
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Privacy in Emerging Technologies

Permalink
https://escholarship.org/uc/item/84r0j1cw

Author
Ozturk, Ercan

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/84r0j1cw
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Privacy in Emerging Technologies

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Ercan Ozturk

Dissertation Committee:
Professor Gene Tsudik, Chair

Professor Qi Alfred Chen
Dr. Andrew Paverd

2021

Portion of Chapter 2 © 2019 Association for Computing Machinery
Portion of Chapter 3 © 2021 The USENIX Association

Portion of Chapter 5 © 2019 Association for Computing Machinery
All other materials © 2021 Ercan Ozturk

DEDICATION

To my grandparents, Arife and Bekir, and to my dad, Hayretdin Ozturk...

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vii

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

VITA xii

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1
1.0.1 Contributions . 2

2 Thermal Residue-Based Post Factum Attacks on Keyboard Data Entry 4
2.1 Introduction . 4
2.2 Motivation & Contributions . 6
2.3 Adversarial Model & Attacks . 7

2.3.1 Physical Premise . 9
2.3.2 Thermanator . 9

2.4 Background . 10
2.4.1 Basic Thermal Terminology . 10
2.4.2 Heating via Thermal Conduction . 11
2.4.3 Cooling via Thermal Convection . 13
2.4.4 Modern Keyboards . 14
2.4.5 Thermal Cameras . 14

2.5 Methodology . 16
2.5.1 Apparatus . 17
2.5.2 Procedures . 18
2.5.3 Subject Recruitment Procedure . 21

2.6 Results . 22
2.6.1 Hunt-and-Peck Typists . 24
2.6.2 Touch Typists . 26
2.6.3 Outlier: Acrylic Nails . 28

iii

2.7 Discussion . 29
2.7.1 Results with Common Passwords . 30
2.7.2 Results with Random Passwords . 30
2.7.3 Results with Hunt-and-Peck Typists 31
2.7.4 Results with Touch Typists . 32
2.7.5 Ordering of Key-Presses . 33
2.7.6 Mitigation Strategies . 34

2.8 Comparison with Similar Attacks . 35
2.8.1 Lunch-Time . 36
2.8.2 Shoulder-Surfing . 37
2.8.3 Acoustic Emanations . 37
2.8.4 Keyboard Vibrations . 38
2.8.5 Thermanator . 38

2.9 Related Work . 39
2.10 Conclusion . 39

3 Captcha Avoidance via Client-side TEE Integration 41
3.1 Introduction . 41
3.2 Motivation & Contributions . 42
3.3 Background . 46

3.3.1 Trusted Execution Environments . 46
3.3.2 Group Signatures . 49

3.4 System & Threat Models . 50
3.5 CACTI Design & Challenges . 51

3.5.1 Conceptual Design . 52
3.5.2 Design Challenges . 55
3.5.3 Realizing CACTI Design . 56

3.6 Implementation . 62
3.6.1 Browser Extension . 63
3.6.2 Host Application . 64
3.6.3 SGX Enclave . 65
3.6.4 Website Integration . 66

3.7 Evaluation . 67
3.7.1 Security Evaluation . 67
3.7.2 Latency Evaluation . 70
3.7.3 Bandwidth Evaluation . 74
3.7.4 Server Load Evaluation . 75
3.7.5 Deployability Analysis . 76

3.8 Discussion . 77
3.8.1 PA Considerations . 77
3.8.2 EPID . 77
3.8.3 Optimizations . 78
3.8.4 Deploying CACTI . 79

3.9 Related Work . 81
3.10 Conclusion . 83

iv

4 GDPR-/CCPA-compliant Verifiable Accountless Consumer Requests 87
4.1 Introduction . 87
4.2 Motivation & Contributions . 88
4.3 GDPR/CCPA Background . 92

4.3.1 Personally Identifiable Information (PII) 92
4.3.2 Rights of Access and Erasure . 93
4.3.3 Verifiable Consumer Requests (VCRs) 94

4.4 Threat Model and Requirements . 95
4.5 VICEROY Design & Challenges . 96

4.5.1 Design Motivation . 96
4.5.2 Conceptual Design . 97
4.5.3 Design Challenges . 99
4.5.4 Realizing VICEROY Design . 100

4.6 Implementation . 105
4.6.1 Server . 105
4.6.2 Browser Extension . 106
4.6.3 Native Messaging Application . 110

4.7 Evaluation . 111
4.7.1 Security Analysis . 111
4.7.2 Latency Analysis . 115
4.7.3 Bandwidth Analysis . 117
4.7.4 Storage Analysis . 118
4.7.5 Deployability Analysis . 119

4.8 Discussion . 120
4.8.1 Multi-Device Support . 120
4.8.2 Multi-VCR Support . 121
4.8.3 Multi-Communication Protocol Support 122
4.8.4 Shared Devices, aka The Roommate Problem 122
4.8.5 3rd Party Storage . 123
4.8.6 Broad Identifier Support . 123
4.8.7 Third-party Cookie Support . 124
4.8.8 Further Privacy Considerations . 124
4.8.9 Further Applications . 126

4.9 Related Work . 126
4.10 Conclusion . 129

5 Balancing Security and Privacy in Genomic Range Queries 130
5.1 Introduction . 130
5.2 Motivation & Contributions . 131
5.3 Background . 133

5.3.1 Genomics . 133
5.3.2 Commitments . 134
5.3.3 Range Proofs . 135

5.4 System & Security Models . 136
5.4.1 System Model . 136

v

5.4.2 Security Model . 137
5.5 Range Query Formulation . 138
5.6 Proposed Construction . 138

5.6.1 Security & Privacy . 141
5.6.2 Instantiation of Proposed Construction 143

5.7 Efficiency Considerations . 143
5.7.1 Commitments and Salt Generation 144
5.7.2 Signatures . 144

5.8 Evaluation . 145
5.9 General Setting . 146

5.9.1 Secure & Private Range Queries over Sparse Integers 147
5.9.2 Construction . 148
5.9.3 Security & Privacy: Proof Sketch . 150

5.10 Related Work . 151
5.11 Conclusion . 153

6 Conclusion & Future Work 154

Bibliography 157

vi

LIST OF FIGURES

Page

2.1 An Example Thermanator Attack . 8
2.3 FLIR Devices / Thermal Imagers: FLIR ONE(top left), SC620 (top right), A6700sc

(bottom left) and X8500sc (bottom right). 15
2.4 Keyboards . 18
2.6 Experiment Stage One: Flowchart . 20
2.7 Thermal image of “passw0rd” 20 seconds after entry. 21
2.8 Stage 2 Subject Performance: Alphabetical “Insecure” Passwords, all Typists . . . 23
2.9 Stage 2 Subject Performance: Alphanumeric “Insecure” Passwords, all Typists . . 24
2.10 Stage 2 Subject Performance: “Secure” Passwords, all Typists 25
2.11 Stage 2 Subject Performance: Alphabetical “Insecure” Passwords, Hunt-and-Peck

Typists . 26
2.12 Stage 2 Subject Performance: Alphanumerical “Insecure” Passwords, Hunt-and-

Peck Typists . 27
2.13 Stage 2 Subject Performance: “Secure” Passwords, Hunt-and-Peck Typists 28
2.14 Stage 2 Subject Performance: Alphabetical “Insecure” Passwords, Touch Typists . 29
2.15 Stage 2 Subject Performance: Alphanumeric “Insecure” Passwords, Touch Typists 30
2.16 Stage 2 Subject Performance: “Secure” Passwords, Touch Typists 31
2.17 Password “iloveyou” entered by a Hunt-and-Peck typist. 31
2.18 Password “iloveyou” Entered by a Touch Typist. 32
2.19 Password “passw0rd” thermal residue after 0(top left), 15 (top right), 30 (bottom

left), and 45 (bottom right) seconds after entry 33
2.20 Acoustic Emanations of Password “jordan23” 33

3.1 Examples of CAPTCHAs . 46
3.2 CACTI provisioning protocol. The interaction between the Provisioning Au-

thority (PA) and the client’s TEE takes place over a secure connection, using
the client to pass the encrypted messages. After verifying the attestation re-
port (and any other required information), the PA provisions the TEE with
a group private key (skTEE). 56

vii

3.3 CACTI CAPTCHA-avoidance protocol. The client (C) requests a resource
from the web server (S). In response, the server provides a timestamp for the
current event (t), a threshold consisting of a starting time (ts) and a count
(k), and the name of the list. Optionally, the server also provides a signature
(sig) over the request and the public key (pks) with which the signature can
be verified. The client passes this information to its TEE in order to produce
a rate-proof, signed by a group private key (skTEE), which can be verified by
the server. 58

3.4 Hash chain of timestamps tij for list i. H() is a cryptographic hash function. 60
3.5 Merkle Hash Tree over lists a...d. Each leaf is a hash of the list information Li

(list name and public key) and the most recent hash of the list’s hash chain
H i
n+1. H() is a cryptographic hash function, R is the root of the MHT, and

the nodes in blue illustrate the inclusion proof path for list b. 60
3.6 Overview of CACTI client-side components. 63
3.7 Latency of initializing the enclave and creating a rate-proof for different num-

bers of timestamps in the query (excluding signature operations). 84
3.8 Latency of creating the first rate-proof in a new list for different numbers of

existing lists (excluding enclave initialization and signature operations). . . 84
3.9 Latency of initializing the enclave and updating an existing list for different

numbers of existing lists (excluding signature operations). 85
3.10 Microbenchmarks of signature operations. ECDSA signatures were created

and verified using the mbed TLS library [37] and EPID signatures with the
Intel EPID SDK [18]. 85

3.11 CAPTCHAs generated using open-source libraries. 86

4.1 VICEROY Device Setup. m is the master private key, i is a device ID number.
m/i represents the key derivation path. 103

4.2 VICEROY Key Generation and VCR Issuance Flows. j is a session counter
per-device. 104

4.3 VICEROY browser extension pop-up displaying multiple sessions with localhost
(127.0.0.1). The SID is first few bytes of the VCR public key. 109

4.4 VICEROY browser extension pop-up displaying the history of visits in each ses-
sion. Clients can select which session and which type of VCR (ACCESS/MODIFY/DELETE)
they wish to generate. 110

5.1 A Genomic Test Scenario with Order of Interactions 136
5.2 Trust between Entities (Truster → Trustee). Solid arrows are used to de-

note full-trust whereas dashed arrows are procedural trust (i.e., Honest-but-
Curious) and dotted arrows denote no trust. 137

5.3 Resp(Q) and Verfy(V, σ) functions. 141
5.4 Verification times for T given number of SNPs in range 146
5.5 Proving si < x (Step 3 in Transcript 3) states sw where w ≤ i is out of

range. Similarly, proving sj+1 > y (Step 4 in Transcript 3) states sw where
w ≥ (j + 1) is out of range. 150

viii

LIST OF TABLES

Page

2.1 Feature Comparison of Common Human-Based Attack Types. 36

3.1 End-to-End Latency of CACTI for different numbers of timestamps and lists.
The Browser column represents the latency of the browser extension mar-
shalling data to and from the host application. The other columns are as
described above. Pre-, In- and Post- are Enclave phases. Sign and Verify are
ECDSA and EPID operations, respectively. 73

3.2 Additional data received and sent by the client for image-based and behavior-
based reCAPTCHA, compared with CACTI. 74

3.3 Server-side processing time for generating a CAPTCHA and verifying the
response. 76

4.1 Latency Results for VICEROY Wrappers. 116
4.2 VCR Latency Results. 117
4.3 Bandwidth Usage (HTTP header + payload). 118
4.4 Client-side Storage Measurement. 119

5.1 Notation & Descriptions . 139

ix

LIST OF ALGORITHMS

Page
1 Range Query over Sparse Integers . 147
2 Offline Phase of Secure & Private Range Query over Sparse Integers 149
3 Online Phase of Secure & Private Range Query over Sparse Integers 149

x

ACKNOWLEDGMENTS

A PhD is an endeavor with many facets, as I have learned, and it would not have been
possible for me to complete this journey without the help and support of many.

First of all, I would like to thank my advisor, Gene Tsudik, from the bottom of my heart for
giving me the chance to embark on this journey. Without his guidance, encouragement and
support throughout my PhD, I would not be able to conduct rigorous research and navigate
the many challenges one faces on this adventure.

I would also like to thank my defense committee, Gene Tsudik, Qi Alfred Chen and Andrew
Paverd for their insightful comments and being an inspiration to me with the awe inspiring
research they conduct.

I also owe my sincerest gratitude to all my teachers along my education; especially to Ali
Aydin Selcuk for introducing me to the field of Security and to Ismail Kemal Sunel for
sparking my interest in learning and exploring.

I would also like to thank my coauthors – with whom I have shared many deadlines, and lab-
mates at the SPROUT group at UC Irvine: Tyler Kaczmarek, Tatiana Bradley, Christopher
Wood, Norrathep Rattanavipanon, Xavier Carpent, Ivan De Oliveira Nunes, Pier Paolo Tri-
comi, Andrew Paverd, Seoyeon Hwang, Sashidhar Jakkamsetti, Ai Enkoji, Esmerald Aliaj,
Ben Terner, Renascence Tarafder Prapty and Youngil Kim; specifically Yoshimichi Nakatsuka
and Andrew Searles for their constructive comments on a previous version of this dissertation
and its presentation. Rock on!

I am extremely grateful for my family and friends. They have always been there for me
through thick and thin – even if our timezones did not always match.

It is only fair that I end this chapter with a quotation from Edgar Allan Poe which perplexed
me when I first heard years back starting my PhD: “Yet it may be roundly asserted that
human ingenuity cannot concoct a cipher which human ingenuity cannot resolve.”.

This dissertation contains the results of years of research conducted at UC Irvine. During
that time, I was supported by a combination of teaching and research assistanships.

xi

VITA

Ercan Ozturk

EDUCATION

Doctor of Philosophy in Computer Science 2021
University of California, Irvine Irvine, CA, USA

Master of Science in Computer Science 2021
University of California, Irvine Irvine, CA, USA

Bachelor of Science in Computer Engineering 2016
TOBB University of Economics and Technology Ankara, Turkey

Bachelor of Science in Math (Minor) 2016
TOBB University of Economics and Technology Ankara, Turkey

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2021
University of California, Irvine Irvine, CA, USA

Researcher Intern Summer, 2019
Microsoft Research Cambridge, UK

TEACHING EXPERIENCE

TA for Computer and Network Security (CS134) Spring, 2019
TA for Computer Networks (CS132) Fall, 2018
TA for Introduction to Programming (ICS31) Spring, 2018
Reader for Computer and Network Security (CS134) Winter, 2018
TA for Programming in Java as a Second Language (ICS45J) Fall, 2017
Reader for Introduction to C++ (ICS45C) Winter and Spring, 2017
Reader for Computer and Network Security (CS134) Fall, 2016
University of California, Irvine Irvine, CA, USA

PROFESSIONAL EXPERIENCE

Software Engineer Intern Summer, 2020
Facebook Menlo Park, CA, USA
Software Engineer Intern Summer, 2018
Google Mountain View, CA, USA
Summer Intern Summer, 2017
Yahoo Sunnyvale, CA, USA

xii

REFEREED CONFERENCE PUBLICATIONS

CACTI: Captcha Avoidance via Client-side TEE Inte-
gration

2021

30th USENIX Security Symposium (USENIX Security 21)

Balancing Security and Privacy in Genomic Range
Queries

2019

Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society

Thermanator: Thermal Residue-Based Post Factum At-
tacks on Keyboard Data Entry

2019

Proceedings of the 2019 ACM Asia Conference on Computer and Communications Se-
curity

Assentication: User De-authentication and Lunchtime
Attack Mitigation with Seated Posture Biometric

2018

International Conference on Applied Cryptography and Network Security. Springer,
Cham

PAPERS IN SUBMISSION OR UNDER REVIEW

VICEROY: GDPR-/CCPA-compliant Enforcement of
Verifiable Accountless Consumer Requests

2022

Network and Distributed System Security Symposium (NDSS)

ROSEN: RObust and SElective Non-repudiation (for
TLS)

2021

ACM SIGSAC Conference on Cloud Computing Security Workshop

Thermal (and Hybrid Thermal/Audio) Side-Channel
Attacks onKeyboard Input

2021

Computers & Security

xiii

ABSTRACT OF THE DISSERTATION

Privacy in Emerging Technologies

By

Ercan Ozturk

Doctor of Philosophy in Computer Science

University of California, Irvine, 2021

Professor Gene Tsudik, Chair

The importance of privacy has been growing steadily for over 25 years. Increasingly popular

areas (such as IoT, cryptocurrencies and genomics) have attracted and fueled new types of

privacy-focused attacks and exploits. This dissertation focuses on the lifecycle of secrets

(or data) – from initial entry to use, to present attacks and defenses that utilize emerging

technologies.

We start by presenting a side-channel attack that targets password entry. This attack uses

thermal residues (that results from human fingertips touching the keyboard) to recover re-

cently entered passwords on external keyboards. Then, we present a privacy-preserving

CAPTCHA alternative that mimics the rate-limiting nature of CAPTCHAs. To skip CAPTCHAs,

clients generate rate-proofs when the rate at which they have performed an action (e.g., visit

a website, sign up for an email account) is below a server-supplied threshold. Rate-proofs,

generated by client-side Trusted Execution Environments (TEEs), assure servers that clients

are not acting in an abusive manner. We also propose a scalable data ownership frame-

work in which clients with no accounts on a website can prove ownership of data collected

from them. Although data ownership proofs are possible using traditional authentication

methods (e.g., passwords), there is no accepted way of achieving this for acountless clients.

This framework completes the missing piece of verifiable consumer requests which are used

xiv

to exercise data rights (access/modify/delete) granted by recent data protection regulations

such as GDPR and CCPA. A client-side TEE can be used to store a secret that can initi-

ate these requests. The use of TEEs, as shown in these two work, allows us to secure and

privacy-protect secrets/data after entry.

Lastly, we present a cryptograpy-based solution for range queries in the genomics domain.

This ensures the authenticity and integrity of the genome of the individual while minimizing

the exposed data to testers. It uses a variety of techniques ranging from zero-knowledge

range proofs and digital signatures to continual linking of elements inspired by literature

on range queries on databases. We use the genomics domain to show how privacy can be

achieved if there are no TEEs.

xv

Chapter 1

Introduction

The growing popularity of big data [6, 61] amplified by swift adoption of various “smart”

devices that collect information on a myriad of activities has led to the parallel growth of

privacy concerns. Today, more than 60% of Americans think that data collection is incessant

and more than 80% consider that the risks outweigh the benefits [1]. Although recent

legislations, such as GDPR [20] and CCPA [13], regulate how personal data are handled,

it is very important for current and emerging technologies to support privacy by default to

prevent (or at least reduce) data exposure.

To this end, there is a need to reconcile privacy with functionality such that data exposure

is minimized while offering desired functionality without encumbering users. Achieving an

acceptable balance of privacy, functionality and usability is challenging due to numerous

functional requirements and constraints for various domains. The goal of this dissertation

is to construct privacy-agile approaches for representative areas with varying degrees of

technology penetration.

As noted by Diffie and Hellman [102], privacy and authentication are closely related. Users

authenticate, on average, 45 times in a day and 74.4% of these authentication events are a

1

form of “something one knows” (e.g., passwords, PINs) [142]. Ubiquitous use of passwords

for authentication make them prime targets for attackers. Although simple attacks, such

as shoulder surfing, are easy to mount, they are also easy to detect and prevent. Whereas,

lower level side-channel attacks utilize information leakage from flawed implementations of

authentication mechanisms. Combined with insider threats and emerging technologies that

enable novel attacks, study of side-channel attacks require utmost scrutiny to be up-to-date

with emerging dangers.

However, thwarting side-channel attacks alone is insufficient to protect a secret. There is a

need for a secure channel between the external password entry medium (e.g., a keyboard)

and the authentication software. Otherwise, more privileged software, such as the operating

system, may interfere. One mitigation approach requires secure hardware – a common type

of which is Trusted Execution Environments (TEEs) [160].

Popular TEEs, such as Intel SGX [33], focus on isolated execution where no other software

can observe the runtime state of a program. This allows TEEs to improve the privacy of ex-

isting systems. With the increasing availability of TEEs on client devices, many applications

can be security- and privacy-enhanced.

However, for certain fields, TEEs are not available or not commonly used. In such do-

mains more traditional techniques, such as cryptography, are the norm for protecting data.

Crypto1-based approaches can be used to provide authenticity and integrity of data along

with minimal exposure. Study of such techniques allow us to cover more representative areas.

1.0.1 Contributions

The goal of this dissertation is to utilize emerging or previously niche technologies to improve

the privacy of various applications. This work makes the following contributions:

1By “crypto”, we always refer to cryptography, not to cryptocurrencies.

2

� We explore how an emerging side-channel with a post-factum adversary model can be

used to recover passwords. This attack utilizes thermal residues to target passwords

entered using external keyboards. The goal is to recover passwords that can later be

used to access unauthorized data, thus violate the privacy of users. We also propose

mitigation strategies.

� Privacy of Internet users are threatened by extensive data collection. With the increas-

ing availability of TEEs, current Web services can be replaced with privacy-preserving

versions that impose less burden on the users. For instance, currently CAPTCHAs

serve as rate-limiters due to easy access to massive CAPTCHA solving services and

advances in machine learning. Furthermore, CAPTCHAs recently started a transition

from hard-for-machines-to-solve problems to more data-collection based solutions. We

design a privacy-preserving mechanism to substitute/complement CAPTCHAs with

rate-limiters implemented in TEEs.

� Recent data protection regulations, such as GDPR and CCPA, grant various rights

to clients regarding the data collected about them. Exercising these rights however

requires authentication/verification of clients which poses a challenge for clients with

no accounts. By utilizing TEEs and minimal secret storage, we design and implement

a scalable, easy-to-use and privacy preserving mechanism for generating verifiable con-

sumer requests. Our approach can also be used for clients with accounts to further

improve security.

� For some domains, including genomics, cryptography is still the main method to pro-

vide security and privacy. Utilizing cryptography, we propose a range query protocol

that balances security (authentication and integrity) and privacy of genomic material.

3

Chapter 2

Thermal Residue-Based Post Factum

Attacks on Keyboard Data Entry

2.1 Introduction

As famously noted by Diffie and Hellman [102], authentication and privacy are closely related.

To ensure privacy, access must be restricted to users with appropriate authorizations. But

first, users need to prove that “they are who they say they are”. This step constitutes

authentication.

There are three types of authentication: something one knows, something one has and some-

thing one is. The most widely used form of authentication is via passwords; an example of

something one knows. Although they are the most common, passwords suffer from insecure

selection and reuse [170]. This problem is exacerbated by insider threats [27]. Simple exam-

ples, such as shoulder surfing, can be very effective [21]; however, easy prevention is possible

by being more careful of one’s surroundings.

4

Side-channels on the other hand are more on the side of a “hidden” threat. They threaten

privacy at the time of data entry – or shortly after entry as we show in this chapter. A side-

channel is often unnoticed and overlooked information leakage. For passwords, side-channels

may arise from many sources, such as the sounds keys make when pressed [67], or the timing

information between key-presses [114]. Often such side-channels require the adversary to be

present at the time of password entry. However, post factum attacks are intriguing since they

reduce the possibility of detection. To this end, this dissertation proposes the first thermal

residue side-channel attack against passwords entered on external keyboards. We show that

this attack is a real threat – not just a Mission Impossible-style gimmick, since thermal

imaging devices that were previously considered niche are now cheaper and more advanced.

To-date, there has been no systematic investigation of thermal profiles of keyboards, and

thus no efforts have been made to secure them. This serves as our main motivation for con-

structing a means for password harvesting from keyboard thermal emanations. Specifically,

we introduce Thermanator, a new post factum insider attack based on heat transfer caused

by a user typing a password on a typical external keyboard.

We conduct and describe a user study that collected thermal residues from 30 users entering

10 unique passwords (both weak and strong) on 4 popular commodity keyboards. Results

show that entire sets of key-presses can be recovered by non-expert users as late as 30

seconds after initial password entry, while partial sets can be recovered as late as 1 minute

after entry. Furthermore, we find that typists who press keys individually (also known

as Hunt-and-Peck typists) are particularly vulnerable. We also discuss some Thermanator

mitigation strategies. The take-away of our work is three-fold: (1) using keyboards to enter

passwords is even less secure than previously recognized, (2) post factum (either planned

or impromptu) thermal imaging attacks are realistic, and (3) we should either stop using

keyboards for password entry, or abandon passwords altogether.

5

2.2 Motivation & Contributions

Any time two objects with unequal temperatures come in contact with each other, an ex-

change of heat occurs. This is unavoidable. Being warm-blooded, human beings naturally

prefer environments that are colder than their internal temperature. Because of this heat

disparity, it is inevitable that we leave thermal residue on numerous objects that we routinely

touch, especially, with bare fingers. Furthermore, it takes time for these heated objects to

cool off and lose heat energy imparted by human contact. It is both not surprising and wor-

risome that this includes our interactions with keyboards that are used for entering sensitive

private information, such as passwords.

Based on this observation, we consider a mostly unexplored attack space where heat transfer

and subsequent thermal residue can be exploited by a clever adversary to steal passwords

from a keyboard some time after it was used for password entry. The main distinctive benefit

of this attack type is that adversary’s real time presence is not required. Instead, a successful

attack can occur with after-the-fact adversarial presence: as our results show, many seconds

later.

While there has been some prior work on using thermal emanations to crack PINs, mo-

bile phone screen-locks and opening combinations of vaults/safes [175, 106, 107, 109], this

work represents the first comprehensive investigation of human-based thermal residues and

emanations of external computer keyboards.

In this chapter, we propose and evaluate a particular human-based side-channel attack class,

called Thermanator. This attack class is based on exploiting thermal residues left behind

by a user (victim) who enters a password using a typical external keyboard. Shortly after

password entry, the victim either steps away inadvertently, or is drawn away (perhaps as a

result of being prompted by the adversary) from the personal workplace. Then, the adversary

captures thermal images of the victim keyboard. We examine the efficacy of Thermanator

6

Attacks for a moderately sophisticated adversary equipped with a mid-range thermal imaging

camera. The goal of the attack is to learn information about the victim password.

To confirm viability of Thermanator Attacks, we conducted a rigorous two-stage user study.

The first stage collected password entry data from 31 subjects using 4 common keyboards. In

the second stage, 8 non-expert subjects acted as adversaries and attempted to derive the set

of pressed keys from the thermal imaging data collected in the first stage. Our results show

that even novice adversaries can use thermal residues to reliably determine the entire set of

key-presses up to 30 seconds after password entry. Furthermore, they can determine a

partial set of key-presses as long as a full minute after password entry. We provide a thorough

discussion of the implications of this study, and mitigation techniques against Thermanator

Attacks.

Furthermore, in the course of exploring Thermanator Attacks, we introduce a new post factum

adversarial model. We comprehensively compare this model with those of other insider

attacks that target user behavior and physical properties, such as Lunch-Time, Shoulder-

Surfing, and Acoustic Emanations attacks. In doing so, we focus on attack characteristics,

such as: goals, timeline and equipment required by the adversary. This comparison can be

found in Section 2.8.

2.3 Adversarial Model & Attacks

This section describes the adversarial model for Thermanator Attacks.

7

(a) STEP 1: Victim Enters Password

(b) STEP 2: Victim Leaves (Opportunistic) (b) STEP 2: Victim Drawn Away (Orchestrated)

(c) STEP 3: Thermal Residues Captured

Figure 2.1: An Example Thermanator Attack

8

2.3.1 Physical Premise

As mentioned in Section 2.4, Fourier’s Law states that contact between any two objects with

unequal temperatures results in transfer of heat energy from the hotter to the cooler object.

It is reasonable to assume that the typical office environment has the ambient temperature

within the OSHA-recommended range of 293.15 − 298.15K (=20 − 25◦C) [150]. In that

setting, the average human hand is expected to conductively transfer an observable amount

of heat to the ambient-temperature keyboard. Consequently, a bare-fingered human typist

can not avoid leaving thermal residue on a keyboard. This physical interaction can be abused

by the adversary in order to harvest the thermal residue of a victim who recently used a

keyboard to enter potentially sensitive information, e.g., a password. This forms the premise

for Thermanator Attacks.

2.3.2 Thermanator

Thermanator is a distinct type of insider attack, where a typical attack scenario proceeds as

follows (see also Figure 2.1):

STEP 1: The victim uses a keyboard to enter a genuine password, as part of the log-in (or

session unlock) procedure.

STEP 2: Shortly thereafter, the victim either: (1) willingly steps away, or (2) gets drawn

away, from the workplace.

STEP 3: Using thermal imaging (e.g., photos taken by a commodity FLIR camera) the

adversary harvests thermal residues from the keyboard.

STEP 4: At a later time, the adversary uses the “heat map” of the images to determine

recently pressed keys. This can be done manually (i.e., via visual inspection) or auto-

9

matically (i.e., via specialized software).

REPEAT: The adversary can choose to repeat STEPS [1-4] over multiple sessions.

The two options in STEP 2 correspond to two attack sub-types: opportunistic and orches-

trated. In the former, the adversary patiently waits for the situation described in STEP

2 case (1) to occur. Once the victim leaves (on their own volition) shortly after password

entry, the adversary swoops in and collects thermal residues. This strategy is similar to

Lunch-Time Attacks. In an orchestrated attack, instead of waiting for the victim to leave,

the adversary uses an accomplice to draw the victim away shortly after password entry, as

in STEP 2 case (2).

2.4 Background

In this section we provide some background material on physical interactions that describe

thermal phenomena. We start with a glossary of terms, then describe the form factor and ma-

terial composition of modern 104-key “Windows” keyboards and finish with certain Physics

concepts used in the rest of the chapter.

2.4.1 Basic Thermal Terminology

� Joule (J) – Unit of energy Corresponding to 1 Newton-Meter (N ·m)

� Kelvin (K) – Base unit of temperature in Physics. The temperature T in Kelvin (K)

minus 273.15 yields the corresponding temperature in degrees Celsius (◦C).

� Watt (W) – Unit of power corresponding to 1 Joule per second: (J
s
)

� Conduction – Transfer of Thermal Energy caused by two objects in physical contact

that are at different Temperatures.

10

� Convection – Transfer of Thermal Energy caused by submerging an object in a fluid.

� Heat Transfer Coefficient - Property of a fluid that determines rate of convective heat

flow. Expressed in Watts per square meter Kelvin: W
m2K

� Specific Heat – Amount of Thermal Energy in Joules that it takes to increase temper-

ature of 1kg of material by 1K. Expressed in Joules over kilograms degrees Kelvin:

J
kgK

.

� Thermal Conductivity – Rate at which Thermal Energy passes through a material.

Expressed in Watts per meters Kelvin: W
mK

� Thermal Energy – Latent energy stored in an object due to heat flowing into it.

� Thermal Source – Object or material that can internally generate Thermal Energy

such that it can stay at constant temperature during a thermal interaction, e.g., a heat

pump.

2.4.2 Heating via Thermal Conduction

Thermal Conduction is transfer of heat between any two touching objects of different tem-

peratures. It is expressed as the movement of heat energy from the warmer to the cooler

object.

Heat transfer between two objects can be modeled by the equation: q = KA(T1−T2)t
d

,

where K is thermal conductivity1 of the object being heated, A is area of contact,

T1 is initial temperature of the hotter object, T2 is initial temperature of the cooler

object, t is time, and d is the thickness of the object being heated.

The relationship between an object’s heat energy and its temperature is governed by the

object’s mass and specific heat, as dictated by the formula: q = cm∆T , where q is total heat

energy, c is object’s specific heat, m is object’s mass and ∆T is change in temperature.

1K should not be confused with K – degrees Kelvin.

11

We consider the human body to be a thermal source, and we assume that any change in the

fingertip temperature during the (very short) fingertip-keycap contact period is negligible,

due to internal heat regulation [108]. Furthermore, we assume that:

� Average human skin temperature is 307.15K (= 34◦C) [85].

� Keyboard temperature is the same of that as that of the air, which, for a typical office,

is OSHA2-recommended 294.15K (= 21◦C) [150].

� Keycap area is 0.00024025 m2, keycap thickness is 0.0015 meter and keycap mass is

.4716g (See: Section 2.4.4).

� Average duration of a key-press is 0.28s [162].

Therefore, for variables mentioned above, we have:

K=0.25, A=0.00024025, T1=34, T2=21, t=0.28, and d=0.0015

Plugging these values into Fourier’s Law, we get:

q =
(0.25)(0.00024025)(34− 21)(.28)

0.0015

which yields total energy transfer: q = 0.1458J. We then use total energy q in the specific

heat equation to determine total temperature change: 0.1458 = (1000)(0.0004716)∆T . This

gives us a total temperature change of ∆T = 0.3092. Therefore, we conclude that the average

human fingertip touching a keycap at the average room temperature results in the keycap

heating up by 0.3092K.

2OSHA = Occupational Safety and Hazards Administration, a United States federal agency.

12

2.4.3 Cooling via Thermal Convection

After a keycap heats up as a result of conduction caused by a press by a warm(er) human

finger, it begins to cool off due to convective heat transfer with the air in the room. Con-

vection is defined as the transfer of heat resulting from the internal current of a fluid, which

moves hot (and less dense) particles upward, and cold (and denser) particles – downward.

