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Purpose: Volumetric modulated arc therapy (VMAT) is a widely employed radiation therapy tech-
nique, showing comparable dosimetry to static beam intensity modulated radiation therapy (IMRT)
with reduced monitor units and treatment time. However, the current VMAT optimization has various
greedy heuristics employed for an empirical solution, which jeopardizes plan consistency and quality.
The authors introduce a novel direct aperture optimization method for VMAT to overcome these
limitations.
Methods: The comprehensive VMAT (comVMAT) planning was formulated as an optimization
problem with an L2-norm fidelity term to penalize the difference between the optimized dose and the
prescribed dose, as well as an anisotropic total variation term to promote piecewise continuity in the
fluence maps, preparing it for direct aperture optimization. A level set function was used to describe
the aperture shapes and the difference between aperture shapes at adjacent angles was penalized to
control MLC motion range. A proximal-class optimization solver was adopted to solve the large scale
optimization problem, and an alternating optimization strategy was implemented to solve the fluence
intensity and aperture shapes simultaneously. Single arc comVMAT plans, utilizing 180 beams with
2◦ angular resolution, were generated for a glioblastoma multiforme case, a lung (LNG) case, and
two head and neck cases—one with three PTVs (H&N3PTV) and one with foue PTVs (H&N4PTV)—to
test the efficacy. The plans were optimized using an alternating optimization strategy. The plans were
compared against the clinical VMAT (clnVMAT) plans utilizing two overlapping coplanar arcs for
treatment.
Results: The optimization of the comVMAT plans had converged within 600 iterations of the
block minimization algorithm. comVMAT plans were able to consistently reduce the dose to all
organs-at-risk (OARs) as compared to the clnVMAT plans. On average, comVMAT plans reduced
the max and mean OAR dose by 6.59% and 7.45%, respectively, of the prescription dose. Reductions
in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N3PTV
case. PTV coverages measured by D95, D98, and D99 were within 0.25% of the prescription dose.
By comprehensively optimizing all beams, the comVMAT optimizer gained the freedom to allow
some selected beams to deliver higher intensities, yielding a dose distribution that resembles a static
beam IMRT plan with beam orientation optimization.
Conclusions: The novel nongreedy VMAT approach simultaneously optimizes all beams in an arc
and then directly generates deliverable apertures. The single arc VMAT approach thus fully utilizes
the digital Linac’s capability in dose rate and gantry rotation speed modulation. In practice, the new
single VMAT algorithm generates plans superior to existing VMAT algorithms utilizing two arcs.
C 2016 American Association of Physicists in Medicine. [http://dx.doi.org/10.1118/1.4953832]

Key words: volumetric modulated arc therapy, non-greedy, non-heuristic, direct aperture
optimization

1. INTRODUCTION

Volumetric modulated arc therapy (VMAT) is a widely
adopted radiation therapy technique. The adoption was
supported by dosimetric studies showing that with comparable
dose distributions,1 VMAT is significantly more efficient in
both treatment time and total monitor units (MU) than static
beam intensity modulated radiation therapy (IMRT).2–4 The
theoretical framework of VMAT was originally introduced
in 1995 by Yu5 as intensity modulated arc therapy (IMAT),
which generated multiple MLC segments per beam angle and
requires multiple arcs to deliver.6–8 More practical single arc

VMAT algorithms were subsequently developed9–11 including
a representative publication by Otto.12

