
UC San Diego
UC San Diego Previously Published Works

Title
Differentiable Visual Computing: Challenges and Opportunities

Permalink
https://escholarship.org/uc/item/84p8t2nt

Journal
IEEE Computer Graphics and Applications, 42(2)

ISSN
0272-1716

Authors
Li, Tzu-Mao
Pattanaik, Sumanta N

Publication Date
2022

DOI
10.1109/mcg.2022.3149550

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
ShareAlike License, availalbe at https://creativecommons.org/licenses/by-sa/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/84p8t2nt
https://creativecommons.org/licenses/by-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

EDITOR: Sumanta N. Pattanaik, Sumanta.Pattanaik@ucf.edu

DEPARTMENT: DISSERTATION IMPACT

Differentiable Visual Computing: Challenges
and Opportunities
Tzu-Mao Li , University of California, San Diego, CA, 92093, USA

Classical algorithms typically contain domain-specific insights. This makes them
often more robust, interpretable, and efficient. On the other hand, deep-learning
models must learn domain-specific insight from scratch from a large amount of data
using gradient-based optimization techniques. To have the best of both worlds, we
should make classical visual computing algorithms differentiable to enable gradient-
based optimization. Computing derivatives of classical visual computing algorithms
is challenging: there can be discontinuities, and the computation pattern is often
irregular compared to high-arithmetic intensity neural networks. In this article, we
discuss the benefits and challenges of combining classical visual computing
algorithms and modern data-driven methods, with particular emphasis to my thesis,
which took one of the first steps toward addressing these challenges.

Processing and generating visual data, such as
images and 3-D content is crucial for applica-
tions ranging from autonomous driving, robot-

ics, to photography, virtual reality, and visual effects.
Such visual computing tasks involve multiple chal-
lenges. We need to model the physical process
(e.g., light transport or dynamics). Meanwhile, most
visual computing problems are ill-posed (e.g., recon-
structing a 3-D scene from a photograph), and cannot
be modeled by physics solely. Finally, we need to
ensure the implementations of visual computing pro-
grams are consistent with the mathematical deriva-
tion, while processing millions of pixels and billions of
polygons and voxels inside an inference loop.

Modern deep learning has achieved tremendous
success, thanks to the power of gradient-based opti-
mization methods to solve nonlinear objectives over
many unknowns. However, deep neural networks
alone are not sufficient to address the challenges in
visual computing. They usually do not model the physi-
cal process directly, and have to learn only from data.
They require significant computational resources for

both training and inference. They are difficult to debug
and control: when the network produces undesirable
results, it is often difficult to correct for.

On the other hand, classical, domain-specific com-
puter graphics methods suffer less from these issues:
they directly model the formation of visual data
(e.g., how images are rendered from 3-D scenes, how
image edges are related to color differences), and
they are usually more interpretable and, thus, are eas-
ier to debug, control, and optimize for the perfor-
mance. However, they often do not apply as broadly
as modern data-driven methods, since they do not
learn from a large amount of data.

My research, differentiable visual computing, aims
to connect classical graphics algorithms with modern
data-driven methods. A key is to make classical algo-
rithms differentiable to enable gradient-based optimi-
zation. Derivatives are useful for both data-driven and
nondata-driven scenarios, and for both inverse prob-
lems and forward computation (see Figure 1).

Differentiating classical graphics algorithms is
challenging. Unlike neural networks, these algorithms
often contain irregular computational patterns, which
can lead to discontinuities, stochasticity, and complex
memory access. For example, rendering algorithms
need to handle occlusion and scattering of lights;
physics simulation algorithms need to track the move-
ments of quantities stored in different data structures

0272-1716� 2022 IEEE
Digital Object Identifier 10.1109/MCG.2022.3149550
Date of current version 11 April 2022.

March/April 2022 Published by the IEEE Computer Society IEEE Computer Graphics and Applications 101Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 19:57:28 UTC from IEEE Xplore. Restrictions apply.

mailto:Differentiable Visual Computing: Challenges and Opportunities
https://orcid.org/0000-0001-5443-470X
https://orcid.org/0000-0001-5443-470X
https://orcid.org/0000-0001-5443-470X
https://orcid.org/0000-0001-5443-470X
https://orcid.org/0000-0001-5443-470X

such as particles, grids, or meshes; and image process-
ing algorithms need to handle spatially varying kernels
and nonlinear resampling.

Traditional automatic differentiation,17 which is the
basis of the backpropagation algorithm in deep-learn-
ing methods, does not handle discontinuities caused
by occlusion and contact, and does not easily support
massive parallelism for the derivative code to effi-
ciently run on modern hardware. Furthermore, auto-
matic differentiation does not tell us how we should
use the derivatives. We need algorithms for differenti-
ating graphics programs, and systems for compiling
and optimizing the derivative code. The differentiation
enables new applications that combine classical
methods with data-driven approaches.