This interaction is governed by Newton’s Law of Cooling. Its particulars are impacted by

the shape and position of the heated object. In our case, there is a plane surface3 facing

towards the cooling fluid (i.e., a keycap directly exposed to ambient air) which is described

by the formula:

T (t) = Ts + (T0 − Ts)e−κt

where T (t) is temperature at time t, Ts is temperature of ambient air, T0 is initial object

temperature, and κ is the cooling constant of still (non-turbulent) air over a 0.00024025m2

plane.

This comes with the additional intuitive notion that a surface convectively cools quicker when

the temperature difference between the heated object and the fluid is higher. Similarly, it

cools slower when the temperature difference is smaller. Finally, Newton’s Law of Cooling

is asymptotic, and cannot be used to find the time at which the object reaches the exact

temperature of the ambient fluid. Thus, instead of finding the time when the temperatures

are equal, we determine the time when the temperature difference falls below an acceptable

threshold, which we set at 0.04K. Plugging this into Newton’s Law of Cooling results in:

t = −
ln(0.3092

0.04
)

0.037

which yields t = 55.7 for total time for a pressed key to cool down to the point where it is

indistinguishable from the room temperature.

3The actual keycap surface can be slightly concave.

13

2.4.4 Modern Keyboards

Most commodity external keyboard models are of the 104-key “Windows” variety, shown

in Figure 2.2a. On such keyboards, the distance between centers of adjacent keys is about

19.05mm, and a typical keycap shape is an ≈ [15.5mm x 15.5mm x 1.5mm] rectangular

prism, with an average travel distance of 3.55mm [149]; see Figure 2.2b. All such key-

boards are constructed out of Polybutylene Terephthalate (PBT) with density of 1.31g/cm3

, resulting in an average keycap mass of .4716g [111]. PBT generally has the following

characteristics: specific heat = 1, 000 J
kgK

and thermal conductivity = 0.274 W
mK

[111].

(a) Typical “Windows”-style Keyboard.

(b) Typical Keycap Profile.

2.4.5 Thermal Cameras

In the past few years, many niche computational and sensing devices have moved from

Hollywood-style fantasy into reality. This includes thermal imagers or cameras. In order to

clarify their availability to individuals (or agencies) at different levels of sophistication, we

14

provide the following brief comparison of several types of readily-available FLIR: Forward-

Looking Infra-Red devices. (See: Figure 2.3 for product images and https://www.flir.

com/products for full product specifications.) In the rest of the chapter, we use the following

terms interchangeably: FLIR device, thermal imager and thermal camera.

Figure 2.3: FLIR Devices / Thermal Imagers: FLIR ONE(top left), SC620 (top right), A6700sc
(bottom left) and X8500sc (bottom right).

FLIR One – Price: About US$300. Thermal Sensitivity: 0.15K. Thermal Accuracy: ±1.5K

or 1.5% of reading. Resolution:50x80. Image Capture: Manual, 1 image at a time.

Video Capture: None

SC620 – Price: About US$1500 (used). Thermal Sensitivity: 0.04K Thermal Accuracy:

±2K or 2% of reading. Resolution: 640x480. Image Capture: Automatic, pro-

grammable to capture images by timer, or when specific criteria are met, at maximum

rate of 1 image per second. Video Capture: None.

A6700sc – Price: About US$25, 000. Thermal Sensitivity: 0.018K Thermal Accuracy: ±2K

15

https://www.flir.com/products
https://www.flir.com/products

or 2% of reading. Resolution: 640x512. Image Capture: Automatic, programmable

to capture images by timer or when specific criteria are met, at up to 100fps. Video

Capture: High speed, up to 100fps.

X8500sc – Price: About US$100, 000. Thermal Sensitivity: 0.02K: Thermal Accuracy: ±2K

or 2% of reading. Resolution: 1280x1024 Image Capture: Automatic, programmable

to capture images by timer or when specific criteria are met, at up to 180fps. Video

Capture: High speed, up to 180fps.

Obviously, a sufficiently motivated organization or a nation-state could easily obtain thermal

imagers of the highest quality and price. However, we assume that the anticipated adversary

is of a mid-range sophistication level, i.e., capable of acquiring a device exemplified by SC620.

However, we note the adversary armed with a FLIR One (which is on the low-end of the

spectrum for thermal imagers, and can be connected to any commodity smartphone without

substantially altering the overall form factor) can collect thermal residues up to 20 seconds

after entry. Whereas, the adversary with a A6700sc or X8500sc can do the same 139 seconds,

and 136 seconds after entry, respectively. Also, since thermal residues decay at a logarithmic

rate, future advances in thermal camera sensitivity will result in a exponential increase of

collection time.

2.5 Methodology

In this section we describe of the experimental apparatus, procedures, and subject recruit-

ment methods.

16

2.5.1 Apparatus

The experimental setup was designed to simulate a typical office setting. It was located

in a dedicated office in a research building of a large university. Since experiments were

conducted during the academic year, there was always some (though not excessive) amount

of typical busy office-like ambient noise. Figure 2.5a shows the setup from the subject’s

perspective. Equipment used in the experiments consisted of the following readily available

(off-the-shelf) components:

I. FLIR Systems SC620 Thermal Imaging Camera4 This camera was perched on a tripod

24 ′′ above the keyboard.

II. Four popular and inexpensive commodity computer keyboards: (a) Dell SK-8115, (b)

HP SK-2023 (c) Logitech Y-UM76A, and (d) AZiO Prism KB507. The first (Dell) is

shown in 2.2a above, and the other three – in Figure 2.4.

The particular thermal camera that was used in our experiments was chosen to be realistic

for a moderately sophisticated and determined adversary. We assume this type of adversary

to be an individual, i.e., not an intelligence agency, a nation-state, or a powerful criminal

organization. FLIR SC620 Thermal Imager costs approximately US$1, 500 used. (This

model is about 6-7 years old.) It automatically records images at the resolution of 640x480

pixels, with 1Hz frequency. Its thermal sensitivity is 0.04K.

The four keyboards were chosen to cover the typical range of manufacturers represented in an

average workplace. Dell, HP and Logitech keyboards are popular default keyboards included

in new computer orders from major PC, desktop, and workstation manufacturers. Each costs

≈ US$20. Meanwhile, Azio Prism is a popular low-cost and independently manufactured

keyboard that can be easily obtained on-line e.g., from Amazon; it costs ≈ US$25.

4see: http://www.FLIR.com for a full specification.

17

http://www.FLIR.com

(a) HP SK-2023

(b) Logitech Y-UM76A.

(c) AZiO Prism KB507 (backlit).

Figure 2.4: Keyboards

2.5.2 Procedures

Thermanator was evaluated using a two-stage user study. The first stage was conducted

to collect thermal emanation data, and the second – to evaluate efficacy of Thermanator

Attacks. A given subject only participated in a single stage.

Stage One: Password Entry

Recall that Thermanator’s goal is to capture thermal residues of subjects after keyboard

password entry. This is accomplished by having FLIR SC620 take a sequence of images (60

18

(a) SC620 Apparatus Setup

(b) Example of Thermal Emanations being Recorded.

total), one per second, for a total of one minute after initial password entry. The first stage

is shown in Figure 2.6. This collection of 60 images does not represent the requirements for

a single attack. In reality, the adversary would arrive as quickly as possible (after the victim

leaves the workspace) and take a single thermal image. For strictly experimental purposes,

a full minute of thermal data was captured to more accurately model adversaries arriving

after some time has elapsed.

19

Subject is told about the nature of the study, and asked to sign a consent waiver.

It is emphasized that only post-factum thermal emanations are collected and

there is no live recording. Duration: about 3 minutes.

Experimenter chooses one of the four keyboards at random.

1. Subject is asked to enter a password, randomly chosen from a list of 10.

2. Subject enters chosen password. Duration: 5-30 seconds.

3. Subject is instructed to move away from the keyboard.

4. FLIR camera starts recording. Duration: 60 seconds.

Repeat 10 times

Repeat 4 times

Figure 2.6: Experiment Stage One: Flowchart

Each subject entered 10 passwords on 4 keyboards and each entry was followed by one minute

of keyboard recording (60 successive images) by the FLIR. Each subject entered a total of 40

passwords and every entry took, on average, between 10 and 20 seconds. The total duration

of the experiment for a Stage 1 subject ranged between 50 and 60 minutes, based on the

individual’s typing speed and style. Both keyboards and passwords were presented to each

subject in random order, in an attempt to negate any side-effects due to subject training or

familiarity with the task.

We selected 10 passwords that included both “insecure” and “secure” categories. The former

passwords were culled from the top 100 passwords by popularity that adhere to common

password requirements, such as Gmail 5. Whereas, “secure” passwords were created by

randomly generating 8-, 10-, and 12-character strings of lower/uppercase letters as well as

5see: https://support.google.com for details

20

https://support.google.com

numbers and symbols that adhere to Gmail restrictions. Our selection criteria resulted in

the following 10 candidate passwords:

� [Insecure]: “password”, “12345678”, “football”, “iloveyou”, “12341234”, “passw0rd”,

and “jordan23”,

� [Secure]: “jxM#1CT[”, “3xZFkMMv|Y”, and

“6pl;0>6t(OvF”.

Stage Two: Data Inspection

Figure 2.7: Thermal image of “passw0rd” 20 seconds after entry.

The second stage of the experiment has subjects act as adversaries conducting Thermanator

Attacks. Subjects were shown images obtained from the first stage of the experiment, e.g.,

Figure 2.7, and were instructed to identify the “lit” regions. Each subject was shown 150

recordings of password entries in random order. On average, a subject could process a single

recording in 45 − 60 seconds. Total time for each Stage 2 subject varied in the range of

100− 130 minutes.

2.5.3 Subject Recruitment Procedure

Subjects were recruited from the (student body of a large public University using a uni-

fied Human Subjects Pool designated for undergraduate volunteers seeking to participate in

21

studies such as ours. Subjects were compensated with course credit. Because of this, over-

whelming majority of subjects were of college age: 18−−25. The subject gender breakdown

was: 16 male and 15 female.

All experiments were authorized by the Institutional Review Board (IRB) of the authors’

employer, well ahead of the commencement of the study. The level of review was: Exempt,

Category II. No sensitive data was collected during the experiments and minimal identi-

fying information was retained. In particular, no subject names, phone numbers or other

personally identifying information (PII) was collected. All data is stored pseudonymously.

2.6 Results

We now describe the results of Stage 2 analysis of thermal images obtained in Stage 1. We

divide it into two categories:

� Hunt-and-Peck Typists — ‘those who do not rest their fingertips on, or hover their

fingers just over, the home-row of keys (i.e. “ASDF” on the left hand, and “JKL;” on

the right hand.).

� Touch Typists – those whose fingertips routinely hover over, or lightly touch, the home-

row.

The distribution of our Stage 1 subjects to these categories were: 18 hunt-and-peck typists

and 12 touch typists.

As it turns out, our study results indicate that the category of the typist is the most influ-

ential factor for the quality thermal imaging data. For each category, we separately analyze

“secure” and “insecure” passwords types. Since we did not observe a significant statistical

difference between results of different keyboards, results include all keyboards.

22

For full context, aggregate results (identification rates) from the entire subject population

are shown in Figures 2.8, 2.9 and 2.10; they correspond to stage 2 subjects’ analysis of

“insecure” and “secure” passwords, respectively. For clarity’s sake, “insecure” passwords are

split into two subcategories: alphabetical and alphanumeric. The former contains “insecure”

passwords that consist only of English-language letters, while the latter contains “insecure”

passwords that also include numbers. In each graph, “D = 0” refers to average latest time

when stage 2 subjects could correctly identify every keystroke of the entered password, while

“D = 1” denotes average latest time when subjects could identify all-but-one keystroke; “D

= 2” denotes the average latest time when subjects could identify all-but-two keystrokes,

and so on. The distance ”D” is calculated as

D = |(K ∪ P) \ (K ∩ P)| (2.1)

where P is the set of pressed keys identified by Stage 2 subjects and K is the set of keys in

the actual password. Note that keys missed and misidentified as pressed are both considered

in this distance calculation.

Figure 2.8: Stage 2 Subject Performance: Alphabetical “Insecure” Passwords, all Typists

23

Figure 2.9: Stage 2 Subject Performance: Alphanumeric “Insecure” Passwords, all Typists

2.6.1 Hunt-and-Peck Typists

Our analysis of Hunt-and-Peck typists was straightforward. Because these typists do not rest

their fingertips on (or hover right above) the keyboard home-row, it is readily apparent that

each bright spot on the thermal image corresponds to a key-press. However, as discussed

below, we encountered some challenges with “secure” passwords.

Insecure Passwords

As Figure 2.11 and 2.12 show, analysis of Hunt-and-Peck typists entering “insecure” pass-

words is straightforward. In fact, in the best-case of “12341234” subjects could correctly

recall every keystroke, on average, 45.25 seconds after entry. Even the weakest result, “foot-

ball” was fully recoverable 25.5 seconds later, on average. This is in line with conventional

thought. Hunt-and-Peck typists typically only use their forefingers to type. Because of this,

they make contact with a larger finger over a large surface area. Also, since Hunt-and-Peck

typists are generally less skilled, they take longer for each keystroke, resulting in longer con-

24

Figure 2.10: Stage 2 Subject Performance: “Secure” Passwords, all Typists

tact time. These two factors combined yield high-quality thermal residue for Thermanator

Attacks.

Secure Passwords

“Secure” passwords are more challenging to analyze. As shown in Figure 2.13 full recall

was possible, on average, up to 31 seconds after recording started, in the best case, and 19.5

seconds, in the worst case. Performance of stage 2 subjects was uniform in terms of password

length: the shortest password was the easiest to analyze correctly. Anecdotally, this is not

surprising. It was quite common for Hunt-and-Peck typists to look back and forth between

the characters of a relatively complex “secure” passwords, and their keyboards. This resulted

in longer completion times, which left longer time for keycaps to cool off before recording

began.

25

Figure 2.11: Stage 2 Subject Performance: Alphabetical “Insecure” Passwords, Hunt-and-Peck
Typists

2.6.2 Touch Typists

Analyzing data from Touch typists was a challenge for stage 2 subjects. Since a typical

Touch typist’s fingers are constantly in contact with (or in very close proximity of) the

home-row of the keyboard, there are two incidental sources of thermal noise. First, there is

thermal residue on the 2 groups of 4 home-row keys: “asdf” and “jkl;” which results from

the typist’s fingertips. However, whenever typist’s fingers rest on the keyboard for a long

time, additional observed effects occur outside (though near) the home-row, on the following

keys:

"qwertgvcxz", "][poiuhnm,./"

Even though this secondary thermal residue was not as drastic as that on the home-row, it

had a more pronounced effect on stage 2 subjects. In many cases, a subject was uncertain

whether a key was lit on the thermal image because it was actually pressed, or because it

was simply close to the home-row. This uncertainty in turn led to mis-classification of some

keys as unpressed. Also, mis-classification of home-row keys as pressed keys was not counted

26

Figure 2.12: Stage 2 Subject Performance: Alphanumerical “Insecure” Passwords, Hunt-and-Peck
Typists

in the distance. We justify this choice in Section 2.7.

Insecure Passwords

While more difficult than analysis of “insecure” password for Hunt-and-Peck typists, stage 2

subjects have moderate success analyzing Touch typists entering “insecure” passwords. As

Figures 2.14 and 2.15 show, the best average time for full recall was for password: “12341234”

at 47.6 seconds, and the worst was for “jordan23”, at 17.8 seconds. This follows the notion

that stage 2 subjects were hesitant to classify home-row-adjacent key-presses, e.g., “o”,

“r” and “n” in “jordan23”. Furthermore, this supports the notion that a simple, repeated

password such as “12341234” leaves ideal thermal residue. Since each key is repeated, it is

analogous to each key being pressed once for twice as long. This results in twice as much

thermal energy being transferred from the fingertip to the keycap.

27

Figure 2.13: Stage 2 Subject Performance: “Secure” Passwords, Hunt-and-Peck Typists

Secure Passwords

Touch typists entering “secure” passwords were the most difficult for the stage 2 subjects

to analyze. As shown in Figure 2.16, full recall was only possible, on average, within the

first 14.33 − −18.5 seconds. Surprisingly, the password with the smallest window for full

recall was “jxM#1CT[”. We believe that many stage 2 subjects were hesitant to classify

home-row-adjacent keys in this password as keystrokes (as opposed to thermal noise). This

might explain why the window for full recall is so small. As with all other cases, the time

window between full recall at d = 0 and a single mis-identification d = 1 was much greater

than any other window between d = n and d = n + 1, which is consistent with Newton’s

Law of Cooling.

2.6.3 Outlier: Acrylic Nails

There was a single Stage 1 subject that had long acrylic fingernails. Instead of typing with

fingertips, this person tapped the keys with nail-tips. Since these do not have nearly as

28

Figure 2.14: Stage 2 Subject Performance: Alphabetical “Insecure” Passwords, Touch Typists

much surface area as fingertips, and false nails do not have any blood vessels to regulate

their temperature, this subject left almost no thermal residue. In fact, not a single key-

press could be correctly identified in any of the 40 password entry trials. Consequently, this

subject is not included in either Touch or Hunt-and-Peck typist populations. However, as a

side curiosity, we note that, although it may be a rare occurrence, any user with long acrylic

fingernails is virtually immune to Thermanator Attacks.

2.7 Discussion

In this section, we break down our observations from Section 2.6 between two password

classes, and among two categories of typists.

29

Figure 2.15: Stage 2 Subject Performance: Alphanumeric “Insecure” Passwords, Touch Typists

2.7.1 Results with Common Passwords

Stage 2 subjects were particularly adept at identifying passwords that are English words or

phrases. Even though we could not reliably detect the exact sequence of pressed keys, order-

ing can be found indirectly by mapping the set of pressed keys to words (essentially, solving

an anagram puzzle). Furthermore, a list of distances between detected keys (characters) and

possible words, can be used to reconstruct full passwords from incomplete thermal residues..

Finally, the same list of distances can help determine when a key is pressed multiple times.

These combinations highlight the threat posed by Thermanator Attacks to already insecure

passwords.

2.7.2 Results with Random Passwords

However, strong results from Stage 2 subjects’ identification of English-language words does

not extend to secure, randomly-selected passwords. First, inability to reliably determine the

order of pressed keys can not be mitigated by leveraging the underlying linguistic structure.

30

Figure 2.16: Stage 2 Subject Performance: “Secure” Passwords, Touch Typists

Moreover, it is unclear whether a given set of emanations represents the whole password, or

if some information was lost. Finally, it is impossible to tell if a key was pressed multiple

times. However, even with these shortcomings, our subjects managed to greatly reduce the

password search space from 72n to 72n−m ∗m! where n is the total number of characters in

the password, and m is the number of identified key-presses. This represents a reduction in

search space by a factor of 1010 for an 8-character password where the individual keys have

been identified. Techniques to further reduce the space of candidate passwords are discussed

in the following section.

2.7.3 Results with Hunt-and-Peck Typists

Figure 2.17: Password “iloveyou” entered by a Hunt-and-Peck typist.

31

As described in Section 2.6.1, Hunt-and-Peck typists are particularly vulnerable to Ther-

manator Attacks. This is not surprising, given that these less-skilled typists tend to type

more slowly, and primarily use their index fingers, which have greater fingertip surface area

than ring or pinky fingers [112]. This results in greater heat transfer, due to longer contact

duration with a larger contact area. Also, as seen from Figure 2.17, Hunt-and-Peck typists

do not touch any keys that are not part of the password. Therefore, every observed key-press

is part of the password.

2.7.4 Results with Touch Typists

Figure 2.18: Password “iloveyou” Entered by a Touch Typist.

For Touch typists, two factors confuse their thermal residues and make passwords harder to

harvest. One is their habit to rest their hands on the home-row, which introduces potential

false positives. as Figure 2.18 shows. This is exacerbated by the possibility that any home-

row key might actually be part of the password. Because of this, stage 2 subjects were not

penalized for classifying the home-row keys as pressed; they were instructed to identify all

keys that looked to them as having been pressed.

Another issue is that Touch typists tend to use all fingers of both hands while typing. This

causes two advantages over their Hunt-and-Peck counterparts. First, they touch individual

keys for a shorter time, thus transferring less heat to the key-cap. Second, they type much

more quickly and also use their ring and pinky fingers. Fingertips of these smaller fingers

tend to have 1/2 of the surface area of larger index or middle fingers. Thus, they transfer

32

half of the total heat energy due to conduction during a key-press [112]. Such factors make

Touch typists much more resistant to Thermanator Attacks, particularly, at the level of our

moderately sophisticated adversarial model.

2.7.5 Ordering of Key-Presses

Figure 2.19: Password “passw0rd” thermal residue after 0(top left), 15 (top right), 30 (bottom

left), and 45 (bottom right) seconds after entry

Figure 2.20: Acoustic Emanations of Password “jordan23”

Unfortunately, inspection of thermal images by stage 2 subjects did not yield any reliable

key-press ordering information. Newton’s Law of Cooling might seem to indicate that any

reduction in heat energy would occur uniformly across all pressed keys, resulting in exposure

of ordering. However, this is not true in practice. One reason is due to by keystroke incon-

sistency in the dynamics of Touch typists. Factors, such as the travel distance between keys

and the particular finger used to press a key, result in small differences in the duration, and

total surface area of, contact. Since each key-press is distinct, intensity of a given thermal

residue does not correspond to its relative position in the target password. This holds even

33

for Hunt-and-Peck typists, who tend to use only their index fingers. As evidenced by Figure

2.19, Hunt-and-Peck typist does not necessarily press keys with uniform force or for a uni-

form duration. These inconsistencies make reliable ordering of key-presses infeasible in our

analysis framework. However, as mentioned above, for insecure (language-based) passwords,

dictionary tools can be used to infer the most likely key-press order.

Anagram Solvers There are many anagram-finder tools such as the Anagrammer6 or the

Anagram Solver7 which the adversary can use to find possible natural-language password

candidates from observed keys. For alphanumeric passwords, solvers can be used with in-

tuitive substitutions (e.g. “3” as a substitute for “e” or “0” for “o”.) This can be done to

find both individual natural-language words such as “football” as well as more complicated

multiple-word phrases such as “iloveyou”, with relative ease. Therefore, even though order-

ing is not apparent from the thermal image, the adversary can easily derive it for “insecure”

passwords.

2.7.6 Mitigation Strategies

There are several simple strategies to mitigate or reduce the threat of Thermanator Attacks,

without modifying any existing hardware. The most intuitive solution is to introduce Chaff

typing right after a password is entered. This can be as simple as asking the users to swipe

their hands along the keyboard after password entry, or requiring them to introduce noise by

typing arbitrary “chaff”. This would serve to obscure the password by introducing useless

thermal residues, and thus make the password key-presses much more difficult to retrieve.

Another way is to avoid keyboard entry altogether and use the mouse to select (click on)

password characters displayed on the on-screen keyboard. A variation is to have drop-down

6See: https://www.wordplays.com/anagrammer/
7See: https://www.thewordfinder.com/anagram-solver/

34

https://www.wordplays.com/anagrammer/
https://www.thewordfinder.com/anagram-solver/

menu for each position of the password and the user selects each character individually. A

more burdensome alternative is to use the keyboard arrow keys to adjust a random character

string (displayed on the screen) to the actual password. All such methods are well-known and

are quite viable. However, they are more vulnerable to Shoulder-Surfing Attacks, due to the

ease of watching a victim’s larger, visible screen instead of their smaller, partially occluded

keyboard. Finally, a user who is willing to go to extreme lengths to avoid leaving thermal

residues could wear insulating gloves or rubber thimblettes over their fingers during password

entry. This would greatly reduce thermal residues, and make Thermanator ineffective, since

thermal conductivity of the insulating material would be much less than that of human skin.

If hardware changes are possible, other mitigation techniques might be appropriate. For

example, a touch-screen would allow password entry without the use of a keyboard. However,

this would be more (than keyboard entry) vulnerable to Shoulder-Surfing Attacks. Also, the

use of touch-screens opens the door for attacks that exploit smudge patterns left behind by

fingers [105]. Alternatively, common plastic keyboards could be replaced with metallic ones.

Metals have much higher thermal conductivity than plastics. Thus, any localized thermal

residues very quickly dissipate throughout the keyboard. A similar strategy was adopted to

protect ATMs from thermal attacks [109].

2.8 Comparison with Similar Attacks

We now compare Thermanator with several similar human factors-based insider attacks.

We focus on several aspects: adversary’s Goal, any Required Equipment, the Timeliness

requirements, whether a Careless Victim is needed, and finally, if Prior Profiling of the

victim is required. Summary of the comparison is shown in Table 2.1.

35

Table 2.1: Feature Comparison of Common Human-Based Attack Types.

Attack
Type

Attack
Goal

Adversary
Timeliness

Careless
Victim?

Equipment
Needed

Prior
Profiling
Required?

Lunch-Time
Hijack
Log-in Session

15 min
(default)

YES None NO

Shoulder-Surfing Password Real-Time YES
Pair of Eyes
or
Video Camera

NO

Acoustic Emanations Password Real-Time NO
Audio
Recorder

YES

Keyboard Vibrations Password Real-Time NO Accelerometer YES

Thermanator Password Up to 1 min NO
Thermal
Camera

NO

2.8.1 Lunch-Time

Lunch-Time Attacks are performed by the insider adversary who relies on a careless victim

that neglects to terminate their secure log-in session [163].

� Objective: to gain access to a single secure (authenticated) session.

� Required Equipment : none, the adversary only needs to physically access the computer

once the victim leaves.

� Timeliness: determined by the de-authentication technique(s) used by the victim. For

example, the default inactivity timeout for Windows machines is a generous 15 minutes.

� Careless Victim: required for this attack to work. At the minimum, the victim needs

to leave their workstation unattended without logging out or locking the screen.

� Profiling : no prior victim profiling is needed. The adversary can be opportunistic; it

gains access to an authenticated session with out any additional or prior knowledge

required.

36

2.8.2 Shoulder-Surfing

Shoulder-Surfing Attacks are performed by the insider adversary who looks over the shoulder

of a careless victim while the password is entered. It can also be performed with the aid

of a (perhaps hidden) camera pointed at the victim’s keyboard, in which case adversarial

presence is not required.

� Objective: to learn the victim’s password.

� Required Equipment : none, though a video camera can be useful.

� Timeliness real-time, as the adversary must watch victim password entry as it occurs.

� Careless Victim: required, since the adversary has to stand over the victim’s terminal

to watch them type in their password. Careless victim is not required in case of a

pre-placed viceoa camera.

� Profiling : no prior victim profiling is needed and the adversary can be opportunistic:

it learns the victim’s password with no additional or prior knowledge.

2.8.3 Acoustic Emanations

Acoustic Emanations Attacks are performed by the insider adversary who instruments the

victim’s environment with an audio recording device and exploits acoustic dynamics [115]

� Objective: learn the victim’s password.

� Required Equipment : an audio recording device, placed nearby.

� Timeliness : real-time, since the adversary must record the keyboard sounds instanta-

neously.

� Careless Victim: not required; the recording device can be hidden from view.

� Profiling : prior victim profiling is needed; the adversary must build an acoustic profile

of the victim to accurately interpret keystroke sounds.

37

2.8.4 Keyboard Vibrations

Vibration Attacks are performed by the insider adversary using an accelerometer to record

vibrations created by a victim typing into a keyboard, in order to reconstruct what was

typed [110].

� Objective: learn the victim’s password.

� Required Equipment : an accelerometer, placed nearby (closer than in Acoustic Emana-

tions Attacks).

� Timeliness : real-time, since the adversary must record the victim’s vibrations instan-

taneously.

� Careless Victim: not required; the recording device can be hidden from view.

� Profiling : prior victim profiling is needed; the adversary must build a vibration profile

in order to accurately interpret keystroke vibration patterns.

2.8.5 Thermanator

Thermanator Attacks are performed by an insider adversary who records thermal residues

users after recent password entry.

� Objective: learn the victim’s password.

� Required Equipment : thermal camera.

� Timeliness : up to 1 minute, the adversary must record the keyboard before thermal

residues dissipate.

� Careless Victim: not required; recording/imaging takes place after the victim leaves.

� Profiling : prior victim profiling not needed. The adversary does not need any prior

knowledge of the victim to analyze thermal images (though it obviously helps, espe-

cially with insecure passwords).

38

2.9 Related Work

Thermal residue side-channel has been shown to be an avenue for obtaining secrets (e.g.,

key-codes, PINs) with [175]. [109] investigated the influence of material composition (metal

vs. plastic) and camera distance (14 vs. 28 inches) on PIN recovery, using a US$17, 950

thermal camera, on commercial PoS-style PIN pads. [113] explored the effectiveness of a

low-cost thermal camera (≈ US$330, attachable to a smartphone) to recover 4-digit PINs

entered into rubber keypads. Lastly, [173] discussed the viability of thermal imaging attacks

on various PIN-entry devices including a keyboard, digital door lock, cash machine and

payment terminal. Analysis showed that the attack was a credible threat. The attack on

keyboards was to recover a 4-digit PIN entry and did not consider passwords.

[106] investigated using a thermal camera to infer screen-lock patterns of smartphones. In

a similar effort, [107] conducted more extensive experiments to assess efficacy of thermal

imaging attacks against screen-lock patterns. It was shown that PINs were vulnerable to

such an approach, while swipe-patterns were not.

2.10 Conclusion

As formerly niche sensing devices become less and less expensive, new side-channel attacks

move from “Mission: Impossible” towards reality. This strongly motivates exploration of

novel human-factors attacks, such as those based on Thermanator. Work described in this

chapter sheds some light on understanding the thermodynamic relationship between hu-

man fingers and external computer keyboards. In particular, it exposes the vulnerability of

standard password-based systems to adversarial collection of thermal emanations.

Based on the study results, we believe that Thermanator Attacks represent a new credible

39

threat for password-based systems, and that human-induced thermal side-channels deserve

further study. This is especially true considering constantly decreasing costs and increasing

availability of high-quality thermal imagers. It is realistic to expect that – in several years’

time – thermal imagers that can be attached to smartphones, e.g., FLIR One, will offer the

quality equivalent to SC620 that was used in our study. This would allow surreptitious col-

lection of thermal images without bulky, unusual or suspicious-looking equipment. Cameras

in the price range of our SC620 would offer the image quality of A6700sc, with time-windows

for collecting thermal residues that last for several minutes.

40

Chapter 3

Captcha Avoidance via Client-side

TEE Integration

3.1 Introduction

In traditional systems, software with more privilege (e.g., hypervisor, operating system) can

interfere with data destined for a program on the system. One solution to this problem is

to utilize Trusted Execution Environments (TEEs) [160]. A TEE isolates the execution of a

program from other (system) software and additionally may offer secure I/O (Input/Output).

For example, TrustZone allows locking GPIO (General Purpose Input/Output) ports to be

used only by the secure/trusted code [2]. Intel SGX [33], on the other hand, does not support

such a feature. Yet, due to its availability on PCs [51], it is a suitable target platform for

developing TEE-based applications.

One common denominator of TEEs is that they provide isolated code execution. Utilizing

this feature, we change our focus of attention to TEE-based Web solutions that revolve

around privacy. We show how TEEs (more specifically Intel SGX) can be used to implement

41

a privacy-preserving CAPTCHA alternative that focuses on rate-limiting. This is in response

to the transition of emerging CAPTCHAs from being hard-to-solve AI problems [168] to

behavioral-based [47] ones which collect user data.

In this chapter, we present CACTI: CAPTCHA Avoidance via Client-side TEE Integration.

Using client-side TEEs, CACTI allows legitimate clients to generate unforgeable rate-proofs

demonstrating how frequently they have performed specific actions. These rate-proofs can

be sent to web servers in lieu of solving CAPTCHAs. CACTI provides strong client privacy

guarantees, since the information is only sent to the visited website and authenticated using

a group signature scheme. Our evaluations show that overall latency of generating and

verifying a CACTI rate-proof is less than 0.25 sec, while CACTI’s bandwidth overhead is over

98% lower than that of current CAPTCHA systems.

3.2 Motivation & Contributions

In the past two decades, as Web use became almost universal and abuse of Web services grew

dramatically, there has been an increasing trend (and real need) to use security tools that

help prevent abuse by automated means, i.e., so-called bots. The most popular mechanism

is CAPTCHAs: Completely Automated Public Turing test to tell Computers and Humans

Apart [169]. A CAPTCHA is essentially a puzzle, such as an object classification task

(Figure 3.1a) or distorted text recognition (see Figure 3.1b), that aims to confound (or at

least slow down) a bot, while being easily1 solvable by a human user. CAPTCHAs are often

used to protect sensitive actions, such as creating a new account or submitting a web form.

Although primarily intended to distinguish humans from bots, it has been shown that

CAPTCHAs are not very effective at this task [146]. Many CAPTCHAs can be solved

by algorithms (e.g., image recognition software) or outsourced to human-driven CAPTCHA-

1Exactly what it means to be “easily” solvable is subject to some debate.

42

farms2 to be solved on behalf of bots. Nevertheless, CAPTCHAs are still widely used to

increase the adversary’s costs (in terms of time and/or money) and reduce the rate at which

bots can perform sensitive actions. For example, computer vision algorithms are computa-

tionally expensive, and outsourcing to CAPTCHA-farms costs money and takes time.

From the users’ perspective, CAPTCHAs are generally unloved (if not outright hated), since

they represent a barrier and an annoyance (a.k.a. Denial-of-Service) for legitimate users.

