift in wildfire-prone

land cover and season was observed starting from 2008, while the wildfires southern Cali-

fornia shrubland during the fall season became nearly extinct and the northern California

evergreen forest wildfires in the late spring increased, partly explained by the recent loss of

available fuel in biomass and the increase of potential of ignition in evergreen forest as a

result of prolonged drought. Most burned areas experienced a signicant weakening of the

immediate growing season, although the inuence from re on local landscape decayed over

time, which became irrelevant after ve years on average. The lower fuel moisture and a

more intensive removal of aboveground biomass makes shrubs more sensitive in time, with a

shorter period for biomass removal by re and a greater delay in the start and peak of post-re

growing season.

The long-enduring and sometimes intensive disturbance from human activity, especially

from the development can be even more disastrous than wildre in damaging the aboveground

biomass by interrupting the natural nutrient and mass circulation,thus brings more funda-
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mental and sometimes irreversible consequences to ecosystems. However, after decades of

protection, especially the removal of settlements in side PAs, land management strategies

may have bored beneficial fruits to reduce the negative effects from historical human dis-

turbance. As a good proxy of human activity and development, the historical records of

stable nighttime light from 1992 to 2012 tracked the temporal change and spatial migration

of hotspot of human activity inside California PAs. A decrease of lit area at night inside

PAs occurred from 1992 to 2012, with a turning point around 2004 when the relatively sharp

decrease started from became more gradual thereafter. Besides, area covered by higher

stable nighttime light not only shrank, but also retreated from the area with high wilder-

ness. If solidly conrmed by other socioeconomic variable, the above nding demonstrated the

eectiveness of PA establishment and the fruits of multiple conservation strategies kept for

decades.

The investigation of three major disturbances to the wilderness of California PAs provided

an example of exploiting the cost-eective and continuously available observation of the Earth

surface at a regional level to understand the ecological challenges of PAs. The findings can

help the National Park Service and other related agencies of PA administration in the review,

adjustment, and proposal of regulations and policies regarding to PAs. Future work and

analysis can be focused on improving the accuracy of predictive models involved the analysis,

either by concentrating on the dierence between categories of protection, or through a better

understanding on the related ecological process and mechanisms to identify or develop better

explanatory variables. In addition, when conducting analysis on PAs, the buer area adjacent

to PAs cannot be ignored, which is an important source of disturbance to PAs as well as

an ecological corridor that links nearby PAs into clusters. Considering the great diversity in

the landscape of PAs, the analytical results can be aggregated and interpreted by different

ecoregions to derive more accessible guidance to local policy makers.
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CHAPTER 1

Introduction

1.1 Protected Areas: Toward an Effective Restoration of Wilder-

ness

Protected area (PA), by the definition of International Union for Conservation Nature

(IUCN), is “a clearly defined geographical space, recognized, dedicated and managed, through

legal or other effective means, to achieve the long term conservation of nature with associ-

ated ecosystem services and cultural value” [Dudley, 2008]. In the light of continued species

decline and habitat degradation, the IUCN has built the World Database on Protected Areas

(WDPA) to collect and maintain accurate data on the location, size, type, and status of the

worlds PAs [Milam et al., 2016]. In this worldwide network of PAs, IUCN categorized PAs

by the level and the focus of protection and the magnitude and intensity of human inter-

action with nature inside or near the boundary. When combined with other data sets and

databases, as well as thematic knowledge, this system can help to advance our understand-

ing of the extent of PAs as a conservation strategy [Coad et al., 2013]. By August 2014,

PAs recorded in the WDPA covered 15.4% of the worlds terrestrial and inland water area,

excluding Antarctica [Juffe-Bignoli et al., 2014], which is a key step to achieve the Aichi

Biodiversity Targets of 2020 set by Convention on Biological Diversity (CBD) to extend the

coverage to “at least 17% of coastal and marine areas” [Woodley et al., 2012].

The target toward the preservation of biodiversity and wilderness in and adjacent to PAs

can be decomposed into five strategic goals, including 1) address the underlying causes of

biodiversity loss across government and society, 2) reduce the direct pressures on biodiver-
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sity and promote sustainable use, 3) to improve the status of biodiversity by safeguarding

ecosystems, species, and genetic diversity, 4) enhance the benefits to all from biodiversity

and ecosystem services, 5) enhance implementation through participatory planning, knowl-

edge management and capacity building [Leadley et al., 2010]. Recent evaluation of the

progress to achieve the Aichi Targets indicated that on current trajectory, despite accel-

erating policy and management response to the biodiversity crisis, the impacts of these

efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020

[Tittensor et al., 2014, Leadley et al., 2010]. Under this background, this dissertation fo-

cuses on California, a region was considered a biodiversity hotspot on the earth because

of its high number of at-risk endemics (species found only there) [Carle, 2010] and a place

dealing with the consequences of two centuries of land development and population growth

that had been accelerating ever since the Gold Rush and remained at a high level in recent

years because of technological revolution and immigration. By focusing on a typical region

of Mediterranean ecosystem, this dissertation also tries to extend the study of PAs beyond

tropics and subtropics in South America, Southeast Asia, and Africa to supplement the

geographical scope of the study of PAs.

1.2 Why California?

1.2.1 Filling the Gap: Research of Protected Areas at a Regional Level

Most studies of PAs are focused on either the global level or a local level (e.g. selected

representative PAs, often national parks). Although the global level studies are crucial as an

evaluation and analysis toward the achievement of biodiversity targets worldwide, ecologi-

cally speaking, they are not focused on providing guidance and support for PA managers and

policy makers on how to address the ecological challenges locally or in the similar landscape.

On the other hand, findings from local level studies on representative PAs may not always

be compatible for other PAs of the similar landscape. There is a need to address this gap

and develop a solid foundation to support the policy making regarding to biodiversity and
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maintenance of PAs at a regional level, where the environmental conditions and ecological

challenges are similar and the budget and resource allocation is mostly controlled by the

same government.

The regional level study of PAs aims to understand the past and present ecological condi-

tions, identify the major challenge to maintain the biodiversity or the protective eectiveness

of PAs, and provide scientic supporting information for policy makers and related agencies

to evaluate, modify, and develop policies regarding to PAs. Researchers focusing on a re-

gional level of study can assimilate the useful knowledge developed from global and local

level studies at macro and micro-scale to build a bridge in between to better facilitate studies

at the regional scale. In this case, the analysis of spatial patterns and temporal dynamics

can be conducted at a level that is more accessible to stakeholders and policy makers. It also

serves as a test ground of general patterns detected by global level studies and mechanisms

discovered at the local scale.

1.2.2 Hotspot of Biodiversity under Threaten

California is an ideal place for the regional level study mentioned above. Containing over 1000

PAs at different IUCN protecting levels and under the administration of a multi-stakeholder

system, California has over 18.5% of area under protection at different levels, though partly

due to the unevenly distributed population. Shaped by the mountain ranges and the oceanic

influence from Pacific Ocean, the state with an area of 423971 km2 on the west coast of the

United States is divided into 13 ecoregions by the difference biogeographic characteristics.

Besides its famous Mediterranean section, California also contains a large area of warm desert

in the southeast inner land and a small section of evergreen forest to the north, where the

humidity is higher. It has a high number of endemics and many of them are at-risk. Chapter

2 gives a more detailed description of physical environmental conditions and biodiversity in

California.

As a legacy of two centuries of human exploitation and land development, California not
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only enjoys the fruit of land reclamation and construction of infrastructure, such as irrigation

system to support the largest agricultural production of the United States. Meanwhile, it

faces consequences of accelerating ecological pressure from development. Urbanization, habi-

tat encroachment, pollution, mining and oil extraction, invasive species, logging, increasingly

severe wildfires driven by both the pressure from population growth and the human-induced

climate change in recent years are the establishment of PAs to fight against [Carle, 2010]. All

the threats mentioned above has made California a representative region for studies focusing

on PAs under the pressure of human development and projected change in climate.

Compared with many other countries worldwide, the United States has a better devel-

oped and maintained network of PAs and California is an intensively monitored region. It

has 148 designated wilderness areas [Carle, 2010], the greatest number of any state in the

U.S. It also has the greatest number of national parks in this country. Besides National

Park Service (NPS), USGS, U.S. Bureau of Land Management (BLM), USDA Forest Ser-

vice, U.S. Fish & Wildlife Service, California Department of Fish & Game, and California

Department of Parks and Recreation are also administrative bodies in PAs of California.

This well-developed network of monitoring, protecting, and preserving the wilderness and

environmental resources has developed detailed data set of PAs and made crucial contribu-

tion to protect the ecosystem and outdoor recreational resources, improve management of

conservation lands, adapt to and mitigate the effects of climate change, evaluate alternative

land-use proposals, and assess vulnerability of the wildlife [Gergely and McKerrow, 2013].

With the support of the effective PA monitoring network, studies focusing on California PAs

at the regional level can help the federal, state, and local policy makers to target on the

most pressing needs to preserve and maintain the biodiversity and ecological effectiveness of

PAs.
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1.3 Ecological Challenges of Protected Areas in California

1.3.1 Gradual Change in Land Cover in Response to Climate Change

In most forecast scenarios of projected climate change, the western U.S. is likely to experience

an increase of drought, though difference in space exists [Jardine et al., 2013, Parks et al., 2016].

In recent years, California has experienced a prolonged drought in most areas and it is be-

lieved to be the new normal [Guarin and Taylor, 2005, Pincetl and Hogue, 2015]. Such fun-

damental change in the climate regime imposes radical influence on the vegetation coverage

in California, mainly by cutting the soil moisture to support the metabolism and nutrient

circulation of plants, and accelerating the actual evaportranspiration (AET) [Carle, 2015b,

Tanaka et al., 2006, MacDonald, 2010]. Both disturbs the seasonal cycles of plant growth

and may lead to fundamental change in vegetation composition of the landscape. Some

of the recent studies revealed that a browning trend is gradually taking place, and may

continue as the prolonged, more frequent drought becomes normal [Jardine et al., 2013,

MacDonald, 2010]. Containing almost half of the natural vegetation in California, pro-

tected areas faces a gradual, but fundamental change in land cover type, which brings new

challenges for PA managers and policy maker in designing adaptive land management and

wilderness restoration strategies in response of such change. Therefore, it is necessary to ob-

tain a detailed analysis of the land cover dynamics, especially the greenness and brownness

for recent years to detect the trend and identify the hotspot of change.

1.3.2 Change in Fire Regime and Post-Fire Ecological Response

As a key element to shape the Mediterranean ecosystem in California, wildfire plays an impor-

tant role to balance the nutrient circulation and the aboveground composition of vegetation.

The prolonged drought recently also increased the hazard of wildfires in California though a

hike in the fire perimeter and the burn intensity. A number of studies have revealed that there

has been a shift in the fire-prone vegetation type and fire-prone season recently, especially

for the fires driven by Santa Ana winds in southern California chaparral [Jin et al., 2014,
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Faivre et al., 2014, Jin et al., 2015]. Such shift or change should be discussed in a time series

with enough length to avoid the overestimation of a normal fluctuation. But it is important

to investigate the possible ecological influence from recent dynamics of fire regime in terms

of seasonality, location, and intensity. One of the most fundamental influence from fire on

PAs in California is the response from natural vegetation, which was usually discussed on

a case-by-case basis [Bond and Keeley, 2005, Moritz et al., 2004, Urbieta et al., 2015] and

requires a more systematic investigation with the assistance of remotely sensed data.

1.3.3 Anthropogenic Disturbance

In the last two decades, the population growth and associated ecological pressure in Califor-

nia has been investigated and discussed at different scales focusing on different metropolitan

regions. Meanwhile, because of the increasing awareness of natural conservation and protec-

tion of wilderness, stricter regulations on or around PAs have been proposed and conducted,

not to mention the expansion of PA network in California. The two sides of human-induced

influence add to complexity of the anthropogenic influence on PAs [Davis and Hansen, 2011].

Despite the affirmative increase outside PAs, there is a need to investigate if the recent

conduction of PA management strategies helps to improve the conservation of wilderness

inside PAs [Nagendra, 2008, Jones et al., 2009]. However, the ecological value and effec-

tiveness of protection of PAs should be discussed together with the adjacent area, usu-

ally a buffer zone between the boundary of PAs and epicenter of human development

[Jones et al., 2009, Mcdonald et al., 2009a].

1.4 Through the Lens of Remote Sensing and Other Geo-Spatial

Techniques

Recent development in geo-spatial technologies has advanced the utilization of geo-spatial

data to the next level. Examples of such development include the progress in remote sensing

observation on biogeographic variables that helps to build bridge between remote sensing
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specialists and ecologists, development of spatial analysis and geostatistic methods, as well

as construction on cloud computation and data distribution platform to exploit the high

volume of geospatial, especially the remotely sensed data more efficiently (e.g. Google Earth

Engine, NASA Giovanni). This dissertation aims to utilize some latest development in geo-

spatial technologies to study the ecological challenges in California PAs with continuous time

series of observation, addressing on the special characteristics of spatial data such as spatial

autocorrelation and heterogeneity.

1.4.1 Remote Sensing and Terrestrial Protected Area Monitoring

Repeatable, cost-effective, and continuous in observation at different scales is the best recog-

nized advantage of satellite-based approaches for studies to identify areas of concern at differ-

ent scales and support land managers to design and apply adaptive management strategies

for PAs [Gillespie et al., 2008, Alcaraz-Segura et al., 2009, Pettorelli et al., 2016]. Recently,

remote sensing observation on the earth surface has made great progress in obtaining various

biogeographical and biogeochemical measurements instead of raw reflectance of surface. And

many related derivatives from reflectance, the best documented earth surface observation,

have been developed through modeling and time series analysis focusing on phenology, hy-

drology, and topography. This helps to fill the knowledge gap between the remote sensing

specialists and ecological researchers on PAs by translating the observation of reflectance or

emission into the language of ecology and other environmental sciences. Such progress also

enables the understanding of biodiversity and other perspectives of PAs through remotely

sensed monitoring of land cover and disturbance, primary productivity, pheno-metrics de-

rived from remotely sensed images, and magnitude of human activity detected from space.

Besides these established avenues, newly developed research topics include vegetation 3-D

structure with LiDAR images, tracking and understanding movement patterns, and moni-

toring species from space [Pettorelli et al., 2014]. Recent progress in ecology also echoes the

wide application of satellite remote sensing methods by proposing the framework of essential

biodiversity variables (EBVs) [Pereira et al., 2013], which are mostly developed based on
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satellite remote sensing approaches.

1.4.2 Utilizing the Continuity of Time Series

Large volumes of remote sensing products focusing on different topics have been continu-

ously generated at a time step from daily to yearly with coarse to fine spatial resolution.

MODIS products collection and Landsat images are both good example of the continuity

of observation. The former is produced daily, 16-day, monthly, and yearly depending on

the variable since the beginning of 2000 at 250, 500,and 1000 m level that is appropriate

for regional level study, while the latter archives multi-decadal observation of earths sur-

face, though the cloud coverage and other atmospheric disturbance sometimes disrupts its

continuity [Fry et al., 2011, Homer et al., 2015]. The decadal accumulation of surface ob-

servation has created a well-documented time series for different biogeographic variables,

which enables the investigation on temporal trend, seasonal cycle, breakpoint in time series

with the techniques of time series analysis for macroecology applications [Pfeifer et al., 2012].

A number of tools focusing on time series visualization and analysis utilizing MODIS and

other satellite products with continuous time series have been developed, such as TIME-

SAT (Eklundh and Jnsson 2015) and NASA Giovanni [NASA GES DISC, 2012]. With

the assistance of cloud computing platform, researchers can visualize, process, and ana-

lyze these data more efficiently, with the implementation of more advanced simulation and

analytical techniques [Hansen et al., 2013a, Gorelick, 2012]. Starting from the analysis us-

ing NDVI, many recent studies began to adopt more advanced time series analysis methods

[Goetz et al., 2005, Verbesselt et al., 2010a] and focus on connecting the results with eco-

logical findings at a finer scale. In addition to satellite remote sensing observation and

its derivatives, ecologists also started to combine the satellite observation and products to-

gether with them to address the projected climate change [Hansen et al., 2014], although

data assimilation is another challenge to utilize the climate reanalysis data or climate model

outcomes.

Despite the on-board satellite observation and official basic derivatives (e.g.MODIS prod-
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ucts for atmosphere and land), other variables based on a continuous time series have been

calculated to address the needs from different fields, for example, the annual pheno-metrics

generated from the MODIS NDVI time series by eMODIS team [Jenkerson et al., 2010].

Obtaining a continuous time series from Landsat images involves more technical challenge

because of the cloud coverage and other atmospheric factors. But if successful, the details

from the smaller cell size can provide valuable opportunities of testing ecological models

and theories developed at a local level. The fire occurrence, perimeter, and burn intensity

data from MTBS team is a good example of utilizing the spatial resolution and continuity of

observation of Landsat [Cochrane et al., 2012, Eidenshink et al., 2007]. Exploitation of the

repeating and continuous observation and derivatives of observation from satellites makes

remote sensing derived variables more accessible to ecologists and PA managers by convert-

ing time series of observation to ecological meaningful measurements, especially considering

many of such variables cannot be derived from limited time slices of remote sensing data.

1.4.3 Focusing on the Continuity and Heterogeneity of Space

Satellite-based remotely sensed data also provide observations in the format of spatially

continuous surface, and it enables investigation on spatial distribution through different

spatial analysis techniques. It is also important to remember the remote sensing observations

and derivatives employed in this dissertation may involve three dimensions: two dimensions

of space and one dimension of time. In most of the spatial analysis, especially when a

regression model is applied, it is important to consider the research question in terms of

space, meaning that the spatial autocorrelation and heterogeneity should always be carefully

treated in modeling.

Spatial autocorrelation, usually described as “everything depends on everything else, but

closer things more so” [Tobler, 1970], can either lead to the overestimation of correlation

in regression model or produce great residual because of the incapability of independent

variables to explain the spatial aggregation/clustering. In practice, it can be addressed by

introducing spatial fixed effect variables to models between variables in the format of continu-
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ous time series [Baltagi and Li, 2001, Anselin and Arribas-Bel, 2011] or calculate geographic

weight matrix to conduct geographic weight regression (GWR) instead of ordinary linear or

nonlinear regression [Anselin, 2013, Anselin, 1988]. Because most modeling analysis involved

in studies of this dissertation focuses on an array of measurements based on location, the

spatial autocorrelation should be considered in the analysis.

On the other hand, if the purpose of study includes the analysis on spatial distribu-

tion or the explanatory capability of spatial heterogeneity on the topic of interest, deriving

quantitative measurement of spatial aggregation should be the focus [Getis and Ord, 1992,

Tiefelsdorf and Boots, 1995, Assuncao and Reis, 1999]. The hotspot analysis and spatial

clustering analysis provides a straightforward and quantitative measurement of spatial het-

erogeneity, and is widely applied in time slice based analysis to study the spatial distri-

bution of numerous topics [De Smith et al., 2007, Miller and Goodchild, 2014]. Considering

the continuity in time series of remote sensing data involved in studies of this dissertation,

there is a need to analyze the temporal change of the hotspots and clusters. To better

utilize the continuous surface of remote sensing observations, metrics of landscape ecology

can also be employed to study the connectivity and isolation detected by the quantitative

measurement of spatial distribution [Goetz et al., 2009]

1.5 Organization of Dissertation

This dissertation focuses on California, one of the best maintained PA monitoring system in

the world and a region with both richness in biodiversity and intensive interaction between

nature and human. It has three research targets. First, investigate the temporal dynamics

and spatial distribution of three major ecological challenges to California PAs, including

land cover dynamics, change in fire regime and post-fire response, and human activities.