In my thesis, with the collaboration of many bril-
liant researchers, we derived derivatives for rendering
while correctly taking discontinuities into account.24

We also developed a system for differentiating image

processing and array programs, and explored applica-
tions in combining classical image processing with
modern data-driven methods.25 Since the publication
of my thesis, several research groups, including ours,
have made advances in this emerging field. Examples
include more robust sampling for differentiable ren-
dering,6,29,48 systems for differentiable physics simula-
tion,20,21 applications in vector graphics,26 and a
differentiable programming language for parametric
discontinuities. 5

DIFFERENTIABLE RENDERING
FROM FIRST PRINCIPLES

Rendering synthesizes images from a given 3-D scene
with geometry, materials, lights, and camera position.
By contrast, differentiable rendering computes the
gradient of a scalar loss of the synthesized image,
with respect to the scene parameters, such as camera
pose, light intensity, and vertex positions of the trian-
gle mesh (see Figure 2). Having the gradient allows us
to use a renderer inside computer vision pipelines:
given photographs, we can use gradient descent to
find the scene parameters that render to the observed
images [see Figure 1(b)]. We can also train deep neural
networks with a rendering loss: consider a network
that outputs a 3-D scene given an image, we want to
define a loss function based on the distance between
the rendered image and the input image—backpropa-
gating the rendering loss to the network parameters
require differentiable rendering [see Figure 1(c)].

One of the key challenges of differentiable render-
ing is the discontinuities caused by occlusion and
object boundaries. Previous work tackled this by
approximating the image formation models or the gra-
dients (e.g., Loper and Black’s work28). Instead, we
derive the correct derivatives from the first principles.

FIGURE 1. Example use cases of differentiable visual computing. (a) Enhancing classical image processing algorithms (edge-

aware filtering, tone mapping, etc.) by adding parameters and optimizing them using backpropagation. (b) Searching for the 3-D

scene that renders to the observed photograph by backpropagating through rendering. (c) Combining inverse rendering with

neural networks by backpropagating through rendering to update the network weights.

FIGURE 2. Differentiable rendering computes the derivatives

of images with respect to scene parameters. For each pixel,

we need to backpropagate the derivatives with respect to

scene parameters, such as object translation, vertex posi-

tions, camera poses, or material and light parameters. The

derivatives of geometry parameters often concentrate at the

object or shadow boundaries.

102 IEEE Computer Graphics and Applications March/April 2022

DISSERTATION IMPACT

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 19:57:28 UTC from IEEE Xplore. Restrictions apply.

We observe that, no matter rastered or ray traced,
local shaded or global illuminated, from the signal
processing perspective, a pixel is a point sample asso-
ciated with a reconstruction filter for reconstructing
the underlying 2-D signal42 (see Figure 3). Mathemati-
cally, for each pixel color Ix at 2-D position x in the
image space, we are solving an antialiasing integral

Ix ¼
ZZ

D

kðx0Þfðxþ x0; pÞdx0 (1)

where k is the reconstriction filter kernel, and fðx; pÞ is
the color of the 3-D scene at location x, with scene
parameter p, andD is the pixel filter support. This corre-
sponds to how human eyes and cameras capture colors:
the photoreceptors have finite area; thus, they are inte-
grating photons over the areawith a filtering kernel.

Our key idea is based on the fact that, while the
scene color f is not differentiable with respect to the
parameter p due to object boundaries and occlusion,
the pixel color I is differentiable with respect to p after
reconstruction. Imagine the rendering of a constant
color triangle, the reconstructed pixel color changes
smoothly as the triangle moves around (see Figure 3).

However, naive differentiation would not compute
the derivative dI=dp correctly. Since the antialiasing
integral [see (1)] usually does not have a closed-form
solution, we have to evaluate the integral numerically
by sampling (rasterization can be seen as sampling at
the center). Unfortunately, naive area sampling of the
derivative integral fails to account for the discontinu-
ities. Consider a constant-color triangle moving inside
a pixel filter (see Figure 4), all of the color changes
come from the boundary of the triangle, where area
sampling has zero probability to hit. Mathematically,
when we swap the derivative operator d=dp inside the
integral, the derivative of f contains Dirac delta sig-
nals due to the discontinuities, and area sampling
misses these Dirac deltas. Our solution is to explicitly

sample (Monte Carlo or quadrature), the derivative
integral at the discontinuities (or edges), in addition to
the area sampling (see Figure 4). This leads us to a
consistent and unbiased estimator for the value of the
derivative integral, as we increase the number of sam-
ples, the estimation converges to the true integral.
Our solution naturally generalizes to soft shadow,
global illumination, and other rendering phenomenon
that involves integrals. Crucially, our insight provides a
principled way to derive differentiable rendering algo-
rithms, even for primary visibility with local shading.

We implemented this idea in a GPU differentiable
renderer redner.a Visit the supplementary website to
see some inverse rendering in action.b Later in this
article, we discuss methods and applications both
from our own teams and from other research groups
that are built on these ideas.

