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Abstract

The embedded contact homology of toric contact manifolds

by

Keon Choi

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Michael Hutchings, Chair

Embedded contact homology (ECH) is an invariant of a contact three-manifold. In Part I
of this thesis, we provide a combinatorial description of the ECH chain complex of certain
“toric” contact manifolds. This is an extension of the combinatorial description appearing
in [11] and [12]. ECH capacities are invariants of a symplectic four-manifold with bound-
ary, which give obstructions to symplectically embedding one symplectic four-manifold with
boundary into another. In Part II of this thesis, we compute the ECH capacities of a large
family of symplectic four-manifolds with boundary, called “concave toric domains”. Exam-
ples include the (nondisjoint) union of two ellipsoids in R4. We use these calculations to find
sharp obstructions to certain symplectic embeddings involving concave toric domains. This
is a joint work with D. Cristofaro-Gardiner, D. Frenkel, M. Hutchings and V. G. B. Ramos.
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Chapter 1

Introduction

Given a three-manifold Y equipped with a nondegenerate contact form λ, the embedded
contact homology (ECH) of (Y, λ) is the homology of a chain complex generated by certain
unions of Reeb orbits and whose differential counts certain embedded holomorphic curves in
R× Y . This paper aims to provide a combinatorial description of ECH chain complexes for
a class of “toric” contact manifolds.

The inspiration for this work comes from the two papers by Hutchings and Sullivan [11,12]
where the notions of “polygonal paths” and “rounding corners” were introduced. These were
used to describe the ECH generators and differentials of T 3 with certain contact forms as
well as closely related instances of the periodic Floer homology. We extend these notions
and show similar results for I × T 2 and T 3, where I is an interval and both are equipped
with general torus-invariant contact forms.

We remark that the homology of the ECH chain complex can be computed indirectly:
ECH, Heegaard Floer homology and Seiberg-Witten Floer homology are isomorphic to each
other [3, 16, 25] and there is a combinatorial formulation of Heegaard Floer homology [21].
However, it is of theoretical interest to understand the ECH chain complex itself. More
practically, computation of contact geometric invariants such as ECH spectrum requires
more information about the chain complex as such information is lost under the above
isomorphism.

In this section, we introduce the class of contact manifolds investigated in the main part
of this paper and state the main theorem. Section 2 proves the main theorem. Section 3
applies the main result to describe the ECH chain complex of T 3 with torus-invariant contact
forms.

1.1 Embedded contact homology

We briefly review the definition of ECH necessary for stating the main theorem. For details,
see Section 2.1. Given a closed oriented three-manifold Y , a contact form on Y is a 1-form
λ on Y satisfying λ ∧ dλ > 0. Then, λ determines a contact structure ξ = Ker(λ), which
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τ1

τ2

Xw

Xe

(f ′, g′)

(f, g)

Figure 1.1: An example of a path (f, g) satisfying (1.2.1).

is an oriented two-plane field, and the Reeb vector field R characterized by dλ(R, ·) = 0
and λ(R) = 1. Assume that λ is nondegenerate, which means that all Reeb orbits of λ are
“cut out transversely”. We also fix a generic admissible almost complex structure J on the
symplectization R× Y . This means that J is R-invariant, J(∂s) = R where s denotes the R
coordinate, and J sends ξ to itself so that dλ(v, Jv) > 0 for 0 6= v ∈ ξ. See [10, Section 1.3]
for details.

An orbit set γ in the homology class Γ ∈ H1(Y ) is a finite set of pairs {(γi,mi)} where γi
are distinct embedded Reeb orbits and mi are positive integers such that [γ] :=

∑
mi[γi] = Γ.

We say that γ is admissible if mi = 1 whenever γi is hyperbolic. Then, the ECH chain
complex ECC∗(Y, λ,Γ, J) is generated (over Z/2 coefficients) by admissible orbit sets in the
homology class Γ. Let H2(Y, α, β) denote the set of 2-chains Σ in Y with ∂Σ =

∑
imi[αi]−∑

j nj[βj], modulo boundaries of 3-chains. If α = {(αi,mi)} and β = {(βj, nj)} are two orbit
sets and Z ∈ H2(Y, α, β), we associate to them an integer I(α, β, Z) called the ECH index.

Let (Σ, j) be a punctured compact Riemann surface and consider a (J-)holomorphic map
u : (Σ, j)→ (R× Y, J). A positive/negative end of u is an association of a puncture of Σ to
a (possibly multiply covered) Reeb orbit ρ so that, near that puncture, u is asymptotic to
R× ρ with s→ ±∞, respectively. A holomorphic curve from α to β is a holomorphic map
u whose total multiplicity of positive ends at covers of αi is mi and whose total multiplicity
of negative ends at covers of βi is ni, with no other ends. The ECH differential coefficient
〈∂α, β〉 between two generators α and β counts holomorphic curves u from α to β with
I(α, β, [im(u)]) = 1. We will sometimes use C := im(u) to refer to the holomorphic curve u
and I(C) to denote I(α, β, [C]).
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Figure 1.2: Graphs of (f, g) taken from (S3, λstd) and (T 3, λn).

1.2 Toric contact manifold (I × T 2, λ)

Let I = [Xw, Xe] ⊂ R be an interval with coordinate x. Choose a pair of generic real-valued
smooth functions f and g on I and suppose (f, g) : I → R2 satisfies the pointwise condition

(f, g)× (f ′, g′) = fg′ − f ′g > 0. (1.2.1)

Here, f ′ = df/dx, g′ = dg/dx and × denotes the usual cross product in R2. Figure 1.1 shows
an example of (f, g) satisfying the condition (1.2.1).

Consider the oriented three-manifold I × T 2 where T 2 = (R/Z)2 has coordinates t1 and
t2 and the orientation is given by the ordered basis {∂t1 , ∂x, ∂t2}. Consider a 1-form

λ̄ = −gdt1 + fdt2 (1.2.2)

on I ×T 2. Equation (1.2.1) implies that λ̄ is a contact form. The contact structure ξ̄ of λ̄ is

ξ̄ = span{∂x,−f∂t1 − g∂t2} = span{∂x} ⊕ span{∂t1 , ∂t2}

and the Reeb vector field R̄ of λ̄ is

R̄ =
f ′∂t1 + g′∂t2
(fg′ − f ′g)

∈ span{∂t1 , ∂t2}.

Hence, the graph of (f, g) illustrates how ξ̄ and R̄ are rotating. Note that we have an
S1-family of closed Reeb orbits at each x ∈ I where

f ′/g′ ∈ Q ∪ {∞}.

Example 1.2.1. We present (f, g) taken from some standard contact manifolds.
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(i) Consider C2 = R4 with coordinates zi for i = 1, 2 and the standard symplectic form.
Under the new coordinates (r1, r2, t1, t2) given by ri = |zi|2 and ti = arg(zi)/2π ∈ R/Z,

ωstd = π
∑
i

dridti.

Define a Liouville vector field XL by XL := 1
π

∑
i ri∂ri so that

λ̄ := ιXLωstd =
∑

ridti.

Hence, restricting λ̄ to S3 = {(1−x, x, t1, t2) ∈ C2|x ∈ [0, 1]} gives the standard contact
form

λstd = (1− x)dt1 + xdt2

on S3. The graph of (f, g) corresponding to λstd on (0, 1)×T 2 ⊂ S3 is shown in Figure
1.2 (a). Recall that λstd is degenerate and we have an S2-family of Reeb orbits in
(S3, λstd). This is reflected by the graph of (f, g) having a constant rational slope of
one, giving rise to ((0, 1)× S1)-family of orbits in (0, 1)× T 2.

(ii) Consider T 3 = (R/Z)3 with coordinates x, t1, t2 and a contact form

λn = (cos 2nπx)dt1 + (sin 2nπx)dt2

for some n ≥ 1. Then, (f, g) corresponding to λn on (0, 1) × T 2 ⊂ (R/Z) × T 2 is
shown in Figure 1.2 (b), where n is the number of times the graph of (f, g) rotates
around the origin. If n = 1, we can embed (T 3, λ1) into (C×)2 ⊂ C2 similarly to above.
This time, let XL = 1

π

∑
i(ri − 2)∂ri on (C×)2 and restrict to T 3 = S × T 2 where

S = {(r1, r2) ∈ (0,∞)2|
∑

i |ri − 2|2 = 1}.

Definition 1.2.2. (Convexity) Let I = [Xw, Xe] and consider I × T 2.

(a) A contact form λ̄ = −gdt1 + fdt2 on I × T 2 is said to be convex (respectively concave)
at x = x0 if

(f ′, g′)× (f ′′, g′′) > 0 (respectively < 0)

at x = x0. If (f ′, g′)× (f ′′, g′′) = 0 at some x = x0, then we call x0 a point of inflection.
We say that λ̄ is convex (respectively concave) if λ̄ is convex (respectively concave) at
all x ∈ I.

(b) A Reeb orbit of λ̄ at x = x0 is said to be convex (respectively concave) if λ̄ is convex
(respectively concave) at x = x0.

In Figure 1.2, all orbits of (T 3, λn) are convex while the orbits of (S3, λstd) are neither
convex nor concave since (f ′, g′) × (f ′′, g′′) = 0. In Figure 1.3, the orbits at x = xconv are
convex and the orbits at x = xconc are concave.
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τ1

τ2

Xw

Xe

xpoi

xconv

(f ′, g′)

(f ′′, g′′)

xconc

(f ′, g′)
(f ′′, g′′)

Figure 1.3: (f, g) for some λ̄ with a point of inflection at x = xpoi.

We note that, even though (I×T 2, λ̄) contains infinitely many S1-families of Reeb orbits,
we may regard only finitely many S1-families as relevant and disregard the rest by using
a filtered version of ECH. We recover the usual ECH by a direction limit argument (see
Section 2.1). Then, for a generic choice of f and g, all relevant Reeb orbits are either convex
or concave. Moreover, using a filtered version of ECH allows the following perturbation of
λ̄. Recall that defining ECH requires a nondegenerate contact form λ. By a general Morse-
Bott argument as in [2], one can perturb λ̄ to λ so that each of the relevant S1-families
of Reeb orbits gives two Reeb orbits of λ and no other relevant Reeb orbits. These two
orbits correspond to the two critical points of the auxiliary Morse function on S1 and one
can show that one of these two orbits is positive hyperbolic while the other is elliptic. See
Section 2.1 for more details on the Morse-Bott argument and the definition of preferred
perturbations of λ, which we call “good” perturbations (Definition 2.1.2). Throughout the
paper, λ̄ will denote a T 2-invariant contact form −gdt1 + fdt2 on I × T 2 and λ will denote
a good perturbation of λ̄. We will say that a Reeb orbit of λ is convex/concave if it comes
from an S1-family of convex/concave Reeb orbits of λ̄.