Second, provide an example of study focusing on PAs at a regional level and for a non-tropic

ecosystem to support the designing of adaptive land management and protection strategies

for PA managers and policy makers. Third, explore the effectiveness of utilizing continuous
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time series to understand the present and future of PAs. The three purposes are reflected in

each research chapter to address one of the three major ecological challenges.

The dissertation is organized as follows: Chapter 2 describes the physical environmental

background of California and provides a brief history of recent nature-human interaction in

California; Chapter 3 investigates the change and dynamics of land cover in California PAs

from 2000 to 2013, and it serves as a baseline of the following discussion of natural and human

disturbance; Chapter 4 focuses on wildfire, the major natural disturbance in the landscape

of California PAs, and discusses the change in fire regime as well as the post-fire response

from vegetation; Chapter 5 studies and evaluates the change of human activities detected by

stable nighttime light images in California PAs from 1992 to 2012, and analyzes the possible

drivers of such change using demographic data; Chapter 6 concludes the findings from the

previous three research chapters and discusses future works and possible improvements in

the big picture of studies on PAs and biodiversity.
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CHAPTER 2

California: Where wilderness Meets Human

2.1 Physical Environmental Background

California is a large state with great topographic complexity and a wide range of climatic

and habitat diversity. According to the Level III ecoregions map from EPA [Omernik, 1987,

Hughes and Larsen, 1988], California includes 12 ecoregions divided by major topographic

barriers. The diverse landscape of California is shaped by the two major mountain sys-

tems that extends in a north-south direction, the Coast Ranges (North and South) on the

west side of the state and the Sierra Nevada and Cascade Range on the east. Other ma-

jor topographic features from North to South include Klamath Mountains, Central Valley,

Transverse Ranges, Peninsular Ranges, Colorado Desert and Mojave Desert (Figure 2.1).

The great variation in topography exerts an influence as great as latitude in fixing the

regional climate, as well as the vegetation coverage of California. The climate of cismontane

region (area to the west of Sierra Nevada Ranges) is Mediterranean, with a dry and cool

summer and humid and mild winter. Vegetation types include coastal marsh, coastal sage

scrub, chaparral, grassland, and pine forest [Ornduff et al., 2004]. Because of the presence of

mountainous masses of land, the zonation of vegetation is significant, with drought-tolerant

vegetation at the foothill and types favoring precipitation in the mid elevation. The montane

region (high mountain areas) receives higher precipitation and is usually covered by conifer-

ous forest, montane chaparral, and subalpine forest. Located in the rain shadow area of the

high Sierra Nevada Ranges, the transmontane region (east of Sierra Nevada and the inner

land desert) receive very little precipitation. Plants (scrub and bush scrub) are adapted to
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the aridity and tolerant to the prolonged drought. The Central Valley is now mostly occu-

pied by cultivated croplands and grassland, and have very few protected areas. The diversity

of landscapes makes California a crucial habitat for many distinct native species. The rapid

increase of population in California has introduced great challenges to preserve such diver-

sity in the protected areas. In present, over 1000 protected areas have been established in

California at different protective levels of IUCN (Figure 2.2).

2.2 A Brief History of Human Settlement and Interaction with

wilderness

Area where is now the state of California used to have the highest population density of

Indians found in North America. The successors, Spanish mission builders and rancheros,

followed by gold-seeking 49ers and settles then established settlements and cities here. Many

of cities in California began as trade center villages serving the surrounding farm and ranch

lands. Urban development spread outward from such centers, then covered some of the

most productive farm lands in the states alluvial plains, coastal valleys, and upland terraces

[Carle, 2010, Carle, 2015a].

Although overgrazing, drought, new tax laws, and federal homestead and other land

laws encouraged settlement and development in California since it became a state in 1850,

the quest of gold is well recognized as the driving force behind the relationship between

residents in California and the land. During the Gold Rush started in 1860s and peaked in

the 1880s, the landscape along hillsides was completely altered by removing and sweeping

plants downstream by water cannons as a practice of hydraulic mining. Today, the evidence

hydraulic mining operations was still observable in field. The intensive mining operations

were then regulated by the nations 1872 Mining Law, which is still active in controlling

mining activities on public land.

The construction of the Pacific Railway also led to acquisition of public land along the

railway. By enticing settlers, the land became real estate, which stimulated the urbanization
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and boosted the expansion of farming. After the World War II, the powerful economic

growth and the technological revolution made California a magnet to the inter-state and

international immigrants. Today, California is the top agricultural producer of the U.S. and

supports a population in the size of 37.35 million, according to the U.S. census bureaus

2014 American Community Survey data. The population of California now concentrated on

two mega-regions. The southern California mega-region extends from the southern border up

through San Lois Obispo and Bakersfield, and sprawls into Mojave Desert along Interstate 5.

In northern California, the Bay Area is connected to Sacramento and sprawls along corridors

of development southward to Fresno in the San Joaquin Valley and eastward on Interstate 80

through the Sierra Nevada foothills. Area with a population below 10 people per km2 mostly

locates in Mojave Desert, mountainous area of Sierra Nevada, and the forest covered area in

Klamath Mountains California. The environmental pressure brought by population growth

and the demand from agriculture brings great challenges to the protection of wilderness and

nature, which is essential to adapt to the projected warming and change in climate regimes.
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Figure 2.1: Reference map of California. Numeric labels are IDs of EPA Level III Ecoregions;

ecoregions are shaded differently; boundaries of WDPA protected areas are colored with light

grey; names of major topographic features are also shown on the map.
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Figure 2.2: PAs in California with IUCN management categories and USGS GAP status

code.
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CHAPTER 3

Land Cover Change and Dynamics of Protected Areas

in California from 2000 to 2015 with Space-borne

Remote Sensing

3.1 Introduction

Protected areas (hereafter referred as PAs) have been established in areas with high level of

biodiversity and endemism and contain representative examples of natural ecosystems. For

authorities maintaining a well designed administrative system of PAs and other conservative

areas, such as United States National Park Service (NPS), it is important for policy makers

to understand the past, the present, and the projected future of PAs to evaluate, review,

and propose management policies and projects [Fancy et al., 2008].

The above purposes are often fulfilled with the assistance of the space-borne remote

sensing method recently, combined with field campaigns and observing initiatives. Remote

sensing is a low cost and repeatable approach to build inventory, generate baseline, mon-

itor change, and detect disturbance in PAs [Gillespie et al., 2008]. Both discrete (e.g.land

cover classification) and continuous (e.g. NDVI, EVI) remote sensing products have been

widely applied in this field. The land cover classification products, especially those derived

from Landsat at a finer spatial scale (30 meter cell size) with a longer temporal interval

provide more detailed information of change and disturbance, such as development and hu-

man activities. For example, utilizing the mapping of global forest [Hansen et al., 2013b,

Schmidt and Karnieli, 2000] and the assessment on variations in sagebrush habitat of south-
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western Wyoming [Xian et al., 2012]. Although provided as snapshots in many cases, the

land cover classification products can provide detailed information of conversion in land cover

types, which is usually the most straightforward information of land cover change, and often

served as a basis of further analysis with quantitative biogeographic measurements.

In additional to the utilization of discrete land cover classification products, many studies

focusing on PAs investigated the subtle dynamics that are not drastic enough to alter the land

cover type but of a great ecological significance, such as the greening and browning trend

of the forest and shrub land. A variety of continuous biogeographic measurements from

remotely sensed imageries have been applied, including MODIS and AVHRR vegetation

indices and leaf area index (LAI) [Nemani et al., 2009, Alcaraz-Segura et al., 2009], MODIS

reflectance [Gross et al., 2013], net primary productivity (NPP) [Crabtree et al., 2009]. In

these examples, utilizing the continuous time series of biogeographic indicators instead of

focusing on snapshots of land cover classification products helps to extract the temporal and

spatial patterns of dynamics and usually generates a more comprehensive understanding of

change. The methodologies implemented in the above studies aimed to maximize the merit

of the short temporal interval between observations and the large collection of imagery.

Most studies of PAs have focused on tropical or alpine ecosystems because of the high

value of conservation and biodiversity [Curran et al., 2004, Kramer et al., 1997]. However,

some drier areas also maintain a high level of biodiversity, such as the Mediterranean ecosys-

tem in California. The highly diverse environmental conditions have generated many sub-

tle factors that affect plants distribution in California, such as slope direction, soil depth,

history of disturbance, intensity of shade, and availability of moisture[Ornduff et al., 2004,

Barbour et al., 2007]. As one of the five Mediterranean ecosystems on the earth, California

contains a high number of native and endemic plant species (5862 taxa) [Hickman, 1993,

Ornduff et al., 2004, Natural Resources Conservation Service, 2015]. Though receiving less

attention than tropical area, semi-arid and arid ecosystems in the southwest U.S. have at-

tracted increasing address recently because of the prolonged drought and increased wild

fire activities [Carle, 2015a]. Studies focusing on PAs in California, which not only serve
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as a crucial bank of biodiversity but also an important economic source through tourism

and recreation, should step beyond case analysis focusing on a few major PAs with land

cover snapshots [Gillespie et al., 2015]. Analysis should involve a comprehensive investi-

gation of the recent decade with space-borne remote sensing products on the dynamics

of land cover, fluctuation of important land cover components, and spatial distribution of

change[GEO BON Office, 2011]. Utilizing both the categorized land cover and continuous

time series of land cover with a complete spatial extent would be the most effective method

to fulfill these expectations. As a major authority that manages a large proportion of PAs

in the country, the U.S. National Park Service is celebrating the centennial anniversary in

2016 and there is a need to review and evaluate the status and trends of protected areas in

California, the home of 27 national parks, to establish a solid foundation in terms of research

and protection for the next chapter of NPS.

We focueds on applying the combination of both categorized land cover classification and

the continuous land cover components to detect and investigate the dynamics of land cover

in all PAs of California comprehensively. This research has three primary objectives. First,

we investigated if there has been significant change in land cover change and types in PAs of

California. Second, we analyzed if significant changes in greenness, brownness, and barren

areas have occurred from 2000 to 2015 in protected areas in California. In particular, we

predicted an increase in brownness, considering the four continuing years of drought starting

from 2011 in California. Third, we identified positive and negative metrics of change in

greenness, brownness, and bareness and evaluate the sensitivity of change, which can be

used by natural resource managers to assess trends in PAs of California.

3.2 Materials and Method

We conducted the analysis based on the boundaries of protected areas (PAs) from World

Database on Protected Areas (WDPA) [IUCN and UNEP-WCMC, 2015]. WDPA covers all

recorded PAs in the world. It also contains the IUCN management categories of PAs as a
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record of status of management (Figure 2.2a). A similar categorizing system (GAP status

code)of the United States provided by USGS National Gap Analysis Program (GAP) is also

associated to PAs in California (Figure 2.2b). The following analysis will be focused on these

areas, utilizing categorized land cover type and continuous land cover time series.

3.2.1 Land Cover Types and Transition Matrices for PAs

in California

The National Land Cover Database (NLCD) from Multi-Resolution Land Characteristics

Consortium (MRLC) provides detailed land cover classification mosaics using the Ander-

son Land Cover Classification System [Anderson, 1976] at a spatial resolution of 30 meters

[Homer et al., 2007, Fry et al., 2011, Homer et al., 2015]. This land cover product is derived

from Landsat TM and ETM+ imagery collection. The dataset is available at a 5-year inter-

val, including 2001, 2006, and 2011. NLCD not only provides a snapshot of the land cover

but also illustrates the changes since the previous time slice. With these data, we can obtain

an overview of the land cover status and the changes in landscape of PAs in California at a

fine scale.

We first extracted the land cover types of all PAs in California (1441 PAs in total) from

NLCD 2001, 2006, and 2011. PAs with multi-parts were broken into separate polygons (9953

in total) for a more accurate calculation of zonal statistics, such as majority, minority, and

variety of land cover types inside each PA. We also calculated transition matrices of land

cover types for the period 2001-2006, 2006-2011, and 2001-2011 for all PAs.

3.2.2 Extract the Quantitative Proportion of Land Cover Types from MODIS

Imagery

Although most PAs are free of conversion in land cover types because of the high level of

protection and management, change of greenness and brownness still is still active on a

decade basis inside PAs and is of great ecological significance. In order to identify such

20



change, there is a need to obtain a series of continuous land cover signatures to generate

the trend of change, the magnitude of change, and the temporal and spatial sensitivity of

change. This cannot be achieved without utilizing the continuous and complete time series

of surface reflectance. Moderate Resolution Imaging Spectroradiometer (MODIS) generates

complete time series of land cover reflectance at a 16-day interval or less and a coarser

spatial scale (250 m, 500 m, or 1000 m). Its continuity in time and short revisiting interval

is crucial to the analysis on temporal dynamics. A key challenge of utilizing the MODIS

reflectance products in studies on land cover dynamics is to translate the raw reflectance into

the land cover components[Coppin et al., 2004, Somers et al., 2011, Rocchini et al., 2010].

Spectral analysis techniques can be applied to generate complete quantitative proportion

of given land cover types at a much finer temporal resolution than the snapshots of land

cover classification datasets such as NLCD [Yin et al., 2013]. As one of these techniques,

spectral mixture analysis (SMA) has been widely applied in deriving land cover signatures

from MODIS reflectance products and other space-borne sensor imageries with high temporal

resolution[Somers et al., 2011, Li et al., 2005, Gillespie, 1992, Okin et al., 2001]. Compared

with available MODIS products such as NDVI, EVI, and vegetation continuous field (VCF),

SMA provides more flexibility with a user-defined spectral library for endmembers, meaning

that the time series derived from the reflectance products are not limited to green vegetation.

Non-photosynthetic vegetation (NPV), sometime recognized as brown vegetation, would

be an example of the advantage of applying SMA on reflectance products. It is a cru-

cial element of semi-arid and arid ecosystems, whether it is senescent material that con-

tributes organic carbon to soils, standing dead vegetation that can serve as fire fuel, leaves

that have yellowed in response to stress, or living structural tissue[Okin, 2010]. Because

of the missing of the “red-edge” characteristics in the spectrum, NPV is much less ad-

dressed in the study of vegetation using space-borne remote sensing observations. SMA can

directly extract the fraction of NPV, as well as the green, or photosynthetic active part of

vegetation[Guerschman et al., 2009, Guerschman et al., 2015, Okin, 2007, Serbin et al., 2013].

This technique would be helpful to understand the ecology of Mediterranean landscapes, such
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as many PAs in California.

In this study, we applied the multiple endmember spectral mixture analysis (MESMA)

from relative spectral mixture analysis (RSMA) derived by Okin (2007) on MODIS nadir

BRDF adjusted reflectance (NBAR) products (product MCD43A4, tile h08v04 and h08v05)

at the 500-meter cell size. Dates with only one tile of the two available were dropped out

to obtain mosaics of h08v04 and h08v05 to cover the entire California. PAs with area less

than one MODIS pixel (500500m) were screened for further analysis (264 out of 1441 PAs).

According to the theory of spectral mixture analysis, we assume that the reflectance detected

by space-borne sensors of a pixel is a linear mixture of different land cover types. The purest

or the most representative spectra of these land cover types are referred as endmembers

[Gillespie et al., 1990, Gillespie, 1992]. The contribution of each type is equivalent to the

proportion it occupies in the pixel. As the soil is always a contributor to the reflectance, the

above assumption can be translated to the following equation if m types of soil and n types

of non-soil land cover types are considered as endmembers (Equation 3.1)

ρtipixel =
m∑
j=1

f ti
j ρj +

ti∑
k=1

ρk + ε (3.1)

where ρtipixel is the reflectance of the pixel at time ti, ρj is the reflectance of the different

types of soil, f ti
j is the fractional area covered by soil at time ti, and f ti

k is the fractional area

of each non-soil component at time ti with reflectance ρk. All ρj and ρk are endmembers.

The last term, ε, is the residual after best-fit coefficients have been determined, which should

be minimized. Equation 3.1 is also subjected to the constraints that

ti∑
j=1

f + jti +
n∑

k=1

f ti
k = 1 (3.2)

Fractions of four land cover types are calculated in this study, including green vegetation

(GV), non-photosynthetic vegetation (NPV), bare soil (BS), and snow. In the following

results and discussion sections, we will focus on the first three components.
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The first step to implement MESMA is to obtain the contribution from soil as the first

item in Equation 3.1. It is also a baseline of all the changes from other non-soil types. After

looping over all possible combinations of endmembers from different spectra of GV, NPV,

BS, and snow on the selected snow-free date (DOY 137 in the year 2000) to calculate the

linear mixture model, we can obtain a pseudo-soil baseline endmember, whose reflectance

is the spectrum of the best fitted BS. This baseline endmember was then embedded into

Equation 3.1 to calculate the fraction of GV, NPV, BS, and snow for the other dates to

generate a complete time series of land cover fractions from 2000 to 2015.

After getting the time series of fractions, we calculated the annual average for 2001

and 2015 as a comparison between the start and the end of the entire time series. We

also generated the difference between the anual average of the two years. In addition to the

original time series, we calculated several statistics and derivatives for a better understanding

of the trend and pattern of time series, such as the slope of linear trend for GV, NPV and

BS, as well as the standard deviation of time series. The large sample size of the time series

leads to very significant results in the linear fit models at most pixels, even if the magnitude

of slope is still low. So we set the threshold of significance at a lower level (p < 0.0001)

and mapped out only the significant time series. Mean, median and standard deviation of

the slope were generated for all pixels in each PA as well to address the spatial distribution

and heterogeneity of change. Table 3.1 summarizes the calculations derived from MESMA

generated land cover signatures.

3.3 Results

3.3.1 Land Cover Change in PAs of California

From the three snapshots of land cover in 2001, 2006, and 2011 obtained from NLCD, we

found that most land cover types, especially the four major types (shrub/scrub, evergreen

forest, barren land, and grassland/herbaceous) are relatively stable for PAs in California

(Figure 3.1a). Among the major land cover types, evergreen forest and open water expe-
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Table 3.1: List of results and the derivatives for land cover component time series generated

by MESMA.

rienced a decreased of area in 0.93% and 3.06% from 2001 to 2011, while other drier land

cover types slightly expanded, including barren land (0.99%), shrub/scrub (0.13%), and

grassland/herbaceous (0.60%) (Figure 3.1b). The emergent herbaceous wetlands also in-

creased (4.93%), mostly converted from the adjacent open water areas. Although developed

area occupies a very limited amount of area in PAs (0.66%, all intensity levels), there was

a significant increase in developed areas at medium and high intensity (11.48% and 38.74%,

respectively).

The most frequent ”change-to” from 2001 to 2006 type is shrub/scrub. Greatest change-

to value is found in the transition from evergreen forest to shrub/scrub. The shrub/scrub is

also the most frequently change-from type (Table 3.2), mostly to the wetter types (except for

barren land). However, it did not offset the increase generated by the conversion from other

wetter types. Thus the shrub/scrub still received a great increase from 2001 to 2006. The

barren land is the type with greatest increase from 2001 to 2006, mostly from shrub/scrub.

The above facts indicated a significant transition from wetter to drier types from 2001 to
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2006.

Compared with the previous time period, the land cover change from 2006 to 2011 in Cal-

ifornia PAs was more concentrated on a few types (Table 3.3). The most striking transition

was still the conversion from evergreen forest to the shrub/scrub. And there was a decrease

in open water, mostly converted to much drier types, including barren land or shrub/scrub.

With most of other conversion types composing very small proportion from the total changed

pixels, the wetter to drier converting trend was consistent as before.

