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Abstract
Tauopathies are neurodegenerative diseases that typically require postmortem examination for a definitive 
diagnosis. Detecting neurotoxic tau fragments in cerebrospinal fluid (CSF) and serum provides an opportunity 
for in vivo diagnosis and disease monitoring. Current assays primarily focus on total tau or phospho-tau, 
overlooking other post-translational modifications (PTMs). Caspase-cleaved tau is a significant component of AD 
neuropathological lesions, and experimental studies confirm the high neurotoxicity of these tau species. Recent 
evidence indicates that certain caspase-cleaved tau species, such as D13 and D402, are abundant in AD brain 
neurons and only show a modest degree of co-occurrence with phospho-tau, meaning caspase-truncated tau 
pathology is partially distinct and complementary to phospho-tau pathology. Furthermore, these caspase-cleaved 
tau species are nearly absent in 4-repeat tauopathies. In this review, we will discuss the significance of caspase-
cleaved tau in the development of tauopathies, specifically emphasizing its role in AD. In addition, we will explore 
the potential of caspase-cleaved tau as a biomarker and the advantages for drug development targeting caspase-6. 
Developing specific and sensitive assays for caspase-cleaved tau in biofluids holds promise for improving the 
diagnosis and monitoring of tauopathies, providing valuable insights into disease progression and treatment 
efficacy.
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Introduction
Tauopathies are associated with high morbidity and 
mortality, and lack of effective treatment options [1]. 
They are classically diagnosed based on the detection of 
phospho-tau inclusions in the brain, which requires a 
biopsy or autopsy [2]. In recent years, efforts have been 
made to create fluid biomarkers based on phospho-tau to 
non-invasively detect pathology in living patients. These 
biomarkers have proven useful in diagnostic screen-
ing, particularly in the context of Alzheimer’s disease 
(AD) [3]. Nevertheless, tauopathies exhibit pathologi-
cal tau inclusions with post-translational modifications 
(PTMs) beyond phosphorylation. Caspase-cleaved tau 
is highly neurotoxic [4], and it is present in AD and 
other tauopathies. Tau protein can undergo cleavage by 
various caspases, including caspases 1, 2, 3, 6, 7, and 8. 
Among the caspase-cleaved tau species studied in the 
context of neurodegenerative diseases, tau D421 is the 
most investigated. Tau D421 can result from cleavage 
by multiple caspases. Limited studies on cerebrospinal 
fluid (CSF) involving caspase-cleaved tau indicate that 
these fragments are released and can be identified in the 
CSF, potentially exhibiting a meaningful correlation with 
clinical deterioration [5, 6]. Recent findings indicate that 
caspase-6 cleaved tau D13 and D402, commonly pres-
ent in AD neurons, but rarely in 4-repeat tauopathies, 
only partially overlap with phospho-tau in the same neu-
ron [7]. This implies that caspase-cleaved tau can signal 
tau pathology distinct from phospho-tau, highlighting a 
pathway that cannot be identified solely through phos-
pho-tau-based biomarkers. Despite substantial evidence 
pointing to the relevance of caspase-cleaved tau in the 
pathogenesis of certain tauopathies, this disease path-
way continues to be inadequately explored. This review 
will examine the evidence of caspase-cleaved tau contri-
bution to tauopathies, with a specific emphasis on the 
more recent advancements related to caspase-6 cleaved 
tau. Furthermore, we will delve into the potential for the 
development of biomarkers and drugs based on these 
research findings.

Tauopathies
Tauopathy is an umbrella term encompassing more than 
20 well-defined, progressive neurodegenerative entities 
characterized by abnormal accumulation of protein tau in 
neurons and glial cells [8]. Sporadic tauopathies are clas-
sified based on the pattern of morphological distribution 
of the inclusions, what types of cells accumulate tau, and 
the biochemical composition of tau inclusions, namely 
predominance of three microtubule-binding repeats (3R) 
tau, four microtubule-binding repeats (4R) tau or a com-
bination of both (3R/4R) [8]. Examples of 3R/4R tauopa-
thies include AD and chronic traumatic encephalopathy 
(CTE). Pick’s disease (PiD) falls into the 3R category. 