Another major issue is that most CAPTCHAs are visual in nature, requiring sufficient

ambient light and screen resolution, as well as good eyesight. Much less popular audio

CAPTCHAs are notoriously poor, and require a quiet setting, decent-quality audio output

facilities, as well as good hearing.

More recently, the reCAPTCHA approach has become popular. It aims to reduce user

burden by having users click a checkbox (Figure 3.1c), while performing behavioral analysis

of the user’s browser interactions. Acknowledging that even this creates friction for users,

the latest version (“invisible reCAPTCHA”) does not require any user interaction. However,

the reCAPTCHA approach is potentially detrimental to user privacy because it requires

maintaining long-term state, e.g., in the form of Google-owned cookies. Cloudflare recently

decided to move away from reCAPTCHA due to privacy concerns and changes in Google’s

business model [39].

Notably, all current CAPTCHA-like techniques are server-side, i.e., they do not rely on any

security features of, or make any trust assumptions about, the client platform. The purely

server-side nature of CAPTCHAs was reasonable when client-side hardware security features

were not widely available. However, this is rapidly changing with the increasing popularity

of Trusted Execution Environments (TEEs) on a variety of computing platforms, e.g., TPM

and Intel SGX for desktops/laptops and ARM TrustZone for smartphones and even smaller

devices. Thus, it is now realistic to consider abuse prevention methods that include client-

2A CAPTCHA farm is usually sweatshop-like operation, where employees solve CAPTCHAs for a living.

43

side components. For example, if a TEE has a trusted path to some form of user interface,

such as a mouse, keyboard, or touchscreen, this trusted User Interface (UI) could securely

confirm user presence. Although this feature is still unavailable on most platforms, it is

emerging through features like Android’s Protected Confirmation [94]. This approach’s main

advantages are minimized user burden (e.g., just a mouse click) and increased security, since

it would be impossible for software to forge this action. Admittedly however, this approach

can be defeated by adversarial hardware e.g., a programmable USB peripheral that pretends

to be a mouse or keyboard.

However, since the majority of consumer devices do not currently have a trusted UI, it would

be highly desirable to reduce the need for CAPTCHAs using only existing TEE functionality.

As discussed above, the main goal of modern CAPTCHAs is to increase adversarial costs and

reduce the rate at which they can perform sensitive actions. Therefore, if legitimate users

had a way to prove that their rate of performing sensitive actions is below some threshold,

a website could decide to allow these users to proceed without solving a CAPTCHA. If a

user can not provide such a proof, the website could simply fall back to using CAPTCHAs.

Though this would not fully prevent bots, it would not give them any advantage compared

to the current arrangement of using CAPTCHAs.

Motivated by the above discussion, this chapter presents CACTI, a flexible mechanism for

allowing legitimate users to prove to websites that they are not acting in an abusive manner.

By leveraging widespread and increasing availability of client-side TEEs, CACTI allows users

to produce rate-proofs, which can be presented to websites in lieu of solving CAPTCHAs. A

rate-proof is a simple assertion that:

1. The rate at which a user has performed some action is below a certain threshold, and

2. The user’s time-based counter for this action has been incremented.

When serving a webpage, the server selects a threshold value and sends it to the client. If

44

the client can produce a rate-proof for the given threshold, the server allows the action to

proceed without showing a CAPTCHA. Otherwise, the server presents a CAPTCHA, as

before. In essence, CACTI can be seen as a type of “express checkout” for legitimate users.

One of the guiding principles and goals of CACTI is user privacy – it reveals only the minimum

amount of information and sends this directly to the visited website. Another principle is

that the mechanism should not mandate any specific security policy for websites. Websites

can define their own security policies e.g., by specifying thresholds for rate-proofs. Finally,

CACTI should be configurable to operate without any user interaction, in order to make it

accessible to all users, including those with sight or hearing disabilities.

Although chiefly motivated by the shortcomings of CAPTCHAs, we believe that the general

approach of client-side (TEE-based) rate-proofs, can also be used in other common web

scenarios. For example, news websites could allow users to read a limited number of articles

for free per month, without relying on client side cookies (which can be cleared) or forcing

users to log-in (which is detrimental to privacy). Online petition websites could check that

users have not signed multiple times, without requiring users to provide their email addresses,

which is once again, detrimental to privacy. We therefore believe that our TEE-based rate-

proof concept is a versatile and useful web security primitive.

Anticipated contributions of this work are:

1. We introduce the concept of a rate-proof, a versatile web security primitive that allows

legitimate users to securely prove that their rate of performing sensitive actions falls

below a server-defined threshold.

2. We use the rate-proof as the basis for a concrete client-server protocol that allows

legitimate users to present rate-proofs in lieu of solving CAPTCHAs.

3. We provide a proof-of-concept implementation of CACTI, over Intel SGX, realized as

a Google Chrome browser extension.

45

(a) Image-based object recognition re-
CAPTCHA [47]

(b) Image-based text recognition re-
CAPTCHA [47]

(c) Behavior-based reCAPTCHA [47]

Figure 3.1: Examples of CAPTCHAs

4. We present a comprehensive evaluation of security, latency, and deployability of CACTI.

3.3 Background

3.3.1 Trusted Execution Environments

A Trusted Execution Environment (TEE) is a primitive that protects confidentiality and

integrity of security-sensitive code and data from untrusted code. A typical TEE provides

the following features:

Isolated execution. The principal function of a TEE is to provide an execution environ-

ment that is isolated from all other software on the platform, including privileged system

software, such as the OS, hypervisor, or BIOS. Specifically, data inside the TEE can only be

accessed by the code running inside the TEE. The code inside the TEE provides well-defined

46

entry points (e.g., call gates), which are enforced by the TEE.

Remote attestation. Remote attestation provides a remote party with strong assurances

about the TEE and the code running therein. Specifically, the TEE (i.e., the prover) creates

a cryptographic assertion that: (1) demonstrates that it is a genuine TEE, and (2) unam-

biguously describes the code running in the TEE. The remote party (i.e., the verifier) can

use this to decide whether to trust the TEE, and then to bootstrap a secure communication

channel with the TEE.

Data sealing. Data sealing allows the code running inside the TEE to encrypt data such

that it can be securely stored outside the TEE. This is typically implemented by providing

the TEE with a symmetric sealing key, which can be used to encrypt/decrypt the data. In

current TEEs, sealing keys are platform-specific, meaning that data can only be unsealed on

the same platform on which it was sealed.

Hardware monotonic counters. A well known attack against sealed data is rollback,

where the attacker replaces the sealed data with an older version.Mitigating this requires at

least some amount of rollback-protected storage, typically realized as a hardware monotonic

counter. When sealing, the counter can be incremented and the latest value is included in

the sealed data. When unsealing, the TEE checks that the included value matches the cur-

rent hardware counter value. Since hardware counters themselves require rollback-protected

storage, TEEs typically only have a small number of counters.

One prominent TEE example is Intel Software Guard Extensions (SGX) [65, 127, 144]. SGX

is a hardware-enforced TEE available on Intel CPUs from the Skylake microarchitecture

onwards. SGX allows applications to create isolated environments, called enclaves, running

in the application’s virtual address space. A special region in physical memory is reserved for

enclaves, called the Enclave Page Cache (EPC). The EPC can hold up to 128MB of code and

data, shared between all running enclaves. When enclave data leaves the CPU boundary,

47

it is transparently encrypted and integrity-protected by CPU’s Memory Encryption Engine

(MEE) to defend against physical bus snooping/tampering attacks. Since enclaves run in

the application’s virtual address space, enclave code can access all the memory of its host

application, even that outside the enclave. Enclave code can only be called via predefined

function calls, called ECALLs.

Every enclave has an enclave identity (MRENCLAVE), which is a cryptographic hash of the code

that has been loaded into the enclave during initialization, and various other configuration

details. Each enclave binary must be signed by the developer, and the hash of the developer’s

public key is stored as the enclave’s signer identity (MRSIGNER).

SGX provides two types of attestation: local and remote. Local attestation allows two

enclaves running on the same platform to confirm each other’s identity and communicate

securely, even though this communication goes via the untrusted OS. SGX uses local at-

testation to build remote attestation. Specifically, an application enclave performs local

attestation with an Intel-provided quoting enclave, which holds a group private key provi-

sioned by Intel. The quoting enclave verifies the local attestation and creates a signed quote,

which includes the application enclave’s and signer’s identities, as well as user-defined data

provided by the application enclave. This quote is sent to the remote verifier, which, in

turn, uses the Intel Attestation Service (IAS) to verify it. Since the attestation uses a group

signature scheme, the verifier cannot determine whether two quotes were generated by the

same platform.

In SGX, data can be sealed in one of two modes, based on: (1) the enclave’s identity, such

that only the same type of enclave can unseal it, or (2) the signer identity, such that any

enclave signed by the same developer (running on the same platform) can unseal it. SGX

provides hardware monotonic counters and allows each enclave to use up to 256 counters at

a time.

48

3.3.2 Group Signatures

A group signature scheme aims to prevent the verifier from determining the group member

which generated the signature. Each group member is assigned a group private key under

a single group public key. In case a group member needs to be revoked, a special entity

called group manager can open the signature. A group signature scheme is composed of five

algorithms [70]:

� Setup: Given a security parameter, an efficient algorithm outputs a group public key

and a master secret for the group manager.

� Join: A user interacts with the group manager to receive a group private key and a

membership certificate.

� Sign: Using the group public key, group private key, membership certificate, and a

message m, a group member generates a group signature of m.

� Verify: Using the group public key, an entity verifies a group signature.

� Open: Given a message, a putative signature on the message, the group public key

and the master secret, the group manager determines the identity of the signer.

A secure group signature scheme satisfies the following properties [70]:

� Correctness: Signatures generated with any member’s group private key must be

verifiable by the group public key.

� Unforgeability: Only an entity that holds a group private key can generate signa-

tures.

� Anonymity: Given a group signature, it must be computationally hard for anyone

(except the group manager) to identify the signer.

� Unlinkability: Given two signatures, it must be computationally hard to determine

whether these were signed by the same group member.

� Exculpability: Neither a group member nor the group manager can generate signa-

49

tures on behalf of other group members.

� Traceability: The group manager can determine the identity of a group member that

generated a particular signature.

� Coalition-resistance: Group members cannot collude to create a signature that

cannot be linked to one of the group members by the group manager.

Enhanced Privacy ID (EPID) [82] is a group signature scheme used by remote attestation

of Intel SGX enclaves. It satisfies the above properties whilst providing additional privacy-

preserving revocation mechanisms to revoke compromised or misbehaving group members.

Specifically, EPID’s signature-based revocation protocol does not “Open” signatures but

rather uses a signature produced by the revoked member to notify other entities that this

particular member has been revoked.

3.4 System & Threat Models

The ecosystem that we consider includes three types of principals/players: (1) servers, (2)

clients, and (3) TEEs. There are multitudes of these three principal types. The number of

clients is the same as that of TEEs, and each client houses exactly one TEE. Even though

a TEE is assumed to be physically within a client, we consider it to be separate security

entity. Note that a human user can, of course, operate or own multiple clients, although

there is clearly a limit and more clients implies higher costs for the user.

We assume that all TEEs are trusted: honest, benign and insubvertible. We consider all

side-channel and physical attacks against TEEs to be out of scope of this work and assume

that all algorithms and cryptographic primitives implemented within TEEs are impervious

to such attacks. We also consider cuckoo attacks, whereby a malicious client utilizes multiple

(possibly malware infected) machines with genuine TEEs, to be out of scope, since clients

50

and their TEEs are not considered to be strongly bound. We refer to [176] and [103] as far

as means for countering such attacks. We assume that servers have a means to authenticate

and attest TEEs, possibly with the help of the TEE manufacturer.

All clients and servers are untrusted, i.e., they may act maliciously. The goal of a malicious

client is to avoid CAPTCHAs, while a malicious server either aims to inconvenience a client

(via DoS) or violate client’s privacy. For example, a malicious server can try to learn the

client’s identity or link multiple visits by the same client. Also, multiple servers may collude

in an attempt to track clients.

Our threat model yields the following requirements for the anticipated system:

� Unforgeability: Clients cannot forge or modify CACTI rate-proofs.

� Client privacy: A server (or a group thereof) cannot link rate-proofs to the clients

that generated them.

We also pose the following non-security goals:

� Latency: User-perceived latency should be minimized.

� Data transfer: The amount of data transfer between client and server should be

minimized.

� Deployability: The system should be deployable on current off-the-shelf client and

server hardware.

3.5 CACTI Design & Challenges

This section discusses the overall design of CACTI and justifies our design choices.

51

3.5.1 Conceptual Design

Rate-proofs. The central concept underpinning our design is the rate-proof. Conceptually,

the idea is as follows: Assuming that a client has an idealized TEE, it stores one or more

named sorted lists of timestamps in its rollback-protected secure memory. To create a rate-

proof for a specific list, the TEE is given the name of the list, a threshold (Th), and a new

timestamp (t). The threshold is expressed as a starting time (ts) and a count (k). This can

be interpreted as: “no more than k timestamps since ts”. The TEE checks that the specified

list contains k or fewer timestamps with values greater than or equal to ts. If so, it checks if

the new timestamp t is greater than the latest timestamp in the list. If both checks succeed,

the TEE pre-pends t to the list and produces a signed statement confirming that the named

list is below the specified threshold and the new timestamp has been added. If either check

fails, no changes are made to the list and no proof is produced. Note that the rate-proof

does not disclose the number of timestamps in the list.

Furthermore, each list can also be associated with a public key. In this case, requests for

rate-proofs must be accompanied by a signature over the request which is computed with a

corresponding private key. This allows the system to enforce a same-origin policy for specific

lists – proofs over such lists can only be requested by the same entity that created them.

Note that this does not provide any binding to the identity of the entity holding the private

key, as doing so would necessitate the TEE to check identities against a global public key

infrastructure (PKI) and we prefer for CACTI not to require it.

Rate-proofs differ from rate limits because the user is allowed to perform the action any

number of times. However, once the rate exceeds the specified threshold, the user will no

longer be able to produce rate-proofs. The client can always decide to not use its TEE; this

covers clients who do not have TEEs or those whose rates exceeded the threshold in addition

to those who choose not to use CACTI at specific times. On the other hand, if the server does

52

not yet support CACTI, the client does not store any timestamps, or perform any additional

computation.

CAPTCHA-avoidance. In today’s CAPTCHA-protected services, the typical interaction

between the client (C) and server (S) proceeds as follows:

1. C requests access to a service on S .

2. S returns a CAPTCHA for C to solve.

3. C submits the solution to S .

4. If the solution is verified, S allows C access to the service.

Although current approaches, e.g., reCAPTCHA, might include additional steps (e.g., com-

municating with third-party services), these can be abstracted into the above pattern.

CACTI keeps the same interaction sequence, while substituting steps 2 and 3 with rate-proofs.

Specifically, in step 2, the server sends a threshold rate and the current timestamp. In step 3,

instead of solving a CAPTCHA, the client generates a rate-proof with the specified threshold

and timestamp, and submits it to the server. The server has two types of lists:

� Server-specific: The server requests a rate-proof over its own list. The name of the

list could be the server’s URL, and the request may be signed by the server. This

determines the rate at which the client visits this specific server.

� Global: The server requests a rate-proof over a global list, with a well-known name,

e.g. CACTI-GLOBAL. This yields the rate at which the client visits all servers that use

the global list.

The main idea of CAPTCHA avoidance is that a legitimate client should be able to prove

that its rate is below the server-defined threshold. In other words, the server should have

sufficient confidence that the client is not acting in an abusive manner (where the threshold

of between abusive and non-abusive behaviors is set by the server). Servers can select their

53

own thresholds according to their own security requirements. A given server can vary the

threshold across different actions or even across different users or user groups, e.g., lower

thresholds for suspected higher-risk users. If a client cannot produce a rate-proof, or is

unwilling to do so, the server simply reverts to the current approach of showing a CAPTCHA.

CACTI essentially provides a fast-pass for legitimate users.

The original CAPTCHA paper [169] suggested that CAPTCHAs could be used in the fol-

lowing scenarios:

1. Online polls: to prevent bots from voting,

2. Free email services: to prevent bots from registering for thousands of accounts,

3. Search engine bots: to preclude or inhibit indexing of websites by bots,

4. Worms and spam: to ensure that emails are sent by humans,

5. Preventing dictionary attacks. to limit the number of password attempts.

As discussed in Section 3.2, it is unrealistic to assume that CAPTCHAs cannot be solved by

bots (e.g., using computer vision algorithms) or outsourced to CAPTCHA farms. Therefore,

we argue that all current uses of CAPTCHAs are actually intended to slow down attackers or

increase their costs. In the list above, scenarios 2 and 5 directly call for rate-limiting, while

scenarios 1, 3, and 4 can be made less profitable for attackers if sufficiently rate-limited.

Therefore, CACTI can be used in all these scenarios.

In addition to CAPTCHAs, modern websites use a variety of abuse-prevention systems (e.g.,

filtering based on client IP address or cookies). We envision CACTI being used alongside such

mechanisms. Websites could dynamically adjust their CACTI rate-proof thresholds based on

information from these other mechanisms. We are aware that rate-proofs are a versatile

primitive that could be used to fight abusive activity in other ways, or even enable new

use-cases. However, in this chapter, we focus on the important problem of reducing the user

burden of CAPTCHAs.

54

3.5.2 Design Challenges

In order to realize the conceptual design outlined above, we identify the following key chal-

lenges:

TEE attestation. In current TEEs, the process of remote attestation is not standardized.

For example, in SGX, a verifier must first register with Intel Attestation Service (IAS)

before it can verify TEE quotes. Other types of TEEs would have different processes. It is

unrealistic to expect every web server to establish relationships with such services from all

manufacturers in order to verify attestation results. Therefore, web servers cannot directly

verify the attestation, but still need to ascertain that the client is running a genuine TEE.

TEE memory limitations. TEEs typically have a small amount of secure memory. For

example, if the memory of an SGX enclave exceeds the size of the EPC (usually 128 MB), the

CPU has to swap pages out of the EPC. This is a very expensive operation, since these pages

must be encrypted and integrity protected. Therefore, CACTI should minimize the required

amount of enclave memory, since other enclaves may be running on the same platform.

Limited number of monotonic counters. TEEs typically have a limited number of

hardware monotonic counters, e.g., SGX allows at most 256 per enclave. Also, the number

of counter increments can be limited, e.g., in SGX the limit is 100 in a single epoch [28] – a

platform power cycle, or a 24 hour period. This is a challenge because hardware monotonic

counters are critical for achieving rollback-protected storage. Recall that CACTI requires

rollback-protected storage for all timestamps, to prevent malicious clients from rolling-back

the timestamp lists and falsifying rate-proofs. Furthermore, this storage must be updated

every time a new timestamp is added, i.e., for each successful rate-proof.

TEE entry/exit overhead. Invoking TEE functionality typically incurs some overhead.

For example, whenever an execution thread enters/exits an SGX enclave, the CPU has

55

TEE PA

get group private key()

request attestation()

attestation report

skTEE

Figure 3.2: CACTI provisioning protocol. The interaction between the Provisioning Author-
ity (PA) and the client’s TEE takes place over a secure connection, using the client to
pass the encrypted messages. After verifying the attestation report (and any other required
information), the PA provisions the TEE with a group private key (skTEE).

to perform various checks and procedures (e.g., clearing registers) to ensure that enclave

data does not leak. Identifying and minimizing the number of TEE entries/exits, whilst

maintaining functionality, can be challenging.

3.5.3 Realizing CACTI Design

We now present a detailed design that addresses aforementioned design challenges. We

describe its implementation in Section 3.6.

Communication protocol

The web server needs to determine that a supplied rate-proof was produced by a genuine

TEE. Typically, this would be done using remote attestation, where the TEE proves that it

is running CACTI code. If the TEE provides privacy-preserving attestation (e.g., the EPID

protocol used in SGX remote attestation), this would also fulfill our requirement for client

privacy, since websites would not be able to link rate-proofs to specific TEEs.

However, as described above, current TEE remote attestation is not designed to be verified

56

by anonymous third parties. Furthermore, as CACTI is not limited to any particular TEE

type, websites would need to understand attestation results from multiple TEE vendors,

potentially using different protocols. Finally, some types of TEEs might not support privacy-

preserving remote attestation, which would undermine our requirement for client privacy.

To overcome this challenge, we introduce a separate Provisioning Authority (PA) in order

to unify various processes for attesting CACTI TEEs. Fundamentally, the PA is responsible

for verifying TEE attestation (possibly via the TEE vendor) and establishing a privacy-

preserving mechanism through which websites can also establish trust in the TEE. Specifi-

cally, the PA protects user privacy by using the EPID group signature scheme. The PA plays

the role of the EPID issuer, and – optionally – the revocation manager [82]. During the pro-

visioning phase (as shown in Figure 3.2), the PA verifies the attestation from the client’s

TEE and then runs the EPID join protocol with the client’s TEE in order to provision the

TEE with a group private key skTEE. The PA certifies and publishes the group public key

pkG. The PA may optionally require the client to prove their identity (e.g., by signing into

an account) – this is a business decision and different PAs may take different approaches.

After provisioning, the PA is unable to link signatures to any specific client thanks to the

properties of the underling BBS+ signature scheme and signature-based revocation used in

EPID [82]. We analyze security implications of malicious PAs in Section 3.7.1, and discuss

the use of other group signature schemes in Section 3.8.2. There can be multiple PAs and

websites can decide which PAs to trust. If a TEE is provisioned by an unsupported PA, the

website would fall back to using CAPTCHAs.

Once the TEE has been provisioned, the client can begin to use CACTI when visiting sup-

ported websites, as shown in Figure 3.3. Specifically, when serving a page, the server includes

the following information: a timestamp t, a threshold Th (including start time ts and count

k), the name of the list (or CACTI-GLOBAL for the global list), and (optionally) a public key

and signature for rates that enforce a same-origin policy. The client uses this information to

57

TEE C S

GET example.com

t, ts, k, name, pks, sig

t, ts, k, name, pk, sig

SignskTEE
(rate-proof)

SignskTEE
(rate-proof)

Verify

CAPTCHA PASS, example.com

Figure 3.3: CACTI CAPTCHA-avoidance protocol. The client (C) requests a resource from
the web server (S). In response, the server provides a timestamp for the current event (t),
a threshold consisting of a starting time (ts) and a count (k), and the name of the list.
Optionally, the server also provides a signature (sig) over the request and the public key
(pks) with which the signature can be verified. The client passes this information to its
TEE in order to produce a rate-proof, signed by a group private key (skTEE), which can be
verified by the server.

request a rate-proof from their TEE. If the client’s rate is indeed below the threshold, the

TEE produces the rate-proof, signed with its group private key. The client then sends this

to the server in lieu of solving a CAPTCHA.

TEE Design

To realize the conceptual design above, the client’s TEE would ideally store all timestamps

indefinitely in integrity-protected and rollback-protected memory. However, as discussed

above, current TEEs fall short of this idealized representation, since they have limited

integrity-protected memory and a limited number of hardware counters for rollback pro-

tection. To overcome this challenge, we store all data outside the TEE, e.g., in a standard

database. To prevent dishonest clients from modifying this data, we use a combination of

hash chains and Merkle Hash Trees (MHTs) to achieve integrity and rollback-protection.

58

Hash chains of timestamps. To protect integrity of stored timestamps, we compute a

hash chain over each list of timestamps, as shown in Figure 3.4. Thus the TEE only needs to

provide integrity and rollback-protected storage for the most recent hash in each hash chain.

For efficiency, we store intermediate value of the hash chain along with each timestamp

outside the TEE.

MHT of lists. Although it would be possible for the TEE to seal the most recent hash

of each list individually, the lists may be updated independently, so the TEE would need

separate hardware monotonic counters to provide rollback protection for each list. In a real-

world deployment, the number of lists is likely to exceed the number of available hardware

counters, e.g., 256 counters per enclave in SGX. To overcome this challenge, we combine

the lists into a Merkle Hash Tree (MHT). As shown in Figure 3.5, each leaf of the MHT

is a hash of the list information (list name and public key) and the most recent hash in

the list’s hash chain. With this arrangement, the TEE only needs to provide integrity and

rollback-protected storage for the MHT root R, which can be achieved using sealing and a

single hardware monotonic counter.

Producing a Rate-Proof

The TEE first needs to verify the integrity of its externally-stored data structures (i.e., hash

chains and MHT described above), and if successful, update these with the new timestamp

and produce the rate-proof, as follows:

1. TEE inputs. The client supplies its TEE with the list information and all timestamps

in the list that are greater than or equal to the server-defined start time ts. The client

also supplies the largest timestamp that is smaller than ts, which we denote ts−δ, and the

intermediate value of the hash chain up to, but not including, ts−δ. The client supplies the

sealed MHT root and intermediate hashes required to verify that the list is in the MHT.

59

𝐻0
𝑖 = 𝐻(𝑡0

𝑖)

𝑡1
𝑖 𝑡𝑛+1

𝑖

𝐻𝑛+1
𝑖 = 𝐻(𝐻𝑛

𝑖 , 𝑡𝑛+1
𝑖)

…

…

𝑡0
𝑖

𝐻1
𝑖 = 𝐻(𝐻0

𝑖 , 𝑡1
𝑖)

Figure 3.4: Hash chain of timestamps tij for list i. H() is a cryptographic hash function.

𝑀𝑎 = 𝐻(𝐿𝑎, 𝐻𝑛+1
𝑎)

𝑀𝑒 = 𝐻(𝑀𝑎, 𝑀𝑏)

𝑀𝑏 = 𝐻(𝐿𝑏, 𝐻𝑛+1
𝑏) 𝑀𝑐 = 𝐻(𝐿𝑐, 𝐻𝑛+1

𝑐) 𝑀𝑑 =
⋯

𝑀𝑓 = 𝐻(𝑀𝑐, 𝑀𝑑)

𝑅 = 𝐻(𝑀𝑒, 𝑀𝑓)

Figure 3.5: Merkle Hash Tree over lists a...d. Each leaf is a hash of the list information Li

(list name and public key) and the most recent hash of the list’s hash chain H i
n+1. H() is a

cryptographic hash function, R is the root of the MHT, and the nodes in blue illustrate the
inclusion proof path for list b.

2. Hash chain checks. The TEE first checks that ts−δ is smaller than ts and then

recomputes the hash chain over included timestamps in order to reach the most recent value.

During this process, it counts the number of included timestamps and checks that this is

less than the value k specified in the threshold. The inclusion of one timestamp outside the

requested range (ts−δ) ensures that the TEE has seen all timestamps within the range. This

process requires O(n) hashes, where n is the number of timestamps in the requested range.

3. MHT checks. The TEE then unseals the MHT root and uses the hardware counter

to verify that it is the latest version. The TEE then checks that the list information and

the calculated most recent hash value is indeed a leaf in the MHT. This process requires

O(log(s)) hashes, where s is the number of lists. Including the list name in the MHT leaf

ensures that the timestamps have not been substituted from another list. If the list has an

associated public key, the TEE uses this to verify the signature on the server’s request.

60

4. Starting a new list. If the rate-proof is requested over a new list (e.g., when the user

firsts visits a website), the TEE must also verify that the list name does not appear in any

MHT leaves. In this case, the client supplies the TEE with all list names and their most

recent hash values. The TEE reconstructs the full MHT and checks that the new list name

does not appear. This requires O(s) string comparisons and hashes for s lists.

5. Updating a list. If the above verification steps are successful, the TEE checks that

the new timestamp t supplied by the server exceeds the latest timestamp in the specified

list. If so, the TEE adds t to the list and updates the MHT to obtain a new MHT root.

The new root is sealed alongside the TEE’s group private key. The TEE then produces a

signed rate-proof, using its group private key. The rate-proof includes a hash of the original

request provided by the server, thus confirming that the TEE checked the rate and added

the server-supplied timestamp. The TEE returns the rate-proof to the client, along with

the new sealed MHT root for the client to store. In the above design, the whole process of

producing the rate-proof can be performed in a single call to the TEE, thus minimizing the

overhead of entering/exiting the TEE.

Reducing Client-Side Storage

The number of timestamps stored by CACTI grows as the client visits more websites. How-

ever, in most use-cases, it is unlikely that the server will request rate-proofs going back

beyond a certain point in time tP .

To reduce client-side storage requirements, we provide a mechanism to prune a client’s

timestamp list by merging all timestamps prior to tP . Specifically, the server can include

tP in any rate-proof request, and upon receiving this, the client’s TEE counts and records

how many timestamps are older than tP . The old timestamps and associated intermediate

hash values can then be deleted from the database. In other words, the system merges all

61

timestamps prior to tP into a single count value cP . The TEE stores tP and the count value

in the database outside the TEE and protects their integrity by including both values in the

list information that forms the MHT leaf. Pruning can be done repeatedly: when a new

pruning request is received for tP ′ > tP , CACTI fetches and verifies all timestamps up to tP ′

and adds these to cP to create cP ′ . It then replaces tP and cP with tP ′ and cP ′ respectively.

This pruning mechanism does not reduce security of CACTI. If the server does request a

rate-proof going back beyond tP , CACTI will include the full count of timestamps stored

alongside tP . This is always greater than or equal to the actual number of timestamps;

thus, there is no incentive for the server to abuse the pruning mechanism. Similarly, even

if a malicious client could trigger this pruning (i.e., assuming the list is not associated to

the server’s public key), there is no incentive to do so because it would never decrease the

number of timestamps included in rate-proofs.

Since the global list CACTI-GLOBAL is used by all websites, the client is always allowed

to prune this list to reduce storage requirements. CACTI blocks servers from pruning

CACTI-GLOBAL since this can be used as an attack vector to inflate the client rate by com-

pressing all rates into one value – thus preventing use of CACTI on websites that utilize

CACTI-GLOBAL. Thus, we expect pruning of CACTI-GLOBAL to be done automatically by the

CACTI host application or browser extension.

3.6 Implementation

We now describe the implementation of the CACTI design presented in the previous section.

We focus on proof-of-concept implementations of: client-side browser extension, native host

application, and CACTI TEE, as shown in Figure 3.6. Finally, we discuss how CACTI is

integrated into websites.

62

Web Browser

Content
Script

<div id=…>
Background

Script

Host Application

Intel SGX
Enclave

SQLite CACTI Extension resource.html

Figure 3.6: Overview of CACTI client-side components.

3.6.1 Browser Extension

The browser extension serves as a bridge between the web server and our host applica-

tion. We implemented a proof-of-concept browser extension for the Chrome browser (build

79.0.3945.130) [23]. Chrome extensions consist of two parts: a content script and a back-

ground script.

� Content script: scans the visited web page for an HTML div element with the id

CACTI-div. If the page contains this, the content script parses the parameters it

contains and sends them to the background script.

� Background script: we use Chrome Native Messaging to launch the host application

binary when the browser is started and maintain an open port [49] to the host appli-

cation until the browser is closed. The background script facilitates communication

between the content script and the host application.

User notification. The browser extension is also responsible for notifying the user about

63

requests to access CACTI. Notifications can include information, such as server’s domain

name, timestamp to be inserted, and threshold used to generate the rate-proof. By default,

the background script notifies the user whenever a server requests to use CACTI, and waits for

user confirmation before proceeding. This prevents malicious websites from abusing CACTI

by adding multiple timestamps without user permission (for possible attacks, see Section

3.7.1). However, asking for user confirmation for every request could cause UI fatigue.

Therefore, CACTI could allow the user to choose from the following options: (1) Always

ask (the default), (2) Ask only upon first visit to site, (3) Only ask for untrusted sites, (4)

Only ask for more than x requests per site per time period, and (5) Never ask. Advanced

users can also modify our extension or code their own extension to enforce arbitrary policies

for requesting user confirmation. The notification is displayed using Chrome’s Notification

API [15].

3.6.2 Host Application

The host application running on the client is responsible for: (1) creating the CACTI TEE,

which we implement as an SGX enclave, and exposing its ECALL API to the browser extension;

(2) storing (and forwarding) timestamps and additional integrity information for secure

calculation of rate-proofs (to the enclave); and (3) returning the enclave’s output to the

browser extension.

The host application is implemented in C and uses Chrome Native Messaging [40] to commu-

nicate with the browser extension. Since Chrome Native Messaging only supports commu-

nication with JSON objects, the host application uses a JSON parser to extract parameters

to the API calls. We used the JSMN JSON parser [34]. Moreover, the host application

implements the Chrome Native Messaging protocol [14] and communicates with the browser

extension using Standard I/O (stdio), since this is currently the only means to communicate

64

between browser extensions and native applications.

The host application stores information in an SQLite database. This database has two

tables: LISTS stores the list names and associated public keys, and TIMESTAMPS stores all

timestamps and intermediate values of the hash chains. For each rate-proof request, the host

application queries the database and provides the data to the enclave.

Since the timestamps are stored unencrypted, we use existing features of the SQLite database

to retrieve only the necessary range of timestamps for a given list. Note that since data in-

tegrity is maintained through other mechanisms (i.e., hash chains and MHT), the mechanism

used by the host application to store this data does not affect the security of the system.

Alternative implementations could use different database types and/or other data storage

approaches. Instead of hash chains and MHTs, it is possible to use a database managed by

the enclave, e.g., EnclaveDB [157]. However, this would increase the amount of code running

inside the enclave, thus bloating the trusted code base (TCB).