Converting from wetter to drier types was the major trend from 2001 to 2011. The tran-

sitions from open water, evergreen forest, grassland/herbaceous, and emergent herbaceous

wetlands to drier types are the mostly recognized (Table 3.4). And the shrub/scrub is the

top change-to type from many wetter types. As a summary of three transition matrices, we

also examined the continuity of change for different land cover types for 2001 to 2006, 2006

to 2011, and 2001 to 2011. Open water, evergreen forest, and open space developed lands

consistently decreased during the above partitions of the time period, and mostly converted

to drier types. The continuing increase occurred in the drier or more human-influenced

types, including barren land and developed land with medium intensity (Table 3.5).
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Figure 3.1: Inter-annual change of land cover from NLCD 2001, 2006, and 2011.
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Figure 3.2: PAs with majority land cover changed. Pixels with land cover type conversion

are also mapped and shaded with NLCD symbology. Level III ecoregions are included and

colored in grey scale.
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Table 3.5: Change of area (number of pixels) for land cover types in 2001, 2006, and 2011.

3.3.2 Comparing the Annual and Seasonal Averages between 2001 and 2015

We developed the inter-annual and inter-seasonal comparison between 2001 and 2015 for

GV, NPV, and BS fraction derived by MESMA to identify the changes of greenness and

brownness. In the snapshot of the composed GV, NPV, and BS fraction for 2001 and 2015

(Figure 3.3), NPV, GV, and BS fractions are colored by Red (R), Green (G), Blue (B)

respectively to form a three-band combination to provide a more informative demonstration

of the land cover composition. Five regions are highlighted as the most dynamic areas,

including (A) Los Padres National Forest (south) and Joshua Tree National Park; (B) Los

Padres National Forest (north); (C) Marbel Mountain and Trinity Alps; (D) Stanislaus

National Forest, Yosemite National Park, and Sequoia National Forest; (E) Death Valley

National Park and Mojave National Preserve.

The five hotspots of dynamics differ from each other in their trend of change. Among the

five regions, region C and E feature a bluer trend, meaning a higher BS fraction or bareness

(Figure 3.3). Both were resulted from a transition from NPV to BS (from redder to bluer).
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In contrast, region A and B had an opposite transition from blue to red or green, indicating

an increase of both photosynthetic active (greenness) or non-active vegetation (brownness).

The dynamic in D was more heterogenic. We observed an encroachment of greener or redder

parts into the previously BS (bluer) occupied areas from west to the east, along ridge of the

Sierra Nevada Mountains from 2001 to 2015 (Figure 3.3).

The above trend of change was better reflected in a map of difference in GV, NPV, and

BS (Figure 3.4). The most prominent part in the map of difference was a great increase in

NPV (indicating the increase of brownness), especially in region A and D. An increase of GV

occurred in many coastal PAs, as observed in region A and B. Additionally, the magnitude

of change in NPV and BS is greater than GV, which was reflected in the darker shading of

NPV/BS than GV in Figure 3.4.

The browning trend, i.e. the increase of NPV, is also observed in the comparison between

seasonal average of 2001 and 2015. In the upper panel for 2001, the driest (bluest) period

of most inland and southern California (region A, B, D, E) occurred in summer (JJA),

while spring (MAM) and fall (SON) were greener (higher greenness) and winter (DJF) was

redder (higher brownness). However, the year 2015 had an increased bareness (bluer) during

spring and fall in many southern California PAs. On the other hand, although the northern

California PAs (region C) had an opposite seasonality compared with the southern ones

(green summer and fall, blue or red winter and spring). Similar as the above regions, it had

a bluer spring, summer, and fall in 2015. Scattered blue areas also appeared in the region

C.

The linear fit of the full time series at each pixel helped to evaluate the trend of change

for land cover components during the past 16 years (Figure 3.6. Considering the phenological

linkage between the GV, NPV, and BS, we created a composite trend to combine the trend

of all three land cover components based on the sign of the average slope inside PAs, and

mapped by moisture conditions (Figure 3.7). Average slope of all the pixels inside each PA

is mapped as a quantitative illustration of the magnitude of the change (Figure 3.8).

From the above results, we observed an increase of NPV in most PAs of California from
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2000 to 2015, regardless of the increase or decrease in GV, which is the bank and source of

NPV. Among these PAs, we identified those with both GV and NPV increased as greening

PAs (pattern 6 and 7, colored green in Figure 3.7), and those with an expansion of NPV

and a decline in GV as browning ones (pattern 3 and 4, colored orange and yellow in Figure

3.7).

The greening PAs, where an increase of greenness occurred, spread along the Coast ranges

and Transverse ranges, at the foothill of Sierra Nevada, and in the Mojave Desert (Figure

3.8). Most of the near-coast PAs had a higher coverage of GV, such as Ventana (region B),

Marble Mountain, and Trinity Alps (region C). The parallel increase in GV and NPV may

not always be the evidence of a solid greening. As revealed in Figure 8 and 11, the expansion

of NPV was usually at the same or even a higher magnitude than GV in these PAs. This

reflected a browning trend in general rather than greening.

Compared with the greening ones, the browning PAs generally experienced trend reflects

an exacerbating browning process from 2000 to 2015, revealed by the decline of GV and

the rise of NPV. These PAs are mostly located in the inland desert areas and stretched

along the rain shadow side of North and South Coast ranges. An expansion in BS also

occurred, especially in the inland desert. If the decrease in GV persists, the increase in NPV

may not continue as a result of the loss of its source. Such decrease was worth of further

investigation, especially for PAs in the inland desert areas, since the loss of coverage from

the drought tolerant vegetation may lead to severe land degradation.

3.3.3 Temporal variability and spatial heterogeneity of PAs

Despite identifying the difference between the start and the end of the time series, we also

evaluated the sensitivity of change in both time and space with the standard deviation of

time series (Figure 3.9) and the average of standard deviation inside PAs

Temporarily speaking, the greener areas were more dynamic than browner ones. This can

be best reflected from the standard deviation of GV time series (Figure 3.9). The foothill of

33



Sierra Nevada is the boundary of two ecoregions and clearly differentiated the cismontane

and the transmontane areas. The standard deviation of GV time series for the generally

greener PAs (west of this border) was much higher. In addition, we observed consistency

in the magnitude of variability of GV, NPV and BS in the most dynamics PAs. In other

words, if a PA has a high temporal variability of GV, this PA was usually more dynamic in

NPV and BS as well. PAs along the North Coast Ranges (region C), the Transverse Ranges

(region A) and the mid elevation of Sierra Nevada Ranges (region D) were examples of this

pattern. In contrast, the inland desert areas (region D) had a much lower fluctuation in time

series.

The spatial heterogeneity of change was less correlated with the greenness. The five

hotspots of change mostly have a high standard deviation for slope values inside PAs (Figure

3.10). A higher spatial heterogeneity of the slope indicates a great diversity in the landscape

inside the same PA. Covered mostly by evergreen forest, Trinity Alps (region C) is the most

diverse PA in California, especially for NPV and BS. Such diversity can be attributed to

the great difference between east and west part of the PA (Figure 8). The west side has a

significant increase in both GV and NPV, while the east side features a less intense decline

in both. This can also be found in many PAs with an active change in GV. Drier PAs can

have a great spatial heterogeneity as well, such as the Death Valley National Park (region

D). Considering the change of NPV and BS, both positive and negative slope patches exist

in this region (Figure 3.6), which increases the complexity inside the boundary of PA.

3.4 Discussion

3.4.1 Disturbance from human activity detected from land cover classification

Most PAs in California are under restriction over human activities, such as construction,

farming, and logging. The major strategies imposed by management authorities are mostly

focused on enforcing the restriction in these areas, for example, removing the livestock to

prevent grazing (Channel Islands National Park) and restoring the wilderness by removing
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or relocating campgrounds and trails in Los Padres National Forest (USDA Forest Service

Pacific Southwest Region 2013). As a result, the number of PAs with the coverage of de-

veloped lands and cultivated crop lands is quite small. However, a continuous decrease in

the open-spaced developed lands and increase in the medium intensity developed lands oc-

curred from 2001 to 2006, according to NLCD. A clear expansion of the medium to high

impervious surface was also detected during this period from NLCD imperviousness map

[Fry et al., 2011, Wickham et al., 2013]. These areas stretched along the coastal line and off

the major hubs of urbanization, including southern California and the San Francisco Bay

area (Figure 3.11). A robust growth in economy made these areas magnets for immigration,

introducing more construction of homes and other infrastructure. Such expansion produced

increasing fragmentation of natural areas. A good example of this would be the Santa Mon-

ica Mountains National Recreation Area (SAMO) in southern California. Adjacent to Los

Angeles, there has been report about the significant increase of nightlights intensity in this

area, indicating a higher coverage of developed lands [Willis, 2015, Gillespie et al., 2016].

Although the urban sprawl may not directly penetrate into PAs, the direct and indirect

ecological influence from the sprawling developed areas cannot be neglected, such as pres-

sure from human activity, light pollution and increase of waste. According to Rundel and

Gustafson (2005), many small watersheds or habit islands have become separated from other

natural areas by surrounding developments. Although the fragmentation in many PAs of

California can be attributed to the increased dryness and the associated land degradation,

the managers of PAs adjacent to the rapidly urbanizing areas should pay special attention on

minimizing the unnecessary anthropogenic disturbance, especially from construction. Such

strategies can help to restore the wilderness in PAs and make the entire ecosystem less prone

to the degradation caused by the foreseeing drier climate regime.

3.4.2 Drying trend in PAs of California

The evidence of a drying trend in most of the PAs in California was significant. Both the

5-year interval NLCD products and the 16-day MODIS derived land cover fraction revealed
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the similar pattern, according to our inter-annual and inter-seasonal comparison, as well as

the calculation of trend for GV, NPV, and BS time series. Most of the browning processes

in our study area can be attributed to a drying climate regime and the increase of wild

fire occurrence [Carle, 2015a]. From 2000 to 2015, although most PAs have been under

management and very few experienced an alternation of the major land cover type, the

conversion to shrub/scrub and barren land from other wetter types cannot be ignored. The

significant conversion from open water to emergent wetland detected from NLCD products

was also another important evidence of drying. Many PAs with no alternation in the major

land cover type generally became less green, as seen from the snapshots of land covers in

2001 and 2015. The types with non-interrupted increase and decrease detected in 2001, 2006,

and 2011 also reflected the drying trend. Open water and evergreen forest both experienced

a consistent decrease from 2001 to 2006 and 2006 to 2011, while the much drier barren land

experienced an increase from 2001 to 2011 (Table 3.5). Although most of the PAs are located

in the drought tolerate Mediterranean or arid ecosystem, there is a need for policy makers

to address the foreseeable risks of land degradation because of the increase of brownness. As

the drying exacerbates with the incoming pressure of human activities, the ecosystem needs

a prolonged period to bounce back or even has a risk of irreversible degradation, especially

for deserts and other semi-arid ecosystems. Considering the vulnerability of these areas,

the management authorities of PAs should target on the most change-prone PAs and apply

appropriate management on conservation.

3.4.3 Addressing the most dynamic PAs in the strategies of management

The time series of GV/NPV/BS provided statistical measurements on temporal and spatial

dynamics, which can help the policy makers to filter the PAs need to be addressed more.

As revealed in the standard deviation of time series (Figure 3.9), wetter PAs, or PAs with

a higher coverage of GV were usually more dynamic from 2000 to 2015. Compared with

PAs with less greenness, the higher GV coverage introduces complexity in seasonality and

a higher chance of fluctuation as a response of disturbance. For semi-arid or arid PAs, the
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greenness in land cover is extremely valuable to preserve the local climate and keep the

PAs from degradation. Because of the ecological significance and the vulnerability of the

green part, these PAs should be on the priority list for protection. We provided a list of the

twenty most temporarily dynamic PAs, with the IUCN categorized status and management

authorities (Table 3.6). From the list we can see many of the most dynamic PAs are at level

V of IUCN management category, indicating less intensive restoration strategies have been

applied. The management authorities of these PAs should be aware of such fluctuation and

analyze the risk of future disturbance, and concentrate on the conservation of the greenness

in these PAs with appropriate management strategies.

PAs with a higher magnitude of temporal change usually had a greater spatial hetero-

geneity (Figure 3.6, Figure 3.7). It indicated that in many PAs with a higher rate of change,

the most dynamic part only consists a small proportion of the entire area. In other words,

the level and magnitude of change inside one PA can be highly diverse, which is reflected

by the high patchiness of PA. A possible scenario can be: several species changed greatly

during the time period of this study and such variation has not spread and covered the entire

PA, such as the heterogenic change of NPV and BS in Death Valley National Park (Figure

3.6). The change in climate, fire regime, pest invasion, and level of human activities may

favor or discriminate certain traits of species and increase the heterogeneity of change in

PAs. In addition, the spatial heterogeneity was calculated based on the boundaries of PA,

which may not always be consistent with the boundary of the same type of landscape. We

provide a list of PAs with the most diverse trend and magnitude of change in Table 3.7.

These PAs are worth for a more detailed investigation to distinguish between the different

landscapes inside PAs with a finer dataset of landscape units, such as Ecological Land Units

(ELUs) by USGS [Sayre et al., 2014], which is a very detailed and systematic division and

classification of the biosphere using ecological and physiographic land surface features. With

a better defined separation of landscape units, the policy makers can tailor their current

conservation strategies to focus on the homogeneous divisions of landscape.

In addition to address the heterogeneity inside PAs, it is also necessary to analyze the
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diverse patterns of change in land cover signatures associated with the great difference be-

tween landscape in PAs located inside different ecoregions of California, which leaves room

for future improvement. California spreads across about ten degrees of latitude. The great

variation of landscape because of temperature, moisture, and topographic barriers generated

great difference in land cover types and other ecological traits between PAs. Comparing

the difference between ecoregions in terms of the change in greenness, brownness, and bare

soil of PAs allows aggregation of PAs with similar physical environmental conditions and

differentiates the influence from climate conditions between ecoregions. It also makes the

results and findings more accessible to policy makers from agencies that are responsible to

address the locally specific challenge of ecology.

3.4.4 Understanding the dynamics with continuous land cover components

Considering the life cycle of plants, GV and NPV are indicators of growing season and the

non-growing season. These two major land cover components, together with BS, should

be combined and form composite measurements to help illustrating and understanding the

phenological cycle and the variability of PAs in California. By including NPV as a measure-

ment of the brownness of vegetation, we can interpret the land cover of California PAs with

enough address on the unique landscape characteristics of the semi-arid and arid ecosystem.

As an explicit description of surface coverage when the vegetation loses the ability of photo-

synthesis, NPV can provide a more comprehensive picture if combined with the fraction of

GV.

In additional to the direction and magnitude of slope of linear fit with time, the composite

trend of GV, NPV, and BS mapped provided a good example on utilizing the different land

cover components with composite measurements (Figure 3.7). We not only obtained a map

of changes in the greenness of PAs but also got the useful information to understand what

would be the possible factors to be attributed to. For example, after recognizing a decrease

in GV for the Death Valley National Reserve, we can easily find the increase in NPV and BS

are the direct explanation of this decrease from the composite trend. Further investigation
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can then focus on the analysis about the possible reason of the increase in NPV and BS, such

as the prolonged drought and deficit of moisture. With the composite trend of change, the

PAs can be mapped and classified by the moisture condition based on all three land cover

components.

However, we also found in PAs with a drier landscape, the spectural mixture analysis

we applied tended to overestimate either the NPV or the bare soil coverage, and sometimes

produced composite trend of GV, NPV, and BS that cannot be explained in terms of physical

environment and ecology of the Mediterranean ecosystem, such as areas with all three land

cover signatures increasing/decreasing at the same time (Figure3.7). The application of the

constaint that forced all land cover signatures added up to one (Equation 3.2) sometimes

led to negative fraction of land cover, which also needs improvement. Such discrepancy

can be attributed to the quality of endmembers included in the calculation. The large

number of soil spectra available from the JHU spectral library applied in our MESMA

model as endmembers of bare soils and the inadequate collection of GV and NPV may

influence the iteration for identifying the best combination of endmembers, which should be

improved for further application. In addition, extra measurements of NPV are necessary

to supplement the current limited collection of endmembers focusing on brownness of the

landscape. Possible solutions include collecting endmembers directly from the reflectance

images for a collection of endmembers that are most suitable for the images for analysis and

referring to the observation and knowledge on local ecology and environmental conditions.

Utilizing the well developed monitoring network of California PAs is crucial to collect first

hand information on the change in land cover, especially the brownness inside PAs. It is

also necessary to validate the land cover signatures derived from spectral mixture analysis

and evaluate the accuracy of endmembers applied in the analysis. Controlling the number of

endmembers for the same land cover component to match with the land cover composition

may also be helpful to improve the selection of the best endmember combination.

In addition, the calculation of linear trend and its derivatives in this study has a limitation

of not considering the occurrence of wild fire, a major reason of land cover change and even
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land cover type alternation. The Mediterranean ecosystem in California is prone to wild

fire, and PAs are usually where the influence of wild fires is at the maximum because of the

high density of fire fuels. A major fire can remove the aboveground biomass and greatly

change the fraction of GV, NPV, and BS, for example, fires occurred in region A (along the

Transverse Ranges) and region C (inside the Klamath Mountains). Although the increased

occurrence of wild fires in California is also an evidence of the drying climate, it is necessary

to exclude the intensively burned area from 2000 to 2015 to avoid the inclusion of abrupt

alternation of land cover.

3.5 Conclusion

With the latest published PA boundaries from WDPA by IUCN, we can map out the change

of land covers of these PAs and obtain a general picture on the temporal and spatial variabil-

ity using both categorized land cover types and quantitative land cover components. Going

beyond analysis based on several snapshots of land cover, utilizing the MODIS derived quan-

titative land cover components provided more accurate measurements on the trend of change

and the temporal fluctuation. To address the significance of the unique contribution from

non-photosynthetic part/phase of vegetation to the semi-arid and arid ecosystem, we derived

and focused on the three land cover components derived from MODIS reflection products

instead of directly using available vegetation indices. Both of the qualitative and quantita-

tive results are crucial to understand the dynamics of landscape in California PAs over the

past 16 years. In this study, we combined the qualitative and quantitative measurements of

land cover and obtained three major findings.

First, both the qualitative and quantitative measurements revealed a significant loss

of greenness in many PAs. The transition matrices of 2001-2006, 2006-2011, and 2001-

2011 recognized the shrub/scrub land as the most frequent change-to type, while the wetter

types continued to decrease between time slices. The wide spread expansion of brownness

demonstrated by a significant increase of NPV in most PAs was a signal of the exacerbating
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dryness during the past 16 years. Policy makers may take the drying trend into account in

the development of future management strategies.

Second, anthropogenic disturbance cannot be ignored in PAs, though the number of PAs

with medium or high level of human-influenced area is limited. The spread of developments

inside PAs along the Pacific coastal line and near the major metropolitans introduced great

fragmentation into the surrounding PAs, especially from 2001 to 2006. The increased patchi-

ness may deteriorate the degradation in some PAs with the change of climate and fire regime.

Future policies and enforcement should address on restricting human-influenced disturbance

in PAs and restoring wilderness in these areas.

Third, PAs with a higher coverage of greenness are more dynamic than drier ones, ac-

cording to the analysis based on MESMA calculations. Compared with the drier ones, the

greener PAs had more complex seasonality and a higher level of temporal fluctuation. It is

mostly because the green vegetation is more sensitive to the change in climate regime and

other disturbance and the brown vegetation (or NPV). If the management authorities aim

to minimize the fluctuation of greenness, these dynamic PAs should receive closer monitor-

ing to track the changes and make corresponding strategies to minimize the possible land

degradation.