Compared to the static beam IMRT problem, the arc opti-
mization problem was considered significantly more complex,
due both to the substantially increased beam orientations
and the additional machine mechanical constraints such as
gantry and MLC mechanical limits. Using a multiresolution
approach,9–12 several methods progressively inserted new
beams between sparsely sampled beams using interpolation
and then randomly sampled MLC aperture shapes and weights
using simulated annealing. These methods were effective
to reduce the optimization problem complexity and achieve
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aperture continuity between adjacent apertures. However,
such greedy methods do not guarantee optimality. To mitigate
the local minimum problem, in practice, two or more arcs
are still commonly required to introduce different initial
conditions and achieve the desired dosimetry,13 despite the
original promise of using the single arc. Also due to the
multiresolution approach, optimization weights and penalties
applied at earlier stages of optimization tend to carry a greater
influence. In addition to the stochastic nature of simulated
annealing optimization, the optimization results highly depend
on the order and timing that the optimization parameters are
applied, making reproducing an existing plan difficult, if not
impossible. Craft et al.14 attempted to avoid the progressive
sampling issue by starting an IMRT optimization at every 2◦,
and then created the apertures by merging and simplifying
adjacent fluence maps. This leads to another problem that is
common in inverse treatment planning, which is the heuristic
conversion from fluence map to MLC segments, which
typically introduces noticeable and unpredictable dosimetric
quality degradations.15–17

To avoid the stochastic simulated annealing method used in
previous direct aperture VMAT implementations and directly
optimize based on beam apertures, Peng et al. developed a
column-generation-based VMAT method algorithm.18 This
method iteratively selects a new aperture for densely sampled
arc beams from an aperture set based on its contribution
to the objective function. Once the aperture is selected, the

optimization proceeds to the next beam and selects the next
aperture, imposing potential mechanical limitations based
on the previous aperture shape. This method has obvious
limitations from being a greedy heuristic algorithm, as it
solves a subproblem in each step that does not simultaneously
optimize all possible beam angles. Furthermore, the number
of possible aperture shapes increases combinatorially. Using
a complete aperture set for large tumor or high resolution
dose modulation quickly becomes mathematically intractable.
Cheng et al. introduced a binary level-set shape optimization
model for VMAT, illustrating the efficacy of level-set methods
for radiotherapy.19 While efficient, the disadvantage to using
a binary level-set lies in that fact the level-set function is
discontinuous. Derivatives of the level-set at the boundary do
not exist and this can lead to poor accuracy in the variational
approach. Because of the pivotal role of VMAT in today’s
radiotherapy practice, there is a strong need to overcome
the existing limitations and develop a new level-set based
VMAT framework that formulates the full  program using
a continuous level-set function.

2. MATERIALS AND METHODS
2.A. Optimization formulation

The proposed comprehensive VMAT (comVMAT) optimi-
zation formulation takes the following form:

argmin
{ fθ,cθ,Φθ}nθ=0
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subject to f ≥ 0, (1)

where fθ, cθ, and Φθ are the optimization variables. fθ is
the vectorized fluence map, cθ is a value that f approaches
within an aperture, andΦθ is the level set function,20 defined as
positive where the aperture exists and negative elsewhere. The
level set {(x,y) |Φθ(x,y)= 0} describes the aperture boundary.
Beam angles are indexed by θ, which ranges from 1 to n,
and x and y are indices for a beamlet at a given θ. The
fluence to dose transformation matrix is denoted by A, and
the desired dose, d0, is set as the prescription dose at the
PTV and zero elsewhere. The diagonal weighting matrix, W ,
weighs the structures of interest. The derivative matrices, D1

and D2, take the derivative of the fluence in both directions
parallel and orthogonal to the MLC leaf movement. H is the
Heaviside function,

H (v)=



1 if v ≥ 0
0 if v < 0

. (2)

Essentially, H (Φθ(x,y)) equals one inside the aperture and
zero elsewhere. fθxy is a scalar value representing a single
beamlet at a given beam angle θ and an x and y location on
the beam, while fθ is a vector of all the fluences at a specific
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beam angles. cθ is a scalar quantity and only has one value
per beam at a given time.