We point out that the usual ECH differential counts holomorphic curves in a symplecti-
zation of a closed contact three-manifold. Here, we count holomorphic curves in R× (I×T 2)
that do not intersect R×{Xw, Xe}×T 2. A version of the maximum principle (Lemma 2.2.1)
guarantees that we still have Gromov compactness for such moduli spaces as in [1].

1.3 Combinatorial representation

In this section, we define combinatorial objects that will be used to state the main theorem.

Definition 1.3.1. Let I = [Xw, Xe] be an interval.
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x1

x2

x3

x′1
x′2

x′′1

Figure 1.4: Examples of IP paths P ,P ′ and P ′′.

(a) An (abstract) integral polygonal path P , or an IP path, on I is an n-tuple (vi) where
n ≥ 0 and each vi is a pair (wi, xi) such that:

(i) for 1 ≤ i ≤ n, wi ∈ Z2 is a primitive vector and xi ∈ I, and

(ii) for 1 ≤ i < n, xi ≤ xi+1 with equality only if wi = wi+1.

Each vi is called an edge of P at x = xi. We will treat vi also as a vector in Z2 when
convenient and write x(vi) := xi.

(b) A realization of an IP path P with n edges is (the image of) a continuous map φ :
[0, n]→ R2 satisfying:

(i) φ(0) ∈ Z2 and

(ii) for each 1 ≤ i ≤ n, φ|[i−1,i] is linear and φ(i) = φ(i− 1) + vi.

(c) A decoration of an IP path P is an association of each edge of P with one of the labels
in {ě, ȟ, ê, ĥ}.

Note that a realization of an IP path is unique up to a translation by Z2 ⊂ R2. One can
depict an IP path by its realization φ and by marking φ([i−1, i]) with xi for each 1 ≤ i ≤ n.
Figure 1.4 depicts an IP path P consisting of three edges vi with xi = x(vi), an IP path P ′
consisting of two edges v′j with x′j = x(v′j) and an IP path P ′′ consisting of one edge v′′1 with
x′′1 = x(v′′1). For examples of decorations, see Figure 1.5 (b).

Lemma 1.3.2. Let I = [Xw, Xe] be an interval, let λ̄ = −gdt1 + fdt2 be a T 2-invariant
contact form on I × T 2 and let λ be a good perturbation λ of λ̄. There is a natural way to
assign a unique IP path on I, denoted Pγ, to each orbit set γ of λ. In addition, γ induces a
decoration of Pγ uniquely up to transposing labels on two edges v and v′ with x(v) = x(v′).

Proof. We can write an orbit set γ of λ in the “ordered product notation”

γ = γ1γ2 · · · γn,

where each γi is an embedded orbit at x = x(γi) and x(γi) is non-decreasing. This repre-
sentation is unique up to transposing an elliptic γi and a hyperbolic γj with x(γi) = x(γj).
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τ1
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Xe

x+
1

x+
2

x+
3

x−1 ě
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Figure 1.5: Two orbit sets of λ, IP paths associated to each of them, and an IP region
between them, with induced decorations.

Then, Pγ = (vi) where vi is the pair ([γi], x(γi)) with [γi] ∈ H1(I × T 2) = Z2 and x(γi) ∈ I.
We can also label each vi according to whether γi is elliptic convex (ě), hyperbolic convex
(ȟ), elliptic concave (ê) or hyperbolic concave (ĥ). See Section 1.2 for the four types of Reeb
orbits of λ.

Definition 1.3.3. We call Pγ, as in Lemma 1.3.2, the IP path associate to γ. The decoration
of Pγ as in Lemma 1.3.2 is called an induced decoration.

Figure 1.5 (a) shows the graph of (f, g) for a contact form λ̄ = −gdt1 + fdt2 on I × T 2.
Each arrow corresponds to an embedded orbit appearing in two orbit sets α and β of a good
perturbation of λ̄. In the ordered product notation, α = α1α2α3 where αi are embedded
orbits of λ at x(αi) = x+

i , and α1, α2 and α3 are elliptic convex ě, hyperbolic convex ȟ and
elliptic concave ê, respectively. Similarly, β = β1 where β1 is an embedded orbit of λ at
x(β1) = x−1 and it is hyperbolic convex. In Figure 1.5 (b), the IP paths associated to α
and β are drawn in red and blue, respectively, along with an induced decoration. The last
picture will be explained shortly.

Remark 1.3.4. Let I = [Xw, Xe] and consider I × T 2.

(a) Suppose we fixed a contact form λ̄ = −gdt1 + fdt2 on I × T 2 and a good perturbation
λ of λ̄.

(i) Not all IP paths on I are associated to orbit sets of λ: if P is associated to an orbit
set of λ, x(v) must satisfy f ′(x(v))/g′(x(v)) ∈ Q ∪ {∞} for each v ∈ P and x(v)
determines v ∈ Z2, since it must be a positive multiple of (f ′, g′) ∈ R2 at x = x(v).

(ii) Even if P satisfies the above conditions, not all decorations of P can be induced
from an orbit set of λ since the convexity of λ at x = xi determines whether vi
should be labeled by a check (∨) or a hat (∧).
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ě∗

ȟ∗

ě

ȟ ȟ∗ê∗

ě∗

ê

ĥ∗
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ȟ∗

ê

ê
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ĥ∗

Figure 1.6: Decorated IP regions: slice classes are drawn in dotted lines and extreme edges
are marked with asterisks.

(b) On the other hand, given a decorated IP path P on I, it is easy to find (f, g) satisfying
(1.2.1) and a good perturbation λ of λ̄ = −gdt1 + fdt2 so that, for some orbit set α of
λ, P = Pα with an induced decoration.

We prefer to consider all IP paths on I and all decorations on them without reference to a
particular λ.

Definition 1.3.5. Let I = [Xw, Xe] be an interval and let P+ = (v+
i ) and P− = (v−j ) be

two IP paths on I with ∑
i

v+
i =

∑
j

v−j ∈ Z2. (1.3.1)

(a) The (abstract) integral polygonal region R, or the IP region, on I between P+ and P− is
the pair (P+,P−). We write ∂+R := P+ and ∂−R := P−. Each edge of ∂+R and ∂−R
is called a positive edge and a negative edge, respectively. Positive and negative edges of
R are called edges of R and the set of edges of R is denoted ∂±R.

(b) Let R be an IP region with m edges and let (vk) be an ordering of ∂±R so that x(vk)
is nondecreasing. A realization of R is (the image of) the continuous map Φ : [0, 1] ×
[0,m]→ R2 satisfying: Φ([0, 1]× {0}) = p ∈ Z2 and for each 1 ≤ k ≤ m,

(i) Φ|[0,1]×[k−1,k] is linear.

(ii) If vk is a positive edge, then Φ(1, k) = Φ(1, k − 1) + vk and Φ(0, k) = Φ(0, k − 1).

(iii) If vk is a negative edge, then Φ(0, k) = Φ(0, k − 1) + vk and Φ(1, k) = Φ(1, k − 1).

(c) A decoration of an IP region R is a decoration of IP paths ∂+R and ∂−R.

Note that a realization of an IP region is unique up to a translation by Z2 as well as
reordering (vk) by transposing two edges v and v′ with x(v) = x(v′). If vk0+1, · · · , vk0+m0 are
all the edges of R at x = x0, then im(Φ|[0,1]×[k0,k0+m0]) is unchanged under a transposition of
(vk) among these m0 edges. Also, φ+ := Φ|{1}×[0,m] is a realization of ∂+R after collapsing
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each subinterval [k−1, k] where φ+ is constant. Similarly, φ− := Φ|{0}×[0,m] gives a realization
of ∂−R. We can depict an IP regionR by its realization and by marking φ+ and φ− as before.
Figure 1.5 (b) and Figure 1.6 show examples of (decorated) IP regions, with extra information
which we discuss shortly.

Definition 1.3.6. Let I = [Xw, Xe] and let λ̄ and λ be contact forms on I×T 2 as in Lemma
1.3.2. Let α and β be orbit sets of λ with [α] = [β] ∈ Z2. The IP region associated to α and
β is the IP region between Pα and Pβ and is denoted Rα,β. An induced decoration of Rα,β

is a decoration of Pα and Pβ induced by α and β, respectively.

Note that the homology condition [α] = [β] ensures (1.3.1). In Figure 1.5 (b), Rα,β is
the triangle between the red path Pα and the blue path Pβ.

Definition 1.3.7. Let I = [Xw, Xe] and let R be an IP region on I.

(a) The slice class σR(x0) ∈ Z2 of R at x = x0 is

σR(x0) := −
∑
v∈∂+R
x(v)≤x0

v +
∑

w∈∂−R
x(w)≤x0

w, (1.3.2)

simply written as σ(x0) when R is clear.

(b) An edge v0 of R is said to be west extreme if x(v0) = min{x(v)|v ∈ ∂±R}. It is said to
be east extreme if x(v0) = max{x(v)|v ∈ ∂±R}. West extreme and east extreme edges
of R are collectively referred to as extreme edges of R.

Let x0 ∈ I. It is easy to check that if Φ is a realization of R and k0 is the number of
edges v of R with x(v) ≤ x0, then

σR(x0) = −Φ(1, k0) + Φ(0, k0).

Figure 1.6 depicts four decorated IP regions R between P+ and P− along with each distinct
slice class drawn in a dotted arrow. We omitted the markings x+

i ’s and x−j ’s for simplicity.
Despite the omission, the slice classes determine the order of the real numbers x+

i ’s and x−j ’s
and, in particular, the extreme edges of R. Here, extreme edges are marked with asterisks
only for illustrative purposes. One can check that each R in fact arises from a pair of orbit
sets of λ described in Figure 1.5. This association is unique here despite the omission of x+

i ’s
and x−j ’s, but this is not true in general. For example, in Figure 1.13, omitting xi on the top
horizontal edges will result in ambiguity.