Further improvement of this study can include addressing on the spatial heterogeneity

inside PAs in analysis, improvement on MESMA models, and application of other time series

analysis techniques. We also found the spatial heterogeneity inside PAs cannot be ignored

when designing the management stategies of PAs. In this study, we found that the spatial

heterogeneity exists in PAs and may have a great influence on the strategy of PA manage-

ment. Considering the complex mosaic of land cover types in many large PAs, an analysis at

a finer spatial scale or on splitting the PAs into different ecological units would be necessary

to address the internal heteogeneity of PAs. In addition, there is a need to aggregate the

results, especially the trend of change by ecoregions to accomondate the diversity between

different clusters of PAs. Improvements is also necessary to reduce the overestimation of

brownness and the coverage of bare soil in order to better track the dynamics of land cover
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signatures. Although the analysis based on GV/NPV/BS derived from MODIS reflectance

products recognized important temporal and spatial patterns of change in vegetation, the

application of this method requires more validation and comparison with some well recog-

nized vegetation indices such as NDVI. Possible solutions include deriving endmembers from

satellite images directly or collecting them from a wider range of locations in field. Taking

advantage of the accumulated knowledge from local monitoring system is also an option to

better validate the estimation of land cover signatures. The technique of time series analysis

applied in this study also needs improvement to obtain more solid seasonality and trend,

including decomposing the time series using autogressive model and trend significant tests

with the augmented Dicky-Fuller (ADF) statistic [Goetz et al., 2005]. Besides the above

validating and pre-processing steps, excluding the intensively burned area from 2000 to 2015

in California is also necessary to minimize the disturbance from abrupt alternation of surface

condition on the investigation of trend of dynamics.
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Figure 3.3: Compare the annual average of GV/NPV/BS composition for California between

2001 and 2015 (Figure 3.5. Fractions of land cover components are shaded using RGB band

combination (R: NPV, G: GV, B: BS). The lighter shaded background layer in each panel

is the annual average of 2001 and 2015, respectively. The brighter foreground layer is the

subset from the annual average using PA.
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Figure 3.4: Difference of fractions (% of area in one pixel) in annual average between 2015

and 2001. The differences in PAs only and entire California are colored using different color

schemes. Difference in California is also shaded with a light color tone as a background,

while the PAs are highlighted using a brighter color (magenta to light green).
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(a) 2001

(b) 2015

Figure 3.5: Difference of fractions (Compare the seasonal average of GV/NPV/BS compo-

sition for California between 2001 and 2015. Seasonal average was calculated based on the

selected DOY (winter: DJF, spring: MAM, summer: JJA, fall: SON). December data for

winter average calculation are from the previous year (e.g. in the calculation for winter

average 2001, MODIS NBAR products of December 2000 are also used).
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Figure 3.6: Difference of fractions (Significant linear fit for three MESMA time series from

2000 to 2015 (p < 0.0001). Cell size equals to 500 m and PAs with an area less than one

pixel are dropped out. Deeper blue (red) indicates greater magnitude of increase (decrease)

in the linear fit models.
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Figure 3.7: Difference of fractions (Composite trend of change for PAs. Positive and negative

signs indicate the sign of the average slope in PAs. Sign reads in the order of GV, NPV, and

BS. For example, “- + +” means decreased GV, increased NPV and BS. The histogram of

composite trend is also included. The shading of PAs indicates the moisture condition from

dry (red) to wet (green). Level III ecoregions are colored in grey scale as the background.
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Figure 3.8: Difference of fractions (Average of slope inside each PA. The slope is calculated

from the linear fit of MESMA time series at each pixel inside PA. The average is shaded

using a red to green color ramp, with red as the negative and green as the positive slope.
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Figure 3.9: Standard deviation of time series (2000 to 2015) at each pixel for GV, NPV, and

BS. Note that the three images are in different value ranges. The brigher layer is the subset

for PAs. In each PA, the average of standard deviation is mapped. the lighter layer in the

back is the standard deviation of the entire study area.
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Figure 3.10: Standard deviation (Stdev) of slope inside each PA. Note that the value ranges

of each class in the legend for three land cover components are slightly different.
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Figure 3.11: Proportion of impervious surface inside PAs of California from NLCD imper-

viousness map (2001, 2006, 2011). Pixels with imperviousness > 16% are highlighted in

red.
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Table 3.6: Top twenty PAs with largest standard deviation (stdev) in MESMA time series.

Bold and italic areas are above 20 km2
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Table 3.7: Top twenty PAs with the largest standard deviation (stdev) of slope inside the

boundary. This result indicates the spatial heteogeniety inside PAs. Bold and italic areas

are above 20km2
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CHAPTER 4

Change in Fire Regime and the Phenological Response

in Protected Areas of California

4.1 Introduction

Wildfire is an important ecological factor in Mediterranean ecosystem as it completely or

partly removes the aboveground biomass and influences the post-fire nutrient cycling and veg-

etation composition [Pausas, 2004, Kutiel and Inbar, 1993, Sugihara, 2006]. Previous stud-

ies have recognized the wildfire as both an important factor of increase degradation processes

and a stimulus of the new cycle of vegetation maturing and densifying [Fox et al., 2008,

Capitanio and Carcaillet, 2008]. Thus understanding the fire regime and assessing the post-

fire influence on local landscape and the ecosystem is of great significance to interpret how

wildfire shapes the Mediterranean landscape. As one of the five Mediterranean ecosystems

in the world, the wide spread of fire-prone evergreen forest and shrubland, especially the cha-

parral makes California an area under a high threat of fire, the large and high-intensity crown

fires in particular[Keeley et al., 2008, California Fire Resource Assessment Program, 2003].

Most of the fire-prone areas are inside the protected areas (PAs), where human activity is re-

stricted and the accumulation of fire fuel is generally high [IUCN and UNEP-WCMC, 2015].

In these areas for protecting and restoring natural wilderness, strict and effective fire sup-

pression practices have been applied over decades [Syphard et al., 2007], which has densified

the vegetation and increased the chance of getting ignited. Associated with a fire-favoring

climate regime, there is a need to investigate the recent change in fire regime and assessed

its possible influence on post-fire succession and recovery of the local landscape. PA man-
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agement authorities would find this information helpful for the development of future land

management strategies, especially on fire suppression and application of prescribed fires.

Furthermore, the adjacency from fire-prone areas to major metropolitans makes this kind of

study crucial for policy makers to assess the influence and the risk of wild fires.

Recent studies of fire, especially the post-fire response from vegetation usually involve re-

mote sensing techniques at different scales [Moritz et al., 2014, Henry et al., 2005, Hope et al., 2007].

Remote sensing products tailored to address the occurrence, perimeter, and intensity of fire

have become available at different spatial scales. The most widely used fire products from

remotely sensed imagery include MODIS active fire products (MOD/MCD/MYD14) at the

resolution of 250 m, 500 m or 1 km [Giglio, 2010] and the USGS Monitoring Trends in Burn

Severity (MTBS) collection for United States territory at the resolution of 30 m, derived

from Landsat TM and ETM+ [Eidenshink et al., 2007, Veraverbeke et al., 2011]. There are

multiple measurements of fire intensity based on remote sensing images, for example, radia-

tive energy and burn severity. Directly calculated the from infared and shortwave infared

reflectance, the normalized burn ratio (NBR) and the differenced NBR between the pre

and post-fire images has been widely applied to studies of fire burned in different land-

scapes, especially analysis focusing on selected major fires [Miller et al., 2009]. The above

fire-focused remote sensing data are usually combined with measurement of vegetation cov-

erage (e.g.NDVI) to assess the post-fire influence on landscape and ecosystem at different

scales [Harris et al., 2011]. In studies focused on extracting burned areas, the pre and post-

fire NDVI is also employed as a measurement for validation [Leon et al., 2012]. Although

NDVI is effective in recording the pre and post-fire difference of vegetation coverage as well

as the rate of recovery, it does not provide direct measurement on the response in terms

of phenology and vegetation composition. Investigating pheno-metrics can provide a more

comprehensive understanding of post-fire influence and the response of ecosystem, e.g. start

and peak of the growing season, minimum and peak of NDVI. In addition, it also helps to

evaluate the long-term influence of fires, especially on the phenological cycle.

Combining the historical record, field observation, and remote sensing techniques, there
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have been a number of studies focusing on explaining the post-fire behavior of vegetation from

different aspects in California, especially the shrubland. Seasonality, land cover type, and in-

tensity of fire are three basic physical factors that influence the extent of destroy on biomass,

the rate and the pattern of post-fire recovery[Keeley, 2002, Carle, 2015a]. A number of stud-

ies of several major fires burned in Californian chaparral revealed that the heavily burned

area of shrubland usually experiences a short-term increase of vegetation from the exotic

grass introduced to the non-vegetated burned area before the re-establishment and regrowth

of native shrubs, which usually happens after three to four years of fire[Keeley et al., 2008].

In contrast, the less heavily burned area may have the short-term peak of vegetation growth

missing, because of the less intensive removal of standing shrubs, which usually recover

within a shorter time period without creating room for invasion of exotic species. In ev-

ergreen forest community, the effective removal of leaves by crown fires reduces canopy

closure, creates un-vegetated gap, and fertilizes the growth of understory exotic species

through the returning of sequestrated nutrition [Stevens et al., 2015]. Other frequently in-

vestigated environmental factors include age of fuels and climate regime. Studies have shown

that in California shrublandin shrubland of California, the age dependency of fire is not

strong [Moritz et al., 2004, Moritz, 2003], while the forest community has an opposite pat-

tern [Odion et al., 2004]. For the climate regime, several recent long-term simulations of fire

occurrence in the western U.S. cooperating the climate modeling have found that the recent

drying trend in climate may not play an important role as expected (Baker 2015, Baker

2013, Parks et al. 2016), but this conclusion is highly dependent on location of study site

[Pausas and Fernandez-Munoz, 2012, Pausas and Keeley, 2014]. It is necessary to extend

the investigation of the basic environmental factors shaping the fire regime and the post-fire

influence to a broader spatial extent and on various land cover types to obtain a more solid

validation of available knowledge from fire ecology.

In this study, we utilized the remote sensing techniques to understand the recent change

in fire regime of California and interpret the post-fire vegetation response of fires burned at

different intensity, during different seasons, and on different land cover types in California
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PAs. There are three major objectives in this study. First, we identified the change in fire

regime from 2000 to 2013 in all California PAs and interpret the change based on the knowl-

edge of fire ecology and recent change in environmental factors. Second, we examined the

influence on local landscape and phenology of fire from two different aspects. We evaluated

the sensitivity of time for response for the biggest twenty-three fires occurred in California

from 2000 to 2013. We also quantified the correlation between the response of the post-fire

growing season on the basis of time and magnitude of vegetation growth, including the de-

laying/advancing of key time points of growing season, the length of growing season, and

the change of NDVI. Third, we investigated the supporting evidence from remote sensing

fire products to the hypothesis on the post-fire recovery pattern of shrubland in California

based on case study [Keeley et al., 2008].

4.2 Data and Methods

4.2.1 Fire occurrence and burn severity data

We used fire occurrence, perimeter, and burn severity data from the Monitoring Trends in

Burn Severity (MTBS) project (www.mtbs.gov) by USGS and USDA Forest Service. This

six-year project has mapped historical fire occurrence locations, perimeter of fire, and burn

severity based on differenced Normalized Burn Ration (dNBR) for the entire U.S. territory

from 1984 to 2014 (partly) at the 30-meter resolution [Eidenshink et al., 2007]. The Nor-

malized Burn Ratio (NBR) is calculated for each fire from Landsat TM or ETM+ bands 4

(near infared) and 7 (shortwave infared) to enhance the spectral response of fire-affected veg-

etation [Key and Benson, 1999, Lozano et al., 2007]. The differenced NBR images (dNBR,

post-fire NBR subtracted from pre-fire NBR) are referred to as dNBR images. These images

were classified and partitioned into six severity classes based on ecological severity thresh-

olding developed from the field validated Composite Burn Index (CBI): 1) Unburned to low

severity, 2) low severity, 3) moderate severity, 4) high severity, 5) increased greenness, 6)

non-mapping area including major water body and clouds [Eidenshink et al., 2007]. The
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increased greenness of the burn severity class means that newly grown vegetation is detected

from the post-fire Landsat imagery, usually a sign of immediate recovery for area with a

relatively high burn severity. The above thematic classes were included for each fire in the

dataset. We used the fire occurrence locations from 2000 to 2013 in California PAs and the

above thematic classes to develop a descriptive analysis of the fire regime.

In addition to the thematic classes, dNBR and its Relative version (RdNBR) of each fire

can provide quantitative analysis of the relationship between burn severity and the post-fire

response of local vegetation. However, a number of validating studies of dNBR and RdNBR

focusing on different ecosystems have demonstrated its uncertainty on measuring burn sever-

ity [Zhu et al., 2006, Lozano et al., 2007, Miller et al., 2009], which should be considered in

the application and the discussion of results.

4.2.2 Measurement of Phenology

We used NDVI and some of its mathematical derivatives to analyze the post-fire vegeta-

tion behaviors. NDVI is a standardized and well validated measurement of the vegetation

coverage because of its effectiveness in detecting the intensity of photosynthetic activity. It

has been widely used to calculate various pheno-metrics and perform time series analysis

to detect the trend and seasonality of vegetation. A key requirement of the above calcu-

lation is that the NDVI time series are gap-free and continuous. In this study, we used

the smoothed and gap-filled MODIS NDVI data produced from the MODIS Terra satellite

(MODIS MOD13Q1) and Aqua satellite (MODIS MYD13Q1) by the Oak Ridge National

Laboratory in our analysis on pre- and post-fire comparison and post-fire response detec-

tion, including identifying the major breakpoints of NDVI and the pre- and post-breakpoint

linear trend (Spruce, Gasser and Hargrove 2015). The dataset covers the time period from

2001-01-01 through 2013-12-31 at an 8-day interval, with a spatial resolution of 250 m.

In addition to NDVI, we also incorporated a series of pheno-metrics from the eMODIS

Remote Sensing Phenology data collection produced by USGS Earth Resources Obser-
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Table 4.1: Pheno-metrics from USGS eMODIS program and the phenological interpretation.

vation and Science (EROS) Center based on MODIS level-1B products on a yearly ba-

sis [Jenkerson et al., 2010]. The pheno-metrics in eMODIS collection were derived from

smoothed NDVI, using a curve derivative method, and were validated with the phenolog-

ical observations from National Phenology Network (NPN) [Meier and Brown, 2014]. Six

pheno-metrics, including Start if Season-Time (SOST), Start of Season-NDVI (SOSN), Time

of Maximum (MAXT), Maximum NDVI (MAXN), duration (DUR), and amplitude (AMP)

were utilized in this study as indicators of post-fire vegetation response (Table 4.1). The key

dates of each year (SOST and MAXT) are stored as day of year (DoY). If the key dates of

the current vegetation growing cycle occurred before the first day of the calendar year (i.e.in

a previous year), the difference between the first day of current calendar year and the actual

key dates of current growing cycle were stored with a negative sign, indicating the key dates

occurred how many days before the first day of year.

4.2.3 Detecting breakpoints with B-FAST model

As a major disturbance on the local landscape, wild fires usually remove most photosynthetic

active parts of vegetation and can be detected from a significant drop within the NDVI time

59



series. For most PAs in our study, fire is the greatest disturbance on landscape and is

expected to be recorded as the major breakpoint in the NDVI time series. Comparing the

time of major NDVI drop with the fire occurrence time is helpful to evaluate the sensitivity

of response in the local landscape after fire. It is also important to understand how fast

the ecosystem bounces back after fire by comparing the magnitude of trend before and after

this time point. The biggest challenge to fulfill the above purposes is to obtain the robust

major breakpoint for NDVI time series. A time series analysis method was proposed to

detect and characterize the breakpoints (Breaks For Additive Seasonal and trend, BFAST)

[Verbesselt et al., 2010a, Verbesselt et al., 2010b]. This model first decomposes the time

series into trend, seasonal, and remaining components, then iteratively estimates the time

and number of changes, finally characterizes change by its magnitude and direction. It can

provide designated number of breaks or only the greatest break of the given time series.

Without any pre-defined thresholds from a priori knowledge of the study area, the breaks

detected by BFAST purely depends on the nature of time series, including the trend and the

seasonality. This method has been applied to a number of studies focusing on NDVI time

series analysis at different spatial scales [Verbesselt et al., 2010b, Jong et al., 2012]

We applied the BFAST model on the gap-filled and continuous NDVI time series to obtain

the major break point, as well as the before and after slope of linear trend from 2000 to 2013.

All of them were calculated to measure the time sensitivity of post-fire response. Considering

the high computational cost of BFAST model because of the iteration in the algorithm, we

applied the method to the biggest twenty-three fires in California PAs from 2000 to 2013.

To evaluate the temporal gap between the drop recorded by NDVI and the fire occurrence,

we calculated the difference between the fire occurrence date and the major breakpoint date

detected by the BFAST model. Such difference was both mapped and plotted in histograms,

shaded by different determinants of fire ecology (land cover, year of fire occurrence, and burn

severity classes).
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4.2.4 Evaluating the Immediate Post-Fire Behaviors of Vegetation

We calculated the difference between the pheno-metrics listed in Table 1 of the following

year after fire and the median of the corresponding pheno-metrics from 2000 to 2013 to

quantify the post-fire departure from normal for the immediate post-fire growing season,

when the influence of fire is usually at its maximum. The departure results were mapped and

compared with burn severity to obtain a qualitative understanding of the post-fire vegetation

response from the phenological perspective, including the delay/advance of start (peak) of

season, the prolonged/shortened length growing season, and the higher/lower NDVI at the

start (peak) of season. These results can provide a basis of the following analysis on the

correlation between the quantitative measurement of burn severity (dNBR) and the shift of

key phenological time points or the change of NDVI. We later used a series of Generalized

Additive Models (GAMs) to fit the dNBR and the departure from median calculated above

for SOST, MAXT, SOSN, MAXN, DUR, and AMP. In this model, negative dNBR values,

which indicate the occurrence of post-fire increased greenness were excluded to keep the

surface condition of burned area consistent. The modeling is calculated separately by the

land cover type and season of fire occurrence to evaluate if the above two factors can explain

the post-fire behavior of vegetation, especially on how much of the anomality of phenology in

the immediate post-fire growing season can be explained by different aspects of fire. We also

discussed the modeling results, especially the change of model performance by the length of

period after fire to see if they provided evidence to support the pattern of post-fire response

in shrubland [Keeley et al., 2008].

4.3 Results

4.3.1 Change in Fire regime of California PAs from 2000 to 2013

Wild fires occurred in PAs consist about one fourth of all wild fires in California from 2000

to 2013 (Figure 4.1). The fluctuation of fire occurrence inside PAs was consistent with the
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entire California. Following a year with high fire occurrence (1999), fire counts inside PAs

started from a relatively low level from the beginning of the century and climbed to a peak

in 2006. The year 2007 was a key time point of the count of fire. There is a significantly high

number of fires occurred before and after, leaving this year as a valley of fire occurrence. This

year also divided the time series into two sections, a more evenly distributed and generally

higher fire occurrence pattern from 2000 to 2006, and a relatively more extreme distribution

since 2008. Fire occurrence almost peaked in 2008, followed by a great decrease starting from

2010. However, the pattern of fire perimeters was different. The year 2007 had the second

largest area burned since 2000, making itself one of the years with greatest fire perimeters

in California PAs (Figure 2). Although most years had a proportional total burned area to

their fire occurrences, the year 2004 and 2005 both had a disproportionally smaller burned

area with a relatively large fire occurrence. Combining both fire occurrence and perimeters,

we can find a four-year cycle in the fire regime of California PAs, especially for fires from

2000 to 2007: starting with few fires at the beginning, the occurrence and perimeters both

climbed to a peak after about four years from the previous peak, followed by a new cycle

with a small fire occurrence and perimeter again.