Progressive supranuclear palsy (PSP), corticobasal degen-
eration (CBD), globular glial tauopathy (GGT), argyr-
ophilic grain disease (AGD), and aging-related tau 
astrogliopathy (ARTAG) belong to the 4R category. 
Familial tauopathies exhibit distinct clinicopathological 
phenotypes depending on the specific microtubule-asso-
ciated protein tau (MAPT) mutation [9].

The frequencies of tauopathies vary among the popula-
tions and diagnostic criteria applied. AD is the most com-
mon neurodegenerative condition with the accumulation 
of abnormal tau in the brain [10]. AGD and ARTAG are 
prevalent, affecting up to 50% of individuals who come to 
autopsy at age 80 and older. However, AGD and ARTAG 
are considered tau accumulation with minimal clinical 
correlates [11, 12]. Progressive supranuclear palsy and 
corticobasal degeneration, the most prevalent pathogenic 
sporadic 4R-tauopathies, have a pooled prevalence rate 
of 7.1 and 2.3 per 100,000 individuals, respectively [13], 
but a recent clinicopathological study suggests that PSP 
prevalence is much higher [14].

Tau protein isoforms can undergo various post-trans-
lational modifications (PTM), such as acetylation, ubiq-
uitination, phosphorylation, glycation, glycosylation, 
SUMOylation, methylation, oxidation, truncation, and 
nitration [15], resulting in species with different conse-
quences for tau assembly, function, and accumulation 
[16]. Some tau PTMs produce neurotoxic fragments of 
various lengths and divergent pathological effects [17]. 
Phospho-tau species represent a ubiquitous post-trans-
lational modification (PTM) present in all tauopathies. 
Consequently, the detection of phospho-tau inclusions is 
the preferred method for the neuropathological diagnosis 
of tauopathies [8]. While other tau PTMs may be identi-
fied in various tauopathies, these inclusions are generally 
considered to be present only in a subgroup of cells that 
already exhibit phospho-tau inclusions.

Tau truncation by proteases - such as caspases, the 
theme of this review - leads to significant alterations in 
its structure and function, resulting in the loss- or gain 
of function depending on the truncation site [18]. Some 
protease-mediated tau truncations have a critical role 
in molecular events leading to pathological changes in 
tauopathies [19].

Caspases
Caspases, a large group of cysteine proteases commonly 
associated with inflammation and apoptosis [20], partici-
pate in tau proteolysis. Caspases cleave substrates at spe-
cific aspartic acid (Asp) residues [21, 22]. In their inactive 
proenzyme form, they reside in the cytosol and are acti-
vated by dimerization or proteolytic cleavage [23]. Once 
activated, they proteolytically degrade proteins by alter-
ing their cellular structure and functions [23]. The cas-
pase family includes at least 14 enzymes [22]. Classically, 
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caspases are divided into upstream initiators and down-
stream effectors. Upstream caspases 1, 4, 5, 11, 12, and 
13 trigger inflammatory processes by cytokine activa-
tion, while 2, 8, 9, and 10 are associated with apoptosis 
initiation. Upon activation, upstream caspases initiate an 
amplification cascade that activates downstream effector 
caspases. Downstream caspases 3, 6, and 7 are effectors 
of apoptosis, while 14 is involved in cytokine maturation 
[24].

Caspase-cleaved tau in Alzheimer’s disease
Studies on caspase-cleaved tau have mainly focused on 
AD and show that tau can be cleaved at multiple sites 
by caspases resulting in carboxy or amino truncations 
[24–26] (Table 1). Cleavage of tau’s C-terminus or N-ter-
minus by caspases leads to impairments in mitochondrial 
bioenergetics, weakening of axonal transport, neuronal 
injury, and cognitive decline [25]. Besides, these trunca-
tions contribute to the formation of amyloid-β plaques 
and intracellular neurofibrillary tangles [27] (Fig. 1).