Definition 1.3.8. (Concatenations of IP paths and IP regions)

(a) We say that two IP paths P = (vi) with n edges and P ′ = (v′j) with n′ edges are
composable if x(vn) < x(v′1), or if x(vn) = x(v′1) with vn = v′1 ∈ Z2. If they are
composable, we obtain an IP path with (n + n′) edges by concatenating ordered tuples
(vi) and (v′j). We call this the concatenation of P and P ′ and denote it by PP ′.
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ê∗

Figure 1.7: A decomposable region, a non-minimal region and a (non-embedded) minimal
region.

(b) We say that two IP regions R and R′ are composable if ∂+R and ∂+R′ are composable,
∂−R and ∂−R′ are composable and max{x(v)|v ∈ ∂±R} ≤ min{x(v′)|v′ ∈ ∂±R′}. In
this case, the concatenation RR′ of R and R′ is the IP region between ∂+R∂+R′ and
∂−R∂−R′.

In Figure 1.4, P is the concatenation of P ′ and P ′′, assuming x1 = x′1, x2 = x′2, x3 =
x′′1. The first region in Figure 1.7 is a concatenation of two triangular regions. We now
describe some special properties of IP regions, which will play a role in the description of
the differential.

Definition 1.3.9. Let I = [Xw, Xe]. Let R be an IP region on I with m edges and let
Φ : [0, 1]× [0,m]→ R2 be a realization of R.

(a) R is called a local bigon if it has two edges v and w and they satisfy x(v) = x(w). R is
said to be nonlocal if it is not a local bigon.

(b) R is said to be decomposable if it can be written as a concatenation R1R2 for some IP
regions R1 and R2, each with a positive number of edges. We say R is indecomposable,
otherwise.

(c) A lattice point p ∈ Z2 is internal to Φ if there is an open ball U ⊂ int([0, 1]× [0,m]) so
that p ∈ Φ(U). We say R is minimal if Φ contains no internal lattice point.

Note that the definition of minimality does not depend on the choice of a realization Φ.
Each of the regions in Figure 1.6, including the bigon, is nonlocal. See also Figure 1.10 and
Figure 1.11 for the distinction between local and nonlocal bigons. Figure 1.7 demonstrates
decomposability and minimality.

Remark 1.3.10. Let I = [Xw, Xe] and let λ̄ and λ be contact forms on I×T 2 as in Lemma
1.3.2. Let α and β be orbit sets of λ and let J be a small perturbation of the admissible
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almost complex structure J̄ in (2.1.11). There is a natural parallel between the following
features of a holomorphic curve C from α to β and the aforementioned features of an IP
region Rα,β between Pα and Pβ:

(a) The slice SC(x0) of C at x = x0 6∈ {x(αi), x(βj)} is

SC(x0) := C ∩ (R× {x0} × T 2),

oriented outward normal first as a boundary of C ∩ (R× [Xw, x0]× T 2). Then, SC(x0)
defines a homology class [SC(x0)] ∈ Z2 = H1(R× I × T 2) and σRα,β(x0) = [SC(x0)].

(b) An end of C at a (possibly multiply covered) orbit ρ0 is west/east extreme if x(ρ0) =
min /max{x(ρ)|ρ is an end of C}.

(c) C is a local cylinder if it has one positive end and one negative end and they have the
same x-coordinate. C is nonlocal if it is not a local cylinder.

(d) We say that C is irreducible if its domain is connected. An irreducible C is analogous
to an indecomposable Rα,β. See Proposition 2.2.7 and Corollary 2.2.8 for a precise
statement.

(e) A genus zero C is analogous to a minimal Rα,β. See Proposition 2.2.10 for a precise
statement.

One can draw a similar parallel between these features of IP regions and features of tropical
curves in a view by Taubes [24] and Parker [20]. See also Remark 2.2.16.

An important notion regarding an IP region is positivity. It is related to the intersection
positivity of holomorphic curves.

Definition 1.3.11. (Positivity) Let I = [Xw, Xe] and let R be an IP region on I. Consider
a realization Φ : [0, 1]× [0,m]→ R2 of R with usual orientations on [0, 1]× [0,m] ⊂ R2 and
R2.

(a) R is said to be positive if Φ|[0,1]×[k−1,k] is either degenerate or orientation-preserving for
each 1 ≤ k ≤ m.

(b) Let λ̄ be a T 2-invariant contact form on I × T 2 and let R̄ denote the Reeb vector field
of λ̄. R is said to be positive with respect to λ̄ if

R̄(x)× σR(x) ≥ 0 (1.3.3)

for all x ∈ I.

We note that the definition of positivity does not depend on the choice of a realization
Φ. All IP regions depicted previously are in fact positive. In Figure 1.8, the first IP region
is positive and the next two are not. All IP regions in Figure 1.6 are positive with respect
to λ̄ given in Figure 1.5.



13

ȟ∗
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ê

Figure 1.8: Three IP regions: the first is positive, the next two are not.

Remark 1.3.12. Let I = [Xw, Xe] and consider I × T 2.

(a) If α and β are orbit sets of a T 2-invariant contact form λ̄ on I × T 2 and Rα,β is positive
with respect to λ̄, then the definition of Φ and (1.3.3) imply that Rα,β is positive.

(b) Conversely, if R is a positive IP region on I and v = v′ ∈ Z2 whenever v and v′ are two
edges of R with x(v) = x(v′), it is easy to find a T 2-invariant contact form λ̄ on I × T 2

so that:

(i) R = Rα,β for some orbit sets α and β of a good perturbation of λ̄, and

(ii) R is positive with respect to λ̄.

See also Remark 1.3.4.

We now define a combinatorial analogue of the ECH index for a decorated IP region.

Definition 1.3.13. (Index of an IP region) Let R be a decorated IP region. We define

I(R) := 2Area(R) +
∑
v∈∂+R

CZ(v)−
∑

v∈∂−R

CZ(v) (1.3.4)

where Area(R) is the (signed) area of a realization of R with respect to the standard volume
form on R2 and CZ(v) is 1, 0, 0, and −1 if v is labeled ě, ȟ, ĥ and ê, respectively.

The three regions in Figure 1.8 have 2Area(R) = 1,−1 and 0, respectively, and I(R) =
0, 0 and 0, respectively.

Definition 1.3.14. Let R be a decorated nonlocal IP region.

(a) We say that an edge v of R is:

(i) S1-loose and R-loose if v is a positive edge labeled ě, or a negative edge labeled ê.

(ii) S1-tight and R-loose if v is a positive edge labeled ȟ, or a negative edge labeled ĥ.

(iii) S1-loose and R-tight if v is a positive edge labeled ĥ, or a negative edge labeled ȟ.
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ȟ∗

ȟ∗
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ě

Figure 1.9: Four decorations of R. The first is minimal and the next three are obtained from
it by S1-relaxing an edge, S1-relaxing a different edge and R-relaxing an edge, respectively.

(iv) S1-tight and R-tight if v is a positive edge labeled ê, or a negative edge labeled ě.

(b) S1-relaxing an edge v refers to replacing the label of v from S1-tight to S1-loose while
keeping R-tightness.

(c) R-relaxing an edge v refers to replacing the label of v from R-tight to R-loose while
keeping S1-tightness.

(d) The minimal decoration of R is the decoration of R where all edges are S1-tight, all
extreme edges are R-loose and all non-extreme edges are R-tight.

From Definition 1.3.13, it is easy to check that relaxing an edge corresponds to increasing
the index I(R) by one. Also, the minimal decoration gives the smallest index I(R) among
all decorations of R where extreme edges are labeled R-loose: we will see why we impose
such a condition in Corollary 2.2.3. In Figure 1.9, the indices are I(R) = 0, 1, 1 and 1,
respectively.

Remark 1.3.15. From the S1 Morse-Bott theory perspective, S1-relaxing an edge corre-
sponds to removing the restriction of a holomorphic curve having an end at a particular fixed
orbit of an S1-family. However, in general, the above definitions regarding decorations are
made without any association to a specific λ on I × T 2 or its orbit sets (see Remark 1.3.4).
In particular, the minimal decoration of an IP region does not refer to a decoration induced
from a particular pair of orbit sets. Similarly, R-relaxing an edge of a decorated IP region
does not refer to replacing an orbit appearing in a pair of orbit sets.

1.4 The main theorem

Theorem 1.4.1. Let I = [Xw, Xe], let λ̄ = −gdt1 + fdt2 be a T 2-invariant contact form on
I × T 2 and let J̄ be a generic admissible almost complex structure on R× I × T 2. Suppose
(λ, J) is a good perturbation of (λ̄, J̄). (See Definition 2.1.3). If α and β are admissible orbit
sets of λ, then 〈∂α, β〉 6= 0 ∈ Z/2 if and only if there exist orbit sets γ1 and γ2 such that:
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Figure 1.10: IP regions corresponding to nonzero differential.

(a) α = γ1α
′γ2 and β = γ1β

′γ2 in the ordered product notation,

(b) Rα′,β′ is positive with respect to λ̄,

(c) Rα′,β′ is nonlocal, indecomposable and minimal with two extreme edges, and

(d) an induced decoration of Rα′,β′ can be obtained from the minimal decoration of Rα′,β′ by
S1-relaxing one edge.

We remark that if one induced decoration of Rα′,β′ can be obtained from the minimal
decoration by S1-relaxing one edge, then any induced decoration of Rα′,β′ can be obtained
this way.

Example 1.4.2. Here are some (decorated) IP regionsRα,β associated to a pair of admissible
orbit sets α and β with 〈∂α, β〉 6= 0. These are illustrated in Figure 1.10 along with members
of M(α, β):

(i) A nonlocal bigon Rα,β with one positive edge and one negative edge. This corresponds
to a holomorphic cylinder with one positive end and one negative end.

(ii) A nonlocal bigon Rα,β with two positive edges. This corresponds to a holomorphic
cylinder with two positive ends.

(iii) An IP region Rα,β with (possibly multiple) positive edges and (possibly multiple) nega-
tive edges (in the picture, two positive edges and two negative edges). This corresponds
to general holomorphic curves (in fact, spheres). The number of positive ends can be
any positive number and the number of negative ends can be any number, as long as
the total number is at least two. See Figure 1.13.



16

ȟ

ȟ
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Figure 1.11: I(R) = 1 IP regions corresponding to zero differential coefficient.