Although most fires burned during summer (JJA) and fall (SON) (Figure 4.1-4.2), the

spatial distribution of dominant burning season is different before and after 2007. More fires

occurred in southern California shrubland with a great burned area from 2000 to 2007 during

the fall season, while fires in evergreen forest were generally burned during the summer

(Figure 4.3-4.4). However, since 2008, fires burned during the fall in southern California

shrubland almost disappeared, with a significant drop in burned area as well. In contrast,

there was an increase of fire occurrence in spring (MAM) in northern California evergreen

forest (mostly during 2013). The same pattern since 2008 was also found in the perimeter

of fires.

The burn intensity of fires inside California PAs also differs by the time of fire occurrence

and land cover types. Among all five severity classes, unburned to low severity occupied

a much greater burned area in the early fire season from May to June (Figure 4.5). As
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the fire season continued, burned area at moderate and high severity grew and peaked in

August. Areas burned during the peak of fire season were also where most post-fire increased

greenness occurred. Comparing the two major land cover types in burned area, shrubland

had a much higher moderate severity of burn, while evergreen forest had greater area burned

at the high severity (Figure 4.6).

Figure 4.1: Frequency of fire occurrence in California and only PAs of California from 1999 to

2013. Note that the two plots have different value ranges. Bar of the year 2007 is highlighted

with green outline.
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Figure 4.2: Total area of fire in California PAs from 2000 to 2013, shaded by month of

occurrence. Months are grouped by season (winter, DJF; spring, MAM; summer, JJA; fall,

SON). Bar of the year 2007 is highlighted with green outline.

4.3.2 Post-fire Vegetation Response

4.3.2.1 Fire as the Major breakpoint in NDVI

The difference between fire occurrence and the major break detected by B-FAST on the

biggest twenty-three fires indicates that most fires were effectively recorded by NDVI time

series, with a discrepancy from the actual fire occurrence date between 0 and 60 days, i.e.

four NDVI data points (Figure 4.7a). And these areas consisted the majority of all areas

analyzed with B-FAST model (Figure 4.8). Such discrepancy ranged from 0 to 15 days in

most California shrubland, indicating almost no offset between the major breakpoint from

BFAST and the fire occurrence date. The offset in evergreen forest was slightly larger,

with more areas ranging between 15 and 30 days (Figure 4.7a and 4.8a). Almost all fires

burned in fall were marked as the major break in NDVI within 30 days after fire, while the

summer burned areas had a greater range in the discrepancy (Figure 4.8b). Areas with high

and moderate burn severity also had a relatively smaller offset between the major NDVI

breakpoint and the fire occurrence date (Figure 4.7c). However, two major outliers were

detected. The occurrence of Rush fire (2012 August) and Rim fire (2013 August) were not

detected as the major breakpoint in the NDVI time series from 2000 to 2013, with the major
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Figure 4.3: Fire occurrence in PAs of California from 2000 to 2013, shaded by month of

occurrence. Months are grouped by season (winter, DJF; spring, MAM; summer, JJA; fall,

SON). Fires before and after 2008 are mapped separately. NLCD forest canopy coverage

in percentage is added as the background (2001 forest canopy for Panel a and 2011 forest

canopy for Panel b).

breakpoint detected a long period before the fire occurrence date (Figure 4.7a).

4.3.2.2 Post-fire phenological influence

Comparing the slope of the linear fit between pre/post-fire NDVI sections detected by B-

FAST with time, we found that there was a downward trend in the pre-fire NDVI time series,

while the post-fire NDVI bounced back with an upward trend. Areas with both pre- and

post-fire NDVI increased were also detected (Figure 4.8b). For the post-fire NDVI, areas
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Figure 4.4: Perimeter of fire occurred in California PAs from 2000 to 2013, shaded by month

of occurrence. Months are grouped by season (winter, DJF; spring, MAM; summer, JJA;

fall, SON). Fires before and after 2008 are mapped separately. NLCD forest canopy coverage

in percentage is added as the background (2001 forest canopy for Panel a and 2011 forest

canopy for Panel b).

burned at a high severity all had an increasing trend, which set a basis of quantifying the

relationship between the burn severity and post-fire response.

Land cover type was a major factor that differentiated the start, peak, and length of

immediate post-fire growing season. More burned areas had a later than usual SOST re-

gardless of land cover type (Figure 4.9a and 4.10a). Shrubland and evergreen forest both

had majority of areas with positive difference from median during the fire prevailing period

of each (2000-2007: shrubland, 2008-2013, evergreen forest), indicating a delayed SOST. The
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Figure 4.5: Burn severity of fires inside California PAs from 2000 to 2013. Fire occurrence

are mapped by the size of area at each burn severity class, colored by the month of fire

occurrence.

southern California shrubland also had a more consistent pattern of delay (between 15 and

90 days) than evergreen forest, with most areas with a similar color in Figure 4.9a. However,

there was a peak of earlier than usual SOST in burned area of shrubland after 2008, which

reflects changes in post-fire behavior after 2008. The departure from usual in MAXT was

not as great as SOST, with a large proportion of burned area having a zero to fifteen-day

discrepancy compared with median (Figure 4.9b and 4.10b). For the difference between land

cover types, the shrubland had an earlier than usual MAXT than evergreen forest, mostly

because of the advanced peak of season in the perimeter of the Cedear Fire. Excluding these
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Figure 4.6: Burn severity of fires inside California PAs from 2000 to 2013. Fire occurrence

are mapped by the size of area at each burn severity class, colored by NLCD land cover

(2001) of the fire centroid.

areas, the peak time was generally delayed, especially for burned areas in evergreen forest

after 2008 (Figure 4.10b). The burned areas also had a much shorter duration of growing

season for both shrubland and evergreen forest (Figure 8c and 9c). Among all fires investi-

gated, the Rush fire burned in August, 2012 was an outlier in the prevailing delay of SOST

and shorten of DUR. Burned at a low severity, the area experienced a much earlier than

usual SOST and a longer than usual duration (DUR) of growing season (Figure 4.9).

The NDVI values at two key time points (SOSN, MAXN) had a more consistent pattern

than the time-based pheno-metrics. The growing season of burned area started and peaked
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at a lower than usual NDVI, while the peak had a greater decrease in NDVI than the start

(Figure 4.10a, 4.10b, 4.11a, 4.11b). Such decrease was more significant in evergreen forest

after 2008, where the peak of histogram was more negatively shewed than before (Figure

4.11b). As the difference between MAXN and SOSN, the change in AMP in most areas

was negatively skewed but at a small level because of the decrease in both items (Figure

4.10c and 4.11c). The Rush fire was also the major outlier. With a low burn severity, its

immediate post-fire SOSN was greater than usual (Figure 4.10).

4.3.2.3 Correlation between dNBR and Key Pheno-metrics

We found that the most burned area experienced a weakened immediate post-fire growing

season from the above analysis on the departure from usual. And such weakening was in-

vestigated with quantitative measurement of burn severity (dNBR) to evaluate the influence

of fire intensity on post-fire phenology. The generalized additive models between dNBR

and departure from normal for pheno-metrics revealed the similar weakening of the post-

fire growing season as observed in previous results. Though highly significant (p < 0.001),

the correlation coefficients of GAMs between dNBR and the departure from median for key

pheno-metrics were mostly low, even if the models were separately calulated by the fire

season, land cover types, and thematic classes of burn severity (Figure 4.12-4.14). Major

outliers can be clearly detected from the modeling results (e.g. Rush Fire, 2012 and Rim

Fire, 2013). The weakening of the immediate post-fire growing season was aggravated with

the increase of burn severity (Figure 12-14). SOST and MAXT both had a positive shewed

distribution and an increased trend with a higher dNBR for fire seasons (JJA and SON).

Compared with SOST and MAXT, the NDVI-based pheno-metrics (SOSN and MAXN)

had a better correlation with dNBR and a more consistent inter-season and spatial pattern.

Similar as SOST and MAXT, burned area in shrubland had a more significant correlation

between SOSN and dNBR than evergreen forest (Figure 4.13a). Such difference was less

observed between MAXN and dNBR (Figure 4.13c). It Is important to note that the Rim

Fire had a much lower than usual SOSN and MAXN, with a significant negative correlation
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with the increase of dNBR.

The change in the duration of growing season (DUR) was at a smaller magnitude com-

pared with SOST and MAXT. But it followed the similar inter-seasonal and spatial pattern:

the correlation between the departure from DUR median and dNBR was greater for shrub-

land, especially for area burned in fall (Figure 4.14a). Compared with SOSN and MAXN,

AMP had a very weak correlation with dNBR. As the difference between MAXN and SOSN,

with both items decreased, the change of AMP was expected to be small. However, a slightly

decreasing trend was still observed, especially for shrubland burned in fall as evidence of

weakened growing season, as shown in all of the pheno-metrics above.

Besides the immediate post-fire growing season, we also investigated the relationship

between pheno-metrics and dNBR up to 13 years after fire occurrence, depending on the

year of fire. The R2 and p value of Pearsons correlation indicated that the correlation

between burn severity and the measurements of phenology in burned area after fire became

weak during the first four to five years after fire, then remained stable at a low level (Figure

4.15). Although outliers can still be observed, such pattern was better reflected during the

prevailing fire season (summer and fall) and between the measurements based on NDVI

(SOSN, MAXN) and the dNBR. The correlation calculated for fires burned in winter and

spring was mostly insignificant or free of trend. Seasonal difference was also obvious for the

most significant correlation. The correlation between SOSN and dNBR in fall remained at a

relatively high level during the first four post-fire growing seasons for evergreen forest, and

even had a slight increase in the second post-fire growing season for shrubland. In contrast,

this early year plateau was missing in fires burned in summer. The R2 constantly decreased

from the first year to the fifth year after fire, then remained stable at a low level, regardless

of the land cover type of burned area.

We also observed difference between land cover types in the quantitative evaluation of

post-fire response for multiple years after fire. Considering the most significant correlation

(SOSN vs.dNBR) during the fire prevailing season, R2 of fires burned on shrubland was

generally higher, especially during the early years, then decreased at a higher magnitude
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during the first four or five years. The early year decrease of R2 for burned area in evergreen

forest was not as drastic and usually started at a lower level. A major outlier in the decreasing

momentum of influence from burn severity on post-fire phenological response was an increase

of post-fire SOSN from the immediate post-fire season to the second year after fire, for burned

area in shrubland. Considering the similar number of degree of freedom (df) in the calculation

and the significant p value, the higher R2 during the second year of fire provided evidence for

a recently recognized post-fire recovery pattern of California shrubland [Keeley et al., 2008].

4.4 Discussion

4.4.1 A Shifting Fire Regime

Although fluctuation exists, the fire occurrence and burned areas in our study area started

off at a low level because of the consumption of available fire fuels during the previous peak,

then climbed to the maximum in about 4 years. Although the climate conditions during the

recent few years were fire-favoring, there was not a significant upward trend in fire occurrence

and burned areas, which reflects many long-term simulations of wildfire for the western U.S.

[Baker, 2013, Baker, 2015]. The drying trend in climate may not necessarily lead to an

overall increase of fire, but it influenced the shift in fire-prone land cover type and season by

controlling the fuel availability and fuel moisture.

As reflected in the background map in Figure 4, the tree canopy percentage [Homer et al., 2015],

PAs in Klamath ecoregion had been accumulating fire fuels in recent years. Experiencing

an increased dryness, the densified canopies became more fire-prone, and finally led to an

increase of fires in this region, which had been confirmed by Parks et al. (2014) in their em-

pirical analysis of fire occurrence in the western U.S. Furthermore, the changing of climate

regime may increase the chance of lightning [Carle, 2015a], which was another major cause

of fire in mountainous evergreen forest.

The recent disappearance of fall fires in southern California shrubland can also be ex-
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plained by the recent increase of drought and the missing of a major Santa Ana event, which

is the key controlling factor to the fire size and intensity of fires in the fall season. Fire activ-

ity is highly influenced by fuel moisture, usually represented by water deficit (WD) or relative

humidity (RH). The prolonged drought increased the chance of ignition for plant communi-

ties with an enough amount of production by limiting the fuel moisture [Parks et al., 2014].

However, some shrubland in southern California may have reached the bottom line of fuel

loads enough for being ignited, because of the loss of aboveground photosynthetic active part

during the drought. The lack of biomass decreases the chance of fire or controls the extent of

burn. In this case, the shrubland will become less fire-prone [Krawchuk and Moritz, 2011].

The increased dryness also limits the availability of production and slows down the post-fire

recovery, which in turn reduces the chance of fire returning because of the shortage in fuel,

especially after several active years of fire occurrence. Besides physical factors, human in-

ducement such as fire suppression strategies applied in these areas also lead to removal or

thinning of fire fuels. The short distance from many fire-prone PAs to the major metropolitan

areas in southern California increases the necessity of fire suppression, including small-scale

prescribed fires and reduction of fuel density [Keeley, 2002]. The above factors interacted

with each other to limit the potential of fire burning and lead to the significant drop of fire

in southern California shrubland.

However, it is also important to note that our study of fire regime covered a relatively

short time period (2000–2013), during which the large scale and long term effect from the

climate factors may not become prominent. Recent studies focusing on the fires driven by

Santa Ana winds (SA fires) revealed that the number of SA winds increases during years

when relative humidity during Santa Ana events and fall precipitation were below average

[Jin et al., 2014, Liu and Wimberly, 2015]. The 2003 and 2007 Santa Ana firestorms are

considered as a hundred-year event. The significant drop of fires in the fall (mostly SA fires)

can also be related to the missing of an intensive Santa Ana event after a major breakout in

2007. Therefore, the shift we have observed since 2008 can possibly be a temporary decrease

due to the natural fluctuation of Santa Ana events. The SA fires can resume during a major
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Santa Ana event in the future.

4.4.2 Difference between Land Cover Types for a Weakened Immediate

Post-Fire Growing Season

Although most burned areas had an increase of NDVI as a bounce back from the fire in the

long-run, the immediate growing season after the fire was generally weaker than usual, as

revealed in the analysis comparing the post-fire year pheno-metrics with their medians from

2000 to 2013 (Figure 4.10-4.11). And such weakening was more prominent if the area was

at a higher burn severity. Because of the ecological difference as fuel of fire and the post-fire

phenological response, difference between shrubland and evergreen forest was significant.

The correlation between dNBR and pheno-metrics also not only confirmed the increase of

magnitude in the post-fire response of burned area with burn severity, but also revealed a

difference in the sensitivity of response between the time-based and NDVI-based phenological

measurements among different land cover types. The different fuel moisture and phenology

of these two types of landscape were the explanatory factors.

According to the fire ecology of California shrubland, the expansion of fire can be rapid

because of its relatively low level of fuel moisture, especially for fires driven by Santa Ana

events (SA fires), which include most of fires burned in the fall season. SA fires are strongly

affected by moisture conditions of fuel, as demonstrated in the well noted Santa Ana firestorm

in 2003 and 2007 [Jin et al., 2015, Jin et al., 2014]. The removal of surface senescence dur-

ing SA fires in shrubland is more intensive than non-SA fires, which are usually located

in evergreen forest, leaving very limited vegetation mass aboveground. The eradication of

aboveground biomass can create it easier to detect the immediate post-fire drop in NDVI,

which has been shown in Figure 6a and 7a. The difference in the intensity of the removal

of aboveground biomass made the weakening of the immediate post-fire season in shrub-

land greater than evergreen forest. Through the correlation with dNBR, we observed a

greater decay of major pheno-metrics in shrubland than evergreen forest (Figure 4.12-4.14).

Such decay was greater at the beginning of the growing season than the peak, which also
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demonstrated the great influence from the eradication of aboveground vegetation by fire.

Compared with shrubland, evergreen forest had a weakened immediate post-fire growing

season at a lower magnitude, because of the higher level of fuel moisture and a larger fuel

amount. The expansion of burned area in evergreen forest takes a longer time even during a

crown fire (Sugihara 2006). The longer gap between the detection of NDVI drop and the fire

occurrence date was partly due to the time necessary for wetter and denser standing senes-

cence to burn (Figure 4.7a). In other words, the immediate post-fire response of evergreen

forest was less time-sensitive than shrubland. The much smaller correlation in evergreen

forest between the departure of key time pheno-metrics (SOST, MAXT) and dNBR also

revealed the similar pattern (Figure 4.12,4.14). The delay of SOST and MAXT and the

shortening of DUR in evergreen forest existed but was less prominent than shrubland, indi-

cating the weakening of the immediate post-fire growing season is less intensive on a temporal

basis. For evergreen forest, such weakening is better presented in NDVI-based pheno-metrics

(SOSN, MAXN) as direct measurement of aboveground biomass. A great number of fires

occurred in evergreen forest were crown fires that expand rapidly by connecting the crowns

of trees. The burned areas usually lose a great part of canopy that is photosynthetically

active and eventually a significant drop in NDVI.

From the previous comparison, we can also observe a difference of sensitivity in the mea-

surement of post-fire vegetation behaviors between shrubland and evergreen forest. While

NDVI-based pheno-metrics are sensitive in depicting the weakened immediate post-fire grow-

ing season, the time-based ones had different behaviors in two land cover types. Compared

with evergreen forest, such weakening was effectively detected by SOST, MAXT, and DUR

in shrubland, indicating weakening of growing season in shrubland was often reflected in

terms of time. This high sensitivity in time for shrubland can be explained by the style

of aboveground mass removal by fires occurred in this type of land cover. A moderate to

high severity of fire in shrubland was likely to remove both the photosynthetic active parts

(leaves) and the supporting senescence, and easily created gaps between plants. Losing most

of its aboveground mass, it usually took a longer time to recover for shrubs, which eventu-
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ally resulted in a longer delayed SOST and MAXT. In contrast, the removal of aboveground

senescence (i.e. trunks) for evergreen forest is limited, although it sometimes caused the nu-

trient cycling become dysfunctional. Thus recovery growth can resume with a much smaller

gap than shrubs. However, the fundamental removal of photosynthetic part of trees usually

led to a sensitive response in NDVI, considering its higher start off level in canopy coverage.

The above difference in sensitivity and the explanation by the styles of senescence removal

was also reflected in the major outlier of each land cover type, the Rush Fire for shrubland and

the Rim Fire for evergreen forest. A proportion of the Rush Fire perimeter featured a much

earlier than usual SOST and MAXT (Figure 4.12, dark green shaded points). Considering its

relatively low burn severity and location (northwest of the Great Plain, adjacent to Nevada),

the growing cycle was not completely turned off by the fire, and the burning may facilitate

the rapid post-fire re-growth by thinning the canopy and removing the competitors. Burned

in a region with a long history of fire suppression, the Rim Fire distinguished itself with

a much lower than usual SOSN and MAXN (Figure 4.13, yellow shaded points). As fires

burned in area with a long history of fire absence, the Rush Fire and the Rim Fire differed

from each other on the basis of the best measurement as an outlier.

4.4.3 Determinants of the Post-Fire Vegetation Behaviors in California PAs

The three physical factors, land cover, seasonality, and burn severity interact with each

other to shape the fire regime, and eventually the post-fire vegetation behaviors of burned

areas in California, but in different manners. Land cover is the most frequently studied

determinants of fire regime and post-fire response from vegetation. Without any external

influence, it is also the most significant determinant of the spatial pattern of fire regime and

post-fire response from vegetation. However, the basic characteristics determined by land

cover can vary by the meteorological conditions of fire, which can partly be explained by the

seasonality and the pre-fire meteorological situation, e.g.a prolonged drought or abnormally

high air temperature.
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As discussed before, land cover and seasonality are often overlapped with each other.