Intuitively, the dose fidelity term, in Eq. (1), attempts to
push the final dose as close as possible to the desired dose.
Term set 1 is the anisotropic total variation (TV) regularization,
which has been shown to successfully encourage piecewise
continuity on the fluence maps.21,22 The TV regularization
term considers the entire fluence map of the beam, so the
term ultimately controls the segment size and shape, abating
irregularities and holes in the aperture shape. Soft regulation
of the minimal leaf gap and the max leaf interdigitation can
be accomplished by independently adjusting the weightings
λ1 and λ2, respectively. Term set 2 is pushing f toward c
where the aperture is defined and zero elsewhere. Term set 3
encourages adjacent beam angles to be similar to regulate leaf
movement between beam angles. For the first and n-th θ, the
Φθ−1(x,y) andΦθ+1(x,y) are equal to their respectiveΦθ(x,y).

2.B. Algorithm

We use a block minimization algorithm to solve the
minimization problem in Eq. (1) by alternatingly updating
the fluence fθ, aperture intensity cθ, and aperture shape Φθ,
while holding the other two constant. The algorithm is broken
down into 3 modules described below. Each iteration of the
algorithm runs module 1 through 3, and the process is repeated
until a satisfactory convergence rate is achieved. Convergence
of the alternating approach is guaranteed, as long as each
module is able to find a minimum for its respective variable,
while holding the other variables constant. A proof of the
convergence is provided by Gorski et al.23

2.B.1. Algorithm module 1: Update fθ
Module 1 minimizes Eq. (1) w.r.t. fθ while holding cθ and

Φθ constant. This subproblem can be rewritten as

argmin
{ fθ}nθ=0
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subject to f ≥ 0, (3)

where I is the identity matrix, and HΦθ in this notation is a
diagonal matrix that has the information of H (Φθ(x,y)) along
its diagonal for all x and y . Essentially, the diagonal of HΦθ
has a value of 1 if the corresponding Φθ(x,y) is positive
and zero otherwise. The formulation is solved using the
Chambolle–Pock algorithm,24 a proximal-class primal–dual
algorithm. This algorithm solves the optimization problem in
the form of

minimize S(K x)+R(x). (4)

S and R are lower semicontinuous functions, and K is a
matrix. Equation (3) can be written in the form of Eq. (4)

by defining
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0 if f ≥ 0
∞ otherwise

, (5)

where

s1(g1)= 1
2
g1−W ∥d0∥2

2,

s2(g2)= λ∥g2∥1,

s3(g3)= λ∥g3∥1,

s4(g4)= γ

2
∥g4−HΦc∥2

2,

s5(g5)= γ

2
∥g5∥2

2. (6)

The overrelaxed Chambolle–Pock algorithm25 is used to solve
this formulation, with the iteration

f̄ n+1= proxτR
�

f n−τKT zn
�
,

z̄n+1= proxσS∗
�
zn+σK

�
2 f̄ n+1− f n

��
,

f n+1= p f̄ n+1+ (1− p) f n,

zn+1= pz̄n+1+ (1− p)zn. (7)

τ and σ are step sizes that satisfy the constraint τσ∥K ∥2 ≤ 1,
and p is the overrelaxation parameter ranging from 0 to
2. The operator norm of K is estimated with the power
iteration method.26 The proximity operator, or “prox” oper-

ator, is defined as proxth(x) = argmin
u

(
h(u)+1/2t ∥u− x∥2

2

)
,

and S∗ is the convex conjugate of S, defined as S∗(z)
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=
sup
y

�
zT y−S(y)�. Evaluation of these operations yield

closed form, low cost calculations for the Chambolle–Pock
algorithm,
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2.B.2. Algorithm module 2: Update cθ
Step 2 minimizes Eq. (1) with respect to cθ given Φθ and

fθ constant, which is provided by the closed-form solution

cθ =


x, y fθxyH (Φθ(x,y))
x, y H (Φθ(x,y)) for θ = 1,. . .,n. (10)

This calculation takes an average of the beamlet intensities
that are defined as part of the aperture for each beam angle.