DIFFERENTIABLE IMAGE
PROCESSINGWITH HALIDE

Deep-learning frameworks, such as PyTorch36 or
TensorFlow,1 have made programming deep neural
networks so accessible that anyone can program a
neural network classifier in a few minutes. The key to
the success of deep-learning frameworks is its ability
to automatically differentiate neural network architec-
tures, which enables fast iterations of ideas.

These frameworks, however, are designed with
neural network layers in mind. Neural networks are

FIGURE 3. To reconstruct the continuous scene from the dis-

crete pixel samples, the color of a pixel is reconstructed by

integrating over a pixel filter. Rendering is fundamentally dif-

ferentiable due to this antialiasing process, since antialiased

color changes smoothly as the objects move.

FIGURE 4. When the geometry moves within the pixel filter,

the boundary movement is a major source of the change of

the integral. However, traditional area sampling (blue sam-

ples) does not handle the boundary contribution, since area

sampling has zero probability hitting the infinitesimal edges.

We propose to explicitly sample the edges (yellow samples)

in order to correctly account for the boundary derivatives.

ahtt_ps://github.com/BachiLi/redner
bhtt_ps://cseweb.ucsd.edu/�tzli/diffrt/supplementary_webpage/

March/April 2022 IEEE Computer Graphics and Applications 103

DISSERTATION IMPACT

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 19:57:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/BachiLi/redner
https://github.com/BachiLi/redner
https://cseweb.ucsd.edu/~tzli/diffrt/supplementary_webpage/
https://cseweb.ucsd.edu/~tzli/diffrt/supplementary_webpage/
https://cseweb.ucsd.edu/~tzli/diffrt/supplementary_webpage/

usually composed of a few types of regular compo-
nents from a commonly used toolbox (e.g., convolu-
tion and fully connected layers). This, plus the high
arithmetic intensity of these layers (they are able to
saturate the compute resources of modern computer
architectures such as GPUs on their own), has led to
a design principle where performance engineers
develop high-performance implementation of individ-
ual layers, and the users would compose these layers
to build their neural networks.

As wemove toward general differentiable program-
ming, the design of deep-learning frameworks stops to
scale, since we may not be able to efficiently imple-
ment our model using common neural network layers.
When a user wants to implement a more unconven-
tional network architecture, they often have to imple-
ment their custom layers in C++ or CUDA. For example,
the bilateral slicing layer15 (see Figure 5) and the more
recent KiloNeRF40 both need to implement custom
CUDA code for their unconventional architectures.
This leads to a phenomenonwhere people tend to stick
with architectures where existing frameworks are good
at, and are unwilling to explore unconventional ones.7

My research explores domain-specific languages
that allows us to write concise and high-performance
code that can be automatically differentiated. We
focused on dense array computation—commonly
appears in image processing and deep learning. We
build on an existing domain-specific language Halide38

for array processing. Halide’s main idea is to separate
the high-level algorithm from the low-level scheduling

(parallelism, order of computation, memory allocation,
mapping to GPU blocks and threads, executing on
DSPs, etc). For example, to compute the sum of an
array, the high-level algorithmwould be the summation
(e.g., Y ¼ PN

i¼1 X½i�), and the low-level schedule could
be a serial summation running on a CPU, or a parallel
hierarchical reduction on a CUDA GPU. Changing the
low-level implementation would not change the result
of the program, only to make it faster or slower. This
separation frees the users from worrying about low-
level optimizations while developing the high-level
algorithm. They can then explore optimization strate-
gies without unintentionally altering the output.

We extended Halide to automatically and effi-
ciently compute the gradients. Automatic differentia-
tion in Halide enables the differentiation of the high-
level algorithms that is agnostic to the low-level imple-
mentation, leading to more efficient code. For exam-
ple, the derivative of the summation is a simple
assignment ðdLdX½i� ¼ dLdY Þ. However, applying tra-
ditional automatic differentiation to the low-level
implementation of a parallel hierarchical reduction will
likely not preserve the parallelism. In fact, there is no
known algorithm currently that can differentiate gen-
eral imperative parallel programs (say, CUDA code)
with the guarantee of preserving the parallelism. By
contrast, our method directly differentiates the high-
level algorithms in Halide, leading to much simpler
code. We can then either ask the user to assign an
implementation of the differentiated code, or we can
rely on an autoscheduler2,3 to automatically find the

FIGURE 5. Implementations of the forward (gray) and gradient (red) computations of the bilateral slicing layer15 in Halide, PyTorch,

and CUDA. Using our automatic differentiation and scheduling extensions, the Halide implementation is clear, concise, and fast.

104 IEEE Computer Graphics and Applications March/April 2022

DISSERTATION IMPACT

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 19:57:28 UTC from IEEE Xplore. Restrictions apply.

best implementation. In this article,25 we further dis-
cuss strategies to further improve parallelism through
scatter-gather transformation. This is all possible
thanks to Halide’s domain-specific separation of high-
level algorithm and low-level implementation.