The fire-prone season of a given land cover type is usually similar, which was confirmed in

the results of correlation between departure from median of pheno-metrics and dNBR. The

difference of model performance between evergreen forest and shrubland was prominent and

the inter-seasonal variation was small (Figure 4.12, 4.14. However, separating season and

land cover helps to distinguish the influence from major fires. Considering the limited number

of fires burned in each season on different land cover surface, the major fires can overshadow

the influence from other smaller fires and contribute greatly to post-fire vegetation response.

Unlike land cover and seasonality, the burn severity is a relative measurement and varies

between fires. The thresholds to determine the MTBS thematic burn severity classes vary by

fires, and each fire has its own low/moderate/high burned areas. We expected a greater de-

stroy on the local vegetation and a larger departure from usual if the burn severity increases

as a short-term influence on burned area. Such relationship was confirmed by the correlation

between the departure from median of key pheno-metrics and dNBR, which revealed a signif-

icant negative correlation between the phenological measurements of the immediate post-fire

growing season and burn severity (Figure 4.12, 4.14. And such influence was better reflected

in the change of NDVI than the change of time. However, there was a great variance in such

relationship, mostly because of the spatial heterogeneity between fires included in this study.

The outliers (Rush Fire and Rim Fire) were good examples of such variance by location, in-

dicating the influence of fire burn severity is highly fire-specific. The general measurements

of spatial heterogeneity, including land cover and seasonality are not effective enough to ex-

plain some local characteristics, such as fire history and land management, which have been

demonstrated to be other non-physical determinants of fire regime and post-fire response.

Considering the speed of turnover and recovery in our study area, the influence on phenol-

ogy from fires may not last long. According to Keeley et al. (2008), the solid re-establishment

of shrub in previously burned area usually takes about three to four years. Significant at

the beginning, the influence of fire decays over time, as we can find in an inter-annual com-

parison of model performance between multiple years after fire (Figure 4.15). Focusing on
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the major fire season (summer and fall), the correlation between burn severity and NDVI-

based pheno-metrics of post-fire growing seasons significantly dropped at the beginning, and

became insignificant four or five years after fire. However, the higher correlation between

burn severity and the start of season NDVI during the second year after fire occurrence

in shrubland may provide evidence to support the short-term increase of NDVI in heavily

burned shrubland from alien species of grass. The more intensive eradication of aboveground

biomass in shrubland leads to more space for the coverage from invasive alien species, which

usually establish within two years of fire. Since then, the surface condition becomes more

heterogeneous and can be less explained by the intensity of fire. The significant drop of R2

between SOSN and dNBR from two to three and four years after fire in shrubland indicated

the influence of the previous fire eventually decays.

4.4.4 Recommendations for Local Policy Makers to Address the Risk of Wild-

fires in PAs

The findings discussed above have conveyed important facts regarding to the risk of wildfires

in California PAs, especially under a changing fire regime because of the prolonged drought

and projected change in climate regime. Considering the difference in the fire regime between

the two major land cover types (shrub/scrub and evergreen forest), we provide the following

recommendations for local policy makers to accomondate the challenges on wildfires inside

PAs.

First, the prolonged drought on California shrubland, especially the southern California

chaparral community is two-fold. It can negatively influence the post-fire recovery of shrub

plants, thus delay the returning of fire to the same burned area because of the inavailability

of fuel source. On the other hand, for PAs dominated by alive shrub and scrub that are

experiencing a moisture deficit, the prolonged drought can cause withering or mortality of

alive plants, turning them into ignitable fuel source. According to our comparison on fire

occurrence and perimeters before and after 2008, the first possibility was observed more

frequently: there was a significant decrease in the fire of shrubland in southern California
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chaparral. However, given a longer time, the returning of fires in this region is highly

possible, because the influence from the moisture deficit of plants needs time to become

significant. Therefore, the local land managers should monitor the influence of drought at

a more intensive level to track the change of local plants. Necessary prescribed fires and

mechnical treatment of harzard fuels in these areas to reduce the thickness of fuel source

are also necessary to reduce the risk of major wildfires. For areas that have experienced

recent wildfires but struggled to recover because of drought, it is also important to monitor

the recovery and provide necessary assistance. For these burned areas, local land managers

should also pay special attention to the erosion and land degradation caused by the absence

of the aboveground biomass.

Second, the deficit of moisture in evergreen forest has increased the risk of wildfires in

these areas, especially considering the thickening of plants during the fire absence period.

The increase of fire risk can be boosted by the high mortality of trees because of drought,

sometimes associated with the outbreaks of bark beetles for the Sierra Nevada ecoregion

[USDA Office of Communications, 2016, Buis, 2016]. The above fact not only underscores

a budget fix on fire management, but also urges for efforts on protecting watersheds in

this region and restoring forest from drought and threat of bark beetles to make them

more resilient to fire in the future. In addition, a comparison between the forest canopy

of 2006 and 2011 from National Land Cover Database (NLCD) has revealed there was an

increase of forest canopy in the north of California from 2006 to 2011 [Coulston et al., 2013,

Jin et al., 2013]. An increase of fire occurrence was observed in this area (section 4.3.1),

which can be reasonably attributed to the decrease of fuel moisture on a densified forest

community during the previous period of fire absence. The focus of local land managers

in this region should be the land management strategies to reduce fuel thickness. At the

same time, tracking the change of fuel moisture is also an important element to protect the

evergreen forest in the north of California from more disastrous wildfires.
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4.5 Conclusion

Unlike most previous studies that are usually focused on selected fires at a finer spatial scale,

we provided a comprehensive analysis of the change in fire regime in all fires for California

PAs, as well as the post-fire vegetation response of all burned areas inside California PAs,

where almost one third of fires from 2000 to 2013 in California occurred. We analyzed the

three key factors shaping the fire regime and the post-fire vegetation behavior, including

seasonality, land cover, and burn severity. It provided a good test on existing fire ecology

knowledge, which were usually obtained by field observations and site-based. There were

three notable trend and patterns in the fire regime and the post-fire behaviors of vegetation

as revealed in the above analysis.

Although most fires followed the normal fluctuation cycle of four years and occurred

during the major fire season, there was a shift in fire regime before and after 2008 in California

PAs. A significant drop happened in fires burned in southern California shrubland during

fall season since 2008, while an increase of early fire season (late spring) burning occurred

in the northern California evergreen forest, mainly inside the Klamath Mountain ecoregion.

The former drop can be attributed to the shortage of fire fuels related to the prolonged

drought suppressing the production of surface biomass, as well as a natural absence of the

strong meteorological driver after an intensive fire burning period from 2005 to 2007 because

of the abnormally strong Santa Ana events, especially in the southern California shrubland.

The increase of fire occurrence in late spring was mainly due to the densified forest canopy

in the Klamath Mountain ecoregion since 2001, which has been demonstrated in the recent

two NLCD land cover imagery (2006 and 2011).

A weakened immediate growing season is usually expected after fire, which has also been

detected from our analysis on the spatial and temporal distribution of the post-fire vegetation

response. From the time and NDVI-based pheno-metrics of the immediate post-fire growing

season, we found that most fires experienced a delayed start and peak, a lower than usual

NDVI at the above two time points, and a shortened length. However, such weakening
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was at a higher magnitude in shrubland compared with evergreen forest. In shrubland, the

removal of aboveground senescence by fire is much more intensive than evergreen forest,

which usually leads to a more rapid drop of vegetation coverage on surface, as detected by

NDVI. In addition, it takes a longer time to burn out the wetter and denser evergreen forest

than the drier and sparser shrub. The above weakening in immediate post-fire growing

season was confirmed by the correlation between the key pheno-metrics and dNBR, with

some outliers in area with a long history of fire suppression and with fires burned at an

extraordinary extent and intensity.

Although the present study developed a comprehensive understanding of recent change

in fire regime of California and tested the recognized pattern of post-fire vegetation response

with key factors in fire ecology, several improvements can be made. The shift in the fire

regime noted in the study requires more investigation on a longer time series and should

involve climatic conditions explicitly, especially the major fire driven meteorological events

like Santa Ana winds. The high residual in the correlation between burn severity and post-

fire pheno-metrics, as well as the significant aggregation of observations of the same fire

indicates the existence of more determinants of post-fire response. In order to improve the

explanatory ability of the model, other environmental factors should also be involved, such as

post-fire climate conditions, concentration of nutrient in the soil, fire history of burned area

and fire returning interval. Furthermore, considering the uncertainty of dNBR in measuring

burn severity, applying other measurements of fire intensity is another way to improve the

current model.
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Figure 4.7: Frequency of difference in days between the major breakpoint and the fire occur-

rence date. Top three panels plot the difference between 0 and 90 days are shaded by land

cover (a), fire occurrence season (b), burn severity (c). Full results are plotted in (d).
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Figure 4.8: Compare major breakpoints of NDVI and the fire occurrence date for 23 major

fires in California PAs from 2000 to 2013. Description of each panel: a) illustrates the

difference between the major breakpoint detected and the fire occurrence, positive (negative)

difference means major breakpoint occurred later (earlier) than the fire; b) compares the sign

of linear trend between two segments divided by the major breakpoint for area with a positive

difference (Segment 1 and Segment 2, before and after); c) and d) map the value of linear

trend of Segment 1 and 2 respectively for area with a positive difference.
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Figure 4.9: Difference between the key time pheno-metrics (SOST, MAXT, DUR) of the

following year after fire occurrence and the medians from 2000 to 2014. A negative (yellow-

ish) day from median means the phenometrics of the following year after fire occurred earlier

(shorter for DUR) than usual. A positive (blue-ish) day from median means the phenometrics

of the following year after fire occurred later (longer for DUR) than usual. Burn severity

from MTBS data is mapped in d) as a reference of intensity of burning.
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Figure 4.10: Frequency of difference between key time pheno-metrics (SOST, MAXT, DUR)

and medians from 2000 to 2014. Fires before and after 2008 are plotted separately, shaded

by the major land cover type from NLCD.
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Figure 4.11: Frequency of difference between key time pheno-metrics (SOST, MAXT, DUR)

and medians from 2000 to 2014. Fires before and after 2008 are plotted separately, shaded

by the major land cover type from NLCD.
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Figure 4.12: Correlation between dNBR and the departure from median SOST (a) and

MAXT (b) for the year after fire. A positive departure means the SOST or MAXT of the

year after fire occurs later than usual, while the negative departure means the opposite.

The two major land cover types, evergreen forest and shrubland are mapped separately for

different fire occurrence season. Seven largest fires occurred in California PAs from 2000 to

2013 are colored as shown in the legend.
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Figure 4.13: Correlation between dNBR and the departure from median SOSN (a) and

MAXN (b) for the year after fire. A positive departure means the SOSN or MAXN of the

year after fire is lower than usual, while the negative departure means the opposite. The two

major land cover types, evergreen forest and shrubland are mapped separately for different

fire occurrence season. Seven largest fires occurred occurred in California PAs from 2000 to

2013 are colored as shown in the legend.
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Figure 4.14: Correlation between dNBR and the departure from median DUR (a) and AMP

(b) for the year after fire. The two major land cover types, evergreen forest and shrubland are

mapped separately for different fire occurrence season. Seven largest fires occurred occurred

in California PAs from 2000 to 2013 are colored as shown in the legend.
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Figure 4.15: Correlation between dNBR and the departure from median SOST (a) and

MAXT (b) for the year after fire. A positive departure means the SOST or MAXT of the

year after fire occurs later than usual, while the negative departure means the opposite.

The two major land cover types, evergreen forest and shrubland are mapped separately for

different fire occurrence season. Seven largest fires occurred in California PAs from 2000 to

2013 are colored as shown in the legend.
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CHAPTER 5

Detecting the Human Activity in Protected Areas of

California with

DMSP-OLS Nightlight Data

5.1 Introduction

The influence of human activities in the protected areas (PAs), especially on the biodiversity

and the conservation of wilderness of these areas has become a key research topic ever since

the awareness of the ecological importance of wilderness by international community and

the establishment of PAs globally. Controlling and managing the intensity and extent of

human activities inside PAs and the adjacent areas is a key factor to restore and protect

the wilderness of the earth. IUCN classified PAs into six different categories based on

the degree of protection and the level of human activity in or near PAs that can keep an

equilibrium between the wilderness and the anthropogenic disturbance (class I to VI, high

to low protection) [Chape et al., 2003]. For different classes of PAs, there is a different

acceptable level that the intensity of human activity can reach, which needs the evaluation

on the potential risks of the introduction and the spread of human activities in or near PAs

[Lovejoy, 2006, Chape et al., 2005, Geldmann et al., 2013], as well as a baseline study about

past and present levels of human activities in these areas.

A number of well documented socioeconomic variables have been employed as proxies of

human development and activities to answer the question that how, and by what extent the

human activities have shaped and influenced the PAs [Wilson et al., 2015a]. These variables
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include population [Sleeter and Gould, 2007, Sanderson et al., 2002, Wittemyer et al., 2008],

house density [Geldmann et al., 2014], road density [Sanderson et al., 2002], electricity pro-

duction and consumption [Hernandez et al., 2015, McDonald et al., 2009]. Most of the above

studies focused on comparing the socioeconomic variables with the degree of wilderness ad-

jacent to or inside PAs to evaluate the influence of current degree of human activities, or

analyze the possible outcomes under different scenarios of the extent and intensity of human

development [Wilson et al., 2012, Wilson et al., 2014, Sleeter et al., 2012]. However, stud-

ies adopting socioeconomic variables as the proxies of human activities and developments

have been mostly limited to the global level [Mcdonald et al., 2008, Mcdonald et al., 2009b,

Geldmann et al., 2014], in many cases because of the limited availability of socioeconomic

variables at an adequate scale to effectively track the human activities in or near PAs.

Although the coverage of imperviousness and other land cover change products can be con-

sidered as a direct measurement of human activity in or near PAs, most of these prod-

ucts are only available on a five or ten year basis [Fry et al., 2011, Homer et al., 2015,

Fry et al., 2011], which cannot effectively track the dynamics of the extent and intensity

of human activities. In the yearly available remote sensing products of land cover, such as

MODIS Land Cover product (MCD12Q1), the signal of human activities inside PAs was usu-

ally suppressed by the great wilderness thus mostly undetectable directly from the images.

Besides socioeconomic variables and land cover, stable nighttime light can be considered as

another effective measurement human activity and development, which is a proxy of elec-

tricity consumption[Mellander et al., 2015, Henderson et al., 2012, Henderson et al., 2012,

Liu et al., 2012, Rybnikova and Portnov, 2014, Ghosh et al., 2013]. The in situ measure-

ment of light glow in night sky is a good example, such as the Night Sky program of

National Park Service in the U.S. [Cinzano and Elvidge, 2003, Cinzano and Elvidge, 2004,

Duriscoe et al., 2007, Duriscoe, 2013]. The ground-based measurement of night sky provided

accurate observation of the influence from human activities on areas with high wilderness

such as national parks. However, with the short time span of the available observation, the

measurement was usually inconsistent and with very limited spatial coverage. On the other
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hand, the remotely sensed stable nighttime light product can provide temporal and spatial

continuous observation as a proxy of human activities and has large enough spatial coverage

to conduct the analysis at different scales, which was employed as the main data source for

analysis in this study.

The remotely sensed nighttime light products, especially the stable nightlight yearly

products from Defense Meteorological Satellite Programs Operational Line Scan system

(DMSP-OLS) from 1992 to 2013, as well as the latest nightlight focused remote sensing

product from VIIRS Suomi NPP [Miller et al., 2012, Elvidge et al., 2013] have been widely

applied to studies to investigate the temporal trend, spatial extent , and intensity of hu-

man activities [Mellander et al., 2015, Henderson et al., 2012]. Considering its global cov-

erage and spatial resolution at 1 km, this yearly available nighttime light product with

atmospheric correction can track the temporal dynamic and the change of spatial extent

of human activities more effectively and accurately than socioeconomic variables. After

it became available at a global extent, most studies employed the stable nighttime light

products by DMSP-OLS were focused on studying the process of urbanization and the eco-

nomic development of different countries/regions/cities [Seto et al., 2011], while its signifi-

cance on studies about biodiversity, conservation of wilderness and the effectiveness of PA

establishment was less recognized. Among the studies on biodiversity and conservation

of wilderness, many were focused on the influence of light pollution on threatened species

[Chepesiuk, 2009, Kachelriess et al., 2014, Gaston et al., 2012]. Most studies studying the

human pressure on ecosystem with stable nightlight data were concentrated on the out-

skirt of major metropolitan areas, specifically focusing on the ecological pressure of urban

sprawl [Bennie et al., 2014, Geldmann et al., 2014] rather than directly pointing at the PAs.

However, a global assessment of light pollution impact on PAs revealed that the direct and

indirect (as proxy pressure of human influence) lighting impact in PAs cannot be ignored,

especially in two biomes, temperate broadleaf and mixed forests as well as the Mediter-

ranean forests, woodlands, and scrub [Aubrecht et al., 2010]. Considering the high coverage

of Mediterranean biomes and the ecological pressure from population in California, there is
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a need to investigate the temporal change and spatial extent of stable nighttime light inside

California PAs.

By employing the continuous record of stable nighttime light products from DMSP-OLS,

we concentrated on four research questions in this study focusing on California PAs: 1) is

there a significant increase or decrease of stable nighttime light in California PAs since the

DMSP-OLS data became available in 1992, 2) how did the ecoregions inside California differ

from each other in terms of change in stable nighttime light, 3) how did the hotspot of stable

nighttime light inside PAs change in space since 1992, 4) how to explain the temporal and

spatial change of stable nighttime light by socioeconomic variables.

5.2 Data and Method

5.2.1 Data

In this study, we employed the cloud-free and ephemeral lights free nighttime lights time

series and the available global radiance calibrated products from the Defense Meteorologi-

cal Satellite Program Operational Line Scanner (DMSP-OLS) as the main data source for

analysis. One of the biggest challenges in exploiting DMSP-OLS nighttime lights for inter-

annual comparison and analysis was that the inter-satellite calibration was missing from the

original data products, leading to the discrepancy between images obtained from satellites

of DMSP-OLS launched in the last two decades [Elvidge et al., 1999, Elvidge et al., 2014,

Elvidge et al., 2013]. Saturation problem in developed areas is another issue of this prod-

uct. The limited dynamic range of DMSP-OLS sensors was not able to accommodate bright

source [Hsu et al., 2015]. Thus, the original nighttime light products do not carry the details

for bright areas, assigning them with the highest value of the dynamic range (DN = 63).

Researchers need to address the above two issues if an inter-comparison is necessary between

images obtained from different satellites or for study areas covering cities and other bright

sources.
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Several socioeconomic indicators, including human footprint index (HFI) and population

were also included in this study to provide a reference baseline of the level of human activities

in California PAs (Figure 5.1). It can also be used as a possible explanatory variable of the

detected temporal and spatial dynamics of human activities. The global HFI was developed

by Wildlife Conservation Society (WCS) and Center for International Earth Science Infor-

mation Network (CIESIN), Columbia University, and is available at the spatial resolution of

1 km. Generated based on population, traffic density, urban areas, and other indicators of

human development, HFI is a well-recognized and effective composite measurement of an-

thropogenic impact on the earth [Sanderson et al., 2002]. The population data used in this

study were obtained from two datasets of the U.S. Census, the census tract level population

of 2000 and 2010 census as well as the American Community Survey (ACS) of 2005, 2009,

2011 and 2012.

5.2.2 DMSP-OLS Nighttime Light Pre-processing

In order to eliminate the discrepancies between satellites for inter-annual comparison, we

calibrated the cloud-free yearly nighttime light images obtained from different satellites with

the polynomial regression model. The coefficients of the calibration model were calculated

based on a series of stable objectives on the surface, which has no or very limited change

in brightness through the past two decades (Elvidge et al. 2009, Elvidge et al. 2014). All

available image obtained from different years and satellites were calibrated to a selected

year. We compared the R2 of the calibrated images and the reference images between three

widely applied polynomial or linear regression models [Elvidge et al., 2014, Liu et al., 2012,

Wu et al., 2013, Elvidge et al., 2009]. The polynomial model mentioned in Elvidge et al.