2.B.3. Algorithm module 3: Update Φθ

Step 3 minimizes Eq. (1) with respect to Φθ while holding
fθ and cθ constant,

argmin
{Φθ}nθ=0


θ


x, y
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γ
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�
fθxy−cθ
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, (11)

Φθ is iteratively updated by the expression

Φ
i+1
θ (x,y)=Φi

θ(x,y)+
dΦi

θ(x,y)
dt

dt, (12)

where dΦθ(x, y)
dt

was derived as

dΦθ(x,y)
dt

=
γ

2
�
2cθ fθxy−c2

θ

�
δ(Φθ(x,y))dt

+ k (H (Φθ−1(x,y))+H (Φθ+1(x,y))
− 2H (Φθ(x,y)))δ(Φθ(x,y))dt . (13)

The derivation for
dΦi

θ
(x, y)
dt

can be found in the appendix.
Practically, we use the sigmoid function and its derivative to
approximate the Heaviside and the Dirac delta function,

H (Φ) � Sigmoid(qΦ)= 1
1+e−qΦ

,

δ(Φ)= dH (Φ)
dΦ

�
dSigmoid(qΦ)

dΦ
=

qeqΦ

(1+eqΦ)2 , (14)

where q is some constant. A larger value of q allows for
the sigmoid function to more closely resemble the Heaviside
function.

2.B.4. Ensuring optimal plan quality

Once the algorithm has converged, and the apertures shapes
no longer change, a final polishing step is taken to ensure
superior plan quality. The formulation locks in the solved
aperture shapes and solves for the fluence of each beam angle
without the aperture regularization constraints,

argmin
b

∥W (AFb−d0)∥2
2,

subject to b≥ 0, (15)

The optimization variable, b, contains one intensity value for
each beam angle. F is a binary matrix containing all of the
aperture information from H (Φθ(x,y)) for all of the beam
angles. These two variables are related to the fluence via the
equation f = Fb. This optimization can be easily solved with
the Chambolle–Pock algorithm. By solving the optimization
in Eq. (15) as the last step, only the dose difference
is penalized, ensuring that the regularization and aperture
constraints are not hindering the final dosimetric outcome.

2.C. Evaluation

To assess the efficacy of the optimization, four patients
were chosen for this study: A glioblastoma multiforme (GBM)
patient, a lung (LNG) patient, and two head and neck
patients, one with three PTVs (H&N3PTV) and one with four
PTVs (H&N4PTV). Table I shows the four patients with their
respective prescription doses and PTV volumes.

Using a convolution/superposition code with a 6 MV x-
ray polyenergetic kernel, the beamlet dose was calculated for

T I. Prescription doses and PTV volumes.

Prescription dose (Gy) PTV volume (cc)

GBM 25 6.23

LNG 50 47.78

H&N3PTV

54 197.54
59.4 432.56
69.96 254.98

H&N4PTV

54 58.98
60 149.32
66 242.23
70 175.20
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F. 1. Convergence plot for the GBM case. Convergence is defined as
convergence(k)= (objval(k)−minobj)/minobj, where objval(k) is the objec-
tive value at the k th iteration and minobj is the minimum objective value,
taken at the 10 000th iteration. Objective value is based off of the objective
function defined in Eq. (1) and is recorded after each block iteration of
modules 1, 2, and 3.

180 equally spaced coplanar beam angles around the patient.
The dose calculation method was described in our previous
publications.27,28 The chosen beamlet size was 0.5×0.5 cm2,
and the dose matrix resolution was 0.25×0.25×0.25 cm3.
The resulting dose was stored in the dose matrix A for
optimization. A 5 cm ring structure was added to the
optimization to minimize dose spillage. Each patient was
then optimized using the comVMAT algorithm, and W was
adjusted until a desirable dose was achieved.