With our system, we are able to concisely and effi-
ciently implement unconventional neural network
layers that are difficult to implement in deep-learning
frameworks (see Figure 5).

Our vision is that any image-processing pipelines
can benefit from an automatic tuning of internal
parameters. This step is traditionally done by hand
through user trial-and-error. The availability of auto-
matic derivatives makes it possible to systematically
optimize any internal parameter of an image process-
ing pipeline, given some output objectives. We show
how to significantly improve the performance of two
traditional image processing algorithms by slightly
modifying the method to introduce more parameters
and automatically optimize them (see Figure 6).

IMPACTS AND FOLLOWUPS
Applications of Differentiable
Rendering
Differentiable rendering opens up a wide range of
applications. While “vision as inverse graphics” is not a
new idea,8 our work, along with other work in vision
and graphics (e.g., Gkioulekas et al.’s,16 Loper and

Black’s,28 Kato et al.’s,22 and Liu et al.’s27 work) revital-
ized a trend of unifying 3-D reconstruction by bringing
rendering in the loop. Differentiable rendering can be
used with classical computer vision, such as multiview
or photometric stereo, by using the classical methods
as an initial guess, then refine the results using gradi-
ent descent on a loss function that incorporates ren-
dering. Our recent work4 reconstructs lighting and
materials from images (see Figure 7) for augmented
reality applications. Nimier-David et al.34 later imp-
roved the method to handle high-resolution textures.
Luan et al.30 and Dib et al.10 used our differentiable
rendering algorithm to reconstruct the geometry and
materials from images for general 3-D objects and
faces, respectively. Compared to classical vision,
these methods can often obtain higher fidelity results
thanks to the renderer in the loop.

As discussed earlier, differentiable rendering can
be used for training machine learning models to out-
put 3-D scenes from input images [see Figure 1(c)].
Using our algorithm, Dib et al.11 trained a network to
predict the geometry and reflectance of faces from an
image, while Griffiths et al.’s network predicted the
scene structures.18 Using their custom renderer,
Che et al.9 trained an autoencoder for recovering scat-
tering coefficients of participating media.

Differentiable rendering is also useful outside of
the 3-D rendering domain. We demonstrated applica-
tions for editing and learning vector graphics
(see Figure 8), through differentiating vector graphics
rasterization using the same principle as the edge
sampling.26 Our work has led to many followups on
learning-based vector graphics generation: using our
differentiable rasterizer, Reddy et al.39 trained a net-
work to synthesize vector graphics from raster

FIGURE 6. We have improved classical image processing

algorithms by modifying them with more parameters and

optimize them. We modified a demosaicking algorithm AHD19

by learning a set of 2-D filters, and a nonblind deconvolution

algorithm from Fortunato et al.12 by adding multiple stages

and learned the parameters.

FIGURE 7. Comparison of our differential rendering enabled

material reconstruction4 with a traditional computer vision

method.31 We obtain higher fidelity reconstruction due to the

ability to account for interreflections and shadows.

March/April 2022 IEEE Computer Graphics and Applications 105

DISSERTATION IMPACT

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 19:57:28 UTC from IEEE Xplore. Restrictions apply.

training data; Frans et al.13 and Schaldenbrand et al.41

combined our differentiable rasterizer with CLIP,37 a
neural network that measures the distance between
text and images, to synthesize vector graphics from
text.

Faster andMore General Differentiable
Rendering
Making rendering fast is hard. We need to resolve
occlusion between object pairs, stream the data to
maximize locality, and evaluate integrals numerically
with minimal errors. While modern rendering engines
are blazingly fast for certain inputs, challenges still
remain for making forward rendering robust and fast
for arbitrary 3-D scenes.

Differentiable rendering introduces extra perfor-
mance challenges, the discontinuity derivatives requires
different evaluation strategies compared to the ori-
ginal rendering process, and the derivative compu-
tation introduces different memory traffic that may
need different performance optimization or even
different hardware.

Currently research focuses on making differentia-
ble rendering computation as similar to existing for-
ward rendering pipelines as possible. Laine et al.23

made differentiable rendering compatible with exist-
ing rasterization hardware, by adopting the insight
from our method at the highest level: antialiased ren-
dering is differentiable. They designed a deferred
shading pipeline with a postprocessing-based antia-
liasing, which allows them to avoid the discontinuity
sampling that requires ray tracing operation.