Caspase-3
Caspase-3 appears to cleave tau protein after Asp25 
or Asp421 [31]. Caspase-cleaved tau in its C-terminal 
tail at Asp421, which removes 20 amino acids from tau 
C-terminal, also known as TauC3, or tau D421, were the 
focus of the first studies on tauopathies [28, 33]. In vitro, 
caspase-3-cleaved tau at Asp421 assembles into filaments 
more rapidly than wild-type tau [28]. TauC3 may contrib-
ute to the propagation of tau pathology by inducing mito-
chondrial fragmentation and bioenergetics dysfunction 
in neuronal cells [25, 34, 35], neurite loss in neuronal cul-
tures, and increasing tau polymerization and aggregation 

Table 1 Sites where caspases cleave tau protein
Caspase Tau Cleavage Site(s) Reference
Caspase-1 D421 Gamblin et al. [28]
Caspase-2 D65

D314
Reinhardt et al. [29]
Zhao et al. [30]

Caspase-3 D25
D421

Corsetti et al. [31]
Gamblin et al. [28]

Caspase-6 D13
D402
D421

Horowitz et al. [32]
Guo et al. [23]
Gamblin et al. [28]
Theofilas et al. [7]

Caspase-7 D421 Gamblin et al. [28]
Caspase-8 D421 Gamblin et al. [28]

Fig. 1 Putative sites caspase-cleaved tau. Caspases 1, 3, 6, 7, and 8 cleave tau at D421. Caspase-2 cleaves tau also at D65 and D314, caspase-3 cleaves tau 
also at D25, caspase-6 cleaves tau also at D402 and D13. Tau consists of four domains: the projection domain (M1–Y197), a proline-rich region (P1 and P2), 
the microtubule-binding repeats (R1, R2, R3, R4), and a C-terminus domain (K369–L441). Amino acids 1-441
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in vitro [28, 36]. In vivo, multiphoton imaging in a living 
tau transgenic mice model (Tg4510 strain), de Calignon 
et al. detected tau D421, generated by caspase-3-cleavage 
preceding neurofibrillary tangle pathology and deter-
mined that tau D421 promoted the formation of neuro-
fibrillary tangles [37, 38]. Others have also shown that 
tau cleavage precedes tau tangle pathology [26] and tau 
oligomer formation in transgenic mice expressing human 
TauC3 [39]. Moreover, in tau knockout mice, the pro-
portion of caspase-3-cleaved tau at Asp421 doubled 
in the hippocampus during aging. In this case, cleaved 
tau induced a toxic gain of function that delayed axonal 
transport and led to region-specific dendritic atrophy in 
CA1 neurons [33]. This level of neurotoxicity was con-
firmed in studies with non-transgenic (male C57BL/6J) 
mice, caspase-3-cleaved tau increases in the forebrain 
in an aged-related manner and correlates to cognitive 
deficits [40]. Likewise, caspase-3-cleaved tau is associ-
ated with neurofibrillary tangles and cognitive decline in 
human brains [26]. Notably, it became clear that caspases 
1, 6, 7, and 8 also cleave tau at Asp421 [28](Fig. 2).

In humans, tau D421 is found in AD and other tauopa-
thies. Interestingly, E3 ubiquitin ligase CHIP binds the 
latent C-terminal at tau Asp421. Loss of CHIP expression 
in AD coincides with the accumulation of tau Asp421, 
suggesting an interaction between caspases and protein 
homeostasis in AD and other tauopathies and a thera-
peutic opportunity [41].