The comVMAT plans were compared to the patients’
respective clinical VMAT plan (clnVMAT). The clnVMAT
plans were planned on the Eclipse treatment planning
system using two superimposing 360◦ coplanar arcs with
90◦ collimator rotation. The PTV D95, D98, D99, Dmax, and
PTV homogeneity, defined as D95/D5, were evaluated. The
organs-at-risk (OARs) Dmax and Dmean were also assessed.
Max dose is defined as the dose at 2% of the structure volume,
D2, which is recommended by the ICRU-83 report.29

3. RESULTS

The aperture shapes converged, with a relative convergence
of 10−1, within 600 iterations of the optimization for each case.
This degree of convergence has been shown to produce plans
that are dosimetrically equivalent to other plans that have
tighter convergences.22 A convergence plot for the GBM case
is shown in Fig. 1, showing the convergence relative to the
optimal value taken at the 10 000th iteration. The oscillatory
convergence pattern in the beginning before 600 iterations
comes from the alternating optimizations to solve for f , c,
and Φ. The variables are each taking small steps toward
optimality, but may make the other variables temporarily
and slightly less optimal in a given iteration. However this
pattern diminishes after 600 iterations. Depending on various
factors—such as case complexity, tumor volume, and body
volume—total computational time varied from 5 min for the
GBM case to 40 min for the H&N cases, per optimization run.
Unlike the clinical implementation, no human involvement is

required during the optimization process after the weights
have been set. While the overall planning time is within
acceptable range, the algorithm was written and tested in
 for proof of principle. Its performance should improve
considerably using faster programming language.

The comVMAT method managed to optimize all 180
beams in the coplanar arc simultaneously for all tested cases.
Figure 2 shows the 180 apertures from the GBM case. The
MLC leaf motion direction is horizontal in the schematic.
It is observed that beam aperture shapes are similar to their
neighbors. A small fraction of beams, such as beam 3 and
beam 26, require two segments to deliver. Since every beam
is spaced apart by 2◦, in practice, these beams can be split
into two beams spaced 1◦ apart, each delivering one of the
apertures. The gantry speed may be modulated in order to
deliver the apertures.

Figure 3 shows the 4 DVHs from each of the patients,
comparing the comVMAT plans against the clnVMAT plans.
Qualitatively, it can be observed that comVMAT is able to
better spare the OARs while maintaining a competitive PTV
dosimetry. The two H&N cases with multiple PTVs, while
matching the dose coverage to 95% of the PTVs, had slightly
hotter tails to the PTVs by a few Gy with the comVMAT plan.
PTVs are shown in green shades for the H&N3PTV case and
blue shades for the H&N4PTV case in Fig. 3. However this
marginal increase is outweighed by the substantial sparing in
all of the OARs for each plan. The GBM and LNG cases,
which had only 1 PTV, were superior in all aspects with the
comVMAT plans (Table II).

On average, the PTV D95, D98, and D99 changed by
−0.01%, +0.02%, and −0.23% of the prescription dose, indi-
cating virtually identical dose coverage between comVMAT
and clnVMAT. However PTV Dmax increased, on average,
by 1.40% of the prescription dose. This change is associated
to the two H&N cases with multiple PTVs. The GBM case
actually had reduced max dose to the PTV, while the LNG
case minimally increased the PTV max dose by 0.08% of
the prescription dose. The average calculations include all of
the PTVs from the H&N cases. The comVMAT optimizer was
able to decrease all of the OARs from all of the cases, shown in
Table III, where the largest valued dose differences were still
negative. On average, comVMAT plan spared the OARs max
and mean dose by 6.59% and 7.45% of the prescription dose,
respectively. Comparing all the cases, the LNG case had the
single largest sparing in max dose in an OAR, and spared the
proximal bronchus by 14.5 Gy of max dose. Likewise, the sin-
gle largest reduction in the mean dose to an OAR was from the
H&N3PTV case, sparing the larynx by 15.3 Gy of mean dose.