Much other work focused on the ray tracing regime.
Loubet et al.29 proposed to use area sampling (instead
of the discontinuity sampling) of a ray sample’s neigh-
borhood to estimate a local reparametrization of the

integral to remove the discontinuity. Their method
allows us to use traditional acceleration structures
for differentiable rendering. Our followup work with
Bangaru6 built on their method, and showed that
their reparametrization is equivalent to applying
divergence theorem to transform the integral over
the discontinuities to over the whole area. We then
derived the correct criteria for consistent and unbi-
ased derivatives estimation. On the other hand,
Zhang et al.50 discovered that the discontinuity sam-
pling is easier if it is done in the path-space. This
means that we can sample points on the geometric
boundaries, then connect those points to the camera
and light sources.

Even when not considering discontinuities,
differentiable rendering introduces different trade-
offs in memory, compute, and sampling efficiency.
Zeltner et al.46 and Zhang et al.47 discussed importance
sampling. Nimier-David et al.35 and Vicini et al.43 dis-
cussed memory and locality optimization.

Finally, recent work has generalized differentiable
rendering for handling participating media,49,50 time-
gated rendering,44 and transient rendering.45

Differentiable rendering versus neural
rendering
Recent work in vision and graphics have shown that
neural networks can serve as powerful 3-D representa-
tions and can be used for complementing or replacing
traditional data structures, such as meshes, grids, tex-
tures, and low-dimensional parametric functions.
Mathematically, the abovementioned differentiable
renderingmethods are compatible with neural network
representations—rendering equation assumes nothing
about the scene representation. Computation-wise,
making these algorithms efficient for neural network
representations requires more efforts and is an excit-
ing research avenue. For example, neural radiance
fields (NeRF)33 use a network to represent an emissive
volume with spatio-directionally varying absorption
and emission coefficients—a special case of the stan-
dard radiative transfer equation. Generalizing NeRF to
handle multiple-scattering and combining it with other
surface primitives, while making both the forward and
differentiation computation efficient, requires exten-
sive performance engineering and likely algorithmic
innovations.

Domain-Specific Languages for
Differentiable Visual Computing
Our differentiable image processing work with Halide
reveals a new design space for image processing

FIGURE 8. Differentiable rendering can be used for learning

and editing vector graphics. In a recent work,26 we showed

applications such as painterly rendering, seam carving for

vector graphics, and a generative model that synthesize vec-

tor graphics using raster training data alone.

106 IEEE Computer Graphics and Applications March/April 2022

DISSERTATION IMPACT

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 19:57:28 UTC from IEEE Xplore. Restrictions apply.

pipelines, between the bulky and overparametrized
convolutional neural networks and light-weight hand-
designed algorithms that include domain-specific
knowledge. For example, the state-of-the-art deep-
learning-based demosaicking algorithm14 delivers
impressive reconstruction quality using a fairly con-
ventional convolutional neural networks (CNNs), but it
requires over 130,000 operations per pixel, taking tera-
flops to process a single image. The best classical
methods only require hundreds of operations per pixel,
and are orders of magnitude more efficient in practice,
so they remain dominant in real-world systems in spite
of their lesser quality. There is a huge space of the Pareto
frontier of the performance and image quality left unex-
plored. This gap can be bridged by taking the structure of
classical image processing algorithms, and learn the
parameters of the resulting differentiable program.

Asmentioned, these lightweight, lowarithmetic inten-
sity image processing pipelines require the fundamentally
different performance optimization compared to high
arithmetic intensity neural networks. While Halide25,38

allows the separation between high-level algorithm and
low-level scheduling, users still need to find the best low-
level optimization themselves. We are working on auto-
matic methods to search for the best schedule given an
algorithm.2,3 Themain challenge is that there are typically
millions or billions of possible schedules for a given algo-
rithm, making brute force benchmarking infeasible. Our
idea is to combine classical static programanalysis with a
learning-based cost model to produce a lightweight per-
formance predictor, for both selecting and enumerating
the best schedule. This idea has also led to advances in
deep-learning compilers51 and traditional compilers.32

Our work on differentiable programming motivated
us to explore other domain-specific systems. Inspired

by Halide’s idea of decoupling high-level algorithm and
low-level schedule, our work Taichi21 decouples the
data structure design from computation. In particular,
Taichi focuses on hierarchical sparse grids—a static
tree data structure for representing spatially coherent
sparse data (see Figure 9, left), which is crucial for
soft bodies and fluids simulation. In Taichi, users
access sparse arrays as if they are dense, and specify
the static data structures hierarchy separately. The
compiler then takes the array access code and the
specified sparse data structure, and automatically
synthesizes vectorized code for maintaining the data
structure and reading/writing the values. We later
extended Taichi with automatic differentiation,20 and
showed optimal control/model-based reinforcement
learning applications that involve differentiating
through physics simulation (see Figure 9, right).