Here are some (decorated) IP regions Rα,β associated to a pair of admissible orbit sets
α and β with 〈∂α, β〉 = 0. These are illustrated in Figure 1.11 along with members/non-
members of M(α, β):

(iv) An IP region Rα,β whose induced decoration can be obtained from the minimal decora-
tion by R-relaxing an edge. M(α, β) is empty for a good perturbation (λ, J), although
it may (and will in some cases) be nonempty in general.

(v) A local bigon Rα,β. This corresponds to a Morse flow within an S1-family of Reeb
orbits. Such holomorphic curves exist in pairs.

Remark 1.4.3. We make a few remarks in comparison with [12] and [11]. Let I = [Xw, Xe]
and consider λ̄ and λ on I × T 2 as in Theorem 1.4.1.

(a) If λ̄ is convex, e.g. (T 3, λn) in Example 1.2.1 (ii), then Rα′,β′ as in Theorem 1.4.1 cannot
have any non-extreme positive edges and the two extreme edges must be positive. In [12],
β′ is said be obtained from α′ by rounding a corner. Similarly, if λ̄ is concave, then Rα′,β′

cannot have any non-extreme negative edges and the two extreme edges must be negative.
This is “dual” to rounding a corner as in [11]. See Figure 1.12 and Remark 1.4.4.

(b) If λ̄ is convex, a holomorphic curve C with I(C) = 1 and no negative ends must have
exactly two positive ends. For a general T 2-invariant contact form λ̄ can support an
I(C) = 1 holomorphic curves with no negative ends but with an arbitrary number of
positive ends. See Figure 1.13 for an example. One can similarly construct an I(C) = 1
holomorphic curve with arbitrary number of positive and negative ends as described in
Example 1.4.2 (iii).
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Figure 1.12: (a) Rounding a corner for a convex λ̄ and (b) its dual operation for λ̄∨.

(c) In contrast to rounding corners, for a general λ̄, Rα,β with 〈∂α, β〉 6= 0 may not be
embedded. For example, the last IP region in Figure 1.7 is positive, irreducible and
minimal and the decoration can be obtained from the minimal decoration by S1-relaxing
the east extreme edge. As in Remark 1.3.12, one can give a T 2-invariant contact form
λ̄ and a perturbation λ of λ̄ so that this decorated IP region is associated to a pair of
admissible orbit sets α and β of λ.

Remark 1.4.4. (Duality) We observe that the criteria of Theorem 1.4.1 is symmetric in the
following sense. Let I = [Xw, Xe] and let f, g, f∨ and g∨ : I → R be such that the graphs
of (f, g) and (f∨, g∨) are reflections of each other about some straight line. Furthermore,
suppose that both

λ̄ = −gdt1 + fdt2, and

λ̄∨ = −g∨dt1 + f∨dt2

define contact forms on I×T 2. See Figure 1.12 for a simple example where (f, g) and (f∨, g∨)
are reflections about a vertical line. Also, suppose two IP regions R and R∨ are reflections
of each other about the same straight line so that:

• ∂+R = ∂−R∨, ∂−R = ∂+R∨, and

• the convexity of the labels are reversed.

as illustrated in Figure 1.12. Then, R satisfies the conditions of Theorem 1.4.1 if and only
if R∨ does. This gives the duality between the differential for the ECH chain complex of
(I × T 2, λ) and the differential for the ECH chain complex of (I × T 2, λ∨).

Here, it is important that both λ̄ and λ̄∨ are contact. To illustrate this, if λ̄ is convex,
there can be a nonlocal bigon with two positive edges satisfying the conditions of Theorem
1.4.1, as in Example 1.4.2 (ii). However, it is easy to see that any λ̄∨ which is dual to λ̄
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Figure 1.13: R can have arbitrarily many top horizontal ê edges.

in the above sense is necessarily not contact. In fact, if such λ̄∨ is contact, then Theorem
1.4.1 would imply that there is a holomorphic cylinder with two negative ends contributing
to a nonzero differential in the ECH chain complex of (I × T 2, λ∨). This certainly does not
happen.

In the next section, we show that the criteria in Theorem 1.4.1 are necessary, primarily
using the ECH index computation and a version of intersection positivity. We show that
the criteria are sufficient by using induction and reducing the case of general holomorphic
curves to the case of holomorphic spheres with two or three punctures, which were analyzed
by Taubes in [23].
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Chapter 2

Proof of the main theorem

2.1 Preliminaries

Embedded contact homology

We continue with the review of ECH from Section 1.1, following [7,10]. Let (Y, λ) be a three-
manifold with a nondegenerate contact form λ and fix Γ ∈ H1(Y ) and a generic admissible
almost complex structure J on R×Y . Recall that the ECH chain complex ECC∗(Y, λ,Γ, J)
is generated by admissible orbit sets in the homology class Γ. To describe the moduli spaces
of interest, it is convenient to use the notion of holomorphic currents. We say that two
holomorphic curves C and C ′ are equivalent if C is obtained from C ′ by a pre-composition
with a bi-holomorphic map on its domain. Then, a holomorphic current C is a finite set of
pairs {(Ck, dk)} where Ck are equivalent classes of distinct irreducible somewhere injective
holomorphic curves in (R× Y, J) with positive and negative ends at Reeb orbits and dk are
positive integers. We say that a holomorphic current C is “somewhere injective” if dk = 1
for each k and say that C is “embedded” if it is somewhere injective, each Ck is embedded
and Ck are pairwise disjoint.

Let α = {(αi,mi)} and β = {(βj, nj)} be two orbit sets in the homology class Γ and let
Z ∈ H2(Y, α, β). A holomorphic current from α to β in the homology class Z is a holomorphic
current whose total multiplicity of positive ends at αi is mi, the total multiplicity of negative
ends at βj is nj, with no other ends and [C] = Z. Let M(α, β, Z) denote the moduli space
of such holomorphic currents.

We now define the ECH index I(α, β, Z) ∈ Z, also denoted I(C) if C ∈ M(α, β, Z). Let
τ be a symplectic trivialization of ξ over each of the Reeb orbits αi and βj. Then,

I(α, β, Z) := cτ (Z) +Qτ (Z) + CZI
τ (α, β), (2.1.1)

for cτ (Z), Qτ (Z) and CZI
τ (α, β) which we describe next. For more details, see [7,10]. cτ (Z) =

〈c1(ξ, τ), Z〉 is the relative Chern class: if S is a representative of Z, this is the count of zeroes
of a section of ξ|S which is constant with respect to τ near ends. The second term Qτ (Z)
is the relative intersection pairing, which is the algebraic intersection number between S
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and a push-off of S, satisfying certain conditions near ends. The third term CZI
τ is the

Conley-Zehnder term

CZI
τ (α, β) =

∑
i

mi∑
k=1

CZτ (α
k
i )−

∑
j

nj∑
k=1

CZτ (β
k
j ), (2.1.2)

where CZτ (ρ) ∈ Z is the Conley-Zehnder index of the Reeb orbit ρ with respect to τ .
Compare this with the Fredholm index of a holomorphic curve C with k positive ends at
ρ+

1 , · · · , ρ+
k and l negative ends at ρ−1 , · · · , ρ−l :

ind(C) = −χ(Σ) + 2cτ ([C]) + CZind
τ (C). (2.1.3)

where

CZind
τ (C) =

k∑
i=1

CZτ (ρ
+
i )−

l∑
j=1

CZτ (ρ
−
j ). (2.1.4)

Here are some important properties of the ECH index [10, Section 3.4]. Let α and β be
orbit sets of (Y, λ) and let Z ∈ H2(Y, α, β). Then,

(a) (Well-defined) I(α, β, Z) does not depend on the choice of the trivialization τ .

(b) (Index ambiguity formula) If Z,Z ′ ∈ H2(Y, α, β), then

I(α, β, Z)− I(α, β, Z ′) = 〈c1(ξ) + 2PD(Γ), Z − Z ′〉 (2.1.5)

(c) (Additivity) If γ is another orbit set in the homology class Γ and if W ∈ H2(Y, β, γ),
then

I(α, γ, Z +W ) = I(α, β, Z) + I(β, γ,W ) (2.1.6)

(d) (Index inequality) If a holomorphic curve C from α to β is somewhere injective, then

ind(C) ≤ I(C) (2.1.7)

with equality only if C is embedded and the multiplicity of the ends at any orbit satisfies
a certain “partition condition” (see Definition 2.1.1.)

(e) (Trivial cylinders) If C is contains no trivial cylinders and T is a union of trivial cylinders,
then

I(C ∪ T ) ≥ I(C) + 2#(C ∩ T ). (2.1.8)

Let C be a holomorphic curve from α = {(αi,mi)} to β = {(βj, nj)}. For each i, C has ends
at covers of αi with total multiplicity mi. This gives a partition of mi denoted by p+

i (C).
We similarly define the partition p−j (C) of nj for each j.
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Definition 2.1.1. For each embedded Reeb orbit ρ and m ≥ 1, we define special partitions
p+
ρ (m) and p−ρ (m). (See Lemma 2.2.5 for partitions relevant to us, or [10, Section 3.9] for

the general definition.) We say that C satisfies the partition condition if p+
i (C) = p+

αi
(mi)

and p−j (C) = p−βj(nj).

Let α and β be admissible orbit sets and letM1(α, β) be the moduli space of holomorphic
currents C with I(α, β, [C]) = 1. The key consequence of property (d) and property (e)
above is that, for a generic J , any C ∈ M1(α, β) can be written as the disjoint union C ′ tT
where T is trivial and C ′ is an irreducible embedded holomorphic curve with ind(C ′) = 1.
We also have that M1(α, β)/R is compact by a modified version of Gromov compactness
(See [10, Section 5.3]). Hence, we can define the differential coefficient between α and β by

〈∂α, β〉 := #M1(α, β)/R.

Lastly, we define an action A(α) of an orbit set α = {(αi,mi)} by

A(α) :=
∑
i

mi

∫
αi

λ.

If u : (Σ, j)→ (R× Y, J) is a holomorphic curve from α to β, we have

A(α)−A(β) =

∫
Σ

u∗(dλ) ≥ 0

by Stokes’ theorem and so the ECH chain complex is filtered by the action of its generators.
For each L > 0, the filtered ECH chain complex ECCL

∗ is the subcomplex of ECC∗ which
consists only of generators with action less than L. We can recover ECH∗ as the direct limit
of ECHL

∗ as L → ∞. For many subsequent arguments, we rely on being able to disregard
any orbit with action greater than L. Hence, throughout the paper, we will always assume
a filtered version of ECH for some fixed L > 0.