Caspase-6
Evidence that caspase-6 activation is associated with a 
protracted type of cell death in serum-deprived human 
primary neurons [42] and renders neurons susceptible to 
oxidative stress, resulting in either immediate or delayed 

apoptosis [43], as opposed to the other effector caspases 
that instead lead to rapid induction of apoptosis. These 
unique characteristics of caspase-6, less studied than cas-
pase-3, have drawn attention to its potential importance. 
Caspase-6 in inactivated form is ubiquitous in the human 
fetal brain and peripheral tissues showing its impor-
tance for fetal development [44]. In normal conditions, 
the human adult brain expresses low levels of caspase 
6. However, neuronal activation of caspase-6 is an early 
event in AD and correlates with adverse clinical out-
comes. Increased caspase-6 activity in the anterior olfac-
tory nucleus reflected the degeneration in the entorhinal 
cortex (affected in Braak stage 1) and correlated with tau 
pathology in human AD olfactory bulb brain Sect. [45]. 
Also, in aged non-cognitively impaired individuals, the 
level of caspase-6 in the entorhinal cortex and CA1 nega-
tively correlates with cognitive domains initially affected 
in AD [46]. In a study probing the locus coeruleus and 
dorsal raphe nucleus, brain regions among the first to 
develop AD-tau pathology, levels of caspase-6 activation 
in neurons associated with increased Braak staging and 
burden of neurofibrillary tangles positive for phospho-
tau [47]. Levels of caspase-6-cleaved tau are inversely 
correlated with global cognitive scores in non-demented 
individuals, supporting tau that cleavage by active cas-
pase-6 may be an early event in AD pathophysiology [21, 
48, 49]. In addition to Asp421, caspase-6 cleaves tau at 
other sites, including Asp402 and Asp13 [23, 32] (Fig. 2). 
Caspase-6 is particularly efficient in cleaving tau at Asp13 
[50]. Caspase-6-cleavage of tau at Asp13 generates two 
fragments [32]: 1–13 with unknown function and 14–441 
with a role in tangle maturation [51, 52]. Caspase-6- 
cleavage of tau at Asp402 generates a 1-402 fragment, 
associated with neurodegeneration, and the 403–441 

Fig. 2 Pathological Mechanisms induced by Caspase-Cleaved Tau
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with unknown functions [52]. Altogether, both active 
caspase-6 and tau truncated at Asp402 and Asp13 are 
present in neurofibrillary tangles, neuritic plaques, and 
neuropil threads in sporadic and familial AD but absent 
in brains without AD pathology [7, 23, 48, 53].

Despite confluent evidence of the role of caspase-6 
activation and caspase-6-cleaved in AD pathogenesis [48, 
54], only recently monoclonal antibodies against these 
tau specimens became available to directly investigate 
the frequency of tau D13 and D402 in tauopathies. Theo-
filas et al. [7] probed postmortem human brain tissue 
with a recently developed 5-plex immunohistochemistry 
with monoclonal novel neoepitope monoclonal antibody 
against caspase-6 cleaved tau (D402 and D13). The use of 
multiplex immunostaining allowed these researchers to 
detect that the number of neurons positive for caspase-6 
cleaved tau and phospho-tau in AD is equivalent. How-
ever, the overlapping is only 45%. It suggests that cur-
rently used antibodies do not flag a significant portion of 
neurons with tau pathology to label pathological tau in 
postmortem studies and fluid-based biomarkers based on 
phospho-tau.

Caspase-1
Caspase-1 has been reported to cleave tau at Asp421 
[28], but caspase-1 impact in AD is more likely related 
to abnormal activation of the NLR family pyrin domain 
containing 1 (Nlrp1) inflammasome in AD neurons [55]. 
The Nlrp1 inflammasome is sequentially activated, lead-
ing to the activation of caspase-1. Subsequently, cas-
pase-1 triggers caspase-6-mediated neurodegeneration 
and IL-1β-mediated glial response [56].

Intense active expression of caspase-1 has been 
detected in the brains of individuals with mild cogni-
tive impairment and dementia due to AD [57]. A selec-
tive inhibitor of caspase-1, VX-765, significantly rescued 
spatial learning, and memory impairments and reduced 
tau hyperphosphorylation in the brains of senescence-
accelerated mouse prone 8 (SAMP8) mice [58]. While the 
precise role of caspase-1 in AD neuropathology remains 
unclear, compelling evidence suggests that targeting 
caspase-1 could be a viable therapeutic approach for 
addressing AD and possibly other tauopathies [58], alone 
or combination with drugs targeting Nlrp1 and caspase-6 
[59].