3.6.3 SGX Enclave

We implemented the TEE as an SGX enclave using the OpenEnclave SDK [45] v0.7.0. Ope-

nEnclave was selected since it aims to unify the programming model across different types of

TEEs. The process of requesting a rate-proof is implemented as a single get rate ECALL. For

timestamps, we use the UNIX time which denotes the number of seconds elapsed since the

UNIX Epoch (midnight 1/1/1970) and is represented as a 4-byte signed integer. We use cryp-

tographic functions from the mbed TLS library [37] included in OpenEnclave. Specifically,

we use SHA-256 for all hashes and ECDSA for all digital signatures. For EPID signatures,

we use Intel EPID SDK (v7.0.1) [18] with the performance-optimized version of Intel Inte-

grated Performance Primitives (IPP) Cryptography library [29]. We use a formally-verified

and platform-optimized MHT implementation from EverCrypt [158]. As an optimization, if

65

the MHT is sufficiently small, we can cache fully inside the enclave. When a request for a

rate-proof is received, the enclave recalculates the timestamp hash chain and then directly

compares the most recent value to the corresponding leaf in the cached MHT, as described

in Section 3.5.3.

OpenEnclave currently does not support SGX hardware monotonic counters, so we could not

include these in the proof-of-concept implementation. However, a production implementation

can easily include hardware counter functionality. Although our implementation uses SGX,

CACTI can be realized on any suitable TEE. For example, OpenEnclave is currently being

updated to support ARM TrustZone. When this version is released, we plan to port the

current implementation to TrustZone, with minimal expected modifications.

3.6.4 Website Integration

Integrating CACTI into a website involves two aspects: sending the rate-proof request to the

client, and verifying the response. The server generates the rate-proof request (see Section

3.5.3) and encodes it as data-* attributes in the CACTI-div HTML div. The server also

includes the URL to which the generated rate-proofs should be sent. The browser extension

determines whether the website supports CACTI by looking for the CACTI-div element.

The server implements an HTTP endpoint for receiving and verifying rate-proofs . If the

verification succeeds, this endpoint notifies the website and the user is granted access.

Integrating CACTI into a website is thus very similar to using existing CAPTCHA systems.

For example, reCAPTCHA adds the g-recaptcha HTML div to the page, and implements

various endpoints for receiving and verifying the responses [48]. We evaluate server-side over-

head of CACTI, in terms of both processing and data transfer requirements, in Section 3.7.

66

3.7 Evaluation

We now present and discuss the evaluation of CACTI. We start with a security analysis, based

on the threat model and requirements defined in Section 3.4. Next, we evaluate performance

of CACTI in terms of latency and bandwidth. Finally, we discuss CACTI deployability issues.

3.7.1 Security Evaluation

Data integrity & rollback attacks. Since timestamps are stored outside the enclave, a

malicious host application can try to modify this data, or roll it back to an earlier version. If

successful, this might trick the enclave into producing falsified rate-proofs. However, if any

timestamp is modified outside the enclave, this would be detected because the most recent

value of the hash chain would not match the corresponding MHT leaf. Assuming a suitable

collision-resistant cryptographic hash function, it is infeasible for the malicious host to find

alternative hash values matching the MHT root. Similarly, a rollback attack against the

MHT is detected by comparing the included counter with the hardware monotonic counter.

Timestamp omission attacks. A malicious application can try to provide the enclave

with only a subset of the timestamps for a given request, e.g., to pretend to be below the

threshold rate. Specifically, the host could try to omit one or more timestamps at the start,

in the middle, and/or at the end, of the range. If timestamps are omitted at the start, the

enclave detects this when it checks that the first timestamp supplied by the host is prior to

the start time of request ts. If timestamps are omitted in the middle (or at the end) of the

range, the most recent hash value will not match the value in the MHT leaf.

List substitution attacks. A malicious client might attempt to use a timestamp hash

chain from a different list, or claim that the requested list does not exist. The former is

prevented by including list information (list name and public key) in the MHT leaf. If there

67

is a mismatch between the name and the timestamp chain, the resulting leaf would not exist

in the MHT. For the latter, when the host calls the enclave’s get rate function for a new

list, the enclave checks the names of all lists in the MHT to ensure that the new list name

does not already exist.

TEE reset attacks. A malicious client might attempt to delete all stored data, including

the sealed MHT root, in order to reset the TEE. Since the group private key received from

the provisioning authority is sealed together with the MHT root, it is impossible to delete one

and not the other. Deleting the group private key would force the TEE to be re-provisioned

by the provisioning authority, which may apply its own rate-limiting policies on how often

a given client can be re-provisioned.

CACTI Farms. Similar to CAPTCHA farms, a multitude of devices with TEE capabilities

could be employed to satisfy rate thresholds set by servers. However, this would be infeasible

because: (1) CACTI enclaves would stop producing rate-proofs after reaching server thresh-

olds and would thus require a TEE reset and CACTI re-provisioning – which is a natural

rate limit; (2) the cost of purchasing a device would be significantly higher than CAPTCHA

solving costs. For example, currently the cheapest service charges $1.8 for solving 1, 000 re-

CAPTCHAs [5]3, while a low-end bare-bones CPU with SGX support alone costs ≈ $70 [31],

in addition to the maintenance and running costs.

CACTI Botnets. An adversary might try to build a CACTI botnet consisting of compromised

devices with suitable TEEs in order to bypass CAPTCHAs at scale, similarly to a CACTI

farm. However, if the compromised devices are not yet running CACTI, the adversary would

have to provision them using a suitable PA, which could be made arbitrarily costly and

time-consuming. Alternatively, if the compromised devices are already running CACTI, the

adversary gains little advantage because the legitimate users will likely have been using

CACTI to create their own rate-proofs. Furthermore, the legitimate user would probably

3See a comparison of CAPTCHA solving services [57]

68

notice any overuse/abuse of their system due to quickly exceeding the thresholds.

Client-side malware. A more subtle variant of the reset attack can occur if malware on

the client’s own system corrupts or deletes TEE data. This is a type of denial-of-service

(DoS) attack against the client. However, defending against such DoS attacks is beyond the

scope of this work, since this type of malware would have many other avenues for causing

DoS, e.g., deleting critical files.

Other DoS attacks. A malicious server might try to mount a DoS attack against an

unsuspecting client by inserting a timestamp for a future time. If successful, the client would

be unable to insert new timestamps and create rate-proofs for any other servers, since the

enclave would reject these timestamps as being in the past. This attack can be mitigated if

the client’s browser extension and/or host application simply check that the server-provided

timestamp is not in the future.

Client tracking. A malicious server (or group of servers) might attempt to track clients by

sending multiple requests for rate-proofs with different thresholds in order to learn the precise

number of timestamps stored by the client. A successful attack of this type could potentially

reduce the client’s anonymity set to only those clients with the same rate. However, this

attack is easy to detect by monitoring the thresholds sent by the server. A more complicated

attack targeting a specific client is to send an excessive number of successful rate-proof

requests in order to increase the client’s rate. The goal is to reduce the size of the target’s

anonymity set. This attack is also easy to detect or prevent by simply rate-limiting the

number of increments accepted from a particular server. Note that the window of opportunity

for this targeted attack is limited to a single session, because malicious servers cannot reliably

re-identify the user across multiple sessions (since this is what the attack is trying to achieve).

The above attacks cannot be improved even if multiple servers collude.

Rogue PAs. A malicious PA might try to compromise or diminish client privacy. However,

69

this is prevented by CACTI’s use of the EPID protocol [82]. Specifically, due to the BBS+

signature scheme [71] during EPID key issuance, clients’ private keys are never revealed to

PAs. Also, EPID’s signature-based revocation mechanism does not require member private

keys to be revealed. Instead, signers generate zero-knowledge proofs showing that they are

not on the revocation list. Therefore, client privacy does not depend on any PA business

practices, e.g., log deletion or identifier blinding.

Each website has full discretion to decide which PAs it trusts; if a server does not trust the

PA who issued the member private key to the TEE, it can simply fall back to CAPTCHAs.

This provides no advantage to attackers, and websites can be as conservative as they like. If

higher levels of assurance are required, PAs can execute within TEEs and provide attestation

of correct behavior; we defer the implementation of this optional feature to future work.

Overall, we claim that CACTI meets all security requirements defined in Section 3.4 and

significantly increases the adversary’s cost to perform DoS attacks. Specifically, the Un-

forgeability requirement is satisfied since it is impossible for the host to perform rollback,

timestamp exclusion and list substitution attacks. Client privacy is achieved because the

rate-proof does not reveal the actual number of timestamps included, and is signed using a

group signature scheme.

3.7.2 Latency Evaluation

We conducted all latency experiments on an Intel NUC Kit NUC7PJYH [30] with an Intel

Pentium Silver J5005 Processor (4M Cache, up to 2.80 GHz); 4 GB DDR4-2400 1.2V SO-

DIMM Memory; running Ubuntu 16.04 with the Linux 4.15.0-76-generic kernel Intel SGX

DCAP Linux 1.4 drivers.

Recall that the host application is responsible for initializing the enclave, fetching data

70

necessary for enclave functionality, performing ECALLs, and finally updating states according

to enclave output. Therefore, we consider the latency in the following four key phases in the

host application:

� Init-Enclave: Host retrieves the appropriate data from the database and calls init mt

ECALL that initializes the MHT within the enclave.4

� Pre-Enclave: Host retrieves the required hashes and timestamps from the database.

� In-Enclave: Host calls the get rate ECALL. This phase concludes when the ECALL

returns.

� Post-Enclave: Host updates/inserts the data it received from the enclave into the

database.

We investigated the latency impact by varying (1) the number of timestamps in the rate-proof

(Section 3.7.2), and (2) the number of lists in the database (Section 3.7.2). We evaluated

the end-to-end latency in Section 3.7.2. Unless otherwise specified, each measurement is the

average of 10 runs.

Note: The ECDSA and EPID signature operations are, by far, the dominant contributors to

latency. However, they represent a fixed latency overhead that does not vary with the number

of timestamps or servers. Therefore, for clarity’s sake, figures in the following sections do

not include these operations. We analyze them separately in Section 3.7.2.

Varying Number of Timestamps in Query

We measured the effect of varying the number of timestamps included in the query, while

holding the number of lists constant. As shown in Figure 3.7, query latency increases linearly

with the number of timestamps included in the query. The most notable increase is in the

in-enclave phase, since this involves calculating a longer hash chain. However, even with

4Init-Enclave is done only when the enclave starts.

71

10,000 timestamps in a query, the total latency only reaches ˜40 milliseconds (excluding

signature operations).

Varying Number of Lists

Next, we varied the number of lists while holding the number of timestamps fixed at one per

list. We considered two separate scenarios: adding a new list and updating an existing list.

Adding a new list. As shown in Figure 3.8, the latency for the pre-enclave phase is

lower compared to Figure 3.7. This is because we optimize the host to skip the expensive

TIMESTAMPS table look up operation if the host knows that this is a new list. The in-enclave

phase increases as the number of lists increases due to the string comparison operations

performed by the enclave to prevent list substitution attacks. However, this phase can be

optimized by sorting the server names inside the enclave during initial MHT construction.

The post-enclave latency is due to the cost of adding entries to the TIMESTAMPS table. Fig-

ure 3.8 assumes the enclave has already been initialized (see Figure 3.9 for the corresponding

init-enclave phase).

Updating an existing list. As shown in Figure 3.9, the latency of the init-enclave phase

increases as the number of lists increases. This is expected, since the enclave reconstructs

the MHT in this phase. The pre-enclave phase also increases slightly due to the database

operations.

Signature Operation Latency

Evaluation results presented thus far have not included the ECDSA signature verification or

EPID signature creation operations. Specifically, the server creates an ECDSA signature on

the request, which the enclave verifies. The enclave creates an EPID group signature on the

72

Table 3.1: End-to-End Latency of CACTI for different numbers of timestamps and lists. The
Browser column represents the latency of the browser extension marshalling data to and
from the host application. The other columns are as described above. Pre-, In- and Post-
are Enclave phases. Sign and Verify are ECDSA and EPID operations, respectively.

Sign Browser Pre- In- Post- Verify Total

10,000 times-
tamps in 1 list

6.3 ms 15.2 ms 7.7 ms 181.7 ms 1.0 ms 27.3 ms 239.2 ms

4,096 lists
with 1 times-
tamp each

6.3 ms 15.2 ms 1.8 ms 157.4 ms 2.0 ms 27.3 ms 210.0 ms

response, which the server verifies using the EPID group public key. The average latencies

over 10 measurements for these four signature operations are shown in Figure 3.10. We

can see that the EPID group signature generation operation is an order magnitude slower

compared to the other cryptographic operations including EPID group signature verification.

The latency of our enclave is thus dominated by the EPID signature generation operation.

End-to-End Latency

Table 3.1 shows the end-to-end latency (excluding network communication) from when the

server begins generating a request until it has received and verified the response from the

client. In both settings, the end-to-end latency is below 250 milliseconds. The latency

will be lower if there are fewer lists or included timestamps. Compared to other types of

CAPTCHAs, image-based CAPTCHAs take ˜10 seconds to solve [84] and behavior-based

reCAPTCHA takes ˜400 milliseconds, although this might change depending on the client’s

network latency.

73

Table 3.2: Additional data received and sent by the client for image-based and behavior-
based reCAPTCHA, compared with CACTI.

Received Sent Total

Image-based 140.05 kB 28.97 kB 169.02 kB
Behavior-based 54.38 kB 26.12 kB 80.50 kB
CACTI 0.82 kB 1.10 kB 1.92 kB

3.7.3 Bandwidth Evaluation

We measured the amount of additional data transferred over the network by different types of

CAPTCHA techniques. Minimizing data transfer is critical for both servers and clients. We

compared CACTI against image-based and behavior-based reCAPTCHA [47] (see Figure 3.1).

The former asks clients (one or more times) to find and mark certain objects in a given

image or images, whilst the latter requires clients to click a button. To isolate the data

used by reCAPTCHA, we hosted a webpage with the minimal auto-rendering reCAPTCHA

example [48]. We visited this webpage and recorded the traffic using the Chrome browser’s

debugging console.

Table 3.2 shows the additional data received and sent by the client to support each type

of CAPTCHA. Image-based reCAPTCHA incurs the highest bandwidth overhead since it

has to download images, often multiple times. Although not evaluated here, text-based

CAPTCHAs also use images and would thus have a similar bandwidth overhead. Behavior-

based reCAPTCHA downloads several client-side scripts. Both types of reCAPTCHA made

several additional connections to Google servers. Overall, CACTI achieves at least a 97%

reduction in client bandwidth overhead compared to contemporary reCAPTCHA solutions.

74

3.7.4 Server Load Evaluation

We analyzed the additional load imposed on the server by CACTI. Unfortunately, CAPTCHAs

offered as services, such as reCAPTCHA [47] and hCAPTCHA [24], do not disclose their

source code and we have no reliable way of estimating their server-side overhead. There-

fore, we compared CACTI against two open-source CAPTCHA projects published on GitHub

(both have more than 1,000 stars and been forked more than a hundred times):

dchest/captcha [46] (Figure 3.11a) generates image-based text recognition CAPTCHAs

consisting of transformed digits with noise in the form of parabolic lines and additional

clusters of points. It can also generate audio CAPTCHAs, which are pronunciations of

digits with randomized speed and pitch and randomly-generated background noise.

produck/svg-captcha [54] (Figure 3.11b) generates similar image-based text recognition

CAPTCHAs, as well as challenge-based CAPTCHAs consisting of simple algebraic opera-

tions on random integers. Noise is introduced by varying the text color and adding parabolic

lines.

Table 3.3 shows the time to generate different types of CAPTCHAs using the above libraries

with typical configuration parameters (e.g., eight characters for text CAPTCHAs). Since

CAPTCHA verification with these libraries is a simple string comparison, we assume this

is negligible. CACTI’s server-side processing is due almost entirely to the EPID signature

verification operation. We expect that this time could be improved by using more optimized

implementations of this cryptographic operation. Additionally, CACTI uses significantly less

communication bandwidth than other approaches, which also reduces the server load (which

is not captured in this measurement). Most importantly, the biggest gain of CACTI is on

the user side; saving more than ˜10 seconds per CAPTCHA for users.

75

Table 3.3: Server-side processing time for generating a CAPTCHA and verifying the re-
sponse.

Library Type Time

dchest/captcha
Audio 13.3 ms
Image-based text 1.7 ms

produck/svg-captcha
Image-based text 2.2 ms
Image-based math 1.4 ms

CACTI Rate-proof 33.6 ms

3.7.5 Deployability Analysis

We analyze deployability of CACTI by considering changes required from both the server’s

and client’s perspectives:

Server’s perspective. The server will have to make the following changes: (1) create and

maintain a new public/private key pair and obtain a certificate for the public key, (2) add

an additional div to pages for which they wish to enable CACTI, (3) create and sign requests

using the private key, and (4) add an HTTP endpoint to receive and verify EPID signatures.

The server-side deployment could be further simplified by providing the request generation

and signature operations as an integrated library.

Client’s perspective. The client will have to make the following changes: (1) download

and install the CACTI native software, and (2) download and install the browser extension.

Although CACTI requires the client to have a suitable TEE, this is a realistic assumption

given the large and increasing deployed base of devices with e.g., ARM TrustZone or Intel

SGX TEEs.

76

3.8 Discussion

3.8.1 PA Considerations

As discussed in Section 3.5.3, CACTI’s use of a provisioning authority (PA) provides the basis

for client privacy. CACTI does not prescribe the PA’s policies. For example, the PA has the

choice of running the provisioning protocol (Figure 3.2) as a one-off operation (e.g., when

installing CACTI) or on a regular basis, depending on its risk appetite. If there are attacks

or exploits threatening the Intel SGX ecosystem (and consequently the security of group

private keys), the PA can revoke all group member keys. This would force all enclaves in the

group to re-register with the PA. A similar scenario applies if key-rotation is implemented

on the PA, e.g., the master secret held by the PA is rotated periodically. This forces all

enclaves to regularly contact the PA to obtain new group member keys. Frequent key-

rotation introduces a heavier burden on the clients (although this can be automated), but

provides better security.

3.8.2 EPID

Even though CACTI uses EPID group signatures to protect client privacy, CACTI is agnostic

to the choice of the underlying signature scheme as long as it provides signer unlinkability

and anonymity. We also considered other schemes, such as Direct Anonymous Attestation

(DAA) [80], as used in the Trusted Platform Module (TPM). However, DAA is susceptible

to various attacks [136, 159, 81] and, due to its design targeting low-end devices, suffers from

performance problems. In contrast, EPID is used in current Intel SGX remote attestation

and is thus a good fit for enclaves. Moreover, as mentioned in the previous section, the

PA must revoke group member keys in the event of a compromise. EPID offers privacy-

preserving signature-based revocation, wherein the issuer can revoke any key using only a

77

signature generated by that key. Signature verifiers use signature revocation lists published

by issuers to check whether the group member keys are revoked. Using this mechanism,

CACTI provides PAs with revocation capabilities without allowing them to link keys to

individual users. PAs can define their own revocation policies to maximize their reputation

and trustworthiness.

3.8.3 Optimizations

Database Optimizations

As with most modern database management systems, SQLite supports creating indexes

in database tables to reduce query times. Also, as discussed in Section 3.7, placing all

timestamps for all servers in one table and conducting JOIN operations incurs performance

overhead. An alternative is to use a separate table per list. However, we presented CACTI

evaluation results without creating any indexes or separate timestamp tables in order to

show the worst-case performance. Performance optimizations, such as changing the database

layout, can be easily made by third parties, since they do not affect the security of CACTI.

System-level Optimizations

As a system-level optimization, CACTI can perform some processing steps in the background

while waiting for the user to confirm the action. For example, while the browser extension

is displaying the notification and waiting for user approval, the request can already be sent

to the enclave to begin processing (e.g., loading and verifying the hash chain of timestamps

and the MHT). The enclave creates the signed rate-proof but does not release it or update

the hash chain until the user approves the action. This optimization reduces user-perceived

latency to that of client-side post-enclave and server-side EPID verification processes, which

78

is less than 14% of the end-to-end latency reported in Section 3.7.2.

Optimizing Pruning

Although it is possible to create another ECALL for pruning, this might incur additional

enclave entry/exit overhead (see Section 3.5.2). Instead, pruning can be implemented within

the get rate ECALL. Since get rate already updates the hash chain and MHT, the pruning

can be performed at the same time, thus eliminating the need for an additional ECALL and

hash chain and MHT update.

3.8.4 Deploying CACTI

Integration with CDNs and 3rd Party Providers

Although CACTI aims to reduce developer effort by choosing well-known primitives (e.g.,

SQLite and EPID), we do not expect all server operators to be experienced in implementing

CACTI components. The server-side components of CACTI can be provided by Content

Delivery Networks (CDNs) or other independent providers.

CDNs are widely used to reduce latency by serving web content to clients on behalf of the

server operator. CDNs have already recognized the opportunity to provide abuse prevention

services to their customers. For example, Cloudflare offers CAPTCHAs as a free rate-limiting

service [16] to its customers [39]. CACTI could easily be adapted for use by CDNs, which

would bring usability benefits across all websites served by the CDN.

In addition, independent CACTI providers could offer rate-proof services that are easy to inte-

grate into websites – similar to how CAPTCHAs are currently offered by reCAPTCHA [47] or

hCAPTCHA [24]. These services would implement the endpoints described in Section 3.6.4

79

and could be integrated into websites with minimal effort.

Website Operator Incentives

There are several incentives for website operators to support CACTI. Firstly, in terms of

usability, CACTI can drastically improve user experience by allowing legitimate users to

avoid having to solve CAPTCHAs. Secondly, in terms of privacy, some concerns have been

raised about existing CAPTCHA services [39]. By design, CACTI rate-proofs cannot be

linked to specific users or to other rate-proofs created by the same user. Thirdly, in terms

of bandwidth usage, CACTI requires an order of magnitude less data transfer than other

CAPTCHA systems.

User demand for privacy-preserving solutions that reduce the amount of time spent solving

CAPTCHAs has led Cloudflare to offer Privacy Pass [96], a system designed to reduce

the number of CAPTCHAs presented to legitimate users, especially while using VPNs or

anonymity networks [59].

PA Operator Incentives

In CACTI, PAs are only involved when provisioning credentials to CACTI enclaves (i.e.,

not when the client produces a rate-proof). This is a relatively lightweight workload from a

computational perspective. PAs could be run by various different organizations with different

incentives, for example:

1. TEE hardware vendors wanting to increase the desirability of their hardware;

2. Online identity providers (e.g., Google, Facebook, Microsoft) who already provide fed-

erated login services;

3. For-profit businesses that charge fees and provide e.g., a higher level of assurance;

80

4. Non-profit organizations, similarly to the Let’s Encrypt Certificate Authority service.

CACTI users can, and are encouraged to, register with multiple PAs and randomly select

which private key to use for generating each rate-proof. This allows new PAs to join the

CACTI ecosystem and ensures that clients have maximum choice of PA without the risk of

vendor lock-in.

Client-side components

On the client-side, CACTI could be integrated into web browsers, and would thus work “out

of the box” on platforms with a suitable TEE.

3.9 Related Work

Related work for rate limiting lies in the intersection of multiple fields of research, including

DoS (or Distributed DoS (DDoS)) protection, human presence, and CAPTCHA improve-

ments and alternatives. In this section, we discuss related work in each of these fields.

Network layer defenses. The main purpose of network layer DoS/DDoS protection mech-

anisms is to detect malicious network flows targeting the availability of the system. This

is done by using filtering [139] or rate-limiting [90] (or a combination thereof) according

to certain characteristics of a flow. We refer the reader to [155] for an in-depth survey of

network-level defenses. Moreover, additional countermeasures can be employed depending

on the properties of the system under attack (e.g., sensor-based networks [151], peer-to-peer

networks [156] and virtual ad-hoc networks [132]).

Application layer defenses. Application layer measures for DoS/DDoS protection focus

on separating human-originated traffic from bot-originated traffic. To this end, problems

81

that are hard to solve by computers and (somewhat) easy to solve by humans comprise

the basis of application layer solutions. Although developing more efficient CAPTCHAs is

an active area of research [123, 171, 161, 95], research aiming to subvert CAPTCHAs is

also prevalent [145, 174, 121, 119]. In addition to such automated attacks, CAPTCHAs

suffer from inconsistency when solved by humans (e.g., perfect agreement when solved by

three humans are 71% and 31% for image and audio CAPTCHAs, respectively [84]). [146]

suggests that although CAPTCHAs succeed at telling humans and computers apart, by using

CAPTCHA-solving services (operated by humans), with an acceptable cost, CAPTCHAs

can be defeated. Moreover, apart from questions regarding their efficacy, one other concern

about CAPTCHAs is their usability. Studies such as [117, 84] show that CAPTCHAs are

not only difficult but also time-consuming for humans, with completion time of ≈10 seconds

on average. While behavioral CAPTCHAs are available, they suffer from privacy issues.

A prevalent example, reCAPTCHA [47], works by analyzing user behavioral data (which

requires sharing this data with the CAPTCHA provider) and claims to work more efficiently

if used on multiple pages.

Human presence detection. Human presence refers to determining whether specific

actions were performed by a human. VButton [138] proposes a system design based on

ARM’s TrustZone [66]. Secure detection of human presence is achieved by setting the display

and the touch input peripherals as secure peripherals which can only be controlled by the

TEE while VButton UI is displayed. With a secure I/O mechanism in place, user actions can

be authenticated to originate from VButton UI by a remote server using software attestation.

Similarly, Not-a-Bot [124] designs a system based on TPMs by tagging each network request

with an attestation assuring that the request has been performed not long after a keyboard

or mouse input by the user. Unfortunately, Intel SGX does not support secure I/O and it is

not currently possible to implement similar systems on devices with only Intel SGX support.

SGXIO [172] proposes an architecture for creating secure paths to I/O devices from enclaves

using a trusted stack which contains a hypervisor, I/O drivers and an enclave for trusted

82

boot. In addition, an untrusted VM hosts secure applications. The communication between

secure applications and drivers are encrypted using keys generated at the end of the local

attestation process. Unfortunately, the implementation of this system is not yet available.

Fidelius [104] protects user secrets from a compromised browser or OS by protecting the

path from the input and output peripherals to the hardware enclave. Similar to SGXIO,

this is a promising step towards general-purpose trusted UI.

Privacy Pass. Privacy Pass [96] implements a browser extension to reduce the burden of

CAPTCHAs for legitimate users when visiting websites served by Cloudflare. When a user

solves a CAPTCHA, Cloudflare sends the user multiple anonymous cryptographic tokens,

which the user can later “spend” to access Cloudflare-operated services without encountering

additional CAPTCHAs Although Privacy Pass significantly benefits benign users, it could

still be exploited by CAPTCHA farms. Additionally, Privacy Pass’ is currently limited to

Cloudflare users.

3.10 Conclusion

This chapter discussed CACTI, a novel approach for leveraging client-side TEEs to help legit-

imate clients avoid solving CAPTCHAs. The unforgeable yet privacy-preserving rate-proofs

generated by the TEE provide strong assurance that the client is not behaving abusively.

Our proof-of-concept implementation demonstrates that rate-proofs can be generated in less

than 0.25 seconds on commodity hardware, and that CACTI reduces data transfer by more

than 98% compared to existing CAPTCHA schemes.

83

10 100 1000 2000 5000 7500 10000
Number of Timestamps in Query

0

5

10

15

20

25

30

35

40

Q
u

e
ry

L
a
te

n
cy

in
H

o
st

A
p

p
[m

s]

Post-Enclave

In-Enclave

Pre-Enclave

Init-Enclave

Figure 3.7: Latency of initializing the enclave and creating a rate-proof
for different numbers of timestamps in the query (excluding signature
operations).

8 16 128 1024 2048 4096
Number of Existing Nodes in Merkle Tree

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Q
u

e
ry

L
a
te

n
cy

in
H

o
st

A
p

p
[m

s]

Post-Enclave

In-Enclave

Pre-Enclave

Figure 3.8: Latency of creating the first rate-proof in a new list for different
numbers of existing lists (excluding enclave initialization and signature
operations).

84

8 16 128 1024 2048 4096
Number of Existing Nodes in Merkle Tree

0

10

20

30

40

50

60

70

Q
u

e
ry

L
a
te

n
cy

in
H

o
st

A
p

p
[m

s]

Post-Enclave

In-Enclave

Pre-Enclave

Init-Enclave

Figure 3.9: Latency of initializing the enclave and updating an existing
list for different numbers of existing lists (excluding signature operations).

ECDSA-Sign ECDSA-Verify EPID-Sign EPID-Verify
Cryptographic Operation

0

20

40

60

80

100

120

L
a
te

n
cy

[m
s]

Figure 3.10: Microbenchmarks of signature operations. ECDSA signa-
tures were created and verified using the mbed TLS library [37] and EPID
signatures with the Intel EPID SDK [18].

85

(a) dchest/captcha image-based CAPTCHA [46].

(b) produck/svg-captcha image-based CAPTCHAs [54].

Figure 3.11: CAPTCHAs generated using open-source libraries.

86

Chapter 4

GDPR-/CCPA-compliant Verifiable

Accountless Consumer Requests

4.1 Introduction

Isolated code execution offered by TEEs prevents other software on the system from observ-

ing or interfering with the execution state of a program. Using remote attestation, one can

verify that the TEE (for ensuring TEE presence See [177]) is running the expected code and

create a secure channel to it. This channel can be used to provision various secrets to the

attested code. In this chapter we present the design of a proofs of data ownership framework

based on a minimal secret (a private key) – that can be kept in a TEE using the flow above.

Recent data protection regulations (such as GDPR (General Data Protection Regulation)

and CCPA (California Consumer Privacy Act)) grant consumers various rights, including

the right to access, modify or delete any personal information collected about them (and

retained) by a service provider. To exercise these rights, one must submit a verifiable con-

sumer request proving that collected data indeed pertains to them. This action is relatively

87

straightforward for consumers with active accounts with a service provider at the time of

data collection, since they can use standard (e.g., password-based) means of authentication

to validate their requests. However, a major conundrum arises from the need to support

consumers without accounts to exercise their rights. To this end, some service providers

began requiring these accountless consumers to reveal and prove their identities (e.g., using

government-issued documents, utility bills or credit card numbers) as part of issuing a veri-

fiable consumer request. While understandable as a short-term cure, this approach is, at the

same time, cumbersome and expensive for service providers as well as very privacy-invasive

for consumers.

Consequently, there is a strong need to provide better means of authenticating requests

from accountless consumers. To achieve this, we propose VICEROY, a privacy-preserving and

scalable framework for producing proofs of data ownership, which can be used as a basis

for verifiable consumer requests. Building upon existing web techniques and features (e.g.,

cookies), VICEROY allows accountless consumers to interact with service providers, and later

prove – in a privacy-preserving manner – that they are the same person, with minimal

requirements for both parties. We design and implement VICEROY with the emphasis on

security/privacy, deployability and usability. We also thoroughly assess its practicality via

extensive experiments.

4.2 Motivation & Contributions

Several new data protection regulations have been enacted in recent years, notably, the

European Union’s General Data Protection Regulation (GDPR) [153] and the California

Consumer Privacy Act (CCPA) [135]. These regulations grant various new legal rights to

consumers1. For example, consumers gain the rights to access personal data collected about

1We use the term consumer to refer to: (1) the GDPR term data subject, (2) the CCPA term consumer,
and (3) the equivalent terms in other regulations.

88

them and held by service providers (GDPR Art. 15, CCPA Sec. 1798.100), request correction

(GDPR Art. 16, CCPA Sec. 1798.106) or request deletion of their personal data (GDPR Art.

17, CCPA Sec. 1798.105).

Importantly, these regulations expand the definition of personal data beyond that associated

with a person’s real name. For example, GDPR Rec. 30 states that natural persons “may be

associated with online identifiers provided by their devices, applications, tools and protocols,

such as internet protocol addresses, cookie identifiers or other identifiers”. In the Web

context, this means that any website2 collecting information about consumers based on

identifiers such as IP addresses or cookies, may be collecting personal information, and thus

have to comply with these new regulations. In particular, a website must provide a means

by which consumers can access, request correction of, or request deletion of their personal

information.

When dealing with a request from a consumer, a website must verify that the requestor is

indeed the consumer to whom the personal information pertains. This is critical to prevent

erroneous disclosure (which would be a serious violation of any data protection regulation),

unauthorized modification, or deletion of personal information. In CCPA terminology, this

is called a “verifiable consumer request” (CCPA 1798.140(y)).3

For a consumer who has a pre-existing account on a given website, submitting a verifiable

consumer request (VCR) is relatively straight-forward. To wit, CCPA Sec. 1798.185 requires:

“treating a request submitted through a password-protected account maintained by the con-

sumer ... as a verifiable consumer request”. However, there remains a major challenge of

how to support a VCR from casual or accountless consumers, as required per CCPA Sec.

1798.185, while protecting such consumers’ privacy.

2As shorthand, we use the term website to represent the entity operating a website, which (we assume)
falls into the category of entities that the GDPR and CCPA call controller and business, respectively.

3These requests are sometimes also referred to as Subject Rights Request (SRR) or Subject Access Request
(SAR).

89

The only mechanisms used in practice that are suitable for accountless consumers are those

that require: a device cookie, a government-issued ID, a signed (and possibly witnessed)

statement, a utility bill, a credit card number, or taking part in a phone interview [154].

However, not only are these mechanisms cumbersome for consumers (thus deterring them

from exercising their rights), but insecure, as demonstrated by prior work [154, 86, 100, 77].