Morse-Bott theory

We now return to the contact manifold (I×T 2, λ̄) where I = [Xw, Xe] and λ̄ = −gdt1 +fdt2
is a T 2-invariant contact form. In order to define the ECH of this contact manifold, we
need to perturb the degenerate contact form λ̄ to a nondegenerate contact form λ. Recall
also that the definition of ECH requires the choice of a generic admissible almost complex
structure J on R × (I × T 2). The goal of this section is to describe the perturbations and
almost complex structures that will result in a nice combinatorial description of the ECH
chain complex.

Before describing the perturbation, we parametrize all S1-families of Reeb orbits simul-
taneously by the following function Θ, extending [11, Appendix A]. For an S1-family ρ̄ at
x = x0, let T0 := {x0} × T 2 and suppose ρ ∈ ρ̄ has the homology class (p, q) ∈ Z2 = H1(T0).
Let wedge(p, q) be a wedge of p-fold covered circle at (R/Z)×{0} and q-fold covered circle at
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{0}× (R/Z) in T0 = (R/Z)2. Let S be any surface in T0 such that ∂S = ρ∪ (−wedge(p, q)).
For example, one can choose the trapezoid with vertices at (0, 0), (r, 0), (p + r, q) and (0, q)
in the universal cover R2 → (R/Z)2 for an appropriate r. Then, we define Θ : ρ̄→ R/Z by

Θ(ρ) :=

∫
S

dt1dt2 ∈ R/Z (2.1.9)

where the integral is independent of S modulo Z. Explicitly,

Θ(ρ) = (t1, t2)× (p, q) + pq/2

for any (x0, t1, t2) ∈ ρ. From here on, we always identify ρ̄ as R/Z using Θ. We note
that, if we change the identification of the fiber T 2 = (R/Z)2 by SL(2,Z), then Θ changes
(simultaneously for all ρ̄) by Θ 7→ Θ + c for c = 0 or 1/2. In particular, we may later choose
a convenient identification without affecting the analysis.

We now discuss the S1 Morse-Bott theory following [2]. Assume generic f and g. Since
there are only finitely many S1-families of Reeb orbits of λ̄ with action less than L, we
describe the perturbation on a small neighborhood of each such family. Let ρ̄ be an S1-family
of Reeb orbits at x = x0 with action less than L. Regard a Morse function Hρ̄ : R/Z → R
with two critical points as a function on {x0} × T 2 = ∪ρ∈ρ̄ρ. Extend Hρ̄ to a function H̃ρ̄

on (x0 − ε, x0 + ε) × T 2 with a compact support and ∂xH̃ρ̄ = 0 near {x0} × T 2. Then, for
ε, η > 0 sufficiently small,

λ := (1 + ηH̃ρ̄)λ̄ (2.1.10)

is a contact form on (x0 − ε, x0 + ε) × T 2 with two nondegenerate Reeb orbits at critHρ̄

and no other Reeb orbits of action less than L. Recall that the contact structure ξ̄ of λ̄ is
a trivial symplectic 2-plane bundle with a fiber span{∂x,−f∂t1 − g∂t2}. We will always use
this trivialization in this paper and call this τ . We compute that

R̄ =
f ′∂t1 + g′∂t2
(fg′ − f ′g)

,

L∂xR̄ =
f ′g′′ − f ′′g′

(fg′ − f ′g)2
(−f∂t1 − g∂t2).

Hence, with respect to τ , the linearized flow of R̄ along ρ, parametrized by ν, is ν 7→
(

1 0
rν 1

)
with r > 0 if f ′g′′ − f ′′g′ > 0 (convex) and with r < 0 if f ′g′′ − f ′′g′ < 0 (concave). We
conclude that:

• If ρ̄ is convex, then λ has an elliptic orbit ě at maxHρ̄ whose linearized return map is
a small positive rotation with respect to τ , and a positive hyperbolic orbit ȟ at minHρ̄

whose linearized return map does not rotate with respect to τ .

• If ρ̄ is concave, then λ has a positive hyperbolic orbit ĥ at maxHρ̄ whose linearized
return map does not rotate with respect to τ , and an elliptic orbit ê at minHρ̄ whose
linearized return map is a small negative rotation with respect to τ .
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Definition 2.1.2. (A good perturbation) Let I = [Xw, Xe] and λ̄ = −gdt1 + fdt2 be a
T 2-invariant contact form on I ×T 2. Fix 0 < δ < 1/3 and L > 0. Let ε, η > 0. Let Ξ denote
the (finite) set of S1-families of Reeb orbits with action less than L and for each ρ̄ ∈ Ξ, let
Hρ̄ and H̃ρ̄ = H̃ρ̄(ε) be as above. We say that λ defined by

λ =

(
1 + η

∑
ρ̄∈Ξ

H̃ρ̄

)
λ̄

is a good perturbation of λ̄ if, for each ρ̄ ∈ Ξ:

(i) Hρ̄ : (R/Z)→ R has exactly two critical points and

• if ρ̄ is convex, Hρ̄ attains the minimum at 0 and the maximum at δ, and

• if ρ̄ is concave, Hρ̄ attains the maximum at 0 and the minimum at −δ.

(ii) ε is sufficiently small that

• λ̄ does not have any point of inflection on (x(ρ̄)− ε, x(ρ̄) + ε).

• If α and β are orbit sets with action less than L and if R̄(x) is a multiple of [α]−[β]
for some x ∈ (x(ρ̄)− ε, x(ρ̄) + ε), then x = x(ρ̄).

(iii) ε and η = η(ε, H̃ρ) are sufficiently small for (2.1.10).

(iv) η is sufficiently small that the linearized return angle φ of the elliptic orbit from ρ̄ ∈ Ξ
satisfies |φ| < 2π/dL/A(ρ)e.

Condition (ii) is used for the positivity lemma 2.2.1. Condition (iv) is the simplifying
assumption for the Conley-Zehnder indices. Condition (i) is used in the last step of Section
2.2 to rule out R-relaxing as mentioned in Example 1.4.2 (iv).

To describe the almost complex structure, consider the admissible almost complex struc-
ture J̄ on the symplectization R× (I × T 2, λ̄) defined by J̄(∂s) = R̄ and

J̄(∂x) = −f∂t1 − g∂t2 . (2.1.11)

This has the property

R̄× J̄(∂x) =
1

fg′ − f ′g
(f ′, g′)× (−f,−g) = 1 > 0. (2.1.12)

We pick a generic admissible almost complex structure J on the symplectization R×(I×
T 2, λ), which is a small perturbation of J̄ .

Definition 2.1.3. Let λ̄ be a T 2-invariant contact structure on I × T 2 and J̄ be the dis-
tinguished almost complex structure for λ̄ satisfying (2.1.12). We say that the pair (λ, J) is
a good perturbation of (λ̄, J̄) if λ is a good perturbation of λ̄ and, additionally, λ and J are
sufficiently close to λ̄ and J̄ in the sense of Lemma 2.2.1, Proposition 2.2.21 and Proposition
2.3.5.
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This requirement is necessary to prove positivity of relevant IP regions and to relate
the holomorphic curves in the perturbed setup to those in the unperturbed setup for the
Morse-Bott complex.

2.2 Proof of necessity

In this section, we fix I = [Xw, Xe], a T 2-invariant contact form λ̄ on I × T 2 with the
Reeb vector field R̄, the distinguished almost complex structure J̄ on R× (I × T 2) defined
by (2.1.11) and a good perturbation λ of λ̄. After Lemma 2.2.1, we will also assume J is
sufficiently close to J̄ that the assertions of Lemma 2.2.1 holds.

We start by proving the following important property satisfied by any IP region Rα,β

associated to orbit sets α and β with nonemptyM(α, β). This is an adaptation of [11, Lemma
3.11].

Lemma 2.2.1. (Positivity) Let α and β be orbit sets of λ in the homology class Γ and
suppose J is sufficiently close to J̄ . Suppose C ∈M(α, β) is a holomorphic curve from α to
β. Then, Rα,β is positive with respect to λ̄, i.e. for all x ∈ I,

R̄(x)× σ(x) ≥ 0.

Moreover, if λ is unperturbed near {x0} × T 2, then the equality holds at x = x0 if and only
if SC(x0) = ∅.

In particular, the equality condition applied to x = Xw and x = Xe implies that we
have Gromov compactness for the moduli space of holomorphic curves that do not intersect
R× {Xw, Xe} × T 2. This result can also be interpreted as intersection positivity of C with
the leaves of symplectic foliation given by R cross the Reeb flow [11].

Remark 2.2.2. The second assertion fails if λ is perturbed near {x0}× T 2. For example, a
holomorphic curve corresponding to an auxiliary Morse flow of Hρ̄ satisfies R̄(x)× σ(x) = 0
for all x ∈ I but it does not even stay within R× {x(ρ̄)} × T 2. All holomorphic curves are
affected similarly under the perturbation.

Proof. Suppose λ is unperturbed near {x0} × T 2 and x0 is regular for the projection πx|C :
Σ→ I. Let ν parametrize a component S ′ of SC(x0) and consider the ordered basis

{∂s, R̄, ∂x, J̄∂x}

of Tp(R × I × T 2) at any point p ∈ S ′. By the orientation convention on slices, J−1∂ν ∈
span{∂s, ∂x} has a positive ∂x component. Hence, ∂ν ∈ span{R̄, J̄∂x} has a positive J̄∂x
component for J sufficiently close to J̄ . By (2.1.12),

R̄(x)× ∂ν > 0.
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α

β

σ(x−)

R̄(x−)
α

β

σ(x−)

R̄(x−)

(a) (b)

Figure 2.1: Two possible scenarios just before R(x)× σ(x) = 0.

We obtain both results by integrating this along ν and summing over all components. For a
non-regular x0, take the limit of this result for regular xi’s with limi→∞ xi → x0.