Figure 4 shows the dose wash for all of the patients. From
a qualitative perspective, it can be observed that comVMAT
distributes the dose very differently than clnVMAT. The GBM
and LNG cases more clearly illustrate that comVMAT plans
gave a much heavier weighting to some selective beams,
giving rise to a dose distribution that bears some resemblance
to a coplanar IMRT plan, even though there is still only 1
fluence value per beam angle. The clnVMAT overall spreads
the distribution of fluence intensities more evenly among
the beams, giving rise to a less angular modulated dose
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F. 2. Schematic of apertures for all 180 beams, spaced 2◦ apart, for GBM case. MLC leaf direction is horizontal for this diagram. Color scales show fluence
intensities.

distribution pattern and greater dose to OARs. For example,
for the GBM plan in Fig. 3, the comVMAT plan was able to
entirely avoid the brainstem, while the clnVMAT plan covers
the brainstem with at least 2.5 Gy of dose.

4. DISCUSSION

When solved using an algorithm based on a proximal-class
primal–dual algorithm, the Chambolle–Pock algorithm,24 we
found a new methods, based on L2-norm fidelity terms
and L1-norm regularization terms,22,30 to incorporate fluence

maps simplification into the dose domain optimization. In
this study, we further developed the methods to solve the
VMAT problem, which previously only had greedy heuristic
solutions. The new method optimizes all VMAT beams at the
same time without progressive sampling. This translates into
a number of theoretical and practical advantages.

At the theoretical level, the optimization cost function
provides a simple yet complete description of the physical
problem. An L2-norm fidelity term is used to minimize the
dose distribution of the prescription dose, and an anisotropic
total variation regularization term to piecewise smooth the
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F. 3. DVHs of the GBM, LNG, H&N3PTV, and H&N4PTV patients compar-
ing the comVMAT and clnVMAT plans.

fluence map. The following level set function term shapes
the fluence to fit the aperture and then encourages the
continuity in the aperture shapes between adjacent beams. As
we demonstrated, solving the optimization problem results
in a final solution that requires no additional “patches” that
are commonly observed in heuristic solutions. Because of the

optimization problem size and the fact that the cost function
is not differentiable, methods such as interior points and
gradient descent are not suitable to solve the optimization
problem. We instead used the Chambolle–Pock algorithm24 to
efficiently manage the optimization problem. The algorithm is
remarkably fast at solving this type of optimization problem
because it does not require solving system of linear equations
involving the fluence to dose transformation matrix, A,
at every iteration, unlike other first order methods such
as alternating direction method of multipliers.31 Instead,
Chambolle–Pock simply requires just the multiplication of
the matrix and its transpose at each iteration.

The comVMAT method is superior to existing VMAT
methods in the following aspects. comVMAT optimizes all
beam apertures and beam intensities together, providing
greater flexibility to approach the ideal dose. A difference
in isodose distribution can be appreciated in Fig. 4, where
clnVMAT resulted in a more uniform dose spillage and
comVMAT gave heavy weights to a narrow range of beams,
resulting in dose distribution resembling beam orientation
optimized static beam IMRT or hybrid IMRT VMAT plans.32

In terms of the optimization solver, the analytical solution
used in comVMAT is more robust that the stochastic or
greedy heuristic algorithms used in existing VMAT methods.
Moreover, comVMAT solves the direct aperture problem.
Previously, the aperture was generated either in an additional
step that degraded the optimization results, or was limited
to use a small subset of available apertures33,34 due to
nonpolynomial computational cost to include all possible
apertures. In contrast, comVMAT can arrive at any aperture
shape without being limited to a preset library or the
neighborhood of conformal apertures.

A remaining issue in comVMAT is that the resultant
aperture per beam is not explicitly guaranteed to be deliverable
in one segment. While the total variation regularization term
has limited the number of apertures for most beams to 1, there
are a small fraction of beams that require more apertures.
For example, in Fig. 2, beams 3, 26, and 46 have segments
that must be delivered in two apertures. While increasing
the regularization weighting may eliminate multiple apertures

T II. PTV homogeneity, dose coverage (D95, D98, and D99), and
Dmax.