We have recently started to expand the scope of
automatic differentiation. As shown in our differentia-
ble rendering work, traditional automatic differentia-
tion ignores the Dirac delta signals that occur when
differentiating control flows, such as if/else condi-
tions. This is because the automatic differentiation
compiler does not have the semantics of integrals to
integrate over the Dirac delta signals. Our recent
work, Teg5 explores a programming language for dif-
ferentiating discontinuities, by including an integral
primitive. Teg allows us to generalize our ideas in dif-
ferentiable rendering to a broader domain, and ena-
bles applications including inverse shader design,
trajectory optimization, and designing physical objects
(see Figure 10). Teg only scratches the surface of auto-
matically differentiating discontinuities and presents
an exciting research avenue: supporting modular
programming, decoupling importance and stratified
sampling, and handling differential equations are all
exciting future work.

FIGURE 9. Traditionally, implementing hierarchical sparse data

structures for physical simulation efficiently is challenging and

requires tedious and lengthy programs. Our compiler Taichi21

automates the implementation and allows programmers to

employ hierarchical sparse data structures in their physical simu-

lation code with minimal efforts (left). Taichi also supports

automatic differentiation,20 which enables applications such as

training the neural network controllers of a soft body robot (right).

FIGURE 10. Applications of our Teg prototype programming

language5 that can differentiate discontinuities and integrate

the resulting Dirac delta. (a) Optimizing parameters of a Per-

lin noise shader. (b) Optimizing a physical trajectory with con-

tact. (c) Optimizing the parameter of a strain-limiting mass

spring model with discontinuous spring constants.

March/April 2022 IEEE Computer Graphics and Applications 107

DISSERTATION IMPACT

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 19:57:28 UTC from IEEE Xplore. Restrictions apply.

CONCLUSION
Our vision is that, in the future, there is no clear distinc-
tion between deep learning and classical methods.
Deep-learning architectures should become more
domain-specific to adapt to the problems, while
classical methods should become data-driven and
adapt to the data. To achieve this, we need new
algorithms that are blends between classical meth-
ods and deep learning, and we need new systems
and domain-specific programming languages that
enable fast prototyping of ideas.

REFERENCES
1. M. Abadi et al., “TensorFlow: A system for large-scale

machine learning,” Operating Syst. Des. Implementation,

pp. 265–283, 2016.

2. A. Adams et al., “Learning to optimize Halide with tree

search and random programs,” ACM Trans. Graphics,

vol. 38, no. 4, 2019, Art. no. 121.

3. L. Anderson, A. Adams, K. Ma, T.-M. Li, T. Jin, and

J. Ragan-Kelley, “Efficient automatic scheduling of

imaging and vision pipelines for the GPU,” Proc. ACM

Program. Lang., vol. 5, 2021, Art. no. 109.

4. D. Azinovi�c, T.-M. Li, A. Kaplanyan, and M. Nießner,

“Inverse path tracing for joint material and lighting

estimation,” in Proc. IEEE/CVF Comput. Vis. Pattern

Recognit., 2019, pp. 2442–2451.

5. S. Bangaru, J. Michel, K. Mu, G. Bernstein, T.-M. Li, and

J. Ragan-Kelley, “Systematically differentiating

parametric discontinuities,” ACM Trans. Graphics,

vol. 40, no. 107, 2021, Art. no. 107.

6. S. P. Bangaru, T.-M. Li, and F. Durand, “Unbiased

warped-area sampling for differentiable rendering,”

ACM Trans. Graphics, vol. 39, no. 6, 2020, Art. no. 245.

7. P. Barham and M. Isard, “Machine learning systems are

stuck in a rut,” in Proc. Workshop Hot Topics Operating

Syst., 2019, pp. 177–183.

8. V. Blanz and T. Vetter, “A morphable model for the

synthesis of 3D faces,” in Proc. 26th Annu. Conf.

Comput. Graphics Interactive Techn.,1999, pp. 187–194.

9. C. Che, F. Luan, S. Zhao, K. Bala, and I. Gkioulekas,

“Towards learning-based inverse subsurface

scattering,” in Proc. IEEE Int. Conf. Comput. Photogr.,

2020, pp. 1–12.

10. A. Dib et al., “Practical face reconstruction via

differentiable ray tracing,” Comput. Graphics Forum,

vol. 40, pp. 153–164, 2021.

11. A. Dib, C. Thebault, J. Ahn, P.-H. Gosselin, C. Theobalt,

and L. Chevallier, “Towards high fidelity monocular face

reconstruction with rich reflectance using self-

supervised learning and ray tracing,” in Proc. IEEE/CVF

Int. Conf. Comput. Vis., 2021, pp. 12819–12829.

12. H. E. Fortunato and M. M. Oliveira, “Fast high-quality

non-blind deconvolution using sparse adaptive priors,”

Vis. Comput., vol. 30, no. 6–8, pp. 661–671, 2014.

13. K. Frans, L. Soros, and O. Witkowski, “CLIPDraw:

Exploring text-to-drawing synthesis through language-

image encoders,” 2021, arXiv:2106.14843.

14. M. Gharbi, G. Chaurasia, S. Paris, and F. Durand, “Deep

joint demosaicking and denoising,” ACM Trans.