This is because these methods typically require manual processing, making them error-prone

and costly for businesses. Moreover, such methods (apart from device cookies) are privacy-

invasive for the consumer and potentially open the door for further consumer data exposure.

For example, a government-issued ID or utility bill reveals even more private information to

the business operating the website – and in case of a breach, to the world.

Reflecting such issues, CCPA’s preferred verification approach is for the business to match

information provided by the consumer (as part of a VCR) to the personal information about

the same consumer already collected by the business. The issue with this approach is that

the information used for verification may not be personal enough or just too vague for a

consumer to retain, as the VCR may be made months or even years later.

Therefore, from the aforementioned methods, device cookies seem to be a more natural fit

for the Web context. Cookies are already used pervasively to identify the consumer to the

website, and to link multiple sets of activities (sessions) by the same consumer. At first

glance, asking for device cookies as part of a VCR appears to meet the main requirements

of the GDPR and the CCPA: only the authorized consumer should be in possession of the

correct cookie (unforgeability requirement), and providing a cookie does not reveal additional

information to the business (privacy requirement). However, relying on device cookies as

authentication tokens for VCRs has (at least) two disadvantages:

First, cookies are used (i.e., sent over the network) whenever the consumer interacts with

the website. This immediately means that the adversary obtains any cookies sent over unen-

crypted connections (at any point in the cookie’s lifespan). Although secure communication

90

channels (e.g., TLS connections) can certainly help to mitigate this, any vulnerabilities in

the browser or website could expose the cookies.

Second, consumers must protect the cookies at rest on their devices, especially in the face

of client-side spyware or an adversary who temporarily gains access to their device. Se-

cure storage may become more challenging as the number of stored cookies increases (since

consumers should not delete cookies in case they subsequently need to make a VCR).

The MITRE ATT&CK framework lists several recent examples of techniques for stealing web

cookies [38]. Irrespective of how the adversary obtains the cookie, the consequences would

be equally severe, allowing the adversary to request, modify, or delete all the consumer’s

data.

Motivated by aforementioned issues, we construct VICEROY, a framework that allows account-

less consumers to request their data in a private manner, while allowing website operators

to efficiently and securely verify these requests.

VICEROY is based on one-to-one mapping of Web sessions with consumer-generated public

keys. More specifically, at session initiation, consumers generate a public key (a VCR key)

and supply it to the Web server. At a later time, to exercise their rights on data collected

during a session, consumers digitally sign their request using the private key corresponding

to the VCR key for the session.

To ensure consumer privacy, our key derivation mechanism uses unlinkable public keys de-

rived from a single master public key and only requires secure storage of a small secret (a

master private key), regardless of the number of consumer devices. This private key is only

accessed when generating VCRs and can be protected using existing secure key storage mech-

anisms, such as hardware-based key stores. VICEROY works with Web sessions out-of-the-box

and servers only need minimal changes in order to adopt it.

91

We view the contributions of this work as being two-fold:

� The design of VICEROY– a secure, scalable, and privacy-preserving VCR mechanism for

accountless consumers.

� A proof-of-concept implementation of VICEROY for web browsers, and a thorough eval-

uation of its security, performance, and deployability.

Organization. The remainder of the paper is structured as follows: Section 4.3 presents

background on the consumer rights granted by the GDPR/CCPA as well as the concept of

verifiable consumer requests (VCRs). Section 4.4 sets out our system and threat models and

defines the requirements for our system. Sections 4.5 and 4.6 respectively describe our design

and proof-of-concept implementation of VICEROY, and Section 4.7 presents our evaluation

methodology and results. We discuss various additional aspects of VICEROY in Section 4.8.

Section 4.9 discusses related work. Section 4.10 concludes the chapter and lists future work.

Code Availability. Anonymized source code for all VICEROY components is available at

[4].

4.3 GDPR/CCPA Background

This section overviews some preliminaries, including the scope of Personally Identifiable

Information and consumer rights under the GDPR and the CCPA.

4.3.1 Personally Identifiable Information (PII)

Both the GDPR and CCPA pertain to information that is both personal and personally

identifiable. The combination is often called Personally Identifiable Information4 or PII.

4The GDPR uses the term personal data and the CCPA uses personal information.

92

Information is personal if it relates to a person or household. It may include: contact

information, geolocation, applications and devices used, how an application is used, interests,

websites visited, consumer-generated content, identities of people with whom a consumer

communicated, content of communications, audio, video, and sensor data [130].

Information is personally identifiable if the person or household to which it relates is either

identified or identifiable. If information is paired with a name, telephone number (landline

or cell), email address, government-issued identifier, or home postal address, then it is con-

sidered to be personally identifiable [129]. If information is paired with an IP address, a

device identifier (e.g., an IMEI), or an advertising identifier, it is likely to be considered

as personally identifiable [129]. Information paired with an identifier created by a business

(e.g., a cookie) is personally identifiable if it can be combined with other information to

allow the consumer to whom it relates to be identified [129].

4.3.2 Rights of Access and Erasure

Both the GDPR and the CCPA require a business that collects PII to disclose, typically

in its privacy policy, the categories of PII collected, the purposes for collecting it, and the

categories of entities with whom that PII is shared [129].

� Both the GDPR and the CCPA give consumers the right to learn about and control

the information relating to them that a business has collected. Specifically, consumers

have the right to request access to the specific pieces of PII that the business has

collected (GDPR Art. 15; CCPA Sec. 1798.110(a)(5)).

� Both the GDPR and the CCPA give consumers the right to request that their incorrect

PII be corrected (GDPR Art. 16; CCPA Sec. 1798.106).

� Finally, both the GDPR and the CCPA give consumers the right to request that a

business delete their PII (GDPR Art. 17; CCPA Sec. 1798.105).

93

4.3.3 Verifiable Consumer Requests (VCRs)

The consumer’s rights to access, and request correction or deletion of, their PII are contingent

upon verification that the consumer is indeed the person to whom that PII relates. However,

the GDPR and CCPA differ in the requirements of methods of verification. Both regulations

require a business to use reasonable measures to verify the consumer’s identity (GDPR Rec.

64; CCPA Sec. 1798.140(ak)). If a consumer has a password-protected account with a

business, both require a business to treat requests submitted via that account as verified

(GDPR Rec. 57; CCPA Sec. 1798.185(a)(7)).

However, both regulations also recognize that PII is often collected about casual consumers,

who do not have password-protected accounts. In this case, they envision a consumer request

being verified by associating additional consumer-supplied information with PII that the

business previously collected about that consumer (CCPA Sec. 1798.130(a)(3)(B)(i)). The

CCPA further specifies that any information provided by the consumer in the request can

be used solely for the purposes of verification (CCPA Sec. 1798.130(a)(7)). However, if

a business has not linked PII to a consumer or a household, and cannot link it without

the acquisition of additional information, then neither the GDPR nor the CCPA require a

business to acquire additional information to verify a consumer request (GDPR Rec. 57;

CCPA Sec. 1798.145(j)(3)). Thus, some requests may be unverifiable.

The CCPA [120] recognizes that consumer verification is not absolutely certain. It establishes

two thresholds of certainty. The lower threshold, called reasonable degree of certainty, may

be satisfied by matching at least two pieces of information provided by the consumer (CCPA

Regs. §999.325(b)). The higher threshold, called reasonably high degree of certainty, may

be satisfied by matching at least three pieces of information provided by the consumer, and

obtaining a signed declaration from the consumer (CCPA Regs. §999.325(c)). However,

other means of verification may also satisfy these thresholds. Verification of the consumer

94

identity must always, at a minimum, meet the reasonable degree of certainty threshold (CCPA

Regs. §999.325(b,d)). Furthermore, requests to learn specific pieces of PII must meet the

reasonably high degree of certainty threshold (CCPA Regs. §999.325(c)). Finally, a consumer

may instead use a third-party verification service (CCPA Regs. §999.326).

The design of a verification method should balance the administrative burden on the con-

sumer (CCPA Sec. 1798.185(a)(7)) with the likelihood of unauthorized access and the risk

of harm (CCPA Regs. §999.323(b)(3)).

4.4 Threat Model and Requirements

Our system model assumes a typical Web environment with two types of principals: (1)

clients and (2) servers. Clients are consumers who access Internet services offered by servers.

Each client can own multiple devices and at least one of the client’s devices can be trusted to

store a secret, e.g., a private key. This trusted device could be a dedicated key storage device,

such as a YubiKey or other secure hardware wallet. All access to the secret is controlled

by the client. Physical and side-channel attacks against the trusted client device, although

possible, are beyond the scope of this chapter. We assume secure communication channels

between clients and servers, which can be realized using e.g., TLS. In Section 4.7.1, we also

evaluate the consequences if this assumption does not hold.

We consider the following three types of adversarial behavior:

� Malicious clients: Attempt to perform operations on data that are not theirs.

� Client-side malware: Attempts to perform unauthorized operations on client data.

We assume that the client’s trusted device is free of malware, but all other client devices

can potentially be infected.

� Honest-but-curious (HbC) servers: Attempt to identify clients who submit re-

95

quests, or to link multiple requests by the same client. Moreover, servers may decline

to respond to valid VCRs. Multiple servers might collude to link client requests and/or

to learn the client’s identity.

As usual, we assume all relevant cryptographic primitives are implemented and used correctly

and cannot be attacked via side-channels or any other weaknesses. Similarly, we assume

digital signatures can only be generated by the true owner of the private key.

Based on the above system model, we define the following requirements for VICEROY:

� Unforgeability: Only the client who originally interacted with the server can create

a VCR.

� Consumer Privacy: An honest-but-curious server (or a set of colluding servers)

should be unable to link a request to a specific client, or to link multiple requests to

the same client, unless that was already known to the server.

4.5 VICEROY Design & Challenges

This section discusses VICEROY’s goals, design features, and challenges encountered. Note

that we use the terms client and consumer interchangeably.

4.5.1 Design Motivation

One straight-forward mechanism to support VCRs from account-less consumers is to require

them to provide the same cookie(s) they were issued when visiting the server website. Indeed

this is one of the mechanisms that [154] encountered in their survey of how businesses respond

to access requests. The rationale is that only the consumer from whom the data was collected

should have access to the cookie, since the latter links consumer’s activity that constitutes

96

a session.

Such use of cookies has several advantages: First, it is privacy-preserving in that, when

making a request, the consumer does not reveal any further personal information that the

server didn’t already have. Furthermore, if the consumer submits multiple requests based on

different cookies, the server cannot link them.5 Second, this mechanism is easily deployable,

since cookies are supported by virtually every device that uses the Web.

However, as introduced in Section 4.2, there are also several significant disadvantages: First,

this method essentially makes cookies into symmetric authentication tokens – anyone with

a cookie can create VCRs. This is problematic because the cookies are used in all interac-

tions with the website, and several techniques for stealing such cookies have been demon-

strated [38]. Second, since consumers visit many different websites, they would have to

securely and reliably store a potentially large number of cookies. This differs from the usual

client-side cookie management, since cookies would be additionally valuable as a means to

issue VCRs. Also, if cookies are lost (e.g., due to disk failure), the consumer would be unable

to exercise their GDPR/CCPA rights. This underscores the importance of cookie storage

reliability. Furthermore, if the server for any reason also stores copies of the cookies, the

same security requirements apply. If these cookies were leaked in a server data breach, the

server would have to invalidate them in bulk, thus preventing legitimate consumers from

submitting VCRs, or risk the attackers requesting consumers’ personal data.

4.5.2 Conceptual Design

Motivated by the above challenges, we construct VICEROY to avoid the aforementioned draw-

backs. We now describe some key features of VICEROY.

Asymmetric tokens: One key feature of VICEROY is the use of asymmetric authentication

5Potential “fingerprinting” of the consumer’s browser or network interface notwithstanding.

97

tokens, inspired by techniques such as Origin-Bound Certificates [101] and token binding [56].

When interacting with a server, a client provides the public part of an asymmetric key-pair

– the VCR public key. The client fully controls its privacy as it can choose to use the same

public key, or generate a new one, when interacting with different servers, or engaging in

multiple sessions with the same server. (A privacy-minded client would generate and use a

unique key-pair for each session.)

The server associates the VCR public key with a particular session. Generally, a session is

any linkable set of interactions between a client6 and the server. Since the notion of a session

can vary widely between different types of servers, each server can define its own notion, thus

providing flexibility. For example, in the Web context, a session most likely corresponds to

an HTTP(S) session – managed using cookies since HTTP is stateless. To submit a VCR for a

session, the client signs the request using the corresponding VCR private key.

This approach addresses the first of the drawbacks of using cookies, since the private VCR

key is never sent over the network. The use of digital signatures also allows additional

information/parameters to be cryptographically bound to the request e.g., a request to

correct personal information could, in some cases, already include the corrected information.

However, attempting to replace existing Web cookies with client-generated public VCR keys

is infeasible from the deployment perspective, as it would require non-trivial modifications

to the way servers use cookies. Although many websites use cookies simply as identifiers

to track users, others utilize the full potential of cookies to store client state information.

For example, in a large-scale analysis of cookies in the wild, Gonzalez et al. [122] found

cookie values containing URLs, email addresses, timestamps, and even JSON objects. To

avoid changing the existing and ubiquitous cookie mechanism, we instead propose the use

of a cookie wrapper – a cryptographic binding between an existing server-generated session

identifier (such as a traditional cookie) and a client-generated public key.

6In Section 4.8 we show how to extend this to include devices operated by multiple clients – the so-called
“roommate problem”.

98

Cookie wrappers: The use of cookie wrappers is the second key feature of VICEROY. It

significantly improves deployability by allowing servers to add support for VICEROY without

modifying existing cookie management. Specifically, when a client connects to a server,

the server generates a session identifier, as usual. Independently, the client generates an

asymmetric VCR key-pair and sends the public key to the server, as mentioned above. To

bind these two items, the server generates a wrapper for the cookie, i.e., signs its cookie

along with the client-generated VCR public key, using its long-term signing key. The server

then sends this wrapper to the client for safe-keeping. To issue a VCR, the client signs the

request message (which includes the wrapper) using the VCR private key, and sends this to

the server. From the server’s perspective, the client’s valid signature on the request message

(including the wrapper, which, itself, includes the VCR public key) demonstrates that the

client’s VCR public key is indeed authorized to sign this request, i.e., makes the request

verifiable.

4.5.3 Design Challenges

We now discuss some challenges in implementing VICEROY.

Key Explosion: VICEROY avoids using a static public key per client, for privacy reasons,

to avoid linkability. A static public key would allow a server (or a set of colluding servers)

to link multiple sessions involving the same client. This linkage could take place at session

initiation time, i.e., when the client requests a wrapper, or when the client issues a VCR.

Also, if a client’s static public key is leaked, it becomes possible to track that client’s sessions

globally. However, requiring each client to have a distinct public/private key-pair per session

can cause a “key explosion” in which the client has to securely store many private keys.

Secure Key Management: VCR private keys for each session must be stored in a secure

environment, access controlled by the client. Leakage of these private keys would result in

99

easy impersonation of the client in terms of issuing VCRs, and subsequent ability to: learn,

modify, or delete, potentially sensitive session information.

Long-Term Storage: A VCR may be submitted long (possibly, years) after the corre-

sponding session ends. This requires state information for a potentially numerous sessions

(for each client) to be stored in a secure and highly available manner. Naturally, the amount

of state per session must be minimal.

Multiple Devices: Since VCRs are triggered by human action, seamlessness and ease-of-

use are important. In particular, it should be possible for a VCR to originate from any of

the client’s devices, albeit, the trusted device (which stores private keys) is still needed to

generate signed (verifiable) requests.

Broad Application Support: Many smartphone applications involve communication with

application-specific servers, which, similar to Web servers, collect consumer data. Such data

should also be accessible and manageable using VICEROY.

4.5.4 Realizing VICEROY Design

Based on the challenges raised in Section 4.5.3, we explain the key design choices in realizing

VICEROY.

Key generation

Servers often use client identifier cookies to gather analytics or to support other features,

such as shopping carts. Since the server can already link together all requests that use

the same cookie (i.e., a session), we do not need to generate VCR keys for each individual

request. Therefore, we choose to use per-session VCR keys.

100

To generate such keys, we use the concept of derivable asymmetric keys (e.g., the key deriva-

tion scheme used in Bitcoin Improvement Proposal (BIP) 32 [7]). Conceptually, this type of

key derivation scheme allows a chain of child public keys to be derived from a single parent

public key. Importantly, the derivation of public keys does not require access to the corre-

sponding parent private key. Furthermore, the corresponding child private keys can only be

derived from the parent/master private key. We denote the derivation path of a key in the

form a/b/c/..., where e.g., a/b is the bth child key of a, and a/b/c is the cth child key of

a/b.

This approach addresses two issues: First, it minimizes the public key storage requirements

of VICEROY – only the parent public key must be stored, whilst all other public keys can be

derived. When a new session is initiated, the parent public key, which we refer to as the

device public key, is used to generate a new child public key. This approach resolves the

key explosion issue. Second, using derivable public keys does not require the presence of

the private key for generating new child public keys. This is important for the security of

VICEROY, since the master private key can remain in secure storage on the client’s trusted

device, as explained in Section 4.5.4, thus resolving the secure key management issue.

Cookie and wrapper storage

Since clients may use multiple devices and change devices over time, it should be possible

for them to issue a VCR from any of their devices. To support this, we propose to use a

synced storage with high availability (e.g. the same type of mechanism used to synchronize

bookmarks and other browser settings between the client’s devices). (In Section 4.6, we take

a look into further details of an example of such storage.) One of the main benefits of our

design is that neither the cookies themselves nor the wrappers can be used to issue VCRs,

without a signature from the client’s private key. This means that the security requirements

for the storage of cookies and wrappers are minimal, and can this be safely outsourced to

101

third-party providers.

Private key storage

Preventing unauthorized access to the master private key is critical for achieving the security

requirements of VICEROY. Fortunately, our use of derivable asymmetric keys means that the

master private key is not used frequently – it is only needed to generate new device public

keys (e.g., when enrolling a new device) or to create VCRs (which is expected to be a

relatively infrequent operation). The only requirements are that the trusted device holding

the master private key must be able to derive child keys (as described in Section 4.5.4) and

create signatures.

By design, VICEROY gives clients significant flexibility in terms of how their private keys are

stored, in order to accommodate different levels of security. For example, at one end of the

spectrum, clients with low security requirements can simply store their private keys on any

device they trust (e.g., a phone or laptop). Clients with higher security requirements could

store their keys in hardware-backed keystores, such as the Android Keystore [3] or Apple

Secure Enclave [53], which are strongly tied to specific devices. On PCs, clients could make

use of hardware-enforced enclaves, such as Intel SGX [33], or technologies like Windows

Virtualization-base security (VBS) to protect the keys. At the top end of the spectrum,

clients with the highest security requirements could store their keys in secure hardware

digital wallets, such as those manufactured by YubiKey or Ledger [35]. These clients may

also enforce additional physical security controls, such as keeping the hardware wallet in

a locked safe until it is needed. Clients may also make additional back-up copies of their

master private keys to allow recovery if the trusted device is lost/stolen or fails.

102

Key Request

Device Key

(m/i)

DerivePubKey(m, i)

m

Trusted Consumer Device Consumer Device

Figure 4.1: VICEROY Device Setup. m is the master private key, i is a device ID number. m/i
represents the key derivation path.

Device provisioning

Consumers often own and use multiple devices. Since a VCR can emanate from any device, it

is important to support secure device provisioning. Device provisioning in VICEROY consists

of the following three phases:

Device Setup: A device is provisioned with a device-specific public key generated from

the master private key residing in secure storage on a trusted consumer device (as shown in

Figure 4.1).

Key Generation: When initiating a session with a server, a client generates a new VCR

key and sends it, along with the client id cookie information, to the server (See Figure

4.2). After receiving the VCR key, the server returns a wrapper attesting to the association

between the client id cookie and the VCR key. Note that we do not assume a global PKI,

so clients are free to generate keys as they wish. This also means that clients do not need

to prove ownership of the corresponding private keys, since these keys are not bound to any

real-world identities.

VCR Issuance: A client generates a VCR, which optionally includes additional metadata.

For example, a client requesting data can include a public key in a VCR that the server can

use it to encrypt the returned data. (More specifically, the server would public-key-encrypt

a fresh symmetric key which, in turn, would be used for bulk encryption of the data).

103

Trusted Consumer Device

Sign(DerivePrivateKey(m, i, j), CR)

m

VCR Key (m/i/j),

Cookie
Sign(VCR Key, Cookie)

Wrapper

m/i

DerivePublicKey(m/i, j)

…
Session

Consumer Request (CR), i, j

VCR VCR

Consumer Device Server

Figure 4.2: VICEROY Key Generation and VCR Issuance Flows. j is a session counter per-
device.

The request and metadata are signed with the appropriate VCR private key, as shown in

Figure 4.2. This step requires client’s consent to access secure storage on the trusted device.

Once received a VCR, the server verifies authenticity of the wrapper (i.e., verifies its own

signature on it) and verifies the client’s signature of the VCR using the public key from the

wrapper. If all these checks succeed, the server proceeds with the requested data operation.

Device Unprovisioning

Finally, it is important to consider the full lifecycle of a device, which may necessitate

unprovisioning, because either it has been lost/stolen, or it will be sold/recycled. For each

case, we separately consider the implications for a regular consumer device and a trusted

consumer device (i.e., the one containing the client’s private key).

Regular Device: Since these devices do not hold private VCR keys, the unprovisioning

process is very straight-forward. From a security perspective, the client only has to unlink

the old device from the respective trusted device to prevent any further VCR issuance. This

can be done from the trusted device, even if the old device has been lost/stolen. If the client

104

has not already done so, they may wish to back-up or transfer any cookies and wrappers

from the old device.

Trusted Device: The most difficult case is a loss, theft, or failure of a trusted client device.

From the availability perspective, the client should be able to recover the master private key

from a back-up. From a security perspective, the trusted device should have some type of

access control (e.g., using a PIN and/or a fingerprint) that would protect the private key

even from an adversary who has physical access to the device. If the trusted device is being

sold/recycled, the client should securely back-up or transfer the master private key to a new

trusted device using techniques such as Presence Attestation [178] or equivalent.

4.6 Implementation

We now describe the proof-of-concept implementation of VICEROY. It consists of a server, a

browser extension, and a native messaging application.

4.6.1 Server

Our server is a Node.js [43] based HTTP server (based on Express [19]) that is responsible

for managing client sessions and implementing the server-side handling of VCRs. The server

uses HTTP sessions and indexes collected data during a session using digital identifiers [64]

in the form of session cookies. For demonstration purposes, our server keeps collected data

in memory, though it can also be stored in a database or by a third-party (e.g., third-party

cookies are used). In our implementation we use ECDSA with curve secp256k1 [55] for

creating signatures, but any secure signature scheme could be used.

The flow starts with a client connecting to a server, e.g., to visit a web page. If this is the

105

client’s first visit, the server creates an HTTP cookie that includes a client id (uuid [44]). From

here on, all data collected by the server about this client is associated with the client’s unique

id.7 In response to the initial client request, the server notifies the client that it supports

VICEROY by returning VICEROY endpoints in the HTTP headers. These endpoints are:

� VICEROY Wrapper Request Endpoint: This server endpoint is responsible for issu-

ing wrappers to clients. The client sends the client id cookie set by the server during

the HTTP session, and a freshly-generated VCR public key. The server then generates

a wrapper that cryptographically binds these two pieces of information. The wrapper

is essentially the server’s commitment that it will accept a signature produced by the

corresponding VCR private key as verification for consumer requests pertaining to the

data associated with that client id.

� VICEROY VCR Endpoint: This server endpoint is responsible for receiving and

verifying consumer requests. Specifically, it receives from the client a wrapper and a

signed VCR. The server verifies its own signature on the wrapper and then uses the

VCR public key from the wrapper to verify the VCR. Depending on the requested

action, the server may return, modify or delete consumer data. To support these

actions, the consumer request may include metadata corresponding to the requested

action. For instance, for data access requests, metadata may include an encryption

key to be used by the server to encrypt data sent to the client.

4.6.2 Browser Extension

The VICEROY browser extension is a Google Chrome extension, residing on the client device.

This extension manages VCR public keys, implements the client-side aspects of the VCR flow,

and includes a client-facing interface for controlling this flow. It also handles communication

7VICEROY can also use any existing client identifier cookie scheme – such as Google Analytics’ ga and
gid cookies [22].

106

between the browser and the trusted device (or application) that holds the master private

key.

To realize derivable asymmetric keys in our prototype, we use a mechanism proposed for

hierarchical deterministic wallets, commonly known as Bitcoin Improvement Proposal 32 [7],

or BIP32. In BIP32, we have the notion of an extended key, which has 256 bits of entropy

(called chain code) added to a normal public/private key. Extended keys can be used to

derive one or more child keys, following the rule that private keys can be used to derive

private or public keys, whereas public keys can only derive public keys.8

The browser extension has two parts: a background script and a pop-up script, both written

in JavaScript, with additional HTML and CSS for the pop-up. If there is no JavaScript

version of a library available for the browser (e.g., crypto, BIP32), we use Browserify [12]

to convert Node.js libraries into JavaScript files that can be loaded by the browser.

Background Script

The background script contains the majority of our client-side functionality. It uses the

browser’s API (chrome.webRequest.onHeadersReceived) to scan HTTP response headers

to detect which servers support VICEROY. If present, it parses the VICEROY wrapper request

and VCR endpoints, along with the client id cookie, from the headers.

Using the device public key, it derives a session-specific VCR public key via BIP32 [8]. The

derivation path of a VCR public key is in the form m/i/j, where m denotes the master private

key, i the device ID, and j the total number of sessions created on the device. In other words,

m/i represents the device public key and m/i/j represents the child public key for the jth

session. After deriving a VCR public key, the background script sends a POST request to the

8BIP32 also has the notion of hardened vs. non-hardened keys, but in this work we only use non-hardened
keys.

107

VCR wrapper request endpoint along with client id cookie set during the HTTP session.

The background script then stores the server-returned wrapper along with the key derivation

path. Since we generate a new wrapper for each session, the number of stored wrappers may

become quite large depending on how many new sessions the client establishes (although

note that the number of wrappers is less than or equal to the number of cookies the client

must store, so this is not infeasible). To improve the efficiency of searching for a particular

client id cookie, we use a hashmap of client id cookies and their corresponding wrapper info.

We also store the URL of the website and the time of the visit alongside the wrapper to assist

clients in selecting the session for which they wish to create a VCR.

The background script can store this data using any available storage service. For example, to

commit this data to the local device, we used the local storage API (chrome.storage.local).

However, other storage services could also be used, such as Google Chrome’s synced stor-

age API (chrome.storage.sync) which would allow clients to synchronize VICEROY data

between different devices.9

Note that all the above operations are performed asynchronously in the background, so the

client does not observe any additional latency in loading the page.

Pop-up

An extension pop-up is a small web page that appears when the client clicks on the extension

icon next to the URL bar. As shown in Figures 4.3 and 4.4, the pop-up displays session

information for a VCR key along with the history of web links visited when the session was

active. It also displays the types of VCRs (access, modify and delete) that the client can

submit.

9Although we experimented with this option, we found that Chrome synced storage currently imposes a
limit on the amount of data that can be stored at any given time.

108

Figure 4.3: VICEROY browser extension pop-up displaying multiple sessions with localhost
(127.0.0.1). The SID is first few bytes of the VCR public key.

109

Figure 4.4: VICEROY browser extension pop-up displaying the history of visits in each session.
Clients can select which session and which type of VCR (ACCESS/MODIFY/DELETE) they wish
to generate.

To issue a VCR, the client first chooses the session(s) and the type of request. Depending on

that choice, the pop-up script prepares a VCR for signing. The resulting VCR is then passed

to the native application (see Section 4.6.3) for signing. Once the request is signed using the

corresponding VCR private key, it is retrieved by the pop-up (using the background script),

and the VCR is sent to the server’s VCR token verification endpoint. Finally, the server’s

response is displayed in the client’s browser.

4.6.3 Native Messaging Application

To simulate a client-controlled trusted device, we created a Node.js [43] application that

holds the master private key. Much alike the trusted device, this application signs VCRs

received from the background script using private keys derived from the master private key

with the provided key derivation path (e.g., m/0/1). Communication between this applica-

110

tion and the browser is done via the Chrome native messaging protocol [42]. We use the

native-messaging package [41] to support both Firefox and Chrome. As explained in Sec-

tion 4.5.4, the key storage mechanism must support derivable asymmetric key operations

(e.g., using BIP32). There already exist multiple implementations of BIP32 in different lan-

guages (e.g., JavaScript [8], Golang [9], Python [11], Java [10] and C [25]), which can be

used.

4.7 Evaluation

This section presents the evaluation of VICEROY. We start with the security analysis of

VICEROY and show how it satisfies requirements in Section 4.4. Next, we analyze the perfor-

mance of the client and server-side components in terms of latency, bandwidth, and storage

requirements. Finally, we discuss the deployability aspects of VICEROY.

4.7.1 Security Analysis

Consumer Impersonation Attacks: VICEROY relies on public-private key-pairs associated

to sessions. An attacker that attempts to impersonate the client and obtain data for a given

session needs access to the corresponding VCR private key for that session. This is difficult,

as VICEROY requires a trusted consumer device to store the master private key for BIP32 and

access to this device is strictly controlled by the consumer. Moreover, the private key never

leaves the trusted device and all VCR generation takes place within that device, further

preventing attacker from obtaining VCR private keys.

Replay Attacks: This attack can occur when an adversary obtains (by eavesdropping or

other means) a genuine VCR and later replays it to the server. The replayed VCR is verifiable

by the server since it was originally generated by the actual client. There are several intuitive

111

ways to mitigate replay attacks:

1. In principle, the server could reliably detect all replays if it were to keep record of all

old (already processed) VCRs. However, for obvious reasons, this is not an attractive

option.

2. The client can include a timestamp in the VCR. The server then would only accepts a

VCR if it is fresh, i.e., VCR timestamp and server’s current time are reasonably close.

To be practical, this approach requires (at least loosely) synchronized clocks and the

server should accept VCRs with certain (configurable) tolerance.

3. Another alternative is a challenge-response protocol where the server issues the chal-

lenge. However, this requires the server to keep state of the challenge until it receives

the response from the client.

(1) is unworkable due to storage requirements, and in (3), the server’s state can be easily

abused via DoS/DDoS attacks similar to TCP SYN flooding, though the well-known cookie-

based countermeasure10 might be applicable here. Additionally, application level solutions

such as CAPTCHAs [168] or rate-limiting mechanisms (e.g., [147]) could supplement this

mechanism. This leaves (2), i.e., timestamps and loosely synchronized clocks. However,

within the tolerance period (maximum clock skew) replays are still possible. One natural

and effective way to plug this “hole” is to require the server to keep a cache of recent VCRs,

i.e., those that arrived within the tolerance period.

We note that the exact consequences of a successful replay attack depends on the VCR

type, i.e., access/modify/delete. For an access VCR, data confidentiality can be assured by

including the client’s data encryption public key in the request. Replaying a modify VCR

might override existing data if a VCR does not include both old and new values. Finally, a

replayed delete VCR has no real effect since the data to which it refers is presumably already

deleted.

10See: https://cr.yp.to/syncookies.html

112

Public Key Injection Attacks: Recall that per-session client identity is tied to the VCR

public key via the wrapper created by the server. An attacker may try to replace the client

VCR public key with their own public key during wrapper request. This can occur if there

is (1) an active network-level adversary, and/or (2) malware on client device. For the former,

if a different public key were injected during wrapper generation, the wrapper returned from

the server would include this public key. This attack can be thwarted by simply having the

VICEROY browser extension compare the public key it sent with the public key in the returned

wrapper. The latter is difficult to defend against. Since the malware has full control over the

client device, it can replace the client public key with its own during wrapper request. Even

if the consumer attempts to verify the wrapper using its own public key, the malware can

always replace that with its own. The only way to prevent this from happening is to verify

wrappers in a TEE such that malware cannot forge the verification result and to mimic a

secure channel by the server generating wrappers using keys recognizable by the TEE (e.g.,

via a PKI mechanism).

Key Leakage: An attacker could exploit BIP32 to learn private keys. One well-known

weakness of BIP32 is that knowledge of a parent extended public key as well as any non-

hardened child private key (descended from that parent public key) can leak the parent

extended private key. This would then ultimately leak the entire set of private keys generated

from the parent.

VICEROY mitigates this attack in the following way. Since the parent extended public key

is only exists within the client device, the adversary must first attack the client device and

obtain the parent extended public key, e.g., infect the client device with malware. However,

even if the adversary learns the parent extended public key, it cannot obtain the non-hardened

child private key, because such private keys are only generated during VCR issuance and

they do not leave the trusted device. Since we assume the trusted client device is free of

malware, the adversary has no means of obtaining such private key.

113

Consumer/Device/Request Linking Attacks: We consider three types of linkage: (1)

two or more VCRs, (2) VCRs to a device, and (3) VCR to a client. Since BIP32 guarantees

that derived/child public keys are unlinkable (to each other and to their parents), none of

these linkage attacks are possible. Of course, if the parent public key is leaked from the

client’s trusted device, (1) and (2) would no longer hold.

Metadata Leakage: This attack mainly applies to insecure client-server connections. If

an attacker eavesdrops on a VCR, certain metadata about the request can be inferred, e.g.,

VCR action and perhaps new values for MODIFY operations. This attack can be mitigated

by super-encrypting the entire VCR with the server’s long-term public key.