PTV statistics

Homogeneity D95 D98 D99 Dmax

Patient case comVMAT clnVMAT comVMAT−clnVMAT (Gy)

GBM 0.968 0.958 +0.08 +0.09 +0.02 −0.21

LNG 0.949 0.948 +0.00 +0.13 +0.09 +0.04

H&N3PTV

54 0.874 0.847 +0.23 +0.19 +0.06 −2.30
59.4 0.786 0.801 +0.02 +0.73 +0.15 +1.96
69.96 0.915 0.935 +0.29 −0.12 −0.63 +2.36

H&N4PTV

54 0.760 0.771 −0.30 −0.97 −1.06 +1.11
60 0.818 0.832 −0.40 −0.18 −0.11 +1.17
66 0.885 0.895 +0.05 +0.36 +0.26 +1.40
70 0.924 0.940 +0.00 −0.05 −0.10 +2.08
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T III. Largest, smallest, and average values found for (comVMAT−clnVMAT) dose differences for Dmax and Dmean.

Dmax DmeanDose difference
comVMAT – clnVMAT (Gy) Largest value Smallest value Average value Largest value Smallest value Average value

GBM −0.02 Chiasm −1.76 R Lens −0.80 −0.43 L Opt Nrv −1.73 R Lens −1.04
LNG −0.38 Lung −14.53 ProxBronch −5.63 −0.37 Trachea −4.61 ProxBronch −1.98
H&N3PTV −1.95 Pharynx −9.74 Brainstem −4.91 −2.43 R Opt Nrv −15.31 Larynx −8.26
H&N4PTV −0.56 OralCavity −13.38 Lips −4.33 −1.16 Pharynx −9.47 Mandible −5.13

per beam, there may be a compromise in the dosimetry if
the TV penalty is too high. There are multiple solutions in
handling the delivery of these particular beams. Since each
aperture delivery is spread across 2◦, the first solution is to
split the beam into two 1◦-apart beams and deliver the two
segments sequentially. Alternatively, the two segments may be
approximated by the closest single segment. The alternative
would result in change in dose distribution but the change
is expected to be minimal because only a small fraction of
beams need more than 1 MLC segment. On the other hand,
the issue may become an opportunity for generating hybrid
static beam IMRT and VMAT plans. By further relaxing the
TV regularization, we expect dosimetric improvement and
more beams that require two or more MLC segments. The
gantry speed and Linac output would be modulated to deliver
these beams, adding more static beam flavor to comVMAT
for superior dosimetry.

Delivery time of the plans is not explicitly controlled by
the objective function, but instead is indirectly maintained by
the total variation term, term set 1, to limit the number of
deliverable segments, and the aperture similarity term, term
set 3, to limit the MLC leaf motion between each angle.
Relaxing the weights on these terms to allow more segments
and greater changes between apertures will increase treatment
time and offset the benefit of using a single arc. The trade-off
between plan quality and delivery time is a topic of further
investigation.

At the practical level, the single arc comVMAT is
shown superior to the current commercial implementation of
clnVMAT using two superimposing arcs. comVMAT may
be potentially advantageous, pending further research, in
knowledge based planning because it is more robust to the
optimization history, while clnVMAT depends on the entire
history of optimization parameter set up, which is impossible
to track and incorporate in knowledge based planning. The
comVMAT plans are reproducible, providing a single set of
optimization parameters for future learning.

The focus of the study is to present a new VMAT formulism
that does not depend on greedy heuristics and results in
dosimetry that is at least comparable to the multiple arc VMAT
plans using a single arc. While we have carefully fine-tuned
our dose calculation code to match the PDD and penumbra
of the Eclipse system beams, the TPC commissioning process
is not entirely transparent for us to exactly reproduce. The
TPS vendor will have to implement our algorithm for an exact
comparison.

As a VMAT approach, the particular  formulation
that was presented was specifically tailored to produce one
segment per beam in most cases. Generalization of the method
for applications including static beam IMRT requires multiple
level of segmentation that requires different mathematical
tools. We will explore the potential of an approach to a
generalized libraryless  formulation for both static beam
and VMAT IMRT problems.