[2014] yielded the best R2 and was selected as the calibration model for images from 1992 to

2012 (Figure 5.2). The year 2013 was not included in the following analysis since the stable

coefficients of the polynomial regression were not available. We also calculated and compared

the sum of light (SOL) and the average DN between the original and the calibrated nighttime

light images to evaluate the performance of inter-calibration model (Figure 5.3-5.4). The
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SOL is the sum of DN values above 6 of all available years for the same satellite (Elvidge

et al. 2014). The difference between SOL of the same year from different satellites after

a successful calibration is expected to be very small. And the transition between sections

of different satellites is expected to be negligible and smooth (Figure 5.3-5.4). Since there

was more than one image for the overlapped years between satellites, we compared the R2

between the multiple options for the same year and only employed the calibrated image with

the highest R2 in the following analysis (Table 5.1).

However, the calibration method cannot completely eliminate the discrepancies between

satellites. The inter-satellite offset still existed after calibration (Figure 5.3-5.4). And the

offset between satellites may vary by location, which makes a universal polynomial model

difficult to calibrate and address. Therefore, the analysis results based on the calibrated

nighttime images should be carefully evaluated and discussed. In order to address the satu-

ration issue in the bright source (e.g. cities), we also employed the global radiance calibrated

images for available years. The radiance calibrated product was provided for representative

years with other years blended together to increase the dynamic range to provide details of

the originally “saturated” bright areas from 1996 to 2010 [Hsu et al., 2015]. The inter-annual

calibration was also applied to eliminate the discrepancies for inter-annual comparison. Ra-

diance calibration data of the year 2005 was used as the reference image.

5.2.3 Statistical Analysis on Temporal Dynamics and Spatial Extent of Stable

Nightlight

In this study, we applied a series of descriptive statistical analysis and t-test over the inter-

calibrated nighttime light analysis for all PAs in California to investigate the temporal and

spatial change of low, medium and high lit areas in the PAs from different aspects. The

purposes of the above statistical analysis were listed in Table 5.2.

In additional to the descriptive statistics, we classified DN values into six

classes [Henderson et al., 2012], including non-lit (< 1), low (3–5), medium low (6–10),
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Table 5.1: Selection of calibrated DMSP-OLS data for analysis based on R2. Bold numbers

are R2 values of the selected data. The nighttime light of 1999 from satellite F12 is the

reference image for calibration, thus has the R2 value of 1.

Year F10 F12 F14 F15 F16 F18

1992 0.908

1993 0.936

1994 0.924 0.907

1995 0.918

1996 0.932

1997 0.925 0.910

1998 0.954 0.972

1999 1.000* 0.972

2000 0.928 0.932

2001 0.945 0.959

2002 0.920 0.966

2003 0.943 0.931

2004 0.948 0.904

2005 0.934 0.939

2006 0.939 0.920

2007 0.901 0.951

2008 0.945

2009 0.892

2010 0.846

2011 0.910

2012 0.939
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Table 5.2: Statistical calculation applied to track the temporal dynamics of stable nightlight.

Name Spatial extent Value restriction Purpose

Average All PAs in California DN > 0 Trend of change in DN

PAs in each ecoregion

Trend of change in DN for each ecoregion

Quantile All PAs in California DN > 0 Trend of change at different levels of DN

PAs in each ecoregion Trend of change at different levels of DN for each ecoregion

Histogram All PAs in California DN > 0 Frequency of distribution

0 < DN <3rd quantile Frequency of distribution for low DN

DN >3rd quantile Frequency of distribution for high DN

Histogram PAs in each ecoregion 0 < DN <3rd quantile Frequency of distribution for low DN in each ecoregion

DN >3rd quantile Frequency of distribution for high DN in each ecoregion

Skewness All PAs in California DN > 0 Asymmetry of distribution of DN

Kurtosis All PAs in California DN > 0 Tailedness (presence of outliers) of DN

t-test PAs in each ecoregion 1992 and every following year Evaluate the significance of change compared with 1992

Current year and the previous year Evaluate the degree of fluctuation

medium (11–20), high (21–62), and very high (> 62), then employed two types of anal-

ysis based on the classification to study how the nighttime light inside PAs moved along

the gradient of development from 1992 to 2012. The first was to detect the change of HFI

at different levels of DN from 1992 to 2012. This helped to translate the spatial change of

DN to a more meaningful indicator of human activity. For example, a decrease of average

HFI for a given class of DN from 1992 to 2012 indicates this class moves to a traditionally

(2004 level) less developed area. The second was to calculate the transition matrices of six

levels of DN values between three key timing points (1992, 2000, and 2012) to obtain the

from-to change between different levels of DN values. The trend detected by the inter-class

conversion reflected the spatial migration of hotspot of stable nighttime light.

We also mapped the spatial distribution of nighttime light in multiple years to provide

intuitive illustration of change in space. However, the small proportion of lit area (DN > 0)

in California PAs made it difficult to map and detect the hotspots of change in stable

nighttime light. We calculated the kernel density for several years of significance with the

search radius of kernel (bandwidth) determined by the standard distance [Mitchell, 2005].
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The kernel density maps not only smoothed the lit area to obtain a more intuitive mapping of

stable nighttime light, but also illustrated the concentration and compactness of lit clusters

(hotspots) in PAs. By mapping and comparing the kernel density of nightlight between

different years, we can track the migration of the hotspots of lit area.

5.2.4 Spatial Modeling between Socioeconomic Variables and Stable Nighttime

Light

We conducted geographic weight regression (GWR) models for years with census tract level

demographic data available to investigate the relationship between population and the stable

nighttime light inside PAs. We employed the GWR models to address the significant spatial

autocorrelation between the explanatory and dependent variables [Fotheringham et al., 2003,

Pez et al., 2011]. Only a subset of census tracts with the centroid located inside the PAs

were included in the modeling to minimize the uncertainty introduced by the boundary off-

set between census tracts and PAs. The geographic weight matrix was generated using the

Gaussian scheme [Fotheringham et al., 2003]. We reported the local R2 at each census tract,

the quasi-global R2 and the Akaike information criterion corrected for finite sample sizes

(AICc) as the measurements of model performance.

5.3 Results

5.3.1 Trend of Lit DN in California PAs (1992–2012)

The average, quantiles, pattern of frequency distribution, as well as the kurtosis and skew-

ness of non-zero DN (hereafter referred as lit DN) from 1992 to 2012 in California PAs

all demonstrated a decreasing trend, although fluctuation existed and trend was different

between radiation calibrated and non-radiation calibrated nighttime light products.

The average lit DN in California PAs had a decreasing trend in general starting from

1992 (Figure 5.4a). The average lit DN started off at a relatively high level, followed by a
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sharp decrease, then reached a stable level with a slight increase from 1994 to 1999 and a

decrease from 2000 to 2004, when the inter-calibrated nighttime DN reached the minimum

of the entire time series. After 2004, an increase occurred, but the time section from 2004 to

2012 was relatively stable. Although the discrepancies existed between satellites, the sharp

decrease from 1992 to 1994, the decrease from 2000 to 2004, and the increase from 2004 to

2009 can be identified from the nighttime images obtained by the same satellite in different

periods (Figure 5.4b). Combining both calibrated and not calibrated nighttime light images,

the trend of lit DN values in PAs started off at a relatively high level and decreased until

the early 2000s, followed by an increase at a low magnitude.

The limited years available for radiance calibrated products made it difficult to evaluate

the trend at the same length of time series as above. By comparing the radiance calibrated

products with the non-radiance calibrated equivalent, we found the decreasing linear trend

was consistent, except for the outlier in radiance calibrated data of 2004 (Figure 5.4a and

Figure 5.5). The above comparison on average lit DN values between three stable nighttime

light products (original, inter-calibrated, radiance calibrated) indicated that the average lit

DN inside PAs generally decreased from 1992 to 2012, despite some inter-annual fluctuation.

Change in quantiles reflected the dynamic of lit DN values at low, medium, and high

values. Despite the relatively stable time series of the minimum lit DN, the first, second, and

third quantile of inter-calibrated lit DN values inside California PAs decreased consistently

from 1992 to 2012, which was parallel to the trend detected in average lit DN. The magnitude

of decrease was greater in larger quantiles (Figure 5.6). The similar trend was also detectable

from lit DN without inter-calibration. The downward trend was consistent in different levels

of lit DN, while the higher DN values contributed greatly to define the overall trend in

average. Sometimes it even overrode the opposite trend of the lower values. The trend of lit

DN in radiation calibrated data was a good example. Although there was a slight increasing

trend in lower lit DN values, the decrease in the third quantile cancelled out the opposite

trend of the smaller DN values, which made the average lit DN values decrease from 1996 to

2010 (Figure 5.7). The great gap between the median and average of lit DN in PAs (29% to
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44% of average) should be addressed in the following analysis to understand the temporal

change of lit DN.

5.3.2 Change of DN Value at Different Levels

The inter-annual comparison between the shape of frequency distribution revealed the dif-

ferent roles of lower and higher lit DN values in defining the overall temporal trend of stable

nighttime light inside PAs. Both skewness and kurtosis indicated the distribution of lit DN

moved to lower DN values and the high to very high values became less available during the

past two decades (higher kurtosis). Despite some fluctuation (1996–1997, 2007–2009), both

the skewness and kurtosis increased significantly from 1992 to 2012 (Figure 5.8), so does the

radiance calibrated data (Figure 5.9). The increase of a positive skewness indicated the dis-

tribution of frequency becomes left-skewed, associated with a movement of peaks toward the

lower values. The increase of kurtosis indicated that the distribution of frequency contained

more outliers, which were mostly the high DN values. The presence of high value outliers

was associated with the increasingly left-skewed DN distribution.

A detailed comparison between peaks and tails from 1992 to 2012 confirmed the above

trend detected from skewness and kurtosis. Peaks of histogram were mostly located near the

minimum of lit DN (3–5), especially from 1992 to 2003. These peaks at lower values either

grew higher or moved leftward from 1992 to 2012 or during the years with lower DN average,

both indicating a downward change of lit DN (Figure 5.10-5.11). The histogram focusing on

DN values lower than the third quantile illustrated such pattern with more details (Figure

5.12). Although years with higher average DN had a longer tail in frequency distribution,

frequency of DN with high or very high value was not high enough to define the overall trend.

On the basis defined by the peaks at low DN, medium DN values (6-15) greatly contributed

to the overall trend through the relatively high frequency than higher DN and the greater

DN values. And this was the value range of most third quantiles from 1992 to 2012 (Figure

5.6). In this value range, years with higher average DN usually had a higher frequency (e.g.

2004 in Figure 5.12). From the above comparison, we found that the medium values greatly
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contributed to decreasing trend through the higher DN with enough frequency to become

significant, while the lower DN values played an important role in defining the trend of lit

DN values inside PAs because of the high frequency.

The comparison between different value ranges of DN provided a more detailed analysis

of the difference in contribution to shape the decreasing trend in lit DN. Consistent with the

average DN inside PAs, the areas with medium to high values (DN > 10) decreased from

1992 to 2010 (Figure 5.13), which supported the significant contribution to the downward

trend of the average from higher DN values. The low DN values (3–5) experienced an increase

from 1992 to 2004, which was consistent with the growth of low value peaks in the histogram

during this period. After 2004, there was a significant increase in medium low DN values,

reflecting the slight increase in the lit average.

The simultaneous increase/decrease between DN classes can be better understood by the

transition matrices between 1992, 2000, and 2012. From 1992 to 2000, the three lowest DN

value classes were the biggest change-to classes, while the greatest change-to percentage was

found in DN between 5 to 10. The medium and high value DN classes mostly converted

to the closest lower DN class (Table 5.3a). For example, the greatest percentage of change

occurred from DN between 10 and 20 to DN between 5 to 10 (77.83%). The same decreasing

trend continues from 2000 to 2012. The highest DN value class (DN = 6263) was completely

converted to a lower level (Table 5.3b). In summary, the conversion from 1992 to 2012 was

dominated by a conversion from higher DN to lower DN (Table 5.3c), which also confirmed

the decreasing trend detected by average, quantiles, and distribution of frequency.

5.3.3 Difference of Changes between EPA Level III Ecoregions

The trend in average and the quantiles of all ecoregions was mostly consistent with the

overall decreasing from all PAs, though spatial heterogeneity existed. All ecoregions had

a relatively sharp decrease from 1992 to 2000, then followed by a stable period or even an

increase in mid to late 2000s (e.g.Central Basin & Range, Northern Basin & Range), despite
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Table 5.3: Transition matrices between 1992, 2000, and 2012 in California PAs, using cali-

brated nighttime light series. Area above 20% were shaded in red.

the great difference in the average (Figure 5.14). Similar as found in all lit DN of PAs, the

change of quantiles was consistent with the average in all ecoregions. However, the higher

values (the third quantile and the maximum) played a more important role in defining the

shape of dynamic at the ecoregion level (Figure 5.15), especially for ecoregions with a lower

average lit DN (e.g. Cascades, Klamath Mountains) or containing a stable developed area

(e.g. Central California Foothills & Coastal Mountains, Central California Valley, Southern

California & Northern Baja Coast). The lit area with higher DN values was not evenly

distributed between ecoregion. Such difference resulted in the amplified contribution from

higher DN values to ecoregions with high wilderness.
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Despite the downward trend was detected from most ecoregions, we also evaluated the

significance of the change and the magnitude of fluctuation observed from the inter-annual

difference of DN values in PAs. Two groups of t-test results indicated that the significance

of downward trend and fluctuation differs by space (i.e. ecoregion in this study). In the

t− test between the year 1992 and all the following years, 7 out of 12 ecoregions had more

than 75%, if not all years after 1992 significantly different from their initial status, including

three ecoregions with all years significantly different from 1992 (p < 0.05) (Figure 5.16a).

The rest ecoregions with much less significant difference compared from 1992 indicated the

value difference detected in above results was not great enough to fundamentally change the

lit levels at night in these ecoregions. This study helps to identify the ecoregions worth for

the following analysis of change. On the other hand, the t-test between the current and the

previous year of all years after 1992 helped to identify the key period of great fluctuation. The

most frequently found period with significant fluctuation compared with the previous year

was around 2000 (Figure 5.16b), which indicated the following analysis should also include

2000 as a key transition year to understand the temporal trend of lit DN in California PAs.

Similar as for all lit areas in California PAs, we also compared the change of lit areas

at different DN value ranges to understand the contribution from different DN levels to the

overall trend of lit DN between ecoregions. Despite the offset between area percentage of each

class, all ecoregions in our study followed the same pattern and had the same turning point

at 2004, though spatial heterogeneity existed (Figure 5.17). Because of the high proportion

in lit area of PAs, DN from 3 to 5 and 6 to 10 were the most distinguishable classes in most

ecoregions, except for Southern California & Northern Baja Coast. The latter had a much

higher percentage of relatively high DN values than rest of ecoregions.

5.3.4 Migration of Hotspot of Lit DN along the Gradient of Human Develop-

ment

The conversion from high to low DN values since 1992 reflected a shrinkage of medium

to high DN pixels in PAs, but cannot answer the question that which direction along the
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gradient of human development level these areas migrated to. There is a need to interpret

such change and conversion with a baseline of human development level (e.g. HFI). Despite

the relative stable max DN above 62, the average HFI inside medium to high DN values

(DN > 10). In contrast, the average HFI of lower DN values decreased after 2004, when

the conversion from higher to lower DN classes accelerated (Figure 5.18). Combining both

results, we found that areas with higher DN did not just shrink, but shrank to the area

closer to the core development regions, while the areas with lower DN expanded apart from

the more developed regions.

The above changes detected by comparing average HFI inter-annually were also found in

the maps of kernel density for lit nightlight area. Taking the region with the largest lit area

(southern California) as an example, the core area of high nightlight DN values (yellow part,

kernel density between 0.92 and 5.4 in Figure 5.19) continued to grow smaller in 1992, 2000,

and 2012. And these areas moved toward the more developed major metropolitan areas

such as Los Angeles and San Diego. In contrast, areas with a lower DN value expanded from

more rural area toward the metropolitan regions (green part, kernel density between 0.045

and 0.17). The only exception in southern California was the corridor along highway I-15

(penetrating into Mojave Desert). The lit area along this corridor became more connected

from 1992 to 2012. The similar shrinkage of high DN areas and the expansion of low DN

areas was also detected in all PAs inside California in our analysis (Figure 5.20a-c), both the

Bay Area and Southern California PAs experienced the same trend. However, the radiance

calibrated results were different, mostly because of extraordinary high average lit DN in 2004.

Comparing the earliest (Figure 5.20d) and the latest radiance calibrated results (Figure 20f),

the area with the highest kernel density was smaller, yet the medium DN value areas had a

higher coverage. Generally speaking, the magnitude of decrease detected from the radiance

calibrated was smaller than the non-radiance calibrated products.
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5.3.5 Understand the Change of Lit Area in PAs with Population

Considering the availability of socioeconomic variables and the rural location of most PAs, we

employed the census tract level population density as the explanatory variable to understand

the distribution of lit area inside California PAs. Since there was not enough census tract

level data for the period of study, we focused on investigating the spatial distribution of

relationship between nighttime light and the population density in multiple years (2000, 2009-

2012) by geographic weight regression (GWR) models for all census tracts inside California

PAs. The quasi-global R2 of GWR models indicated the correlation between population

density and nighttime light was high, especially in census tracts of southern California, inner

land desert, and foothills of Sierra Nevada (Figure 21). Such correlation in census tracts

in the Bay Area, however, was not as high as other ecoregions. In terms of inter-annual

comparison, the GWR model of 2000 worked the best among the five models (R2 = 0.722)

because of the high correlation in census tracts along Sierra Nevada foothills. Because of

the limited years applied in GWR modeling, we did not report the temporal trend of change

in model performance. However, we were able to find during the years when census tract

level GWR modeling were applied, only a few census tracts had a significant change in the

correlation between nighttime light DN values and population density. They were located

along the Sierra Nevada Mountains and the inner land of Mojave Desert, as well as along

the Coastal Ranges (Figure 5.21). In summary, the correlation between non-zero nightlight

DN and population density was significant and relative stable, but varied across different

ecoregions in California.

5.4 Discussion

5.4.1 Change of Lit Area in Time and Space

The rapid population growth and urban sprawl in California during the past two decades and

the increasing of awareness in wilderness conservation were both driving forces of change in
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stable nighttime light change in California PAs and can lead to opposite trend of change. As-

sessment focusing on adjacent area, especially the metropolitan areas close to California PAs

revealed the increasingly severe ecological pressure brought by the boom of population and

spread of urbanized areas [Aubrecht et al., 2010, Wilson et al., 2015a, Wilson et al., 2015b].

However, the benefits from the establishment of PA networks in California cannot be ignored.

With 148 designated wilderness areas and highest number of national parks, California is

the an intensively monitored region for conservation. The continued work on constraining

human activities and development inside PAs has removed a number of human settlement,

mining infrastructure, and animals that used to be a threaten of wilderness. The decreas-

ing trend reflected in previous results through the change of average, quantiles, histograms,

skewness/kurtosis, and transition matrices between key timing points demonstrated the ef-

fectiveness of PA management and conservation inside the boundaries of PAs.

The large areas covered by low DN values inside PAs made the areas with higher DN an

important factor to determine the direction of change, especially if PAs are located close to a

major metropolitan area. Evaluating the direction of movement for DN hotspots, toward the

core area of development (e.g.metropolitan area) or wilderness, reflected the effective removal

of area with high DN. Although some of the low value DN converted back to the medium

low class after 2004 and finally caused a slight increase during this period, the elimination

of area with high DN was consistent, which contributed greatly in the general decrease of

lit area inside PAs. Considering the large radius of influence from the artificial skyglow,

limiting the area covered by high DN values, especially the human settlements should be of

the great priority to reduce the negative influence to wilderness inside PAs.