We now argue for the first assertion when x0 ∈ Iε := [x(ρ) − ε, x(ρ) + ε] for some Reeb
orbit ρ. Since σ|Iε can jump only at x = x(ρ) and only by a multiple of R̄(x(ρ)), the function

A(x) := R̄(x)× σ(x)

is defined continuously on Iε and is non-negative at the two endpoints of Iε. Suppose A(x0) =
0 for some x0 ∈ Iε with σ(x0) 6= 0. By condition (ii) of Definition 2.1.2, x0 = x(ρ). Since λ̄
does not have any point of inflection on Iε, A(x) cannot take a minimum on Iε \ {x(ρ)}, so
A(x) must stay non-negative throughout Iε.

Corollary 2.2.3. Let Rα,β be as in Lemma 2.2.1 with an induced decoration and suppose
that σ(x(ρ)± ε) are not both zero for some embedded orbit ρ ∈ α∪β. If R̄(x(ρ))×σ(x(ρ)) =
0, then Rα,β must have at least one R-loose edge at x = x(ρ). Furthermore, if Rα,β is
indecomposable, it has extreme edges at x = x(ρ).

Proof. Write x± := x(ρ) ± ε. By the assumption, σ(x+) = k[ρ] and σ(x−) = l[ρ] for some
integers k and l. By symmetry, assume l 6= 0 and define

B(x) := R̄(x)× σ(x−).

By Lemma 2.2.1, B(x−) > 0. If B(x+) ≥ 0, then by condition (ii) of Definition 2.1.2, B(x)
is positive on [x−, x(ρ)) ∪ (x(ρ), x+] and zero at x = x(ρ). This contradicts genericity of λ̄.
Thus, B(x+) < 0.

Now assume ρ is convex, i.e. R̄(x−)× [ρ] > 0. We have l > 0 since

0 < R̄(x−)× [ρ] = (1/l) ·B(x−)

and k ≤ 0 since
0 ≤ R̄(x+)× σ(x+) = (k/l) ·B(x+).

At x = x(ρ), R-loose edges are positive edges and by (1.3.2), the number of positive edges at
x = x(ρ) is at least l− k > 0. For the second assertion, if Rα,β is indecomposable, kl cannot
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be strictly negative so k = 0. This completes the proof for l 6= 0 and a convex ρ. The other
cases can be argued similarly. Figure 2.1 illustrates two possible slice classes at x = x− for
a convex ρ and a concave ρ, respectively.

We introduce some notations which are convenient when dealing with indices.

Definition 2.2.4. (a) The “signed” combinatorial Conley-Zehnder index for an edge v of
an IP region R is defined as

czR(v) := ±CZ(v) if v ∈ ∂±R.

We simply write cz(v) when R is clear. Similarly, if C is a holomorphic curve, then we
define the “signed” Conley-Zehnder index for a positive/negative end of C at ρ± by

czindC (ρ±) := ±CZτ (ρ±).

We simply write czind(ρ±) when C is clear.

(b) We rewrite the combinatorial ECH index (1.3.4) of an IP region R as

I(R) = Ia(R) + Ic(R) (2.2.1)

where
Ia(R) := 2Area(R)−#{edges of R} (2.2.2)

and
Ic(R) :=

∑
v∈∂±R

(cz(v) + 1). (2.2.3)

Similarly, rewrite the Fredholm index formula (2.1.3) as

ind(C) = [2g(C)− 2 + #{ends of C}] + 0 +
∑
ρ

czind(ρ)

= 2g(C)− 2 +
∑
ρ

(czind(ρ) + 1), (2.2.4)

where the sum is over positive and negative ends ρ of C and cτ ([C]) = 0 since τ is the
restriction of a global trivialization of ξ.

The upshot is that each summand in (2.2.3) and in the summation of (2.2.4) is nonneg-
ative, as we show next.

Lemma 2.2.5. Let ρ be an embedded orbit of λ. Write ρ = ě, ȟ, ĥ or ê depending on whether
it is elliptic convex, hyperbolic convex, hyperbolic concave or elliptic concave.
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+∞

−∞

+∞

−∞

(a) (b)

Figure 2.2: Image of S under the projection to R× I before and after the final step.

(a) If A(ρk) < L for some k ≥ 1, then

CZτ (ρ
k) =


1 if ρ = ě,

0 if ρ = ȟ,

0 if ρ = ĥ,

−1 if ρ = ê.

(b) The special partitions relevant to us are:

p+
ê (m) = p−ě (m) = (m),

p+
ě (m) = p−ê (m) = (1, · · · , 1), (2.2.5)

p±
ȟ

(m) = p±
ĥ

(m) = (1, · · · , 1).

Proof. (a) follows from condition (iv) of Definition 2.1.2. We refer to [10] or [7] for (b).

Proposition 2.2.6. (ECH index computation) Let α and β be orbit sets and consider Rα,β

with an induced decoration. If Z ∈ H2(I×T 2, α, β), the ECH index I(α, β, Z) is independent
of Z and

I(α, β, Z) = I(Rα,β).

We write I(α, β) = I(α, β, Z).

Proof. Since ξ is trivial and the generator [T 2] of H2(I × T 2) ∼= Z has algebraic intersection
number zero with every orbit, by the index ambiguity formula (2.1.5),

I(α, β, Z)− I(α, β, Z ′) = 〈c1(ξ) + 2PD(Γ), Z − Z ′〉 = 0,

so I(α, β, Z) is independent of Z.
Let α = {(αi,mi)} and β = {(βj, nj)}. We construct a surface S in [−∞,∞]× (I × T 2)

(embedded except at ±∞) to represent Z. We start with half-cylinders

[0,∞]× {x(αi) + ε/k} × πT 2(αi)
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t1

t2

S(x−)

−αi

t1

t2

t1

t2

S(x+)

Figure 2.3: A surgery contributing [αi]× [S(x−)] = 2 to c1(NS, τ).

for each αi and 1 ≤ k ≤ mi, and half-cylinders

[−∞, 0]× {x(βj)− ε/k} × πT 2(βj)

for each βj and 1 ≤ k ≤ nj. The ±ε/k terms are arbitrarily chosen perturbations to
ensure the half-cylinders are pairwise disjoint. We construct S as a union of the above
half-cylinders and a movie of curves S(x) in {0} × {x} × T 2. Away from the half-cylinders,
S(x) is a (possibly empty) disjoint union of straight embedded curves in T 2. See Figure 2.2
(a) for the projection of S to R × I. In this example, α = {(α1, 3)} with x(α1) = 1 and
β = {(β1, 2), (β2, 1)} with x(β1) = 0 and x(β2) = 2. The fiber over each point away from the
trivalent vertices is a disjoint union of straight embedded curves.

Suppose there is exactly one half-cylinder between x− and x+, say [0,∞]×{x0}×πT 2(αi).
We obtain S(x+) from S(x−) as follows:

(i) If S(x−) and αi are parallel, then simply add or remove a component to/from S(x−).

(ii) Otherwise, we perform a “surgery”: the boundary of the half-cylinder at {0}× {x0}×
T 2 is {x0} × πT 2(−αi). We resolve each intersection of S(x−) and −αi and linearly
interpolate S(x) between x0 and x+. See Figure 2.3.

The case of a half-cylinder for βj is similar. We have constructed a surface with boundaries
{+∞}× {x(αi) + ε/k} × πT 2(αi) and {−∞}× {x(βj)− ε/k} × πT 2(βj). As a final step, we
deform this surface so that it has boundaries {∞} × αi and {−∞} × βj. We can keep the
projection of this surface to T 2 unchanged during the deformation while the projection to
R× I is interpolated linearly between (a) and (b) in Figure 2.2.

We now compute each of the three terms in the ECH index formula (2.1.1) using S. Since
τ is the restriction of a global trivialization of ξ,

cτ (Z) = 0.

For the Qτ term, the ends of S have writhe zero by construction, so

Qτ (α, β) = c1(NS, τ),



29

α

β
R1R2

Figure 2.4: A decomposable IP region Rα,β = R1R2. (Ri may be bigons.)

where NS is the normal bundle to S. See [7, Section 2.7] for details. It has a section
πNS(∂s +∂x) which is non-vanishing except at the points of resolution. At each half-cylinder
[0,∞]× {x0} × [ρ] or [−∞, 0]× {x′0} × [ρ], we check that the sign of the zeroes agrees with
the sign of [ρ] × [S(x−)] so the signed count is simply [ρ] × [S(x−)] = [ρ] × σ(x−). Hence,
the signed count for the kth half-cylinder is equal to the area of Φ([0, 1] × [k − 1, k]) for a
realization Φ of Rα,β. By summing over all half-cylinders, we get

c1(NS, τ) = 2Area(R).

Finally, by Lemma 2.2.5, the Conley-Zehnder term is

∑
i

mi∑
k=1

CZτ (α
k
i )−

∑
j

nj∑
k=1

CZτ (β
k
j ) =

∑
v∈∂±R

cz(v).

Proposition 2.2.7. Let α and β be admissible orbit sets with I(α, β) = 1. If C ∈ M(α, β)
is irreducible, then Rα,β is indecomposable.

Proof. Since C is somewhere injective (see Section 2.1), the index inequality (2.1.7) implies
that I(C) = ind(C) = 1 and C satisfies the partition condition. Hence, by the Fredholm
index formula (2.2.4), ∑

ρ

(czind(ρ) + 1) ≤ 3. (2.2.6)

Write Rα,β = R1 · · ·Rn with indecomposable Rj and suppose n ≥ 2. Since C is irreducible,
the equality condition of Lemma 2.2.1 implies that the east extreme edges of R1 and the
west extreme edges of R2 occur at the same x = x(ρ) for some ρ. Note that each of R1 and
R2 is either local or has an R-loose edge at x = x(ρ) by Corollary 2.2.3. Either way, each
has an R-loose edge x = x(ρ). By symmetry, assume that ρ is convex, which means that
R-loose edges are positive edges. See Figure 2.4.

We consider an induced decoration of Rα,β. Since α is admissible, at most one of the
positive edges at x = x(ρ) can be hyperbolic. Also, if two of them are elliptic, then by the
partition condition with p+

ě = (1, · · · , 1) in Lemma 2.2.5, the two edges belong to distinct
ends of C and give at least two summands in (2.2.6) with (czind(ρ)+1) = 2. Since ind(C) = 1,
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this cannot happen andRα,β must have exactly two positive edges at x = x(ρ), with one being
hyperbolic and the other elliptic. Moreover, all other edges of Rα,β have (cz(v) + 1) = 0. In
particular, no other edges can be extreme edges of a nonlocal IP region, which are necessarily
R-loose by Corollary 2.2.3. This implies that all Rj must be local.