Insecure Communication channel: The lack of a secure communication channel might

expose client data to eavesdroppers, and allow replay and public key injection attacks in ad-

dition to metadata leakage. We discuss each of these attacks in detail in their corresponding

subsections and show how VICEROY prevents each of them.

Client-side malware: Recall that the main purpose of the malware is to conduct unautho-

rized operations on client data. This is possible either via (1) replay attacks or (2) generating

new VCRs. We discuss how VICEROY prevents (1) in Section 4.7.1. Since we assume that the

trusted client device is free from malware, VICEROY prevents (2) as well. This also highlights

one of the key differences between using asymmetric tokens and symmetric tokens for VCRs.

Using asymmetric tokens allow generation of one VCR per client authorization. In contrast,

symmetric tokens, even if they are encrypted and decrypted on demand with client’s ap-

proval, need to be in plaintext to be sent to the servers. The malware then can use these

exposed tokens to forge future VCRs.

In addition, using symmetric tokens allows malware to access data before its infection period,

thus launching a temporal attack. For example, assume the malware infects the client device

at time t. If symmetric tokens were used for data operations, the malware could use pre-

114

stored tokens to gain access to data prior to time t. Since we can prevent such attacks

with asymmetric tokens, VICEROY provides better security and privacy compared to existing

symmetric token based systems.

4.7.2 Latency Analysis

In the experiments, we used an Intel(R) NUC with an Intel(R) Core(TM) i5-7260U CPU @

2.20GHz quad-core chip and 32.0 GB RAM running Ubuntu 18.04 LTS. The version of the

Google Chrome browser we used was 91.0.4472.114 (Official Build) (64-bit).

We separated latency experiments into three parts: VICEROY wrapper flow, session history

update, and VCR flow. The results represent (unless otherwise stated) an average of 10

runs, with storage left as is between runs. For these experiments, all data is stored in local

storage and the measurements may change depending on the underlying storage technology

(e.g., storage on memory, hard-drives, or cloud-hosted databases).

Note that most of these latencies will not be visible to the user because they happen asyn-

chronously e.g., after a webpage has been loaded. We include these to provide an indication

of the computational cost of VICEROY. The only user-visible latency is the VCR flow, which

is expected to be an infrequent operation.

VICEROY Wrapper Flow Latency: Recall that VICEROY uses the regular flow of a HTTP

session initialization mechanism to receive wrappers. We divide this VICEROY wrapper flow

into four phases:

� Key Derivation: When an unknown client requests a connection, the server returns

VCR endpoints as discussed in Section 4.6. The client parses these endpoints and the

client identification cookie (if it exists) embedded in the headers, derives a VCR public

key, and prepares a wrapper request.

115

Table 4.1: Latency Results for VICEROY Wrappers.

Key
Derivation

Wrapper
Generation

Wrapper
Verification

Wrapper
Storage

VICEROY

Token Flow
24.6ms 0.4ms 18.8ms 6.5ms

� Wrapper Generation: The server generates a wrapper using the VCR public key pro-

vided by the client (and the client identification cookie).

� Wrapper Verification: After receiving the wrapper from the server, the client verifies

the wrapper using the server public key and confirms that the wrapper associates the

VCR public key and the client identification cookie.

� Wrapper Storage: The client saves the wrapper along with other data such as the VCR

public key derivation path and endpoints.

Table 4.1 shows how long each phases take. Wrapper Verification phase incurs the most cost

since it performs a signature verification. In addition, since Key Derivation and Wrapper

Verification phases run in the browser extension, they take longer compared to a standalone

application. This is apparent in how fast Wrapper Generation phase is even though it

includes a public key operation.

Session History Update Latency. VICEROY also has a history mechanism for all sessions

where HTTP requests can be associated with their respective sessions. This feature allows

clients to see which sites they have visited during a session. VICEROY implements this feature

using the request headers and the sent cookies. The cookies in the request headers are looked

up on a hash map and then associated with their corresponding sessions. With only one

cookie in the header, the matching takes 0.1ms whereas the history update and saving takes

5.5ms on average.

VCR Flow Latency. Lastly, we present the latency results of VCRs. This flow consists of

the following two steps:

116

Table 4.2: VCR Latency Results.

VCR
Generation

VCR
Verification

VCR Flow 14.7ms 0.9ms

� VCR Generation: When a client selects a session and a VCR type (ACCESS/MODIFY/DELETE),

the browser extension prepares a VCR to be signed by the trusted application – here,

a native messaging application as described in Section 4.6. This application which

holds the master private key for VCRs derives the VCR public key for the session us-

ing the key derivation path provided. It signs the overall request using the private key

corresponding to the derived public key. The signature is the returned to the extension.

� VCR Verification: The server receives the VCR and verifies the included wrapper. In

addition, it extracts the VCR public key for this session from the wrapper and verifies

the overall VCR using the VCR public key.

Table 4.2 shows various latency results. Similar to Table 4.1, it shows that a signature

generation operation done by the native messaging application takes longer, as compared

to a standalone server. This is due to data passing delay between popup and background

scripts, and running the native messaging protocol between the application and the browser.

Based on these results, the server’s cost to verify VCRs is minimal.

4.7.3 Bandwidth Analysis

We measured the amount of bandwidth used when obtaining wrappers and verifying VCRs

as well as client-side storage needed to store necessary information for VICEROY. For demon-

stration purposes, our server kept the visit history for each client in memory and these list

of visits were returned to the clients upon successful verification of the consumer request.

We used the same setting as the latency analysis for this evaluation. The Chrome debugging

console was used to record the communication between the browser and the server.

117

Table 4.3: Bandwidth Usage (HTTP header + payload).

Request Response Total

Obtain
Wrapper

0.72 kB
(0.62 + 0.10)

0.38 kB
(0.23 + 0.15)

1.10 kB

Verify
VCR

0.99 kB
(0.68 + 0.31)

0.28 kB
(0.23 + 0.05)

1.27 kB

In this evaluation, the client first sends an HTTP GET request to the server at the session start.

After receiving the VCR endpoints and the client identification cookie, a POST request is sent

to the wrapper request endpoint. To simulate a consumer sending a VCR, we generated and

sent a VCR to the server with type ACCESS and the client received the stored data at the

server – a visit history with a single entry. This request included the wrapper, VCR public

key and the signature over the request using the corresponding VCR private key.

Table 4.3 shows the results for our bandwidth evaluation. Numbers represent HTTP header

and payload sizes that were transmitted between the client and the server. We used JSON

objects as payloads. We optimized these objects by substituting long key names in JSON

key-value pairs with single letter characters. For instance, instead of {"vcr key": ...},

we used {"v": ...}. Compared to the unoptimized format, bandwidth consumption was

reduced by 16% and 14% respectively for HTTP requests and responses when obtaining a

wrapper. The reduction for HTTP requests during the VCR ACCESS request was 14%. For

the wrapper flow, VICEROY introduced only an additional 1.10 kB in total – which is a small

price to pay considering deployability gains.

4.7.4 Storage Analysis

For the client-side data storage evaluation, we used the chrome.storage.sync.getBytesUsed

function to obtain the approximate used storage size. Similar to the bandwidth evaluation,

we the storage for both unoptimized and optimized JSON, using the same optimization tech-

nique as in the bandwidth evaluation. Additionally, we reduced the space needed to represent

118

Table 4.4: Client-side Storage Measurement.

Baseline (0 history) 100 histories

Unoptimized 0.46 kB 10.70 kB

Optimized 0.38 kB 5.06 kB

Improvement 17% 53%

the date as well as the URL in the history section (refer to Section 4.6.2). The date was repre-

sented using the UNIX standard and the only the URL path was stored in the history section.

Table 4.4 shows the results of client storage measurements. The measurement for the Base-

line storage requirements included server endpoints, VCR and server public keys and other

metadata that would be used to issue VCRs – with no client visit histories. VICEROY only

needed 0.46 kB for this and we were able to reduce it to 0.38 kB using our JSON optimization,

an improvement of 17%.

Our second measurements included 100 visits to the same URL. This simulates the case

where a client frequently visits a certain webpage. If we use the unoptimized format, the

client is required to store more than 10 kB of data. However, we can reduce the storage size

by 53% by using the optimized format.

Overall, we can say that VICEROY only introduces a slight overhead in terms of communication

bandwidth and client-side storage.

4.7.5 Deployability Analysis

We analyze deployability of VICEROY from the perspective of both the server and client in

terms of required changes.

Server’s perspective. The required changes for the server side are the following: (1) Create

and maintain a public/private key pair for generating wrappers, and (2) Create and maintain

wrapper and VCR endpoints. Due to the wrapper design, the server is not required to change

119

how it assigns identifiers to clients and how it collects data. The integration of VICEROY to

existing servers can be further simplified by releasing VICEROY modules for popular server

frameworks (e.g., Node.js).

Client’s perspective. The client will have to make the following changes: (1) Download

and install VICEROY software to their trusted device that generates and manages master

public/private key pair, and (2) Download and install VICEROY browser extension to the

rest of their devices to request wrappers and send VCRs. These software can be manually

installed or installed via device-supported app stores.

4.8 Discussion

This section discusses several applicability issues of VICEROY.

4.8.1 Multi-Device Support

Given the proliferation of smartphones, computers, and various IoT gadgets into many

spheres of everyday life, we expect that most clients own multiple devices with varying

capabilities. VICEROY has been designed with this scenario in mind.

Firstly, the computational requirements of VICEROY can be met by any device that has the

capability to establish TLS connections. For example, a device that can complete a TLS

handshake is sufficiently powerful to verify the signature on a wrapper. Storage is not an issue

because wrappers can be stored anywhere, even on a 3rd party storage. Furthermore, devices

without display capabilities can still use VICEROY by requesting wrappers and committing

these to synced storage. Any other device, owned by the same client, with an appropriate

display can fetch these wrappers and perform data operations.

120

Secondly, the client does not need to generate a separate master private key per device – a

single private key on a trusted device can be used to derive any number of distinct device

public keys for use on the other devices. Once a device has been issued with its device public

key, it can derive VCR public keys for each session independently, using BIP32, without

needing to interact with the trusted device. Issuing a VCR does require use of the trusted

device in order to derive the signing key from the master private key, but we believe this

to be reasonable because this is a security-sensitive operation, which is performed relatively

infrequently.

Thirdly, in VICEROY, VCRs do not need to be issued from the same device that originally

interacted with the server. This is in contrast to other approaches that may use device

identifiers to authenticate requests. This is important because, as discussed in Section 4.5.4,

a device may need to be unprovisioned (e.g., due to loss, theft, failure, selling, or recycling),

but the client should still be able to issue VCRs for the interactions they made on that

device. This is possible in VICEROY if the client backed-up or transferred the relevant cookies

and wrappers from the old device.

4.8.2 Multi-VCR Support

Due to the use of unlinkable VCR public keys, VCRs cannot be linked to each other or to the

originating client. Although this benefits consumer privacy (one of the requirements defined

in Section 4.4), it also requires clients to generate and sign VCRs for each session. To reduce

this overhead, a client can amend its key derivation mechanism. For example, if a client

prefers to use only one VCR to refer to the combined collected data for all sessions with a

particular website, can use the derivation path m/i/s/j where m/i is the derivation path of

the device key as before, s is a server id and j is a server-specific (rather than global) session

counter. The client then collects all wrappers and generates a unified VCR by signing it

121

with the private key corresponding to the server VCR public key (m/i/s). This server key

is sent to the server. In turn, the server can derive VCR public keys for individual sessions

and verify all wrappers. For a new session with the same server, the client simply updates

the server id and repeats the process as needed.

4.8.3 Multi-Communication Protocol Support

So far, we focused on VICEROY being used over HTTP(S), since this is the most common way

to access Web services. However, VICEROY can support any stateless protocol by assigning a

unique identifier to each request and using that identifier when generating a wrapper. Thus,

as described in Section 4.8.1, VICEROY is also applicable to applications that do not use HTTP,

e.g., desktop or applications (other than Web browsers) that use other protocols to interact

with online servers. Such applications can use VICEROY wrappers to bind client-generated

public keys to any type of symmetric session identifier, and use the same protocol to issue

VCRs for data associated with that identifier.

4.8.4 Shared Devices, aka The Roommate Problem

Some client devices may be shared between multiple individuals, e.g., a smart TV shared by

members of a household. This results in the so-called “Roommate Problem”, where all data

collected from multiple individuals is lumped together. This poses a problem because it is

difficult to decide what data is associated to a specific individual. Although this is highly

situation-dependent, a general principle for submitting a VCR for shared data is that all

clients who use the device should somehow indicate their consent for the VCR.

With minimal modifications, VICEROY can provide a technical solution for this problem. One

simple and effective approach is as follows: During initial enrollment of a shared device into

122

a household with n members, each member derives a VCR public key as the device key from

each of their master secrets and provisions it to the device. (We assume that each member

has a distinct trusted client device). This way, instead of a single VCR key, the shared device

uses n VCR keys in the VCR flow. In other words, n keys are derived and included in the

wrappers and VCRs must be signed by the n corresponding private keys. The server verifies

all n signatures when it receives a request. This prevents one member from issuing a VCR

without the consent of all others.

4.8.5 3rd Party Storage

One distinctive feature of VICEROY, as opposed to simply using cookies, is that possession of

a wrapper alone is not sufficient to issue a VCR. This means that wrappers can be stored

by third parties and fetched only when needed, i.e., when generating a VCR. This relaxes

client-side storage requirements and creates a possible new business opportunity for (paid)

service providers that will manage wrappers on behalf of clients.

4.8.6 Broad Identifier Support

VICEROY wrappers are a general means of binding client identification cookies to client-

generated public keys. Importantly, this method is non-invasive and does not impose any

constraints on the cookie. This is useful if a server changes its identification method, e.g.,

changes what is included in its cookies. VICEROY can also support new identification methods

that may be developed in future.

123

4.8.7 Third-party Cookie Support

Third-party cookies are claimed to provide better, more personalized advertisements. Al-

though such cookies are commonly considered to be detrimental to privacy [143], they are

widely used. VICEROY can support third-party cookies by modifying the browser extension

to also capture traffic going to third parties. The modified extension would extract all third-

party cookies and store them alongside the first-party cookie. To obtain the wrapper, the

client can either: (1) send all cookies to the first-party server, which would then contact all

third-party servers and obtain wrappers for the client, or (2) visit the third-party wrapper

endpoints directly.

A related cookie type is one that is synced across multiple servers. This is a technique

commonly known as cookie syncing, ID syncing, or cookie matching [64, 88, 17, 167]. Instead

of placing multiple cookies on the client device, a set of servers associate the data they collect

under a unified identifier. VICEROY can support this type of cookie by having the client visit

wrapper endpoints of all involved third-parties, or by having the first-party server visit them

on the client’s behalf.

4.8.8 Further Privacy Considerations

Although VICEROY provides unlinkability by design, the nature of how VCRs are submitted

may point the servers in the direction of clients. For instance, by observing the metadata,

such as IP addresses, of different VCR requests, servers might try to link different VCR

requests to the same client. An obvious solution to this is to use anonymity networks (e.g.,

Tor [58]) and avoid sending VCR bouquets where multiple requests are submitted through

the same connection. One could also introduce random delays between VCRs to prevent

correlation based on timing.

124

For sessions, using above approaches will hinder performance. Therefore, sessions are likely

to include metadata which may lead the servers to link them. There is a one-to-one mapping

of a VCR public key and a session, thus revealing VCR keys to the servers might allow servers

to link VCRs as well. To prevent this, we consider two approaches.

First, for data access requests, cryptographic solutions such as Private Information Retrieval

(PIR) [91] can be used to hide the identity (i.e., VCR public key) of the data requested.

For modify and delete operations, the problem is challenging because, if the data are in

plaintext, servers could detect which piece of data has been updated/deleted. Furthermore,

PIR is likely to incur a high bandwidth burden since databases may include data from a

long period of time (e.g., 10 years) and they might need to be sent to the client.

An exciting approach to solve both these problems is to utilize Trusted Execution Environ-

ments (TEEs) on the server side. By means of remote attestation, after ensuring the expected

code is run on a server-side TEE, clients can create a secure channel to the TEE and send

their VCR keys. The TEE then can find the matching row in the database and return the

associated data from a memory database. Recent versions of Intel Software Guard Exten-

sions (SGX) [62] can support up to a terabyte of enclave memory, in which this database

can be stored. This TEE-secured database can be populated with data collected during a

secure connection between a client and a server, e.g., using techniques such as LibSEAL [72].

Furthermore, Intel SGX DCAP [32] allows attestation reports that can attest the origin of

the report (i.e., the server) rather than only attesting that the TEE is a genuine Intel SGX

device.

Server-side TEEs also allow servers to prove to clients how their data are used – also using

remote attestation. VCR responses can be generated with such guarantees, providing more

transparency and trust between clients and servers.

125

4.8.9 Further Applications

Although VICEROY focuses on VCRs from accountless clients, it can also supplement verifi-

cation of VCRs from account-holding clients. This can be useful, considering that passwords

suffer from dictionary attacks and are often re-used on multiple servers.

Furthermore, VICEROY can be used as a basis for scenarios that require client re-authentication.

For example, in the context of purchase transactions, receipts are currently used to prove

that a client bought something from a merchant (server) in order to accept returns or perform

exchanges. With VICEROY, a client can supply a fresh VCR public key during the purchase

transaction and later generate a proof of ownership of the corresponding private key, which

would confirm to the server that this is indeed the same customer. This design could allow

clients to anonymously conduct merchandise returns or exchanges.

4.9 Related Work

Security of GDPR Subject Access Requests. GDPR and CCPA grant subjects the

rights to request access to their personal data collected by businesses, by submitting a VCR

or Subject Access Request (SAR). Unfortunately, insecure (or easily circumventable) SAR

verification practices open the door to potential leakage of personal data to unauthorized

third parties. Prior work [86, 100, 154] has investigated various social engineering techniques

for bypassing existing SAR verification practices.

For example, [86] demonstrated that an unauthorized adversary can abuse the functionality

provided by a business to update a victim subject’s address (for both email and residential

addresses). The adversary could then request access to “their” data from this new address.

Out of 14 organizations tested, 10 gave out personal information and 7 of these contained

sensitive data.

126

[100] investigated the use of address spoofing techniques (e.g., using subject@protonmaı́l.com

to spoof the owner of subject@protonmail.com), as well as more sophisticated techniques

such as manipulation of identity card images. They found that 15 out of 41 organizations

with manual verification processes leaked personal data. The remaining 14 organizations

required an account-based login, which was impervious to such attacks, but is not available

for the accountless consumers we consider in this work.

[154] performed an extensive evaluation of 150 companies’ practices for SAR verification.

They found that email address-based and account login were the most common, followed by

device cookies, government IDs, and signed statements. Some organizations also requested

utility bills, phone interviews, or credit card numbers. To bypass SAR verification, they

created and sent a vague SAR letter to organizations. Out of 150 organizations, 24% disclosed

personally-identifying information.

[77] also analyzed SAR verification practices for popular websites and third-party trackers.

They found that, in addition to possibly being insecure, SAR verification could possibly also

undermine the privacy of subjects in order to verify the request.

General Studies on GDPR Subject Access Requests. [166] performed a two-sided

study of both data subjects and data-collecting organizations, with a focus on online ad-

vertising. For data subjects, the authors used consumer surveys to evaluate the usability of

data transparency tools offered by the organizations, and to learn more about consumers’

perceptions of these tools. They also carried out surveys and interviews of organizations

to get their views on the privacy regulations and business practices for SARs. The results

paint a picture of discrepancy between the consumer’ perspectives and the collected data

(which is also corroborated by [73]). Furthermore, consumers seemed to show little interest

in seeing raw technical data. Similarly, [167] investigated SAR practices for online adver-

tising companies and used cookie IDs to request collected data. The authors reported that

some companies requested ID cards or affidavits, whilst others directly used the cookie IDs

127

in the browser – none of which prove the requestor is really the consumer from whom the

data was collected.

[134] studied mobile applications and observed an even more fragile ecosystem with discon-

tinued apps and disappearing consumer accounts while processing SARs. Another conclusion

of this study was to move away from email-initiated and manual processes which are prone

to errors. In terms of compliance, the analysis by [126] showed 43% compliance with access

requests vs. 57% compliance with deletion requests.

In addition to the above, [92] investigated cookie usage and how it is affected by privacy

regulations. They report that 11% of EU-related websites set cookies for US-based consumers

but not for EU-based consumers. Furthermore, up to 46.7% of websites that appear in both

the 2016 and 2018 Alexa top 100,000 sites stopped using persistent cookies without consumer

permission. In the standardization realm, [179] focused on “Do Not Sell” requests which

informs the websites that they may not share the consumer’s information with third parties.

They built a browser extension (OptMeowt) which conveys “Do Not Sell” requests to the

websites through headers and cookies.

Asymmetric access tokens. Origin Bound Certificates (OBCs) [101] (also see RFC

8471 [56]), aims to strengthen TLS client authentication. In OBC, the client generates

a unique self-signed TLS client certificate for each website, in order to remain unlinkable

across websites. Although this does not authenticate the client to the website (due to the

self-signed certificate), it does allow the server to ascertain whether this is the same client

from a previous interaction. One benefit of this is that cookies can be bound to an OBC, so

that even if they are stolen, they cannot be used by an adversary. Another difference is that

per-site certificates would not be suitable for accountless consumers, as these would allow

servers to link together different visits from the same client. The alternative of generating

per-TLS-session certificates introduces the key explosion problem.

128

4.10 Conclusion

Motivated by the recent GDPR and CCPA regulations granting (even) accountless consumers

rights to access data gathered about their behavior by servers, we constructed and evaluated

VICEROY, a framework for enforcing these rights. VICEROY is secure with respect to malicious

clients and HbC servers. It is also privacy-preserving due to the use of unlinkable VCR keys.

VICEROY is easy to deploy and incurs (based on our experiments) fairly low overhead. It is

designed with TEEs in mind such that only a small secret can be kept in a TEE and used

to create verifiable consumer requests with the user’s approval.

129

Chapter 5

Balancing Security and Privacy in

Genomic Range Queries

5.1 Introduction

In some application domains TEEs are not sufficiently powerful and/or common to realize

end-to-end secure and private mechanisms. For such cases, we resort to cryptographic prim-

itives. For example, the number of available genomic tests have surged due to the discovery

of relations between genomic material and certain health traits. These tests, however, must

adhere to the “need to know” rule – as little information as possible should be shared with

the tester. Therefore, privacy has been the main focus of research in this domain. Security

on the other hand is about ensuring that genomic material is authentic and has not been

altered. This is an important problem since the genome owner could otherwise tweak the

results to their advantage. In this chapter, we show how range queries can be used to provide

both security and privacy in the genomic context. We utilize cryptographic methods, such

as digital signatures and range proofs to ensure authentication, integrity and privacy.

130

Recent advances in genome sequencing, coupled with greatly reduced storage and compu-

tation costs, make genomic testing increasingly accessible to individuals. Today one can

easily get his/her DNA digitized by a sequencing lab and store the result on a local device

before performing a range of tests by engaging with a testing facility. Due to the inherent

sensitivity of genetic material and often proprietary tests, privacy is the natural and key

issue. However, so far insufficient attention paid to genomic security, which can have grave

consequences, such as incorrect drug prescriptions or erroneous parentage outcomes.

Unfortunately, in genomic setting privacy and security are at odds with each other. In this

chapter, we reconcile them in a particular setting of genomic range queries. We do so by de-

signing a novel technique in the form of a secure and private sparse-set range query between

genomic testing facilities and individuals. The proposed technique maintains authenticity

and completeness of user-supplied genomic material, while maintaining its privacy by releas-

ing only the minimum thereof. Our experiments show that this approach is practical, for

all parties involved. We also extend it to a more generalized problem setting and discuss

potential applications.

5.2 Motivation & Contributions

Technical improvements in DNA sequencing technology [141, 116, 125] and reduced costs

have paved the way for ubiquitous and affordable genomic testing. As a result, tests that

were used in the past mainly by doctors and legal authorities are becoming more available to

the public. Such tests range from paternity/parentage to presymptomatic disease diagnosis,

wherein the testing facility (denoted as “tester” hereafter) queries the user with various DNA

locations, both specifics and ranges.

Due to the often-proprietary nature of these tests, testers need to keep specifics (such as

131

queried locations) secret. Meanwhile, an individual naturally wants to reveal the minimal

amount of genomic material, since, besides one’s own highly personal and sensitive material,

it includes significant information about past, current and future relatives. Consequently,

genomic privacy justifiably attracted much attention from the research community and nu-

merous privacy techniques have been proposed [75, 148, 76, 98, 97, 68, 69, 165, 131].

However, genomic security, even though equally important, received considerably less at-

tention. In particular, authenticity and integrity of genomic data are often dismissed or

over-simplified, even though they are crucial to the accurate outcome of genomic tests. An

erroneous (whether maliciously caused or not) genomic test result can translate into grave

health risks when used for medical diagnosis, or social and family risks when used for deter-

mining familial relationships. At the first glance, the genomic security problem seems simple

and solvable with common cryptographic primitives, such as digital signatures. However, the

main challenge stems from conflicting requirements among security, privacy, and efficiency.

Intuitively, genomic security needs data invariance to facilitate integrity checking, while

genomic privacy needs flexibility and fine-granularity controlled by the user (who might

act as an adversary in the security model). At the same time, efficiency favors processing

aggregated genomic data. Not surprisingly, it is challenging to reconcile these three demands.

In this chapter, we focus on efficiently reconciling security and privacy in the context of

genomic range queries. Specifically, we propose a technique for secure and private genomic

testing using a combination of established cryptographic tools. Our contribution is two-fold:

� We propose a novel secure and private technique for genomic range queries that can

be used as a building block in various protocols and genomic representations.

� We report on a prototype implementation and evaluation of the proposed technique.

NOTE: Our notations are summarized in Table 5.1.

132

5.3 Background

5.3.1 Genomics

Human DNA consists of around 3.2 billion bases (each is one of: [A]denine, [C]ytosine,

[G]uanine, and [T]hymine) and only about 0.1% of DNA differs between any two individuals.

Although it is not yet known exactly where these differences occur, many types of muta-

tions can be used to identify an individual and determine susceptibility to diseases and/or

sensitivity to drugs. Single-Nucleotide Polymorphism (SNP) is a type of genetic mutation

representing a change in the nucleotide, such as [A] → [C]. A given nucleotide is classified

as an SNP if < 1% of the population carries a different nucleotide at that position [52].

Although a fully digitized raw human genome may take up to 200 Gbytes, due to relative

sparsity of SNPs, a reference genome can be used to reduce storage and computation costs.

Using a compact reference format, such as the 1, 000 Genomes Project variant call format

(VCF)1, a particular DNA can be represented using only 120 Mbytes. In this dissertation,

we represent DNA as an array of mutations, each of the form: Vi = {pos,Lpos}, where i is

the index of the mutation in the array, pos is its position in the DNA (denoted as Vi.pos)

and Lpos is the base letter at position pos.

Besides SNPs, other types of differences include Short Tandem Repeat (STR)s and Restric-

tion Fragment Length Polymorphism (RFLP)s. STRs are 4-16 base pairs that repeat many

times at certain locations. The number of repeats gives enough information to identify an

individual. RFLPs are size differences of fragments after digestion of DNA with various

restriction enzymes that fragments DNA at certain points.

1See: www.internationalgenome.org/wiki/Analysis/vcf4.0

133

5.3.2 Commitments

A cryptographic commitment scheme is a two-phase protocol between a prover and a verifier

where the underlying commitment is hiding and binding. In the commit phase, the prover

commits to a value and shares her commitment with the verifier. Later, in the reveal phase

the prover reveals the hidden commitment and the verifier becomes convinced that this value

was indeed chosen by the prover in the first phase. In other words, a commitment scheme

uniquely binds the commitment to the value it hides. In this chapter, we use two types of

commitments: Fujisaki-Okamoto and those based on secure cryptographic hash functions. A

Fujisaki-Okamoto commitment [118] is of the form: COM(z) = gzhr mod n, where z is the

prover-chosen secret value and n is a large composite integer with factorization unknown to

either party. Also, g is an element with a large order in Z∗n, h is an element with a large order

in the group generated by g. The discrete logarithms of g to h and h to g are also unknown

to either party. The value r is randomly chosen by the prover from [−2sn−1, 2sn+1], where

s is a security parameter. This commitment statistically does not reveal any information to

the verifier.

Commitments based on secure cryptographic hash functions rely on the fact that modern

hash functions reveal no information about the value they hide if they are used with a

sufficiently long random salt. In addition, since secure hash functions offer weak and strong

collision-resistance properties, commitments based on such functions are binding.

A hash function based commitment is of the form: H(z | r), where H is a cryptographically-

secure hash function (e.g., SHA256), z is the committed value, ‘|’ denotes concatenation and

r is a sufficiently long random bitstring used as a salt.

134

5.3.3 Range Proofs

A range proof convinces a verifier that a value is in a given range without revealing the actual

value. Expansion rate of a range proof is δ = Y−X
y−x , defined in terms of requested range [x, y]

and range [X, Y] wherein the value is proven to reside in. Note that if this rate is 1, the range

proof convinces the verifier that the value is in the requested range. We consider two range

proof protocols from [78]. The first proves that a hidden integer z ∈ [x−θ, y+θ] rather than

in [x, y] where θ = 2t+l+1
√
y − x and t and l are security parameters. This protocol does

not work well with small ranges. (Recall that DNA contains around 3.2× 109 letters). The

second protocol is similar, however, the secret value is first expanded to z′ = z · 2T . With a

carefully chosen T as 2(t + l + 1) + |y − x|, this protocol’s expansion rate δ = 1. We first

describe it without the expansion phase.

Assume that the prover wants to prove that a secret value z is in [x, y]. To prove this in zero

knowledge, it is enough to show that two properties hold: z−x ≥ 0 and y− z ≥ 0. To prove

the first, the prover first writes z − x as the sum of the greatest square less than z and a

positive number, i.e., z−x = z21 +p. Then, she creates two Fujisaki-Okamoto commitments,

one for z21 and one for p with random numbers r1 and r2 both chosen from [0, 2sn− 1]. The

prover creates another commitment to z using r = r1 + r2.

The prover then proves in zero-knowledge that the commitment to z21 hides a square (i.e.,

≥ 0) and commitment to p hides a number with absolute value less than 2t+l+1
√
y − x using

the method in [89]. Same procedure is performed for y − z ≥ 0. As a result, the prover

shows that z ∈ [x− θ1, y + θ1] where θ1 = 2t+l+1
√
y − x.

In the expansion phase, z is expanded as z′ = z.2T . Using the scheme above, it is shown that

z′ ∈ [2Tx− θ2, 2Ty+ θ2] where θ2 = 2t+l+T/2+1
√
y − x. If T is chosen as 2(t+ l+ 1) + |y−x|,

so that θ2 < 2T , the verifier is convinced that z should be in [x, y].

135

5.4 System & Security Models

We now describe our system and security models.

5.4.1 System Model

Sequencing Lab

(SL)
Alice

(1) DNA Sample

(2) Digitized

Genome

Tester (T)

(3) Range Query [x, y]

(4) Mutations in

Range

Figure 5.1: A Genomic Test Scenario with Order of Interactions

The system model consists of individual users, sequencing labs and testers, all of which

are certified by a trusted authority Auth (see Figure 5.2). We assume a global Public Key

Infrastructure (PKI) which facilitates establishing trust in entities’ public keys. For the

sake of clarity, we only consider the case with only one instance of each entity type, i.e.,

one individual (Alice), one sequencing lab (SL), and one tester (T). Alice first obtains

her digitized signed SNP representation from SL – a regulated and trusted sequencing lab

capable of digitizing genetic material. Modern SL examples include hospitals and direct-

to-customer (DTC) service providers. In addition, SL signs the digitized genome such that

the authenticity of the data, as a whole can be verified by anyone with proper certificates.

T needs to perform a genomic range test on Alice’s genome. The test includes one or more

queries sent to Alice. Each query is in the form of two integers corresponding to low and high

positions in the genome. Upon receiving the query, Alice replies with relevant information,

as shown in Figure 5.1.

136

Sequencing Lab

(SL)
Alice Tester (T)

Auth

Figure 5.2: Trust between Entities (Truster → Trustee). Solid arrows are used to denote
full-trust whereas dashed arrows are procedural trust (i.e., Honest-but-Curious) and dotted
arrows denote no trust.

5.4.2 Security Model

In our security model, SL is fully trusted by both Alice and T . Nonetheless, Alice is not

trusted by T , since she may want to provide altered genomic data, for various reasons. Alice

may cheat in several ways: She may report modified data to T , fake data at a particular

position, exclude data from a particular position, or a hybrid thereof. We consider T to be

an honest-but-curious entity. It follows the protocol by issuing authorized queries. However,

it aims to learn more information from Alice’s genomic data than what the test requires. We

suppose that queried ranges are pre-approved by some authority, e.g., via a public signed

white-list of legitimate ranges for certain genomic tests.

An example of such a range (from 6p22.1 to 6p21.3 and consisting of about 4 megabases,

see Cytogenetic location [26]) is major histocompatibility complex (MHC) which consists of a

set of genes coding for proteins responsible for detecting foreign molecules in cellular level in

vertebrates. Various SNPs in this region (rs9264942, rs4418214, rs2395029, rs3131018) have

been shown to protect against human immunodeficiency virus (HIV) [164].