Caspase-2
Caspase-2 has been reported to cleave tau at D314 and 
D65 [29, 30] (Fig.  2). Caspase-2-cleaved tau reversibly 
impairs memory function in animal and cellular models 
of tauopathies due to accumulation in dendritic spines 
and attenuation of synaptic transmission [60]. However, 
others have shown that caspase-2-cleaved tau shows 
increased aggregation and accumulation only in vitro, 

despite strong RNA expression in vivo models, suggesting 
efficient clearance. In vivo and in vitro, caspase-2-cleaved 
tau is also recognized by the ubiquitin E3 ligase CHIP, 
contributing to faster degradation of caspase-2-generated 
tau fragments [29]. Levels of truncated tau at D314 are 
elevated in the inferior temporal gyrus of AD and MCI 
individuals [61]. Incidentally, caspase-2-cleaved tau frag-
ments have been found in other diseases such as Lewy 
body disease [62], and Huntington’s disease [63], showing 
that they are not specific to AD or tauopathies [64].

Caspase-cleaved tau in other tauopathies
Only a handful of studies assessed the role of caspase-
cleaved tau in non-AD tauopathies, and most studies 
had focused on tau Asp421 (D421). In PSP, appotosin, a 
mitochondrial carrier protein, activates caspase-3 and 
mediates tau cleavage at Asp421 [65]. Ferrer et al. 
showed TauC3 truncation in PSP in neurons but not 
in glia [66]. Guillozet-Bongaarts et al. also detected tau 
Asp421 in neurons but not in glia in AD and PiD [67]. 
On the other hand, Newman et al. showed tau Asp421 
in PiD, PSP, and CBD within regions with neurofibrillary 
tangles, tufted astrocytes, and Pick bodies [68]. TauC3 
was found in FTLD-tau/K317M tufted-like astrocytes 
and oligodendroglial inclusions [66]. In the same study 
using multiplex immunohistochemistry and novel tau-
cleaved D402 and D13 mentioned above, Theofilas et al. 
showed that caspase-6 truncated tau is abundant in AD, 
to a lesser extent in PiD, and almost absent in 4R tauopa-
thies (PSP, CBD, and AGD) in both neurons and glia [7]. 
Caspase-6 activation levels were also seen at much lower 
levels in 4R-tauopathies than in AD [7]. Taken together, 
these limited number of available studies show that 
although TauC3 is expected in the most common spo-
radic tauopathies, caspase-6 activation, and caspase-6 
cleaved tau fragments are several levels of magnitude 
more predominant in 3R/4R and 3R tauopathies than in 
4R tauopathies, making biomarkers based on caspase-6 
cleaved tau potential tools to discriminate between AD 
and 4R-tauopathies.

Caspase-cleaved tau fragments in CSF
Precise antemortem diagnosis of tauopathies poses a 
challenge, given the limited predictive accuracy of a neu-
ropathological diagnosis based on the clinical syndrome 
for most neurodegenerative conditions. As an example, 
approximately one-third of cases that meet the clinical 
criteria for corticobasal syndrome exhibit AD pathology 
as their primary neuropathological feature finding. Fur-
thermore, aside from AD, various conditions can underlie 
an amnestic syndrome, with limbic predominant age-
related TDP-43 encephalopathy (LATE) being one of the 
most common in aging individuals [69]. The last decade 
saw an exponential increase in biomarker development 
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aiming to enable differential diagnosis of tauopathies in 
vivo and monitoring tools to evaluate therapeutics. Most 
biomarkers for tauopathy are based on total tau and 
phospho-tau levels. The last decade saw an exponential 
increase in biomarker development aiming to enable dif-
ferential diagnosis of tauopathies in vivo and monitor-
ing tools to evaluate therapeutics. Most biomarkers for 
tauopathy are based on total tau and phospho-tau levels. 
Phospho-tau-based fluid biomarkers show good specific-
ity and sensibility for detecting AD neuropathology, at 
least from moderate neuropathological stages [70, 71]. 
However, phospho-tau-based biomarkers proved to have 
limited utility in discriminating among tauopathies [72].