In order to have I(Rα,β) = 1, Rα,β must have an odd number of hyperbolic edges and
since β is also admissible, all negative edges of Rα,β must be elliptic while exactly one of the
positive edges is hyperbolic. This makes I(Rα,β) = −1, which is a contradiction.

Corollary 2.2.8. Let α and β be admissible orbit sets with I(α, β) = 1.

(a) If we can write α = α′ρ and β = β′ρ for some embedded orbit ρ, there is a bijection

M(α, β) ∼=M(α′, β′).

The same conclusion holds for α = ρα′ and β = ρβ′.

(b) If C ∈ M(α, β) is reducible, then α and β can be written as in (a).

Proof. (a) Each distinct holomorphic current C ′ from α′ to β′ gives a distinct C ′ ∪ (R× ρ) ∈
M(α, β). It remains to show that every C ∈ M(α, β) arises this way. Recall from
Section 2.1 that C ∈ M(α, β) contains a single component C ′ with I(C ′) = 1 and all
other components are trivial. Hence, if there are no trivial cylinders at x = x(ρ), then all
ends at x = x(ρ) must be ends of C ′ and the IP region associated to C ′ can be written
as R′′Rρ,ρ for some IP region R′′. This contradicts the conclusion of Proposition 2.2.7.

(b) Write C ∈ M(α, β) as C ′ t T where T is trivial. Let R′ be the IP region corresponding
to C ′ and suppose T ∈ T is a trivial cylinder with ends at some embedded orbit ρ. Since
T ∩ C ′ = ∅, [ρ]× [σR′(x(ρ))] = 0. By Corollary 2.2.3, C ′ has extreme ends at ρ.

In view of Proposition 2.2.7 and Corollary 2.2.8, we assume for the rest of the section
that α and β are admissible orbit sets with I(α, β) = 1 and that Rα,β is indecomposable.

Lemma 2.2.9. Suppose R is a positive indecomposable IP region. Then Ia(R) is even and
Ia(R) ≥ −2 with equality if and only if R is minimal.

Proof. Let Φ be a realization of R. Both assertions follow from

Ia(R) = 2#{internal lattice points of Φ} − 2,

which is the consequence of Pick’s theorem.

Proposition 2.2.10. Let α and β be admissible orbit sets with I(α, β) = 1 and suppose
Rα,β is nonlocal and indecomposable. If M(α, β) 6= ∅, then:

(a) Rα,β has a single west extreme edge and a single east extreme edge.
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(b) Rα,β is minimal and an induced decoration of Rα,β can be obtained from the minimal
decoration of Rα,β by S1-relaxing one edge or R-relaxing one non-extreme edge.

(c) Any C ∈M(α, β) has genus zero.

Proof. (a) Consider Rα,β with an induced decoration. Since Rα,β is positive, Ic(Rα,β) ≤ 3
by Lemma 2.2.9 and (2.2.1). Since Rα,β is indecomposable, each extreme edge v is R-
loose by Corollary 2.2.3, and so (cz(v)+1) ≥ 1. If v and v′ are two distinct west extreme
edges of Rα,β and v′′ is an east extreme edge of Rα,β, then 3 ≤ (cz(v) + 1) + (cz(v′) +
1) + (cz(v′′) + 1) ≤ 3, so cz(v) = cz(v′) = 0 and both v and v′ must be hyperbolic. This
contradicts the admissibility of α or β. A similar argument holds for the multiplicity of
east extreme edges.

(b) As in (a), we have Ic(Rα,β) ≥ (cz(v) + 1) + (cz(v′) + 1) ≥ 2 for the two extreme edges v
and v′. Hence, from Lemma 2.2.9,

−2 ≤ Ia(Rα,β) = I(Rα,β)− Ic(Rα,β) ≤ −1.

Since Ia(Rα,β) is even, we conclude that Ia(Rα,β) = −2 and Ic(Rα,β) = 3. The result
follows from the fact that Ic(Rα,β) ≥ 2 with equality only if Rα,β is minimally decorated.

(c) By the hypothesis and Corollary 2.2.8, C is irreducible, somewhere injective and nonlo-
cal. Since each extreme end of C contributes (czind(ρ)+1) ≥ 1 in (2.2.4) and ind(C) = 1,
we must have g(C) = 0.

Proposition 2.2.10 almost proves the necessity part of Theorem 1.4.1. See the non-
examples in Example 1.4.2 for the cases we still need to consider. We deal with these cases
in the next section using an argument from Morse-Bott theory which exploits condition (i) of
a good perturbation λ and a good perturbation pair (λ, J). (Definition 2.1.2 and Definition
2.1.3.)

A Morse-Bott argument

Before proceeding with the argument, we first establish some definitions and notations.
In this section, consider I = [Xw, Xe], a T 2-invariant contact form λ̄ on I × T 2 and the
distinguished almost complex structure J̄ defined by (2.1.11). For each S1-family of orbits
ρ̄ of λ̄, let ρ̄(θ0) ∈ ρ̄ denote the orbit corresponding to θ0 ∈ R/Z via Θ. An orbit set of λ̄
in the homology class Γ ∈ H1(I × T 2) is a finite set of pairs {(γ̄i(θi),mi)}, where γ̄i is an
S1-family of orbits and θi ∈ R/Z, so that

∑
imi[γ̄i(θi)] = Γ. We can write it in the ordered

product notation
γ̄1(θ1) · · · γ̄n(θn)

where x(γ̄i) is nondecreasing. We denote this orbit set by γ̄(θ) where γ̄ = γ̄1 · · · γ̄n is called
a family orbit set and θ = (θi) ∈ (R/Z)n. Note that there is a unique way to write a family
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orbit set in the ordered product notation, while θ is unique only up to transposing θi and θj
with γ̄i = γ̄j.

Definition 2.2.11. Let I = [Xw, Xe] be an interval.

(a) A partial decoration of an IP path P on I is an association of each edge of P with one
of the labels {∨,∧}.

(b) Let R be an IP region on I. A partial decoration of R is a partial decoration of ∂+R
and ∂−R.

(c) An edge v of a partially decorated IP region R on I is said to be R-loose if v is a positive
edge labeled ∨ or a negative edge labeled ∧. v is R-tight otherwise.

A decoration of an IP path P gives a partial decoration of P by forgetting e/h labels and
just keeping check (∨) or hat (∧) labels.

Lemma 2.2.12. Let I = [Xw, Xe] be an interval and let λ̄ be a T 2-invariant contact form
on I × T 2. There is a natural way to assign a unique IP path Pγ̄ on I to each family orbit
set γ̄ (or each orbit set γ̄(θ)) of λ̄. Moreover, γ̄ (or γ̄(θ)) induces a unique partial decoration
on Pγ̄.

Proof. Let P = (vi) with vi = [γ̄i(0)] ∈ Z2 and x(vi) = x(γ̄i). Label each vi as ∨ if γ̄i is
convex and as ∧ otherwise.

Definition 2.2.13. We call Pγ̄ as in Lemma 2.2.12 the IP path associated to γ̄ (or γ̄(θ)).
We say that the partial decoration of Pγ̄ in Lemma 2.2.12 is induced by γ̄ (or γ̄(θ)).

Consider I × T 2 with a T 2-invariant contact form λ̄ and an almost complex structure
J̄ on R × I × T 2. A J̄-holomorphic curve C̄ from {(ᾱi(θ+

i ),mi)} to {(β̄j(θ+
j ), nj)} is a J̄-

holomorphic curve whose positive ends at covers of ᾱi(θ
+
i ) have total multiplicity mi and

whose negative ends at covers of β̄j(θ
−
j ) have total multiplicity nj, with no other ends.

Definition 2.2.14. The IP region associated to a pair of family orbit sets ᾱ and β̄ is the IP
region between Pᾱ and Pβ̄ and is denoted Rᾱ,β̄. An induced partial decoration of Rᾱ,β̄ is an
induced partial decoration of Pᾱ and Pβ̄.

For each S1-family of embedded orbits ρ̄, let Hρ̄ be a generic Morse function on ρ̄ ∼= S1.
For m ≥ 1, let ρ̄m := {m-fold cover of ρ|ρ ∈ ρ̄} and let Hρ̄m = Hρ̄ be a Morse function on
ρ̄m under the identification (m-fold cover of ρ)↔ ρ. A J̄-holomorphic building C̄ with Hρ̄m

is a sequence of J̄-holomorphic curves C̄1, · · · , C̄k such that:

(i) Each end of C̄i converges to % for some % ∈ ρ̄m.

(ii) For 1 < i < k, there is a bijection between the negative ends of C̄i and the positive
ends of C̄i+1. For each such pair, both ends converge to orbits in the same ρ̄m and there
is a downward flow of Hρ̄m from the negative end of C̄i to the positive end of C̄i+1.
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Figure 2.5: Two partitions of R = (P0,P3) and the respective collapsed dual graphs.

(iii) For each positive end of C̄1 at some % ∈ ρ̄m, there is a (possibly constant) downward
flow of Hρ̄m from a critical point of Hρ̄m to %. For each negative end of C̄k at some
% ∈ ρ̄m, there is a (possibly constant) downward flow of Hρ̄m from % to a critical point
of Hρ̄m .

Definition 2.2.15. Suppose P i is an IP path on I for each 0 ≤ i ≤ k and Ri is a positive
IP region on I between P i−1 and P i for each 1 ≤ i ≤ k. We write each Ri as

Ri = Ri
1 · · ·Ri

ni

where each Ri
j is an indecomposable IP region.

(a) We call the list (Ri
j) = ((Ri

ji
)) a partition of the IP region R between P0 and Pk.

(b) The dual graph of a partition (Ri
j) is the graph characterized by:

• There is a vertex for each Ri
j and

• For a pair of vertices corresponding to Ri
j and Ri+1

j′ , there is an edge between them

for each shared edge v between Ri
j and Ri+1

j′ , i.e. v ∈ ∂−Ri
j and v ∈ ∂+Ri+1

j′ .

(c) The collapsed dual graph of (Ri
j) is obtained from the dual graph of (Ri

j) by the following
procedure: for each vertex p corresponding to a local bigon of (Ri

j):

• If there is an edge e between p and another vertex p′, then identify p and p′ and
remove the loop corresponding to e.

• Otherwise, remove p.