137

5.5 Range Query Formulation

We denote T ’s query as Q = [x, y], where x and y are locations which indicate that T

needs to obtaion all of Alice’s genomic mutations in between. Without loss of generality,

suppose that Alice has n mutations in the reference-based representation. We denote them

as: V∗ = 〈V1, V2, · · · , Vn〉. If Alice and T trust each other, she would only reveal V∗ to T .

Under our security model, Alice and T are not mutually trusted due to respective privacy and

security concerns.e propose a secure and private range query scheme consisting of a query

response function run by Alice and a verification function run by T . The former is denoted

as Resp(Q) which takes a query Q as input and outputs a result (V = 〈{Vi...j}〉, σ). The

latter is denoted as Verfy(V , σ) and it outputs either V or ⊥, depending on the verification

outcome.

1. Authenticity. All mutations reported by Alice must be authentic and not tampered

with. More precisely, ∀V ∈ V , V ∈ V∗. Note that V reflects the mutation position.

Hence, if V satisfies authenticity, it is trivial for T to check its validity, i.e., whether the

reported mutation is between x and y. In other words, authenticity implies soundness.

2. Completeness. All mutations in V are reported by Alice. Namely, ∀V ∈ V∗, V ∈ V .

3. Privacy. There should be no information leakage on mutations other than those T is

allowed to learn.

5.6 Proposed Construction

We now discuss several intuitive approaches to the range query problem described in Section

5.5 and compare them along several dimensions. We then describe the proposed technique

138

Table 5.1: Notation & Descriptions

Notation Description
Alice Individual with a digitized genome issued by a certified sequencing lab.
SL Sequencing Lab capable of sequencing genetic material
T A Tester that perform genomic tests
Q A range query with boundaries [x, y]
V∗ A list of mutations that describe Alice’s DNA, used in Γ
Γ Proposed secure and private range query scheme
Resp(Q) Response function of Γ, run by Alice and outputs a response (V = 〈{Vi...j}〉, σ)
Verfy(V , σ) Verify function of Γ, run by T and outputs ⊥ if any verification function fails.
ZK(z : R(z)) Generates a zero-knowledge proof of knowledge of z such that R(z) holds.

ZK Verify(p, q, r)
Verifies the correctness of a zero-knowledge proof p with a commitment q,
such that for the committed value the predicate r holds.

SignSKs
(t) Signs t using secret key of s SKs

VerifyPKs
(t, u) Verifies the signature u on t using the public key of s PKs.

Vi A mutation tuple with the form {pos, Lpos}.

COM(x)
A commitment scheme allowing zero-knowledge range proofs over x.
Equivalent to COM(x, s) where s is a random bitstring used to
create the commitment.

δ
Expansion rate of a range proof. Calculated as Y−X

y−x
where [x, y] is range requested and [X, Y] is range proven the value to be in

and argue its security, privacy, and efficiency.

Intuitive Approaches. One trivial solution is to use the full genome representation: at

sequencing time, SL signs all position-base pairs for each position in the DNA and later,

when T asks for all SNPs in a range, Alice provides all pairs in that range with their

corresponding signatures. The tester can easily detect any missing positions. Inclusion

of fake bases is impossible since Alice cannot generate signatures on behalf of SL. This

approach provides authenticity and integrity and leaks no information about bases outside

the queried range. Unfortunately, it has high computation and storage costs due to sheer

size of the DNA. To reduce these costs, optimizations such as condensed and aggregated

signatures can be applied, though the final cost would be still far from optimal. We refer

the reader to [79] for a more detailed comparison of such methods.

Using a reference genome and representing the genome only in terms of mutations with

respect to the reference genome reduces storage and computation costs substantially. How-

139

ever, it introduces the completeness problem. Suppose that T queries for mutations in range

[x, y] where x and y are DNA positions. If each mutation is signed by the SL, Alice could

reply with a list of authentic mutations in that range. However, this would not prevent

Alice from excluding one or more mutations. To ensure sequential continuity of mutations,

SL could sign tuples consisting of two neighboring mutations sorted in ascending order, as

suggested by [99]. However, this would entail revealing two tuples that contain mutations in

positions immediately outside the lower and upper boundaries, respectively. Due to sparsity

of genomic mutations, this could leak a substantial amount of sensitive information.

Proposed Approach. We assume that Alice receives from SL a digital representation of

her DNA in the form of a list of mutations:

V∗ = 〈V−∞, V1, V2, · · · , Vn, V+∞〉

wrt the reference genome, where Vi ∈ V∗ and for each i, Vi.pos < Vi+1.pos. Note that two

special mutations, V−∞ (V−∞.pos < 0) and V+∞ (V+∞.pos > 3.2 · 109) are introduced to

mark the lower and upper boundaries of the genome. Additionally, Alice receives a sequence

of signatures γ = 〈γs, γs+1, · · · , γs+n〉 where each γi = SignSKSL
(Ti). SKSL is the secret key

of SL and the tuple Ti is of the form:

Ti = {COM(Vi.pos, si1), COM(Vi, si2), COM(Vi+1.pos, si+11), COM(Vi+1, si+12)}

COM is a commitment scheme realizing zero-knowledge range queries. It uses a random

binary string (e.g., si1) as a salt to hide the committed value. Salts are re-used for the same

mutation in another tuple (e.g., in Ti+1, commitment for Vi+1.pos and Vi+1 uses same salts

si+11 and si+12 , respectively).

140

Our scheme follows the model defined in Section 5. Resp(Q) and Verfy(V , σ) are presented

in Figure 5.3. Note that, if either Verify() or ZK Verify() fails, Verfy(V , σ) terminates with

output ⊥. See Table 5.1 for description of verification functions.

Resp(Q = [x, y])

1 : V ← 〈Vi, Vi+1, · · ·Vj〉 = 〈Vk | x ≤ Vk.pos ≤ y〉
2 : C ← 〈{COM(Vi−1.pos, si−11), COM(Vi−1, si−12)}, 〈{COM(Vi.pos, si2},
3 : · · · {COM(Vj .pos, sj2}〉, {COM(Vj+1.pos, sj+11), COM(Vj+1, sj+12)}〉
4 : γ ← 〈γi−1, · · · , γj+1〉
5 : l← ZK(Vi−1.pos : Vi−1.pos < x)

6 : h← ZK(Vj+1.pos : Vj+1.pos > y)

7 : Output(V, σ = {C, γ, l, h})

Verfy(V , σ)

1 : Tup← 〈Ti−1, · · · , Tj+1〉 // Reconstruct tuples from V and C

2 : ∀Tupk ∈ Tup,VerifyPKSL
(Tupk, γk)

3 : ZK Verify(l, COM(Vi−1.pos), Vi−1.pos < x)

4 : ZK Verify(h,COM(Vj+1.pos), Vj+1.pos > y)

5 : Output(V)

Figure 5.3: Resp(Q) and Verfy(V, σ) functions.

5.6.1 Security & Privacy

We now analyze security and privacy of the proposed construction, with respect to goals

stated in Section 5.5. Suppose that V is non-empty. There are two tuples of the forms (salts

are not shown here):

{COM(Vi−1.pos), COM(Vi−1), COM(Vi), COM(Vi.pos)} (5.1)

and

{COM(Vj.pos), COM(Vj), COM(Vj+1), COM(Vj+1.pos)} (5.2)

141

Alice first reveals the commitments to mutations in the range, allowing T to validate the

signatures. Then, Alice proves to T in zero-knowledge:

1. Vi−1.pos is out of range.

2. Vj+1.pos is out of range.

As a result, T is convinced that all other mutations in positions below Vi−1.pos and above

Vj+1.pos are out of range. T also confirms that Vi and Vj are in range by using the revealed

values of both commitments. Note that Vi−1 and Vj+1 can be V−∞ and V∞ respectively.

Suppose that V is empty. There is a tuple of the form:

{COM(Vl.pos), COM(Vl), COM(Vl+1), COM(Vl+1.pos)} (5.3)

where Vl.pos < x and Vl+1.pos > y. Alice proves the inequality to T in zero-knowledge.

Goal 1. Authenticity is ensured due to security of the underlying digital signature scheme

used by SL to sign tuples.

Goal 2. Completeness is achieved using sequential linking of elements (mutation tuples)

thus allowing T to detect any exclusion. Also, based on Goal 1, it is impossible for Alice to

introduce any additional mutations.

Goal 3. Due to the use of zero-knowledge proofs and hiding commitments, no information

about positions of any out-of-range mutation is revealed.

One special case occurs when Vi−1 and Vl (in Equations 5.1 and 5.3) and Vj+1 and Vl+1 (in

Equations 5.2 and 5.3) are: V−∞ and V∞, respectively. Such sentinel commitments should be

indistinguishable from other commitments. However, if needed to be revealed, they should

clearly denote genome boundaries. This can be achieved by using positions 0 and 3.2 ·109+1

as V−∞ and V+∞ commitments, respectively, and allowing actual mutation positions to start

142

from 1.

5.6.2 Instantiation of Proposed Construction

As an example commitment scheme COM , we use Fujisaki-Okamoto commitments [118].

For range proofs we use Boudot’s technique [78] with expansion rate δ = 1, i.e., the proofs

convince the verifier that the committed value is in the actual given range, and not in the

expanded range. Range proofs are used, in a sense, to prove that a position is outside the

queried range (or equally, inside a range that is outside of the queried range). Less than and

greater than are implemented as follows:

To show that a value v is less than x in zero-knowledge, the range proof convinces

the verifier that v in commitment COM(v) is in range [min − 1, x − 1], where

min is the smallest possible value of v. Similarly, for greater-than proofs, the

range proof convinces the verifier that v ∈ [x + 1,max + 1], where max is the

maximum possible value of v. In the genomic context, max = 3.2 × 109 and

min = 1.

5.7 Efficiency Considerations

Ideally, every step of a genomic test should be as efficient as possible. However, depending

on the task, some of the workload can be shunted to a different step. If offline computation

is possible or desired, some preprocessing can be done to increase efficiency of online steps.

To this end, we implement the protocol from Section 5.6 as follows:

143

5.7.1 Commitments and Salt Generation

Fujisaki-Okamoto commitments [118] allow us to create range proofs without revealing mu-

tation positions. However, calculation of exponents required during the creation of Fujisaki-

Okamoto commitments makes this scheme an inefficient choice for mutation commitments.

Hence, we use the SHA-2 hash function with a large salt for mutation commitments. De-

pending on storage requirements, salt generation can be done using a key derivation function,

such as HKDF [133], or a Pseudo Random Number Generator (PRNG) with a sufficiently

large seed. This would reduce the storage cost of salts. An alternative is to use a ran-

dom number combined with the genomic position (similar to a sequence number) for salt

generation, thus allowing efficient re-generation of salts.

We construct a tuple as:

{FO(Vi.pos), SHA2(Vi, si), FO(Vi+1.pos), SHA2(Vi+1, si+1))}

where FO is the Fujisaki-Okamoto commitment and si is a 128-bit salt.

5.7.2 Signatures

To provide authenticity, each tuple described in Section 5.7.1 is signed by SL at the initial se-

quencing time. To reduce signature sizes, we use EC-DSA with the elliptic curve secp256r1,

which yields 512-bit signatures.

144

5.8 Evaluation

We now report on the evaluation of the proposed construction. We have implemented a

prototype in Java on a PC with an Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz chip and

16GB of RAM. We use the code from [63] to implement commitments and proofs realizing

range queries, and Bouncy Castle [36] for other crypto primitives. For Fujisaki-Okamoto

commitments we use the following parameters: s = 552 while t and l in the range proofs are

128 and 40 respectively.

Since genomic mutations are distributed at every 1, 000 bases [60] in average, pre-processing

includes 3 × 106 mutations. The entire offline phase (performed by SL) takes about 4.2

hours on the aforementioned platform. Specifically, SL needs to compute one signature,

one range proof commitment and one SHA2 commitment. In the online phase, T makes

r + 1 signature verifications and 2 range proof verifications while Alice generates two range

proofs. We measure the CPU time spent for the main cryptographic operations using our

Java prototype.

Times for individual operations are as follows:

� Fujisaki-Okamoto commitment: 3.5ms,

� Zero-knowledge proof generation: 47.7ms

� Proof validation: 37ms

� SHA2 commitment: 0.3ms, including salt creation and its validation takes 0.1ms, which

is, respectively, 12 and 370 faster than doing the same using Fujisaki-Okamoto com-

mitments.

Note that salts can be alternatively (re-)generated using a seed and a PRNG, or HKDF,

which would reduce the storage costs. We show results of using salts obtained from a secure

random source, Java’s SecureRandom class [50]. Verification cost performed by T scales

145

0 2000 4000 6000 8000 10000

Number of SNPs in range

0

2500

5000

7500

10000

12500

15000

17500

V
e
ri

fi
c
a
ti

o
n

T
im

e
in

M
il

li
se

c
o
n

d
s

Figure 5.4: Verification times for T given number of SNPs in range

linearly with the number of SNPs in the queried range (as shown in Figure 5.4), and range

proof verification cost is dominated by the signature verification cost.

5.9 General Setting

Although our main context is genomic range queries, the proposed technique can be applied

in other settings. For example, suppose that a security forensics expert, after obtaining

appropriate legal permission, needs to examine an ISP’s log pertaining to a particular ac-

count’s activities within a period of an attack. This setting is similar to genomic testing

in terms of security and privacy requirements as well as sparsity of sensitive data. From

the security perspective, the expert needs to ensure that logs are authentic, correct and

complete. From the privacy perspective, the ISP does not want to reveal any other activity,

in order to protect its customers’ privacy. The relevant data could be sparsely distributed

in a large data set, if the concerned account is not very active during period under review.

Similar applications include queries of firewall logs. Our proposed technique can be adapted

146

to address these security and privacy challenges. To this end, below we define a generalized

notion of secure and private range query over sparse integers.

5.9.1 Secure & Private Range Queries over Sparse Integers

A sparse set of integers consists of integers sparsely and randomly chosen from a fixed range.

We first define the density function for integer sets and then proceed to a more formal

definition of sparse integer sets.

Definition 5.1. Consider a set R, of integers in range [a, b], and a subset S of R. The

density of S is defined as Density(S,R) := |S|
|R| .

Definition 5.2. A subset S of R is a sparse integer set if Density(S,R) < ε, for some small

ε, e.g., 0.001.

Definition 5.3. A range query involves a querier and a replier. Replier chooses S, a subset

of R, prior to the query. A query range [x, y] is chosen by querier. Both querier and replier

know R.

Definition 5.4. Following Definition 5.2, a successful execution of a query with range [x, y]

in R reveals integers in S ∩ [x, y] to querier.

A transcript between a replier (Alice) and a querier (Bob) of a range query over sparse

integers is given in Transcript 1.

Transcript 1 Range Query over Sparse Integers

1: Alice randomly picks a sparse integer set S of k integers in R.

2: Bob queries a range [x, y] in R.

3: Alice returns the set S ′ := S ∩ [x, y].

147

Goals

Here we define a list of goals that should be achieved by a secure and private solution to this

problem:

1. Authenticity. A replier should not be able to modify S after it is chosen.

2. Completeness. The querier should be convinced that the integers returned by the

replier are correct and no other integers lie in queried range other than the ones re-

turned.

3. Privacy. The querier should not be able to learn any information on the integers

outside of the queried range.

5.9.2 Construction

We now describe a concrete construction for secure and private range queries over sparse

integers with respect to the goals stated in Section 5.9.1.

To establish trust between entities, we introduce a trusted offline authority which is denoted

with Auth. Alice plays the role of the replier and Bob is the querier. Offline phase of

the protocol is given in Transcript 2 and the online phase where Alice and Bob interact in

Transcript 3.

148

Transcript 2 Offline Phase of Secure & Private Range Query over Sparse Integers

1: Alice randomly picks a sparse integer set S of k integers in R. S is sorted in the increasing

order. Two special integers s0 and sk+1 are introduced to mark the ends where s0 < a

and sk+1 > b.

2: Alice commits to each integer and creates k + 1 tuples linking the commitment for

an integer to the commitment for the next integer. Each tuple is of the form

{COM(si), COM(si+1)} where si ∈ S, i ∈ [0, k]. COM is a hiding and binding com-

mitment scheme that allows zero-knowledge range proofs over committed values.

3: Each tuple is signed by Auth. Here Auth can make sure that Alice has chosen k integers

in R and si < si+1 for each i.

Transcript 3 Online Phase of Secure & Private Range Query over Sparse Integers

1: Bob queries a range [x, y] in R.

2: Alice reveals the integers in S ∩ [x, y] with relevant signed tuples. Bob checks the cor-

rectness of commitments and verifies the signatures of each tuple.

3: Consider the tuple {COM(si), COM(si+1)} where si is the largest integer smaller than

x. Alice, in zero-knowledge, proves to Bob that si < x using the commitment for si.

Bob verifies this tuple’s signature.

4: Consider the tuple {COM(sj), COM(sj+1)} where sj+1 is the smallest integer larger

than y. Alice, in zero-knowledge, proves to Bob that sj+1 > y using the commitment for

sj+1. Bob verifies this tuple’s signature.

Note that Step 3 or Step 4 is enough to prove that a tuple is out of range since integers are

sorted before they are committed to. In addition, these two steps are enough to show that

any tuple other than the ones returned are out of range. A visual representation is given in

Figure 5.5.

149

si x si+1 · · · sj y sj+1

Requested range [x, y]

Figure 5.5: Proving si < x (Step 3 in Transcript 3) states sw where w ≤ i is out of range.
Similarly, proving sj+1 > y (Step 4 in Transcript 3) states sw where w ≥ (j + 1) is out of
range.

5.9.3 Security & Privacy: Proof Sketch

Referring to each goal defined in Section 5.9.1, we show security and privacy of the proposed

construction.

1. Goal 1 is satisfied by the binding property of the commitment scheme (COM) used

along with signatures on the tuples containing each element. The binding property

states that the committed value cannot be changed and no other value can be efficiently

computed such that COM(m1) = COM(m2) where m1 is the committed value and

m2 6= m1. The signatures on the commitments ensure that none of the members of S

can be changed (i.e., a change will be detectable since the signatures will be invalid).

2. The signatures on commitment tuples provide that any inclusion or exclusion to/from

the set S will be detectable. Hence, Goal 2 is satisfied. Note that if each element in S is

not linked to the next element and signatures are created on each element individually,

then exclusion of tuples would be possible.

3. Consider the tuples out of the queried range [x, y],

i.e., {COM(si), COM(si+1)} and {COM(sj), COM(sj+1)} in Figure 5.5. If si is less

than the lower bound, zero-knowledgeness of the proof guarantees that any information

on si (other than si < x) will not be revealed. In the same vein, if sj+1 is greater than

the upper bound, only information revealed is sj+1 > y.

150

5.10 Related Work

Privacy of genetic material and tests has attracted many researchers and multiple solutions

have been proposed that utilize cryptographic methods. Genomic security on the other

hand has been in the background due to perceived lack of challenges – often mistakenly. In

this section, we briefly go over the cryptographic privacy building blocks in the genomics

domain and then discuss related techniques for achieving data authenticity and integrity in

the context of range queries.

Genomic Privacy. PSI (Private Set Intersection) is a protocol that allows multiple parties

to compute intersection of their sets without revealing the individual sets. This method

has a few flavors that was adopted to provide genomic privacy. In [76], PSI-CA (CA for

cardinality), which reveals only the size of the intersection over two set inputs, were used

for paternity tests. This solution relied on the fact that sizes of DNA fragments that were

cut by restricting enzymes could be used to determine paternal relations. In the same work,

APSI (Authorized PSI) was used for personal medicine where FDA or another authority

would authorize the markers that would be checked in the DNA. [97] used an Android

smartphone to store encrypted genomic data and use PSI techniques to provide results of

personal medicine, paternity and ancestry tests using the smartphone as the computation

medium.

Homomorphic encryption is another tool for privacy preserving solutions for genomic tests.

Using additive property of homomorphic encryption, [68] proposed methods for finding the

edit distance between DNA sequences which was then improved in [69]. Oblivious automata

was also used by [165] to perform matching and approximate searching. [131] used the ho-

momorphic additive property to allow queries (such as SNP matches) on encrypted data and

[74] used similar methods to compare DNA parts. These methods in [74] were more effi-

ciently implemented by [93] using Elliptic Curve based Additively Homomorphic El-Gamal

151

cryptosystem.

Range Query Security. Range query completeness was explored for outsourced databases

where a user assigns the responsibility of handling queries on their data to a data publisher.

Although this reduces the workload of a user, a malicious publisher can try to deceive

any querier with incomplete or inauthentic query responses. [128] focused on minimizing

privacy leakages on data attributes using data partitioning algorithms that are aware of the

distribution of query ranges. [137] used Merkle hash and B+ trees, and aggregated signatures

to provide authenticity and integrity (with less strict privacy requirements compared to [152])

improve efficiency in the dynamic database case. [152] developed methods based on continual

linking of elements (similar to [137]) and collision resistant hash functions to prevent such

malicious actions.

Further cryptographic techniques to the range query problem incorporated range proofs.

Earlier examples of range proofs were [140, 83, 89]. [140] used the bit-length of the committed

value to prove that the number is in range [0, 2k − 1] where k is the number of bits in the

committed value. Method used by [83] could only prove that the committed value lies in

a wider range; [−a, 2a] instead of [0, a]. [89] convinces a verifier that the committed value

lies in a range where the expansion rate is 2t+l+1 where t and l are security parameters. [78]

proposed two efficient protocols for proving that the committed value which is in [a, b] lies

in [a − θ, b + θ] where θ = 2t+l+1
√
b− a and t and l are security parameters. The second

protocol is the one used in this work and has the expansion rate of 1. The commitments used

in this work are Fujisaki-Okamoto commitments [118]. [87] proposed range proofs based on

set membership protocols by extending the idea of using u-ary notation and proving that

the secret z ∈ [0, ul − 1].

152

5.11 Conclusion

While genomic privacy has attracted much attention due to the dire consequences of possible

leaks, insufficient attention is paid to genomic security, i.e., authentication and integrity of

genomic data. This chapter proposes a cryptographic technique for efficient, secure and

private genomic range queries. It ensures the unforgeability and completeness of genomic

material needed by the tester from the user, and also protect user privacy as it leaks no

extra information to the tester than necessary.

To achieve these properties, we used (1) zero-knowledge proofs to show that a committed

value (the mutation position) is outside the range, and (2) signatures to prevent alterations

of mutations and linkages among them, in order to preclude exclusions. We also abstracted

away from genomics by defining a more general problem of secure and private range queries

over sparse integers and discussed apply our approach.

153

Chapter 6

Conclusion & Future Work

This dissertation presented a number of privacy-centric attacks and defense mechanisms in

multiple domains with varying technology penetration.

In Chapter 2, we presented the first thermal residue attack against passwords, namely

Thermanator. This attack focused on recovering passwords from thermal residues left by

human fingertips on plastic keyboards after password entry. We showed an attacker model

with a post-factum window of opportunity to exploit password entry. This property greatly

increases the threat level of such attacks since the likely adversaries (e.g., insider attack-

ers) can reduce the possibility that they are going to get caught. Thermanator can recover

password key-sets 30 seconds after password entry and subsets thereof 1 minute after entry.

In Chapter 3, we presented CACTI, a privacy-preserving CAPTCHA alternative that uses

TEEs to generate rate proofs. These proofs are digitally signed by a TEE and allow clients to

skip CAPTCHAs while keeping servers protected from attacks by bots. Rate proofs convince

a server that the client is not acting in an abusive manner.

In Chapter 4, we presented a solution to an emerging problem with the introduction of

154

privacy legislations. GDPR and CCPA requires servers to allow clients (also referred to as

consumers) exercise certain rights on the data collected from them. These rights may be

exercised a long time after the data were collected and include access, modify and delete

operations. This introduces the problem of client authentication – or equivalently, verifying

consumer requests, where clients need to prove that they are the same client that the data

were collected from. For clients with accounts, the same authentication method used to

access accounts can be used to fulfill such a requirement. However, the problem arises

when clients do not have accounts on the websites. To solve this problem, in Chapter 4,

we discussed a public key cryptography based data ownership mechanism, namely VICEROY.

VICEROY uses BIP32 to generate unlinkable VCR keys which are attached to Web sessions.

Clients then can generate verifiable consumer requests (VCRs) which are digitally signed

requests using the VCR keys. A trusted device of a client only needs to store a small secret

to use VICEROY.

In Chapter 5, we focused on the genomic domain. This domain has low technology pene-

tration and therefore more traditional techniques are commonly used. In this chapter, we

presented a privacy-preserving range query protocol that provided authentication and com-

pleteness of the genome using digital signatures and continual linking. The need for security

for genomic data roots from an adversarial model where the attacker is the genome owner.

The purpose of the attacker might be to alter their digitized genome in a way that it provides

advantage to them for a genomic test. Such an attack could be used to change the result of

a paternity test or could be to get access to prescription-only medicine.

Future Research Directions. Increasing availability of existing (such as thermal cameras)

or emergence (such as TEEs) of new technologies paved the way for previously unexplored

attacks and defenses. In this dissertation, we consider the lifecycle of a secret to choose

domains where there are such technologies which could be used to protect secrets. To this

end, we looked into side-channel attacks, TEE-provided privacy-preserving technologies and

155

finally crypto-based less technologically advanced solutions. We presented the first thermal

residue side-channel attack against passwords entered on external keyboards. Thermanator

allowed attackers obtain partial key-presses in a password as late as 60 seconds after password

entry. However, this side channel did not provide information on the order of key presses.

This is due to lack of consistency in key-presses in terms of pressure, contact time and

finger used to pressed the key – which changes the area that thermal residue appears. One

future direction is to investigate eliminating these factors. Furthermore, thermal residue side-

channel attacks can be combined with other attacks, such as keyboard acoustics, to improve

attack success. Last but not least, emerging technologies are likely to enable more side-

channel attacks in the future. For instance, Internet of Things (IoT) devices are equipped

with different sensors which might reveal information on collected or entered data.

The increasing use of Web has created concerns regarding how data are collected and used by

servers. Therefore, there is a need for privacy-preserving solutions that limit the collection

of data. This requires replacing existing Web concepts/features with privacy-conscious ones.

CACTI aims to achieve this by substituting CAPTCHAs with rate proofs. Future directions

include creating similar privacy-preserving alternatives. Futhermore, depending on the needs

for existing legislation and the problems they pose, one can consider implementing such

solutions in a privacy-preserving way or providing transparency to clients in terms of server

actions. Remote attested TEEs can be a major tool for achieving this goal.

For the genomics domain, we focused on the SNP representation of a genome to provide

secure and privacy-preserving range queries. Different representations of DNA can offer dif-

ferent challenges which need to be dealt with while providing security, privacy and usability.

Furthermore, different genomic tests may require different computations on genomic data

and security and privacy challenges may be different for such cases.

156

Bibliography

[1] Americans and privacy: Concerned, confused and feeling lack of control over
their personal information. https://www.pewresearch.org/internet/2019/11/15/

americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/.
Accessed: 2021-07-06.

[2] An12326 secure gpio and usage. https://www.nxp.com/docs/en/

application-note/AN12326.pdf. Accessed: 2021-07-08.

[3] Android keystore system. https://developer.android.com/training/articles/

keystore. Accessed: 2021-04-20.

[4] Anonymous submission ccs’21 b. https://www.dropbox.com/sh/866gwbud2x4fuaq/

AAD5FJnmKuL3at5O1Zy8mZyFa?dl=0.

[5] AntiCAPTCHA. https://anti-captcha.com/mainpage, [Online] Accessed: 2020-
05-22.

[6] Big data analytics. https://www.ibm.com/analytics/hadoop/

big-data-analytics. Accessed: 2021-07-06.

[7] Bip 0032. https://en.bitcoin.it/wiki/BIP_0032. Accessed: 2021-04-05.

[8] Bip32. https://github.com/bitcoinjs/bip32. Accessed: 2021-04-01.

[9] bip32. https://github.com/sammyne/bip32. Accessed: 2021-04-20.

[10] Bip32. https://github.com/NovaCrypto/BIP32. Accessed: 2021-04-20.

[11] Bip32 implementation using python. https://github.com/ismailakkila/bip32. Ac-
cessed: 2021-04-20.

[12] Browserify. https://github.com/browserify/browserify. Accessed: 2021-04-01.

[13] California consumer privacy act. https://www.oag.ca.gov/privacy/ccpa. Accessed:
2021-03-18.

[14] Chrome Native Messaging Protocol. https://developer.chrome.com/extensions/

nativeMessaging#native-messaging-host-protocol, [Online] Accessed: 2020-02-
09.

157

https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.pewresearch.org/internet/2019/11/15/americans-and-privacy-concerned-confused-and-feeling-lack-of-control-over-their-personal-information/
https://www.nxp.com/docs/en/application-note/AN12326.pdf
https://www.nxp.com/docs/en/application-note/AN12326.pdf
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://www.dropbox.com/sh/866gwbud2x4fuaq/AAD5FJnmKuL3at5O1Zy8mZyFa?dl=0
https://www.dropbox.com/sh/866gwbud2x4fuaq/AAD5FJnmKuL3at5O1Zy8mZyFa?dl=0
https://anti-captcha.com/mainpage
https://www.ibm.com/analytics/hadoop/big-data-analytics
https://www.ibm.com/analytics/hadoop/big-data-analytics
https://en.bitcoin.it/wiki/BIP_0032
https://github.com/bitcoinjs/bip32
https://github.com/sammyne/bip32
https://github.com/NovaCrypto/BIP32
https://github.com/ismailakkila/bip32
https://github.com/browserify/browserify
https://www.oag.ca.gov/privacy/ccpa
https://developer.chrome.com/extensions/nativeMessaging#native-messaging-host-protocol
https://developer.chrome.com/extensions/nativeMessaging#native-messaging-host-protocol

[15] Chrome Notifications. https://developer.chrome.com/apps/notifications, [On-
line] Accessed: 2020-02-14.

[16] Cloudflare Rate Limiting. https://www.cloudflare.com/rate-limiting/, [Online]
Accessed: 2020-05-19.

[17] Cookie matching. https://developers.google.com/authorized-buyers/rtb/

cookie-guide. Accessed: 2021-04-26.

[18] EPID SDK. https://github.com/Intel-EPID-SDK/epid-sdk, [Online] Accessed:
2020-02-14.

[19] Express. https://expressjs.com/. Accessed: 2021-05-01.

[20] General data protection regulation. https://gdpr-info.eu/. Accessed: 2021-03-18.

[21] Global visual hacking experimental study: Analysis. https://multimedia.3m.com/

mws/media/1254232O/global-visual-hacking-experiment-study-summary.pdf.
Accessed: 2021-07-07.

[22] Google analytics. https://developers.google.com/analytics/devguides/

collection/analyticsjs/cookie-usage. Accessed: 2021-02-18.

[23] Google Chrome. https://www.google.com/chrome/, [Online] Accessed: 2020-02-11.

[24] hCaptcha. https://www.hcaptcha.com/, [Online] Accessed: 2020-05-21.

[25] Hierarchical deterministic wallets. https://github.com/marctrem/BIP32c. Accessed:
2021-04-20.

[26] How do geneticists indicate the location of a gene? https://ghr.nlm.nih.gov/

primer/howgeneswork/genelocation. Accessed: 2019-07-02.

[27] Insider threats examples: 17 real examples of insider threats. https://www.tessian.
com/blog/insider-threats-types-and-real-world-examples/. Accessed: 2021-
07-09.

[28] Intel Dynamic Application Loader Developer Guide: Mono-
tonic Counters. https://software.intel.com/en-us/

dal-developer-guide-features-monotonic-counters, [Online] Accessed: 2020-
02-05.

[29] Intel Integrated Performance Primitives Cryptography. https://github.com/intel/
ipp-crypto, [Online] Accessed: 2020-05-28.

[30] Intel NUC Kit NUC7PJYH. https://ark.intel.com/content/www/us/en/ark/

products/126137/intel-nuc-kit-nuc7pjyh.html, [Online] Accessed: 2020-02-11.

[31] Intel Pentium Processor G4400. https://ark.intel.com/content/www/us/en/ark/
products/88179/intel-pentium-processor-g4400-3m-cache-3-30-ghz.html,
[Online] Accessed: 2020-05-19.

158

https://developer.chrome.com/apps/notifications
https://www.cloudflare.com/rate-limiting/
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://developers.google.com/authorized-buyers/rtb/cookie-guide
https://github.com/Intel-EPID-SDK/epid-sdk
https://expressjs.com/
https://gdpr-info.eu/
https://multimedia.3m.com/mws/media/1254232O/global-visual-hacking-experiment-study-summary.pdf
https://multimedia.3m.com/mws/media/1254232O/global-visual-hacking-experiment-study-summary.pdf
https://developers.google.com/analytics/devguides/collection/analyticsjs/cookie-usage
https://developers.google.com/analytics/devguides/collection/analyticsjs/cookie-usage
https://www.google.com/chrome/
https://www.hcaptcha.com/
https://github.com/marctrem/BIP32c
https://ghr.nlm.nih.gov/primer/howgeneswork/genelocation
https://ghr.nlm.nih.gov/primer/howgeneswork/genelocation
https://www.tessian.com/blog/insider-threats-types-and-real-world-examples/
https://www.tessian.com/blog/insider-threats-types-and-real-world-examples/
https://software.intel.com/en-us/dal-developer-guide-features-monotonic-counters
https://software.intel.com/en-us/dal-developer-guide-features-monotonic-counters
https://github.com/intel/ipp-crypto
https://github.com/intel/ipp-crypto
https://ark.intel.com/content/www/us/en/ark/products/126137/intel-nuc-kit-nuc7pjyh.html
https://ark.intel.com/content/www/us/en/ark/products/126137/intel-nuc-kit-nuc7pjyh.html
https://ark.intel.com/content/www/us/en/ark/products/88179/intel-pentium-processor-g4400-3m-cache-3-30-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/88179/intel-pentium-processor-g4400-3m-cache-3-30-ghz.html

[32] Intel SGX DCAP. https://01.org/intel-softwareguard-extensions/

downloads/intel-sgx-dcap-1.6-release.