Graphics, vol. 35, no. 6, 2016, Art. no. 191.

15. M. Gharbi, J. Chen, J. T. Barron, S. W. Hasinoff, and

F. Durand, “Deep bilateral learning for real-time image

enhancement,” ACM Trans. Graphics, vol. 36, no. 4,

2017, Art. no. 118.

16. I. Gkioulekas, S. Zhao, K. Bala, T. Zickler, and A. Levin,

“Inverse volume renderingwithmaterial dictionaries,”

ACMTrans. Graphics, vol. 32, no. 6, Nov. 2013, Art. no. 162.

17. A. Griewank and A. Walther, Evaluating Derivatives:

Principles and Techniques of Algorithmic

Differentiation, 2nd ed. Philadelphia, PA, USA: Soc. Ind.

Appl. Math., 2008.

18. D. Griffiths, J. Boehm, and T. Ritschel, “Curiosity-driven

3D object detection without labels,” in Proc. Int. Conf.

3D Vis., 2021, pp. 525–534.

19. K. Hirakawa and T. W. Parks, “Adaptive homogeneity-

directed demosaicing algorithm,” IEEE Trans. Image

Process., vol. 14, no. 3, pp. 360–369, Mar. 2005.

20. Y. Hu et al., “Difftaichi: Differentiable programming for

physical simulation,” in Proc. Int. Conf. Learn.

Representations, 2020. [Online]. Available: https://

openreview.net/forum?id=B1eB5xSFvr

21. Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and

F. Durand, “Taichi: A language for high-performance

computation on spatially sparse data structures,” ACM

Trans. Graphics, vol. 38, no. 6, p. 16, 2019, Art. no. 201.

22. H. Kato, Y. Ushiku, and T. Harada, “Neural 3D mesh

renderer,” in Proc. IEEE/CVF Comput. Vis. Pattern

Recognit., 2018, pp. 3907–3916.

23. S. Laine, J. Hellsten, T. Karras, Y. Seol, J. Lehtinen, and

T. Aila, “Modular primitives for high-performance

differentiable rendering,” ACM Trans. Graphics, vol. 39,

no. 6, p. 14, 2020, Art. no. 194.

24. T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen,

“Differentiable Monte Carlo ray tracing through edge

sampling,” ACM Trans. Graphics, vol. 37, no. 6, 2018,

Art. no. 222.

25. T.-M. Li, M. Gharbi, A. Adams, F. Durand, and J. Ragan-

Kelley, “Differentiable programming for image

processing and deep learning in Halide,” ACM Trans.

Graphics, vol. 37, no. 4, 2018, Art. no. 139.

26. T.-M. Li, M. Luk�a�c, G. Micha€el, and J. Ragan-Kelley,

“Differentiable vector graphics rasterization for editing

and learning,” ACM Trans. Graphics, vol. 39, no. 6, 2020,

Art. no. 193.

108 IEEE Computer Graphics and Applications March/April 2022

DISSERTATION IMPACT

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 19:57:28 UTC from IEEE Xplore. Restrictions apply.

https://openreview.net/forum?id=B1eB5xSFvr
https://openreview.net/forum?id=B1eB5xSFvr

27. S. Liu, T. Li, W. Chen, and H. Li, “Soft rasterizer: A

differentiable renderer for image-based 3D reasoning,”

in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,

pp. 7707–7716.

28. M. M. Loper and M. J. Black, “OpenDR: An approximate

differentiable renderer,” in Proc. Eur. Conf. Comput.

Vis., 2014, vol. 8695, pp. 154–169.

29. G. Loubet, N. Holzschuch, and W. Jakob,

“Reparameterizing discontinuous integrands for

differentiable rendering,” ACM Trans. Graphics, vol. 38,

no. 6, 2019, Art. no. 228.

30. F. Luan, S. Zhao, K. Bala, and Z. Dong, “Unified shape

and SVBRDF recovery using differentiable Monte Carlo

rendering,” Comput. Graphics Forum, vol. 40, no. 4,

pp. 101–113, 2021.

31. R.Maier, K. Kim, D. Cremers, J. Kautz, andM.Nießner,

“Intrinsic3D: High-quality 3D reconstruction by joint

appearance and geometry optimizationwith spatially-

varying lighting,” inProc. IEEE Int. Conf. Comput. Vis., 2017,

pp. 3114–3122.

32. C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin,

“Ithemal: Accurate, portable and fast basic

block throughput estimation using deep neural

networks,” in Proc. Int. Conf. Mach. Learn., 2019,

pp. 4505–4515.

33. B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,

R. Ramamoorthi, and R. Ng, “NeRF: Representing

scenes as neural radiance fields for view synthesis,” in

Proc. Eur. Conf. Comput. Vis., 2020, pp. 405–421.

34. M. Nimier-David, Z. Dong, W. Jakob, and A. Kaplanyan,

“Material and lighting reconstruction for complex

indoor scenes with texture-space differentiable

rendering,” in Proc. Eurographics Symp. Rendering—

DL-only Track, 2021, pp. 73–84.