However, the decrease of lit area inside California PAs needs more careful scrunity, since

the inter-calibration model may introduce uncertainty to the data for analysis. In order to

make full use of the available DMSP-OLS stable nighttime light data series, we applied the

inter-calibration method designed to cover the longest available time series of nightlight (1992

to 2012). It is also necessary to compare the results yielded from different inter-calibration

methods to reduce the uncertainty from data manipulation, which can possibly generate
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misleading results regarding to the trend of change [Liu et al., 2012, Wu et al., 2013].

5.4.2 Spatial Heterogeneity in the Correlation between Lit Area in PAs and

Population Density

From the analysis above, we can confirm that the lit areas at night in California PAs decreased

from 1992 to 2012 in general, though spatial heterogeneity existed in terms of the degree of

change. In addition, the lit areas also shrank toward the better developed area and retreated

from the core part of PAs. Because of nighttime light is highly correlated with population

and other economic variables as indicators of development, we anticipated a higher average

nightlight in highly populated census tracts intersecting with PAs. However, the GWR

model results for selected years revealed the existence of a great spatial heterogeneity in

the correlation between population density and average nightlight. The contrast between

southern California and the Bay Area in the correlation is a good example of such difference.

We will explain the difference in the performance of GWR in different locations by the spatial

characteristics of census tracts and the data manipulation involved in demographic data.

The size of census tracts played an important role in the model performance since it

defined how much proportion of PAs was involved in modeling. Regardless of the size and

extent of census tract, the demographic data use one population count value (or population

density) as the representation of population inside the entire spatial extent defined by the

boundary of census tract. In more populated regions, the size of census tract is much smaller

than rural area (e.g. the comparison between Bay Area census tracts and Mojave Desert

census tracts). In rural area, since a large proportion of PAs fell into the boundary of census

tracts (Figure 5.1), the population of these census tracts is a good representation of the stable

settlement inside PAs. This explained the relatively higher correlation between population

density and the average nightlight in relative larger census tracts of inner land desert and

a part of Southern California (Figure 5.19). For smaller census tracts, if the boundaries

are highly overlapped with the extent of PAs, the correlation can still be high, such as the

relatively high correlation in smaller census tracts near southern California metropolis area.
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In contrast, the spatial extent of census tracts in the Bay Area was less overlapped with the

boundaries of PAs, which made the GWR modeling results less significant compared with

other regions. The biased population measurement used to represent the human settlement

inside PAs is the major factor of relatively low local R2 in the Bay Area.

5.4.3 Evaluating the Explanatory Capability of Population for Lit Area at Night

in PAs

Because of the lack of a good continuous demographic time series at or below census tract

level from 1992 to 2012, we cannot provide a full picture of the correlation between the lit

area at night and population of this period to comprehensively evaluate the effectiveness of

explanatory capability of population, the only socioeconomic explanatory variable we used

in this study. However, the comparison between multi-year GWR models revealed that such

effectiveness was not always high. We can explain the difference in model performance by

the uncertainties introduced by both population and nighttime light data.

By comparing the R2 and AICc of five GWR models, we found although most regions

had a stable model performance among the five years, there was a decrease in the general

performance of model (Figure 5.21). The year 2012 had the lowest local R2 in Sierra Nevada,

where the most significant difference between GWR models occurred (Figure 5.22). In the

year 2012, the population density of Sierra Nevada ecoregion (blue dots in Figure 5.23) were

more closely concentrated near zero than the other four years. According to the average of

lit DN (Figure 5.14) and t-test results (Figure 5.16), there was not a significant decrease

in average nighttime light during this period of study inside this ecoregion, indicating such

decrease was not great enough to drive any significant trend in nighttime light, though the

maximum DN in this area decreased significantly (Figure 5.15). The explanatory capability

of the human settlement on the coverage of lit area at night may have reached its limit because

of the high wilderness in the Sierra Nevada ecoregion and the well maintained monitoring

network of PAs, indicating no more significant correlation can be detected if the human

settlement continued to be removed from this area.
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Some limits in the stable nightlight light data we employed in this study also influenced

our analysis in the explanatory effectiveness of population. Similar as the lower limit set

by the small human settlement in the predictive capability of population to the nightlight,

the upper limit of the population-nightlight correlation in this study was generated by the

saturation issue of the DMSP-OLS stable nightlight data. Because of the saturation, the cor-

relation between average DN and population density in areas where average DN was greater

than 60 was generally poor (Figure 5.23). Since the nighttime DN reached its maximum of

dynamic range at 63, there was not a valid nighttime DN to reflect the greater population of

these areas. If this section can be excluded, the linear relationship between average DN and

population density should be more obvious, indicating an improvement in the effectiveness

for population to explain the spatial coverage and temporal dynamics of nighttime light. In

summary, although the GWR models indicated the correlation between population density

and nighttime light was significant and reliable, there is a need to conduct such evaluation

with a better time series data for PAs for both the explanatory variable and the nighttime

light itself.

Even if we obtained a solid relationship in space between population density and stable

nighttime light, the temporal change of population and the nighttime light as we detected

seemed to be contradictory: how to explain the decrease of nighttime light inside California

PAs at the same time of a significant increase of population in California? The possible

reason can be the effective establishment of PA network and execution of wilderness restoring

strategies. Although the population in California increased during our period of study, the

establishment of PAs also increased, and the land management strategies inside PAs have

been focused on human settlement removal and re-planning during the past two decades.

This helped to remove or decrease the residential population inside PAs. By comparing the

population density between 2000 and 2012, the population of many inland census tracts

remained relatively stable. The increase of population density mostly occurred in southern

California (San Diego) and some near the Bay Area. Several census tracts covering PAs even

had a loss of population during the study period (Figure 5.24). It challenged the assumption
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of a confirmative increase of population in our study area. Considering the spatial migration

pattern of different level of nightlight, there was an increase at the low level (DN = 3–10),

which can be considered as an evidence of such removal and limitation of high density human

settlement. Even if the population of the census tracts intersecting PAs had an increase,

such increase was usually restricted outside the boundaries of PAs. Therefore, the population

collected at census tract level and by traditional census survey may not always be the most

accurate indicator of human activity inside PAs. A more precise measurement of population,

or human activity is necessary to improve the quantitative modeling.

5.4.4 Interpreting the Decreasing Lit Area inside California PAs from the View

of Policy Makers

The overall decrease of lit area inside California PAs needs locally specific discussion, espe-

cially for PAs located close to the major metropolitan regions, such as southern California

and the Bay area. Although the comparison between ecoregions have indicated the decreas-

ing trend in lit area was consistent across ecoregions, PAs adjacent to the highly developed

areas are still under the influential radius of sky glow from cities, thus need special investiga-

tion. For example, the Santa Monica Mountain National Recreation Area (SAMO), located

in the neigborhood of the city of Los Angeles, still maintains a number of settlements and

receives sky glow from the city of Los Angeles as well as several major interstate or state

level highways. Although we can observe a shrinkage of area with high DN value in the

ecoregion of southern California mountain (Figure 5.19), PAs like SAMO may not always

follow the same trend of the entire ecoregion. For local land managers, it is necessary to

focus on the local specific conditions and address the most pressing needs by PAs.

If there was a confirmed decrease in stable nighttime light inside the PA, the local land

manager should focus more on evaluating the existing sources of stable nighttime light to find

out if it is necessary to eliminate them or reduce the intensity. At the same time, tracking

the change of stable nighttime light or human activities at a different format is always a key

task of land managers, especially for natural reserves, national parks, national monuments,
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and national recreational areas [Gillespie et al., 2016]. If the local change of stable nighttime

light or other format of human activity was opposite than what was detected for the entire

ecoregion, the local land manager may concentrate on analyzing the recent change of stable

nighttime light and find possible restoring strategies to eliminate or reduce the intensity of

human activity, especially if it has become a threat toward the protection of wilderness.

5.5 Conclusion

In this study, we investigated the temporal dynamics and the change in spatial extent of

stable nighttime light inside California PAs from 1992 to 2012 with a series of descriptive

statistics. The comparison between multiple years for all EPA level III ecoregions in Cali-

fornia indicated that there was a significant decrease in stable nighttime light of California

PAs from 1992 to 2012. Such decrease mostly occurred in areas with relatively high night-

light, while area with relatively low nightlight experienced a slight increase, mostly converted

from areas at a higher level of nightlight previously. Spatially speaking, the extent of higher

lit area shrank toward the core area of development, while the relatively lower lit area ex-

panded a little, claiming the area covered by higher nightlight before. Temporally speaking,

the dynamic of nighttime light had some fluctuation. The turning point of change occurred

between 2000 to 2004, when the relatively sharp decrease started from 1992 became more

gradual. An increase at a low magnitude even occurred from 2006 to 2009. The GWR

modeling between population density at census tract level and nighttime light indicated the

population was a good explanatory variable of nighttime light coverage inside PAs in space.

However, considering the uncertainties brought by both the spatial extent of census tract

and the nighttime light data, this relationship requires further investigation. The significant

decrease of lit area at night can be considered as a success of implementation of wilderness

restoration and the establishment of PA network. And such success needs to be preserved by

strict execution of natural conserve strategies. Conducted at a regional level, this analysis

can also help the PA managers to evaluate the effectiveness of current strategy.
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Based on the limits observed from the above result reporting and analysis, a series of im-

provement can be considered for further analysis. First, there is a need to separately consider

the different levels of protection in evaluating the effectiveness of socioeconomic variables.

This can help to reduce the uncertainty in GWR modeling. Second, the future studies should

explore the possibility on exploiting the radiance calibrated data. In this study, because of

the lack in demographic data during the years when radiance calibrated data were available,

the regression modeling analysis was conducted on the non-radiance calibrated nighttime

light, which may also be a possible source of uncertainty in the modeling. Third, combining

nighttime light data from various resources, especially the in situ observation data can also

help to address the uncertainty introduced from remote sensing data. For example, the sky

quality index (SQI) from CCD camera obtained in a series of sites by NPS can be considered

as validation data for calibration of DMSP-OLS stable nighttime light data (Figure 5.25).

Last but not the least, the latest development of geotagging in social media can be the next

step in collecting human activity information inside PAs, especially for national parks. This

technology directly addresses the individual activity of human and provides precise record

on the time and space of the activity [Levin et al., 2015]. Given enough consideration on

data collection quality and self-trending issue from the access of internet and social media

platform, this should be a new direction of studying anthropogenic influence in wilderness.
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Figure 5.1: IUCN protected areas in California, with the background shaded by Human

Footprint Index (HFI). Boundaries of EPA Level III ecoregions and census tracts intersecting

PAs are also mapped for reference.
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Figure 5.2: Compare three inter-satellite calibration methods. Elvidge 2014 and Liu 2012

used DMSP-OLS data of 1999 and 2007 as reference image, which led to an R2 value of 1.

Labels of x-axis indicate the start year of operation for different sensors.

Figure 5.3: Compare Sum of Light (SOL) between non-calibrated and calibrated DMSP-OLS

nighttime series. SOL values are shaded by satellilte, including a linear fit for the time series

of each satellite.
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Figure 5.4: Mean of the non-zero nightlight DN in California PAs (1992 – 2013). Selected

calibrated data were colored by sensors. Linear fit was added for average of non-calibrated

DN values.

Figure 5.5: Mean of non-zero radiation calibrated nighttime light images in California PAs

(1996–2010). Different sizes of points indicate the number of non-zero pixels in the nighttime

light images.
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Figure 5.6: Quantiles of Non-Zero nightlight DN in California PAs (1992–2013). Selected

calibrated data were colored by sensors. Blue curves in panel a) are loess smoothed fit curves;

grey shades are 95% confidence region of curve fitting. Linear fit was added for average of

non-calibrated DN values.
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Figure 5.7: Quantiles non-zero radiation calibrated nighttime light images in California PAs

(1996–2010). Different sizes of points indicate the number of non-zero pixels in the nighttime

light images.
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Figure 5.8: Skewness and kurtosis for nightlight above 0 for California PAs. Blue curves are

loess smoothed fit curves; grey shades are 95% confidence region of curve fitting. Note that

the skewness and kurtosis has different value ranges.

Figure 5.9: Skewness and kurtosis of radiation calibrated nighttime light images (DN = 0

63) in California PAs (1996–2010). Blue curves are linear fit lines.
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Figure 5.10: Histogram of nightlight above 0 in California PAs. Binsize of bars equals to

one. Red dash lines are guidelines at frequency = 1000. DN values are broken into five

sections to reflect the very low, low, medium, medium high, and high levels. Red dash line

illustrates the different classes of DN values.
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Figure 5.11: Histogram of non-zero radiation calibrated nighttime light images in California

PAs (1996–2010). Binsize of bars equals to one. Red dash lines are guidelines at frequency =

1000. DN values are broken into five sections to reflect the very low, low, medium, medium

high, and high levels.
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Figure 5.12: Skewness and kurtosis of radiation calibrated nighttime light images (DN =

0–63) in California PAs (1996–2010). Blue curves are linear fit lines.
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Figure 5.13: Change of area in each non-zero DN value range for Calfornia PAs. DN values

are extracted from inter-satellite calibrated nightlight images. Blue curves are loess fitting

curves for data of each value range.
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Figure 5.14: Average nightlight of California PAs inside EPA level III ecoregions. Only

pixels with nightlight above 1 are included. Blue curves are loess smoothed fit curves; grey

shades are 95% confidence region of curve fitting.
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Figure 5.15: Quantiles of nightlight of California PAs inside EPA level III ecoregions. . Only

pixels with nightlight above 1 are included. Solid curves are loess smoothed fit curves; grey

shades are 95% confidence region of curve fitting.
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Figure 5.16: t-test for inter-annual comparison of nightlight. Panel a includes t-test p values

between the baseline (1992) and all following years; panel b includes t-test p values between

current year and the following year. All test results are plotted by EPA level III ecoregions.
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Figure 5.17: Change of area percentage in each value range for different ecoregions. Value

ranges with very small area are omitted. Different value ranges are colored in terms of the

DN value.
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Figure 5.18: Change of mean and mode HFI in non-zero nightlight areas inside California

PAs (1992–2012). Some value ranges do not exist in all years. Note that the value range of

HFI at each DN class is different.
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Figure 5.19: Kernel density in non-zero nightlight area of southern California PAs

(1992,2000,2012).
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Figure 5.20: Kernel density in non-zero nightlight area of California PAs. Panel a-c map

with the kernel density based on inter-satellite calibrated DMSP-OLS nighttime series in

1992, 2000, and 2012. Panel d-f map with the kernel density based on radiation calibrated

DMSP–OLS nighttime series in 1996–1997, 2004, and 2010. Note the difference in value

ranges between a–c and d–e.
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Figure 5.21: Geographic weight regression model adjusted R2 between average DN and

population density of census tracts inside California PAs. Quasi-global R2 and AICc of each

GWR model is included in each panel. Only years with population at census tract level

available are modeled. The boundaries of census tracts with center inside PAs are colored

with blue. The boundaries of EPA level III ecoregions are colored with grey.
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Figure 5.22: Difference of GWR R2 at the first and last year with population data avail-

able. Positive and negative difference is colored as orange and green.The boundaries of

census tracts with center inside PAs are colored with blue. The boundaries of EPA level III

ecoregions are colored with grey.
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Figure 5.23: Scatterplot of population density vesus average lit nighttime light DN. Points

are colored by ecoregions and separated by years.
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Figure 5.24: Difference of population density for census tracts intersecting California PAs

between 2000 and 2012. Gain and loss is colored differently using a divergent color scheme.
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Figure 5.25: Sky quality index (SQI) from CCD camera by NPS night sky program. Average

SQI is shaded from low (dark blue) to high (bright yellow). The higher SQI means a greater

sky glow.
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CHAPTER 6

Conclusion

The dissertation was set out to explore the past and present situation of three major ecologi-

cal challenges during the recent two decades in protected areas of California, which supports

a high species richness and biodiversity and maintains many reserves for wilderness. Besides

the scientific significance of the topic, this dissertation was also motivated by the demand

of a cost-effective and practical paradigm of preliminary and supportive research for policy-

making at a regional level, which is crucial for maintenance and future development of the

protected area monitoring system.

With the assistance of satellite remote sensing technologies and geospatial analysis, this

dissertation answered the following questions regarding to three major ecological challenges:

• Is there a browning trend in California protected areas as a response of recent increase of

drought?

• Has the fire regime changed during the recent years inside California protected areas? If

so, what are the consequences of such change, especially in terms of post-fire regrowth

of vegetation?

• How did the extent and intensity of human activity inside protected areas changed un-

der the push of an increased population size and the pull of wilderness protecting

regulations and executions?

The major findings to answer the above questions were drawn by utilizing various the-

matic remotely sensed biogeographic and abiotic measurements in a continuous time series.

A browning trend was detected in a large number of protected areas of California from 2000

135



to 2015. Some protected areas were more temporally dynamic then others. A significant

shift of fire regime occurred in 2008 in a study period from 2000 to 2013, featuring a great

drop of fires in southern California chaparral and shrub/scrub area. The post-fire growing

season was weakened more significantly in shrubland than the more humid evergreen forest.

The historical record of stable nighttime light, a proxy of human activity and development

revealed a decreasing in the intensity as well as a shrinkage in the extent of human activ-

ity from 1992 to 2012, though outlier existed. These findings provided a comprehensive

understanding of the past and present of the ecological challenges to California protected

areas.

Limitation of the above studies is mainly focused on the following three aspects. First,

some analysis failed to consider the heterogeneity of protected areas in terms of the protec-

tive. The difference between levels of protection may introduce uncertainty to modeling and

statistical analysis. Second, lack of understanding on some ecological processes and mecha-

nisms influenced the development of explanatory variables to yield better predictive results

when investigating the causal relationship between two or more biogeographic indicators.

Third, most analysis excluded the adjacent area to protected areas, which is an important

input of disturbance and an ecological corridor to mass and energy exchange between nearby

protected areas. Studying the protected areas as isolated islands may harm the interpreta-

tion of analysis results, especially considering the geographic scope and the spatial scale of

most studies conducted in this dissertation. Last, the diversity between different ecoregions

was not sufficiently addressed in analysis. There is a need to group the protected areas based

on ecoregions and interpret the analytical results under this framework, which will make the

conclusions more accessible to local land managers and policy makers.

Future improvement should address the above limitations and shortcomings, including

separating the protected areas by the IUCN protecting categories in both qualitative and

quantitative analysis, investigating the ecological processes and modeling to explore the pos-

sibility of bridging the gap between remote sensing observations and biogeographic measure-

ments necessary for model implementation, and incorporate the adjacent region of protected
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areas for study to utilize theory and knowledge from landscape ecology for a better interpre-

tation of findings. In addition, adopting the latest geospatial computation development also

helps to expand the studies of protected areas through remote sensing technologies, such

as implementing computation on cloud based computation infrastructure and platform like

Google Earth Engine, and exploring the possibility of voluntarily collected geospatial data

from social media as a sensor of human activity.

To sum up, the studies of three major ecological challenges on protected areas in Califor-

nia provided a cost-effective and practical paradigm for park managers and policy makers to

review, evaluate, and develop a more adaptive land management strategies and policies for

environmental conservation. With the increasing awareness of the significance of protected

areas and the help of technological development, the network of protected area is under the

way of expanding and improving globally. Despite the progress from technology and re-

search, the goal of a sustainable future of the protected area on the Earth cannot be reached

without the international corporation and education on sustainability.
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