F. 4. Dose washes for all patients. The low dose cutoff for viewing is set at 10% of the prescription dose.
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5. CONCLUSION

A new approach for the comprehensive VMAT optimi-
zation was demonstrated. The new approach formulates the
VMAT problem as a single optimization function, including
a level set function to regularize the MLC aperture shapes
without relying on a preset aperture library. The optimization
function was solved using a proximal-class primal–dual
algorithm, which is more robust than stochastic method used
in the existing VMAT solutions. The results showed that the
new comVMAT using a single arc was consistently superior
in OAR sparing to the clinical VMAT using two arcs, while
keeping a similar PTV dosimetry. The comVMAT expression
was a specialized form of a  that aims at reducing the
number of segments per beam to exactly 1. Generalization
of an approach to a libraryless  has yet to be fully
explored.
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APPENDIX: DERIVATION OF dΦθ(x,y )/dt
Equation (11) can be first written as

θ


x, y

(
γ

2

�
fθxy−cθ

�2H (Φθ(x,y))

+ f 2
θxy (1−H (Φθ(x,y)))



+
k
2


2H(Φθ(x,y))2−2(H (Φθ−1(x,y))

+ H (Φθ+1(x,y)))H (Φθ(x,y))
+ H(Φθ−1(x,y))2+H(Φθ+1(x,y))2

 )
. (A1)

The formulation can be solved using gradient descent, where
Φθ can be updated by the equation.

To iteratively determine Φθ, we change Φθ by a small step
dΦθ(x,y)/dt, which changes Eq. (A1) to

θ


x, y

(
γ

2

�
fθxy−cθ

�2H
(
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dt
dt
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dt
dt
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
2H

(
Φθ(x,y)+ dΦθ(x,y)

dt
dt

)2

−2(H (Φθ−1(x,y))

+ H (Φθ+1(x,y)))H
(
Φθ(x,y)+ dΦθ(x,y)

dt
dt

)
+ H(Φθ−1(x,y))2+H(Φθ+1(x,y))2

 )
. (A2)

The first order Taylor expansion of Eq. (A2) is
θ


x, y

(
γ

2

�
fθxy−cθ

�2
(
H (Φθ(x,y))+δ(Φθ(x,y)) dΦθ(x,y)

dt
dt

)
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2
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(
H (Φθ(x,y))+δ(Φθ(x,y)) dΦθ(x,y)

dt
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Gathering all of the terms that include dΦθ(x,y)/dt results in
θ
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x, y
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Simplifying the Eq. (A4) yields
θ


x, y


γ

2
�
c2
θ−2cθ fθxy

�
+ k (2H (Φθ(x,y))−H (Φθ−1(x,y))−H (Φθ+1(x,y)))


δ(Φθ(x,y)) dΦθ(x,y)

dt
dt

+
γ

2

�
c2
θ−2cθ fθxy

�
H (Φθ(x,y))+ f 2

θxy



+
k
2

(H (Φθ(x,y))−H (Φθ−1(x,y) ))2+ (H (Φθ(x,y))−H (Φθ+1(x,y) ))2

. (A5)
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The first set of terms that include dΦθ(x,y)/dt can be rewritten
as the inner product

θ
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x, y


γ
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�
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
. (A6)

The terms fθxy, cθ,Φθ,Φθ−1, andΦθ+1 are treated as constants
while solving for dΦθ(x,y)/dt. Hence, we only need to
consider the terms that have dΦθ(x,y)/dt. It is easy to see
that the minimizer of Eq. (A6) is when

dΦθ(x,y)
dt

=
γ

2
�
2cθ fθxy−c2

θ

�
δ(Φθ(x,y))dt

+ k (H (Φθ−1(x,y))+H (Φθ+1(x,y))
− 2H (Φθ(x,y)))δ(Φθ(x,y))dt . (A7)
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