[33] Intel® software guard extensions. https://software.intel.com/content/www/us/
en/develop/topics/software-guard-extensions.html. Accessed: 2021-04-20.

[34] JSMN JSON Parser. https://github.com/zserge/jsmn, [Online] Accessed: 2020-
02-13.

[35] Ledger. https://www.ledger.com/. Accessed: 2021-04-20.

[36] The legion of the bouncy castle. https://www.bouncycastle.org/. Accessed: 2019-
02-12.

[37] Mbed TLS. https://github.com/ARMmbed/mbedtls, [Online] Accessed: 2020-02-14.

[38] MITRE ATT&CK: Steal Web Session Cookie. https://attack.mitre.org/

techniques/T1539/.

[39] Moving from reCAPTCHA to hCaptcha. https://blog.cloudflare.com/

moving-from-recaptcha-to-hcaptcha/, [Online] Accessed: 2020-05-19.

[40] Native Messaging. https://developer.chrome.com/extensions/nativeMessaging,
[Online] Accessed: 2020-02-13.

[41] native-messaging. https://www.npmjs.com/package/native-messaging. Accessed:
2021-05-01.

[42] Native messaging protocol. https://developer.chrome.com/docs/apps/

nativeMessaging/#native-messaging-host-protocol. Accessed: 2021-05-01.

[43] Node.js. https://nodejs.org/en/. Accessed: 2021-02-18.

[44] Npm uuid. https://www.npmjs.com/package/uuid. Accessed: 2021-02-18.

[45] Open Enclave SDK. https://openenclave.io/sdk/, [Online] Accessed: 2020-02-14.

[46] Package captcha. https://github.com/dchest/captcha, [Online] Accessed: 2020-
05-21.

[47] reCAPTCHA. https://www.google.com/recaptcha/intro/v3.html, [Online] Ac-
cessed: 2020-02-05.

[48] reCAPTCHA v2. https://developers.google.com/recaptcha/docs/display,
[Online] Accessed: 2020-02-13.

[49] runtime.Port. https://developer.chrome.com/extensions/runtime#type-Port,
[Online] Accessed: 2020-02-12.

[50] Securerandom (java platform se 8). https://docs.oracle.com/javase/8/docs/

api/java/security/SecureRandom.html. Accessed: 2019-02-13.

159

https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-dcap-1.6-release
https://01.org/intel-softwareguard-extensions/downloads/intel-sgx-dcap-1.6-release
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://software.intel.com/content/www/us/en/develop/topics/software-guard-extensions.html
https://github.com/zserge/jsmn
https://www.ledger.com/
https://www.bouncycastle.org/
https://github.com/ARMmbed/mbedtls
https://attack.mitre.org/techniques/T1539/
https://attack.mitre.org/techniques/T1539/
https://blog.cloudflare.com/moving-from-recaptcha-to-hcaptcha/
https://blog.cloudflare.com/moving-from-recaptcha-to-hcaptcha/
https://developer.chrome.com/extensions/nativeMessaging
https://www.npmjs.com/package/native-messaging
https://developer.chrome.com/docs/apps/nativeMessaging/#native-messaging-host-protocol
https://developer.chrome.com/docs/apps/nativeMessaging/#native-messaging-host-protocol
https://nodejs.org/en/
https://www.npmjs.com/package/uuid
https://openenclave.io/sdk/
https://github.com/dchest/captcha
https://www.google.com/recaptcha/intro/v3.html
https://developers.google.com/recaptcha/docs/display
https://developer.chrome.com/extensions/runtime#type-Port
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html
https://docs.oracle.com/javase/8/docs/api/java/security/SecureRandom.html

[51] Sgx-hardware list. https://github.com/ayeks/SGX-hardware. Accessed: 2021-07-
10.

[52] Snp. https://www.nature.com/scitable/definition/

single-nucleotide-polymorphism-snp-295. Accessed: 2019-04-17.

[53] Storing keys in the secure enclave. https://developer.apple.com/documentation/
security/certificate_key_and_trust_services/keys/storing_keys_in_the_

secure_enclave. Accessed: 2021-04-20.

[54] svg captcha. https://github.com/produck/svg-captcha, [Online] Accessed: 2020-
05-21.

[55] tiny-secp256k1. https://www.npmjs.com/package/tiny-secp256k1?activeTab=

versions. Accessed: 2021-05-01.

[56] The token binding protocol version 1.0. https://tools.ietf.org/html/rfc8471.
Accessed: 2021-04-26.

[57] Top 10 Captcha Solving Services Compared. https://prowebscraper.com/blog/

top-10-captcha-solving-services-compared/, [Online] Accessed: 2020-05-22.

[58] Tor Project. https://www.torproject.org/.

[59] Using Privacy Pass with Cloudflare. https://support.cloudflare.com/hc/

en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare, [Online]
Accessed: 2020-06-01.

[60] What are single nucleotide polymorphisms (snps)? https://ghr.nlm.nih.gov/

primer/genomicresearch/snp. Accessed: 2019-02-05.

[61] What is big data? https://www.oracle.com/big-data/what-is-big-data/. Ac-
cessed: 2021-07-06.

[62] What Technology Change Enables 1 Terabyte (TB) Enclave Page Cache
(EPC) size in 3rd Generation Intel® Xeon® Scalable Processor Platforms?
https://www.intel.com/content/www/us/en/support/articles/000059614/

software/intel-security-products.html.

[63] Zero-knowledge proofs. https://github.com/ing-bank/zkproofs. Accessed: 2019-
02-12.

[64] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and C. Diaz. The
web never forgets: Persistent tracking mechanisms in the wild. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pages
674–689, 2014.

160

https://github.com/ayeks/SGX-hardware
https://www.nature.com/scitable/definition/single-nucleotide-polymorphism-snp-295
https://www.nature.com/scitable/definition/single-nucleotide-polymorphism-snp-295
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave
https://developer.apple.com/documentation/security/certificate_key_and_trust_services/keys/storing_keys_in_the_secure_enclave
https://github.com/produck/svg-captcha
https://www.npmjs.com/package/tiny-secp256k1?activeTab=versions
https://www.npmjs.com/package/tiny-secp256k1?activeTab=versions
https://tools.ietf.org/html/rfc8471
https://prowebscraper.com/blog/top-10-captcha-solving-services-compared/
https://prowebscraper.com/blog/top-10-captcha-solving-services-compared/
https://www.torproject.org/
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare
https://support.cloudflare.com/hc/en-us/articles/115001992652-Using-Privacy-Pass-with-Cloudflare
https://ghr.nlm.nih.gov/primer/genomicresearch/snp
https://ghr.nlm.nih.gov/primer/genomicresearch/snp
https://www.oracle.com/big-data/what-is-big-data/
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://www.intel.com/content/www/us/en/support/articles/000059614/software/intel-security-products.html
https://github.com/ing-bank/zkproofs

[65] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for CPU based
attestation and sealing. In Proceedings of the 2nd international workshop on hardware
and architectural support for security and privacy, volume 13, page 7. ACM New York,
NY, USA, 2013.

[66] ARM Holdings. ARM Security Technology, Building a Secure System using TrustZone
Technology, 2009.

[67] D. Asonov and R. Agrawal. Keyboard acoustic emanations. In Security and Privacy,
2004. Proceedings. 2004 IEEE Symposium on, pages 3–11. IEEE, 2004.

[68] M. J. Atallah, F. Kerschbaum, and W. Du. Secure and private sequence comparisons.
In Proceedings of the 2003 ACM workshop on Privacy in the electronic society, pages
39–44. ACM, 2003.

[69] M. J. Atallah and J. Li. Secure outsourcing of sequence comparisons. International
Journal of Information Security, 4(4):277–287, 2005.

[70] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A Practical and Provably Se-
cure Coalition-Resistant Group Signature Scheme. In M. Bellare, editor, Advances
in Cryptology — CRYPTO 2000, pages 255–270, Berlin, Heidelberg, 2000. Springer
Berlin Heidelberg.

[71] M. H. Au, W. Susilo, and Y. Mu. Constant-size dynamic k-TAA. In International
conference on security and cryptography for networks, pages 111–125. Springer, 2006.

[72] P.-L. Aublin, F. Kelbert, D. O’Keeffe, D. Muthukumaran, C. Priebe, J. Lind, R. Krahn,
C. Fetzer, D. Eyers, and P. Pietzuch. Libseal: Revealing service integrity violations
using trusted execution. In Proceedings of the Thirteenth EuroSys Conference, EuroSys
’18, 2018.

[73] J. Ausloos and P. Dewitte. Shattering one-way mirrors. data subject access rights in
practice. Data Subject Access Rights in Practice (January 20, 2018). International
Data Privacy Law, 8(1):4–28, 2018.

[74] E. Ayday, J. L. Raisaro, and J.-P. Hubaux. Privacy-enhancing technologies for medical
tests using genomic data. Technical report, 2012.

[75] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rougemont. Protecting and evaluating
genomic privacy in medical tests and personalized medicine. In Proceedings of the 12th
ACM workshop on Workshop on privacy in the electronic society, pages 95–106. ACM,
2013.

[76] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Countering gat-
taca: efficient and secure testing of fully-sequenced human genomes. In Proceedings of
the 18th ACM conference on Computer and communications security, pages 691–702.
ACM, 2011.

161

[77] C. Boniface, I. Fouad, N. Bielova, C. Lauradoux, and C. Santos. Security analysis of
subject access request procedures. In Annual Privacy Forum, pages 182–209. Springer,
2019.

[78] F. Boudot. Efficient proofs that a committed number lies in an interval. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 431–
444. Springer, 2000.

[79] T. Bradley, X. Ding, and G. Tsudik. Genomic security (lest we forget). IEEE Security
& Privacy, 15(5):38–46, 2017.

[80] E. Brickell, J. Camenisch, and L. Chen. Direct anonymous attestation. In Proceedings
of the 11th ACM conference on Computer and communications security, pages 132–
145, 2004.

[81] E. Brickell, L. Chen, and J. Li. A static diffie-hellman attack on several direct anony-
mous attestation schemes. In International Conference on Trusted Systems, pages
95–111. Springer, 2012.

[82] E. Brickell and J. Li. Enhanced Privacy ID: A Direct Anonymous Attestation Scheme
with Enhanced Revocation Capabilities. In Proceedings of the 2007 ACM Workshop
on Privacy in Electronic Society, WPES ’07, page 21–30, New York, NY, USA, 2007.
Association for Computing Machinery.

[83] E. F. Brickell, D. Chaum, I. B. Damg̊ard, and J. van de Graaf. Gradual and verifiable
release of a secret. In Conference on the Theory and Application of Cryptographic
Techniques, pages 156–166. Springer, 1987.

[84] E. Bursztein, S. Bethard, C. Fabry, J. C. Mitchell, and D. Jurafsky. How good are
humans at solving CAPTCHAs? A large scale evaluation. In 2010 IEEE symposium
on security and privacy, pages 399–413. IEEE, 2010.

[85] A. Burton. The range and variability of the blood flow in the human fingers and the
vasomotor regulation of body temperature. American Journal of Physiology-Legacy
Content, 127(3):437–453, 1939.

[86] M. Cagnazzo, T. Holz, and N. Pohlmann. Gdpirated – stealing personal information
on- and offline. In European Symposium on Research in Computer Security, pages
367–386. Springer, 2019.

[87] J. Camenisch, R. Chaabouni, et al. Efficient protocols for set membership and range
proofs. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 234–252. Springer, 2008.

[88] C. Castelluccia, L. Olejnik, and T. Minh-Dung. Selling Off Privacy at Auction. In
Network and Distributed System Security Symposium (NDSS), San Diego, California,
United States, Nov. 2014. ISOC.

162

[89] A. Chan, Y. Frankel, and Y. Tsiounis. Easy come-easy go divisible cash. updated
version with corrections. Technical report, GTE Tech. Rep, 1998.

[90] C.-M. Cheng, H. Kung, and K.-S. Tan. Use of spectral analysis in defense against DoS
attacks. In Global Telecommunications Conference, 2002. GLOBECOM’02. IEEE,
volume 3, pages 2143–2148. IEEE, 2002.

[91] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Proceedings of IEEE 36th Annual Foundations of Computer Science, pages 41–50.
IEEE, 1995.

[92] A. Dabrowski, G. Merzdovnik, J. Ullrich, G. Sendera, and E. Weippl. Measuring
cookies and web privacy in a post-gdpr world. In International Conference on Passive
and Active Network Measurement, pages 258–270. Springer, 2019.

[93] G. Danezis and E. De Cristofaro. Fast and private genomic testing for disease sus-
ceptibility. In Proceedings of the 13th Workshop on Privacy in the Electronic Society,
pages 31–34. ACM, 2014.

[94] J. Danisevskis. Android Protected Confirmation: Taking transaction secu-
rity to the next level. https://developer.android.com/training/articles/

security-android-protected-confirmation, [Online] Accessed: 2020-02-05.

[95] R. Datta, J. Li, and J. Z. Wang. IMAGINATION: a robust image-based CAPTCHA
generation system. In Proceedings of the 13th annual ACM international conference
on Multimedia, pages 331–334, 2005.

[96] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Valsorda. Privacy pass:
Bypassing internet challenges anonymously. Proceedings on Privacy Enhancing Tech-
nologies, 2018(3):164–180, 2018.

[97] E. De Cristofaro, S. Faber, P. Gasti, and G. Tsudik. Genodroid: are privacy-preserving
genomic tests ready for prime time? In Proceedings of the 2012 ACM workshop on
Privacy in the electronic society, pages 97–108. ACM, 2012.

[98] E. De Cristofaro, S. Faber, and G. Tsudik. Secure genomic testing with size-and
position-hiding private substring matching. In Proceedings of the 12th ACM workshop
on Workshop on privacy in the electronic society, pages 107–118. ACM, 2013.

[99] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine. Authentic data publication
over the internet 1. Journal of Computer Security, 11(3):291–314, 2003.

[100] M. Di Martino, P. Robyns, W. Weyts, P. Quax, W. Lamotte, and K. Andries. Personal
information leakage by abusing the {GDPR}’right of access’. In Fifteenth Symposium
on Usable Privacy and Security ({SOUPS} 2019), 2019.

[101] M. Dietz, A. Czeskis, D. Balfanz, and D. S. Wallach. Origin-bound certificates: A
fresh approach to strong client authentication for the web. In Presented as part of the
21st {USENIX} Security Symposium ({USENIX} Security 12), pages 317–331, 2012.

163

https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation

[102] W. Diffie and M. E. Hellman. Privacy and authentication: An introduction to cryp-
tography. Proceedings of the IEEE, 67(3):397–427, 1979.

[103] X. Ding and G. Tsudik. Initializing trust in smart devices via presence attestation.
Computer Communications, 131:35 – 38, 2018.

[104] S. Eskandarian, J. Cogan, S. Birnbaum, P. C. W. Brandon, D. Franke, F. Fraser,
G. Garcia, E. Gong, H. T. Nguyen, T. K. Sethi, V. Subbiah, M. Backes, G. Pellegrino,
and D. Boneh. Fidelius: Protecting user secrets from compromised browsers. In 2019
IEEE Symposium on Security and Privacy (SP), pages 264–280, 2019.

[105] A. et al. Smudge attacks on smartphone touch screens. Woot, 10:1–7, 2010.

[106] A. et al. A pilot study on the security of pattern screen-lock methods and soft side
channel attacks. In Proceedings of the sixth ACM conference on Security and privacy
in wireless and mobile networks, pages 1–6. ACM, 2013.

[107] A. et al. Stay cool! understanding thermal attacks on mobile-based user authentication.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems,
pages 3751–3763. ACM, 2017.

[108] D. et al. Comparison of human skin opto-thermal response to near-infrared and vis-
ible laser irradiations: a theoretical investigation. Physics in Medicine & Biology,
49(21):4861, 2004.

[109] M. et al. Heat of the moment: Characterizing the efficacy of thermal camera-based
attacks. In Proceedings of the 5th USENIX conference on Offensive technologies, pages
6–6. USENIX Association, 2011.

[110] M. et al. (sp) iphone: decoding vibrations from nearby keyboards using mobile phone
accelerometers. In Proceedings of the 18th ACM conference on Computer and commu-
nications security, pages 551–562. ACM, 2011.

[111] P. et al. Heat capacity of poly (butylene terephthalate). Journal of Polymer Science
Part B: Polymer Physics, 42(23):4401–4411, 2004.

[112] P. et al. Diminutive digits discern delicate details: fingertip size and the sex difference
in tactile spatial acuity. Journal of Neuroscience, 29(50):15756–15761, 2009.

[113] S. et al. Study of potential attacks on rubber pin pads based on mobile thermal
imaging.

[114] S. et al. Timing analysis of keystrokes and timing attacks on ssh. In USENIX Security
Symposium, volume 2001, 2001.

[115] Z. et al. Keyboard acoustic emanations revisited. ACM Transactions on Information
and System Security (TISSEC), 13(1):3, 2009.

[116] Y. Feng, Y. Zhang, C. Ying, D. Wang, and C. Du. Nanopore-based fourth-generation
dna sequencing technology. Genomics, proteomics & bioinformatics, 13(1):4–16, 2015.

164

[117] C. A. Fidas, A. G. Voyiatzis, and N. M. Avouris. On the necessity of user-friendly
CAPTCHA. In Proceedings of the SIGCHI Conference on Human Factors in Comput-
ing Systems, pages 2623–2626, 2011.

[118] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular
polynomial relations. In Annual International Cryptology Conference, pages 16–30.
Springer, 1997.

[119] H. Gao, W. Wang, and Y. Fan. Divide and conquer: an efficient attack on Yahoo!
CAPTCHA. In 2012 IEEE 11th International Conference on Trust, Security and
Privacy in Computing and Communications, pages 9–16. IEEE, 2012.

[120] C. A. General. California consumer privacy act regulations. https://oag.ca.gov/

sites/all/files/agweb/pdfs/privacy/oal-sub-final-text-of-regs.pdf, 2020.

[121] P. Golle. Machine learning attacks against the Asirra CAPTCHA. In Proceedings of
the 15th ACM conference on Computer and communications security, pages 535–542,
2008.

[122] R. Gonzalez, L. Jiang, M. Ahmed, M. Marciel, R. Cuevas, H. Metwalley, and S. Nic-
colini. The cookie recipe: Untangling the use of cookies in the wild. In 2017 Network
Traffic Measurement and Analysis Conference (TMA), pages 1–9, 2017.

[123] R. Gossweiler, M. Kamvar, and S. Baluja. What’s up CAPTCHA? A CAPTCHA
based on image orientation. In Proceedings of the 18th international conference on
World wide web, pages 841–850, 2009.

[124] R. Gummadi, H. Balakrishnan, P. Maniatis, and S. Ratnasamy. Not-a-Bot: Improving
Service Availability in the Face of Botnet Attacks. In NSDI, volume 9, pages 307–320,
2009.

[125] S. J. Heerema and C. Dekker. Graphene nanodevices for dna sequencing. Nature
nanotechnology, 11(2):127, 2016.

[126] D. Herrmann and J. Lindemann. Obtaining personal data and asking for erasure:
Do app vendors and website owners honour your privacy rights? arXiv preprint
arXiv:1602.01804, 2016.

[127] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and J. Del Cuvillo. Using
innovative instructions to create trustworthy software solutions. HASP@ ISCA,
11(10.1145):2487726–2488370, 2013.

[128] B. Hore, S. Mehrotra, and G. Tsudik. A privacy-preserving index for range queries. In
Proceedings of the Thirtieth international conference on Very large data bases-Volume
30, pages 720–731. VLDB Endowment, 2004.

[129] S. Jordan. A comparison of notice and consent requirements under the gdpr, the
ccpa/cpra, and the fcc broadband privacy order, 2021.

165

https://oag.ca.gov/sites/all/files/agweb/pdfs/privacy/oal-sub-final-text-of-regs.pdf
https://oag.ca.gov/sites/all/files/agweb/pdfs/privacy/oal-sub-final-text-of-regs.pdf

[130] S. Jordan, S. Narasimhan, and J. Hong. Collection, use, and sharing of personal
information, 2021.

[131] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin. A cryptographic approach to securely
share and query genomic sequences. IEEE Transactions on information technology in
biomedicine, 12(5):606–617, 2008.

[132] C. A. Kerrache, N. Lagraa, C. T. Calafate, and A. Lakas. TFDD: A trust-based
framework for reliable data delivery and DoS defense in VANETs. Vehicular Commu-
nications, 9:254–267, 2017.

[133] H. Krawczyk. Cryptographic extraction and key derivation: The hkdf scheme. In
Annual Cryptology Conference, pages 631–648. Springer, 2010.

[134] J. L. Kröger. Subject access request response data - 105 ios and 120 android apps,
2020.

[135] C. Legislature. California consumer privacy act of 2018 (as amended by the california
privacy rights act of 2020). https://www.oag.ca.gov/privacy/ccpa, 2020.

[136] A. Leung, L. Chen, and C. J. Mitchell. On a possible privacy flaw in direct anonymous
attestation (DAA). In International Conference on Trusted Computing, pages 179–190.
Springer, 2008.

[137] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenticated in-
dex structures for outsourced databases. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, pages 121–132. ACM, 2006.

[138] W. Li, S. Luo, Z. Sun, Y. Xia, L. Lu, H. Chen, B. Zang, and H. Guan. Vbutton:
Practical attestation of user-driven operations in mobile apps. In Proceedings of the
16th Annual International Conference on Mobile Systems, Applications, and Services,
pages 28–40, 2018.

[139] X. Liu, X. Yang, and Y. Lu. To filter or to authorize: Network-layer DoS defense
against multimillion-node botnets. In Proceedings of the ACM SIGCOMM 2008 con-
ference on Data communication, pages 195–206, 2008.

[140] W. Mao. Guaranteed correct sharing of integer factorization with off-line shareholders.
In International Workshop on Public Key Cryptography, pages 60–71. Springer, 1998.

[141] E. R. Mardis. A decade’s perspective on dna sequencing technology. Nature,
470(7333):198, 2011.

[142] S. Mare, M. Baker, and J. Gummeson. A study of authentication in daily life. In
Twelfth Symposium on Usable Privacy and Security ({SOUPS} 2016), pages 189–206,
2016.

[143] J. R. Mayer and J. C. Mitchell. Third-party web tracking: Policy and technology. In
2012 IEEE Symposium on Security and Privacy, pages 413–427, 2012.

166

https://www.oag.ca.gov/privacy/ccpa

[144] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and
U. R. Savagaonkar. Innovative instructions and software model for isolated execution.
Hasp@ isca, 10(1), 2013.

[145] G. Mori and J. Malik. Recognizing objects in adversarial clutter: Breaking a visual
CAPTCHA. In 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003. Proceedings., volume 1, pages I–I. IEEE, 2003.

[146] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and S. Savage. Re:
CAPTCHAs-Understanding CAPTCHA-Solving Services in an Economic Context. In
USENIX Security Symposium, volume 10, page 3, 2010.

[147] Y. Nakatsuka, E. Ozturk, A. Paverd, and G. Tsudik. CACTI: Captcha avoidance
via client-side TEE integration. In 30th {USENIX} Security Symposium ({USENIX}
Security 21), Aug. 2021.

[148] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P. Hubaux, B. A.
Malin, and X. Wang. Privacy in the genomic era. ACM Computing Surveys (CSUR),
48(1):6, 2015.

[149] J. Noyes. The qwerty keyboard: A review. International Journal of Man-Machine
Studies, 18(3):265–281, 1983.

[150] Occupational Safety and Health Administration and others. Osha technical manual.
Section VIII, 1999.

[151] X. Ouyang, B. Tian, Q. Li, J.-y. Zhang, Z.-M. Hu, and Y. Xin. A novel framework of
defense system against DoS attacks in wireless sensor networks. In 2011 7th Interna-
tional Conference on Wireless Communications, Networking and Mobile Computing,
pages 1–5. IEEE, 2011.

[152] H. Pang, A. Jain, K. Ramamritham, and K.-L. Tan. Verifying completeness of rela-
tional query results in data publishing. In Proceedings of the 2005 ACM SIGMOD
international conference on Management of data, pages 407–418. ACM, 2005.

[153] E. Parliament and Council. General data protection regulation, regulation
(eu) 2016/679 (as amended). https://eur-lex.europa.eu/eli/reg/2016/679/

2016-05-04, 2016.

[154] J. Pavur and C. Knerr. Gdparrrrr: Using privacy laws to steal identities. arXiv preprint
arXiv:1912.00731, 2019.

[155] T. Peng, C. Leckie, and K. Ramamohanarao. Survey of network-based defense mech-
anisms countering the DoS and DDoS problems. ACM Computing Surveys (CSUR),
39(1):3–es, 2007.

[156] P. Perlegos. DoS defense in structured peer-to-peer networks. Computer Science Divi-
sion, University of California, 2004.

167

https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04
https://eur-lex.europa.eu/eli/reg/2016/679/2016-05-04

[157] C. Priebe, K. Vaswani, and M. Costa. EnclaveDB: A secure database using SGX. In
2018 IEEE Symposium on Security and Privacy (SP), pages 264–278. IEEE, 2018.

[158] J. Protzenko, B. Parno, A. Fromherz, C. Hawblitzel, M. Polubelova, K. Bhargavan,
B. Beurdouche, J. Choi, A. Delignat-Lavaud, C. Fournet, N. Kulatova, T. Ramananan-
dro, A. Rastogi, N. Swamy, C. Wintersteiger, and S. Zanella-Beguelin. EverCrypt: A
Fast, Verified, Cross-Platform Cryptographic Provider. Cryptology ePrint Archive,
Report 2019/757, 2019.

[159] C. Rudolph. Covert identity information in direct anonymous attestation (DAA). In
IFIP International Information Security Conference, pages 443–448. Springer, 2007.

[160] M. Sabt, M. Achemlal, and A. Bouabdallah. Trusted execution environment: what
it is, and what it is not. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages
57–64. IEEE, 2015.

[161] M. Sanghavi and S. Doshi. Progressive captcha, Apr. 30 2009. US Patent App.
11/929,716.

[162] J. Sauro. Estimating productivity: composite operators for keystroke level modeling. In
International Conference on Human-Computer Interaction, pages 352–361. Springer,
2009.

[163] A. Shamir and N. Van Someren. Playing hide and seek with stored keys. In Interna-
tional conference on financial cryptography, pages 118–124. Springer, 1999.

[164] T. I. H. C. Study et al. The major genetic determinants of hiv-1 control affect hla
class i peptide presentation. Science (New York, NY), 330(6010):1551, 2010.

[165] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy preserving error
resilient dna searching through oblivious automata. In Proceedings of the 14th ACM
conference on Computer and communications security, pages 519–528. ACM, 2007.

[166] T. Urban, M. Degeling, T. Holz, and N. Pohlmann. ” your hashed ip address: Ubuntu.”
perspectives on transparency tools for online advertising. In Proceedings of the 35th
Annual Computer Security Applications Conference, pages 702–717, 2019.

[167] T. Urban, D. Tatang, M. Degeling, T. Holz, and N. Pohlmann. A study on sub-
ject data access in online advertising after the gdpr. In Data Privacy Management,
Cryptocurrencies and Blockchain Technology, pages 61–79. Springer, 2019.

[168] L. Von Ahn, M. Blum, N. J. Hopper, and J. Langford. Captcha: Using hard ai problems
for security. In International conference on the theory and applications of cryptographic
techniques, pages 294–311. Springer, 2003.

[169] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using Hard AI
Problems for Security. In E. Biham, editor, Advances in Cryptology — EUROCRYPT
2003, pages 294–311, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

168

[170] C. Wang, S. T. Jan, H. Hu, D. Bossart, and G. Wang. The next domino to fall:
Empirical analysis of user passwords across online services. In Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy, pages 196–203, 2018.

[171] J. Z. Wang, R. Datta, and J. Li. Image-based CAPTCHA generation system, Apr. 19
2011. US Patent 7,929,805.

[172] S. Weiser and M. Werner. SGXIO: Generic trusted I/O path for Intel SGX. In
Proceedings of the Seventh ACM on Conference on Data and Application Security and
Privacy, pages 261–268, 2017.

[173] W. Wodo and L. Hanzlik. Thermal imaging attacks on keypad security systems. In
SECRYPT, pages 458–464, 2016.

[174] J. Yan and A. S. El Ahmad. A Low-cost Attack on a Microsoft CAPTCHA. In
Proceedings of the 15th ACM conference on Computer and communications security,
pages 543–554, 2008.

[175] M. Zalewski. Cracking safes with thermal imaging. http://lcamtuf.coredump.cx/

tsafe/, 2005. Accessed: 2018-04-02.

[176] Z. Zhang, X. Ding, G. Tsudik, J. Cui, and Z. Li. Presence Attestation: The Missing
Link in Dynamic Trust Bootstrapping. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’17, page 89–102, New
York, NY, USA, 2017. Association for Computing Machinery.

[177] Z. Zhang, X. Ding, G. Tsudik, J. Cui, and Z. Li. Presence attestation: The missing link
in dynamic trust bootstrapping. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 89–102, 2017.

[178] Z. Zhang, X. Ding, G. Tsudik, J. Cui, and Z. Li. Presence attestation: The missing link
in dynamic trust bootstrapping. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, 2017.

[179] S. Zimmeck and K. Alicki. Standardizing and implementing do not sell. In Proceedings
of the 19th Workshop on Privacy in the Electronic Society, pages 15–20, 2020.

169

http://lcamtuf.coredump.cx/tsafe/
http://lcamtuf.coredump.cx/tsafe/

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Contributions

	Thermal Residue-Based Post Factum Attacks on Keyboard Data Entry
	Introduction
	Motivation & Contributions
	Adversarial Model & Attacks
	Physical Premise
	Thermanator

	Background
	Basic Thermal Terminology
	Heating via Thermal Conduction
	Cooling via Thermal Convection
	Modern Keyboards
	Thermal Cameras

	Methodology
	Apparatus
	Procedures
	Subject Recruitment Procedure

	Results
	Hunt-and-Peck Typists
	Touch Typists
	Outlier: Acrylic Nails

	Discussion
	Results with Common Passwords
	Results with Random Passwords
	Results with Hunt-and-Peck Typists
	Results with Touch Typists
	Ordering of Key-Presses
	Mitigation Strategies

	Comparison with Similar Attacks
	Lunch-Time
	Shoulder-Surfing
	Acoustic Emanations
	Keyboard Vibrations
	Thermanator

	Related Work
	Conclusion

	Captcha Avoidance via Client-side TEE Integration
	Introduction
	Motivation & Contributions
	Background
	Trusted Execution Environments
	Group Signatures

	System & Threat Models
	CACTI Design & Challenges
	Conceptual Design
	Design Challenges
	Realizing CACTI Design

	Implementation
	Browser Extension
	Host Application
	SGX Enclave
	Website Integration

	Evaluation
	Security Evaluation
	Latency Evaluation
	Bandwidth Evaluation
	Server Load Evaluation
	Deployability Analysis

	Discussion
	PA Considerations
	EPID
	Optimizations
	Deploying CACTI

	Related Work
	Conclusion

	GDPR-/CCPA-compliant Verifiable Accountless Consumer Requests
	Introduction
	Motivation & Contributions
	GDPR/CCPA Background
	Personally Identifiable Information (PII)
	Rights of Access and Erasure
	Verifiable Consumer Requests (VCRs)

	Threat Model and Requirements
	VICEROY Design & Challenges
	Design Motivation
	Conceptual Design
	Design Challenges
	Realizing VICEROY Design

	Implementation
	Server
	Browser Extension
	Native Messaging Application

	Evaluation
	Security Analysis
	Latency Analysis
	Bandwidth Analysis
	Storage Analysis
	Deployability Analysis

	Discussion
	Multi-Device Support
	Multi-VCR Support
	Multi-Communication Protocol Support
	Shared Devices, aka The Roommate Problem
	3rd Party Storage
	Broad Identifier Support
	Third-party Cookie Support
	Further Privacy Considerations
	Further Applications

	Related Work
	Conclusion

	Balancing Security and Privacy in Genomic Range Queries
	Introduction
	Motivation & Contributions
	Background
	Genomics
	Commitments
	Range Proofs

	System & Security Models
	System Model
	Security Model

	Range Query Formulation
	Proposed Construction
	Security & Privacy
	Instantiation of Proposed Construction

	Efficiency Considerations
	Commitments and Salt Generation
	Signatures

	Evaluation
	General Setting
	Secure & Private Range Queries over Sparse Integers
	Construction
	Security & Privacy: Proof Sketch

	Related Work
	Conclusion

	Conclusion & Future Work
	Bibliography