Studies on caspase-cleaved tau forms in cerebrospinal 
fluid (CSF) are limited, yet the emerging findings show 
promise, underscoring the need for deeper explora-
tion. Using an enzyme-linked immunosorbent assay to 
detect caspase-6-cleaved tau at Asp402 in postmortem 
CSF (using a polyclonal antibody), Ramcharitar et al. 
showed postmortem CSF levels mirror caspase-6-cleaved 
tau levels and active caspase-6 immunohistochemistry 
in the hippocampal sections of the same AD individuals 
and caspase-6-cleaved tau CSF levels correlate with AD 
severity and lower scores in neuropsychological tests [6]. 
However, CSF assays based on the tau C-terminal are not 
ideal because CSF lacks C-terminal tau peptides, making 
it challenging to detect tau fragments above residue 254 
[73–77]. The advancement of immunoassays designed for 
the detection of N-terminal cleaved-tau fragments holds 
the potential to serve as a diagnostic tool for Alzheimer’s 
disease (AD) and distinguish it from other tauopathies 
[75, 78]. Findings that NT1 fragments (consisting of the 
N-terminal sequence 6-198) measured in CSF can dis-
criminate between AD and non-AD populations bet-
ter than full-length tau or tau measured via the middle 
region alone [5]. Given caspase-6 cleaved tau abundance 
in AD but scarcity in 4R tauopathies, it is worth test-
ing if a CSF assay for caspase-6 cleaved tau performs 
better in discriminating AD from 4R tauopathies than 
phospho-tau based assays. However, the probable most 
relevant use of a CSF assay for caspase-6 cleaved tau is 
to detect non-phospho-tau pathology in AD as it seems 
that neurons with D13 tau are abundant in AD and only 
partially overlap with phospho-tau in the same neurons 
[7], making detection of caspase-6 cleaved tau relevance 
for diagnostic and therapeutic uses. The most likely per-
tinent application of CSF assay for caspase-6 cleaved tau 
is identifying non-phospho-tau pathology in AD. This is 
supported by evidence suggesting an abundance of neu-
rons with D13 tau in AD, which only partially overlaps 
with phospho-tau in the same neurons [7]. Thus, detect-
ing caspase-6 cleaved tau holds significance for both 
diagnostic and therapeutic purposes in this context. 
While a specific biomarker using monoclonal antibodies 

against caspase-cleaved tau at the N-terminal is currently 
unavailable, the presented evidence lends strong support 
to the prospects of its future development. Particularly 
appealing would be a biomarker centered on caspase-
6-cleaved tau at Asp13, given its N-terminal location and 
the existing availability of a monoclonal antibody [7].

Caspase activation and implications for AD 
therapeutics
What triggers caspase activation in AD is undefined. Oxi-
dative damage and even accumulation of alpha-synuclein 
in synucleinopathies result in mitochondrial dysfunction, 
leading to the release of cytochrome-c and caspase-9 
activation, which activate the downstream effector cas-
pase-3 [68]. Also, hydrogen peroxide species induce acti-
vation of caspase-3 and − 6, cleaving tau at Asp421 [79]. 
These two pathways would increase caspase-3 levels and 
facilitate tau cleavage [80]. When the activity of both 
caspases was blocked, the amount of cleaved tau was 
reduced significantly. Amyloid-β can activate caspases 
and cleave tau contributing to tangle pathology [26]. A 
study proposed a potential mechanism for activating cas-
pase-8 by amyloid-β peptides in the brain of individuals 
with AD. The activation occurs via cross-linking with 
death receptors like Fas.