35. M. Nimier-David, S. Speierer, B. Ruiz, and W. Jakob,

“Radiative backpropagation: An adjoint method

for lightning-fast differentiable rendering,” ACM

Trans. Graphics, vol. 39, no. 4, Jul. 2020, Art. no. 146.

36. A. Paszke et al., “PyTorch: An imperative style, high-

performance deep learning library,” in Proc. Adv. Neural

Inf. Process. Syst., 2019, pp. 8024–8035.

37. A. Radford et al., “Learning transferable visual models

from natural language supervision,” in Proc. Int. Conf.

Mach. Learn., 2021, vol. 139, pp. 8748–8763.

38. J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy,

S. Amarasinghe, and F. Durand, “Decoupling

algorithms from schedules for easy optimization of

image processing pipelines,” ACM Trans. Graphics,

vol. 31, no. 4, Jul. 2012, Art. no. 32.

39. P. Reddy, M. Gharbi, M. Lukac, and N. J. Mitra, “Im2vec:

Synthesizing vector graphics without vector

supervision,” in Proc. Comput. Vis. Pattern Recognit.,

2021, pp. 7342–7351.

40. C. Reiser, S. Peng, Y. Liao, and A. Geiger, “KiloNeRF:

Speeding up neural radiance fields with thousands of

tiny MLPs,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,

2021, pp. 14335–14345.

41. P. Schaldenbrand, Z. Liu, and J. Oh, “StyleCLIPDraw:

Coupling content and style in text-to-drawing

synthesis,” in Proc. Int. Conf. Neural Inf. Process. Syst.

Workshop Mach. Learn. Des., 2021.

42. A. R. Smith, “A pixel is not a little square, a pixel is not a

little square, a pixel is not a little square!(and a voxel is

not a little cube),”Microsoft Research, Redmond, WA,

USA, Tech. Memo 6, 1995.

43. D. Vicini, S. Speierer, and W. Jakob, “Path replay

backpropagation: Differentiating light paths using

constant memory and linear time,” ACM Trans.

Graphics, vol. 40, no. 4, 2021, Art. no. 108.

44. L. Wu, G. Cai, R. Ramamoorthi, and S. Zhao,

“Differentiable time-gated rendering,” ACM Trans.

Graphics, vol. 40, no. 6, 2021, Art. no. 287.

45. S. Yi, D. Kim, K. Choi, A. Jarabo, D. Gutierrez, and

M. H. Kim, “Differentiable transient rendering,” ACM

Trans. Graphics, vol. 40, no. 6, 2021, Art. no. 286.

46. T. Zeltner, S. Speierer, I. Georgiev, and W. Jakob, “Monte

Carlo estimators for differential light transport,” ACM

Trans. Graphics, vol. 40, no. 4, 2021, Art. no. 78.

47. C. Zhang, Z. Dong,M. Doggett, and S. Zhao, “Antithetic

sampling forMonte Carlo differentiable rendering,”ACM

Trans. Graphics, vol. 40, no. 4, 2021, Art. no. 77.

48. C. Zhang, B. Miller, K. Yan, I. Gkioulekas, and S. Zhao,

“Path-space differentiable rendering,” ACM Trans.

Graphics, vol. 39, no. 6, 2020, Art. no. 143.

49. C. Zhang, L.Wu, C. Zheng, I. Gkioulekas, R. Ramamoorthi,

and S. Zhao, “Adifferential theory of radiative transfer,”

ACMTrans. Graphics, vol. 38, no. 6, 2019, Art. no. 227.

50. C. Zhang, Z. Yu, and S. Zhao, “Path-space differentiable

rendering of participating media,” ACM Trans.

Graphics, vol. 40, no. 4, 2021, Art. no. 76.

51. L. Zheng et al., “Ansor:Generating high-performance tensor

programs for deep learning,” inProc. 14thUSENIX Symp.

Operating Syst. Des. Implementation, 2020, pp. 863–879.

TZU-MAO LI is currently an Assistant Professor with the Univer-

sity of California, San Diego, CA, USA. He worked with Yung-Yu

Chuang at the Communication and Multimedia Lab. He received

the B.S. and M.S. degrees in computer science and information

engineering fromNational TaiwanUniversity, Taipei City, Taiwan, in

2011 and 2013, respectively, and the Ph.D. degree from the Massa-

chusetts Institute of Technology, Cambridge, MA, USA, advised by

Fr�edo Durand. He was the recipient of the ACM SIGGRAPH 2020

OutstandingDoctoral DissertationAward.

Contact department editor Sumanta N. Pattanaik at
Sumanta.Pattanaik@ucf.edu.

March/April 2022 IEEE Computer Graphics and Applications 109

DISSERTATION IMPACT

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on November 09,2023 at 19:57:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