However, a study using primary human neurons that 
overexpressed wild-type or mutant APP challenged 
this model by linking the neurodegeneration process to 
caspase-6 instead of amyloid-β [42]. This finding sug-
gests that caspase-6 can be activated independently of 
amyloid-β and at an earlier stage in AD. Moreover, the 
inhibition of caspase-6 slows caspase-3 activity, indicat-
ing a potential interaction between these enzymes. Thus, 
caspase-6 could potentially participate in activating cas-
pase-3 and promoting the production of truncated tau at 
Asp421 [79].

Even with the mounting evidence implicating tau toxic-
ity in AD pathogenesis, data from the AlzForum Foun-
dation (www.alzforum.org) suggest that tau-targeting 
strategies constitute only 10% of the ongoing clinical tri-
als for AD. Among these strategies, efforts to modulate 
the impact of caspase-truncated tau are relatively limited. 
For instance, one approach aims to alleviate the toxicity 
of truncated tau by inhibiting protease activity or selec-
tively weakening protease-substrate interactions [64]. An 
alternative and attractive method centers around inhib-
iting caspase activation to reduce tau truncation. Drugs 
that inhibit caspases, such as minocycline and VX-765, 
are currently undergoing clinical trials for AD [58, 81–
83]. Minocycline decreases levels of caspase-cleaved tau 
by inhibiting caspase-3 activation [83]. VX765, a blood-
brain barrier permeable and likely non-toxic Casp1 
inhibitor, blocks the Nlrp1-caspase1-caspase6 pathway, 
attenuating cognitive deficits and microglial activation 

http://www.alzforum.org
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caused by caspase-6 [59, 81, 82]. Efforts to develop highly 
selective caspase-6 inhibitors as a therapeutic approach 
for treating AD are also underway. The challenge in tar-
geting caspase functions arises from the remarkable 
conservation of their active sites and catalytic machin-
ery. To overcome this limitation, Van Horn and col-
leagues targeted a non-catalytic cysteine residue (C264) 
unique to caspase-6 to produce the first generation of a 
potent and irreversible caspase-6 inhibitor which exhibits 
selectivity over other caspase family members and high 
proteome selectivity [84]. Subsequent second and third-
generation inhibitors, built upon this initial molecule, are 
being developed to enhance their potency and bioavail-
ability. This is the starting point for the development of 
potent and isoform-selective inhibitors for caspase-6 as 
potential therapeutics. Caspase inhibitors may have the 
potential to treat tauopathies with significant pathologi-
cal forms of 3R tau, but their effectiveness in treating 4R 
tauopathies is uncertain. Inhibiting the enzymes respon-
sible for tau cleavage, such as caspase-6, may promote a 
significant therapeutic index since caspase-6 knockout 
mice are more resistant to pro-inflammatory and excito-
toxic stimuli, have neuronal damage-induced microglial 
activation reduced, besides favorable outcomes in mem-
ory and neurological hallmarks [85, 86]. Further studies 
on caspase inhibitors are strongly encouraged.

Conclusion and future directions
The advances in caspase-cleaved tau biomarkers and 
therapy promise an auspicious future for tauopathies 
research and move the field toward better diagnoses 
and disease-modifying events. The potential use of bio-
markers in precision medicine is exciting, and caspase-
cleaved tau in CSF may add the missing piece to track AD 
pathology in vivo. CSF D13 caspase-6-cleaved tau is the 
appealing biofluid biomarker to differentiate AD from 
4R-tauopathies.

Our review reveals gaps in knowledge and overlooks 
significant aspects of the pathology of AD. Further 
research is needed to investigate the role of fragments 
produced by caspase-6 cleaved tau at D13 in AD. Addi-
tionally, it is crucial to understand in which stage cas-
pase-6 cleaved tau is involved in the progression of AD, 
as well as the timing of the co-occurrence and disso-
ciation between caspase-6 cleaved tau and phospho-
tau pathology. Finally, in addition to developing specific 
inhibitor drugs for caspase-6, existing drugs could be 
repurposed to inhibit caspase-6 cleaved tau in AD and 
other tauopathies.
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