Figure 2.5 shows two partitions of an IP region R between P0 and P3. Each partition
contains five IP regions, including one local bigon and one nonlocal bigon. The bigon (de-
picted with a gap) between P0 and P1 is nonlocal while the bigon (depicted with no gap)
between P1 and P2 is local. Since the above R has one internal lattice and each nonlocal Ri

j

in its partition is minimal, the (collapsed) dual graph contains one cycle. A decomposable
R has a disconnected (collapsed) dual graph.
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Remark 2.2.16. Compare this with the view by Taubes [24] and Parker [20], where a
tropical curve is related to a dual graph of a certain triangulation of (a realization of) an IP
region R.

Lemma 2.2.17. Consider (I×T 2, λ̄), the admissible almost complex structure J̄ on R×I×T 2

as in (2.1.11) and a Morse function Hρ̄m on each family of Reeb orbits ρ̄m as in the definition
of J̄-holomorphic building. Let C̄ be a J̄-holomorphic building with Hρ̄m. There is a natural
way to assign to C̄ a unique IP region R and a unique partition of R. Moreover, C̄ induces
a unique partial decoration of each Ri

j.

Proof. Let C̄ = (C̄1, · · · , C̄k) where C̄i is a J̄-holomorphic curve from ᾱi(θi+) to β̄i(θi−). By
the definition of a J̄-holomorphic building with Hρ̄m , ᾱi+1 = β̄i for each 1 ≤ i < k. Hence,
we can set P i := Pᾱi and Pk = Pβ̄k and each region between P i and P i+1 is associated to
C̄i, hence, is positive by Lemma 2.2.1. C̄i’s induce partial decorations of P i’s by Lemma
2.2.12 and hence, of each Ri

j. R is the region between P0 and Pk.

Definition 2.2.18. We call R, as in Lemma 2.2.17, the IP region associated to C̄ and (Ri
j)

the partition of R associated to C̄.

We present two key lemmas. The first lemma restricts the complexity of a partition
associated to a J̄-holomorphic building.

Lemma 2.2.19. Consider (I × T 2, λ̄), J̄ and Hρ̄m as in Lemma 2.2.17. Let C̄ be a J̄-
holomorphic building with Hρ̄m and let (Ri

j) be a partially decorated partition of R associated
to C̄. Suppose that R is minimal with l R-loose edges and (Ri

j) contains m nonlocal regions.
Then,

m ≤ l − 1.

The equality holds only if R is indecomposable and each nonlocal Ri
j has exactly two R-loose

edges.

Proof. We count the number of R-loose edges in the partition. First, each nonlocal Ri
j

contains at least 2 R-loose edges. On the other hand, since R has no internal lattice point,
the collapsed dual graph does not contain any cycles and, thus, has at most m − 1 edges.
Each edge in the collapsed dual graph gives a shared edge v between two nonlocal IP regions
Ri
j and Ri′

j′ and by the definition of R-tightness, v is R-loose for exactly one of Ri
j or Ri′

j′ .
Comparing these two counts, we get 2m ≤ l + (m− 1).

The second lemma is used to exploit the particular choice of auxiliary Morse functions
in Definition 2.1.2. It is an adaptation of [11, Lemma A.2]:

Lemma 2.2.20. (Θ-constraint) Consider (I × T 2, λ̄) and the admissible almost complex
structure J̄ on R× I × T 2 defined by (2.1.11). Let ᾱ(θ+) = ᾱ1(θ+

1 ) · · · ᾱm(θ+
m) and β̄(θ−) =
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β̄1(θ−1 ) · · · β̄n(θ−n ) be orbit sets of λ̄ and let C̄ be a J̄-holomorphic curve from ᾱ(θ+) to β̄(θ−).
Then,

Θ(C̄) :=
m∑
i=1

θ+
i −

n∑
j=1

θ−j = 0 ∈ R/Z. (2.2.7)

Proof. Recall J̄(∂x) = −f∂t1 − g∂t2 and consider any p ∈ R × I × T 2. We check that
dsdx− dt1dt2 annihilates (v, J̄v) for any v ∈ Tp(R× I ×T 2): if v = a∂s + bR̄+ c∂x + dJ̄(∂x),

dsdx(v, J̄v) = −ad+ bc

and
dt1dt2(v, J̄v) = (bc− ad)(dt1dt2(R̄, J̄(∂x)) = bc− ad.

Hence, ∫
C

dsdx =

∫
C

dt1dt2 =

∫
(πT2 )∗C

dt1dt2 ≡
m∑
i=1

θ+
i −

n∑
j=1

θ−j

by the definition of Θ. On the other hand, let ε̃ > 0 be small and define

Iε̃ := I \
⋃

ρ∈ᾱ∪β̄

(x(ρ)− ε̃, x(ρ) + ε̃)

and Cε̃ := C ∩ (R× Iε̃× T 2). Since
∫
C
dsdx <∞ and ∂Cε̃ does not have any ∂x component,∫

C

dsdx = lim
ε̃→0

∫
Cε̃

dsdx = lim
ε̃→0

∫
∂Cε̃

sdx = 0.

We now return to the proof of the necessity part of Theorem 1.4.1. Consider (I × T 2, λ̄)
and the admissible almost complex structure J̄ on R×I×T 2 by (2.1.11). For each S1-family
of embedded orbits ρ̄, let Hρ̄ be a Morse function as in Definition 2.1.2. For each S1-family
of m-fold covered orbits ρ̄m, m > 1, let Hρ̄m = Hρ̄ be a Morse function on ρ̄m with the
identification (m-fold cover of ρ)↔ ρ.

Proposition 2.2.21. Let (λn, Jn) be a sequence of generic perturbations of (λ̄, J̄) converging
to (λ̄, J̄) such that each λn is a good perturbation of λ̄ and Jn is an admissible almost
complex structure for λn. Let α and β be admissible orbit sets of λ1 (and hence any λn)
with I(α, β) = 1. If Rα,β is indecomposable and positive with respect to λ̄ but an induced
decoration of Rα,β can be obtained from the minimal decoration by R-relaxing a non-extreme
edge, then MJn(α, β) = ∅, for n sufficiently large.

Proof. Suppose there exist Jn-holomorphic curves Cn from α to β for all n. By Proposition
2.2.10, all the Cn’s have genus zero and we can pass to a subsequence so that all the Cn’s
have the same partitions at the ends. The compactness argument as in [2] shows that (Cn)
converges to a J̄-holomorphic building C̄ with Hρ̄m . The glued surface of C̄ also has genus
zero and there is a bijection between:
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(i) a positive end of Cn at a cover of an orbit of type ě or ĥ, and a flow of Hρ̄m from
maxHρ̄m to a positive end of C̄1,

(ii) a positive end of Cn at a cover of an orbit of type ȟ or ê, and a positive end of C̄1 at
minHρ̄m ,

(iii) a negative end of Cn at a cover of an orbit of type ê or ȟ, and a flow of Hρ̄m from a
negative end of C̄k to minHρ̄m ,

(iv) a negative end of Cn at a cover of an orbit of type ĥ or ě, and a negative end of C̄k at
maxHρ̄m .

Consider the partition (Ri
j) associated to C̄. Since an IP region associated to a trivial

current only contributes local bigons to the partition, we ignore all the levels of C̄ that are
trivial as currents, i.e. multiply covered trivial cylinders, and rename the remaining levels
as C̄i for 1 ≤ i ≤ k for some k ≥ 1. By Lemma 2.2.19, (Ri

j) contains at most two nonlocal
IP regions, so k ≤ 2.

Suppose k = 1. Since every edge of Rα,β is labeled S1-tight, there can be no Morse flows
at any end of C̄1. Hence, there is a contribution of +δ to Θ(C̄1) for each R-loose edge (a
positive edge labeled ȟ or a negative edge labeled ĥ) and a contribution of zero for each R-
tight edge (a positive edge labeled ê or a negative edge labeled ě). Thus, Θ(C̄1) = +3δ 6= 0.
This is a contradiction and we conclude that k = 2.

By the equality condition of Lemma 2.2.19, there are exactly two nonlocal IP regions, say
R1
j1

and R2
j2

, in (Ri
j), each with two extreme edges and sharing exactly one edge v0 between

them. Let C̄i
ji

be the corresponding nontrivial holomorphic curves and ρ̄ be the S1-family of
orbits of λ̄ at x = x(v0). Then, C̄1

j1
has a negative end at ρ̄(θ−) and C̄2

j2
has a positive end

at ρ̄(θ+) for some θ± ∈ R/Z.
First, assume ρ̄ is convex, so that v0 is non-extreme for R1

j1
and extreme for R2

j2
. Hence,

after matching each summand of Θ(C̄1
j1

) in (2.2.7) with the edges of R1
j1

, v0 contributes
−θ− to Θ(C̄1

j1
), each of the two extreme edges of R1

j1
contribute +δ, and all the other edges

contribute zero. Hence, θ− = 2δ. Similarly for Θ(C̄2
j2

), v0 contributes θ+ to Θ(C̄2
j2

), its other
extreme edge contributes +δ and all other edges contribute zero. Hence, θ+ = −δ. But Hρ̄

has the maximum at θ = 0 and minimum at θ = δ, so there cannot be a Morse flow from 2δ
to −δ. Hence, the J̄-holomorphic building C̄ as described does not exist and we conclude
that for large enough n, Cn does not exist. If ρ̄ is concave, the argument is similar: there
cannot be a Morse flow from θ− = δ to θ+ = −2δ since Hρ̄ has the maximum at θ = −δ and
minimum at θ = 0.

Lastly, we deal with local bigons.

Lemma 2.2.22. Consider (I × T 2, λ̄) and the admissible almost complex structure J̄ on
R × I × T 2 by (2.1.11). Let λ be a good perturbation of λ̄ and J be a generic admissible
almost complex structure which is a small perturbation of J̄ . If α and β are admissible orbit
sets with I(α, β) = 1 and Rα,β is a local bigon, then 〈∂α, β〉 = 0.
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Proof. First, consider the sequence (λn, Jn) of generic perturbations of (λ̄, J̄) converging
to (λ̄, J̄) and suppose each λn is a good perturbation. Suppose the edges of Rα,β occur at
x = x(ρ̄) for an S1-family of orbits ρ̄ and by symmetry, assume ρ̄ is convex. By a Morse-Bott
argument as in [2], for large enough n, there are two Jn-holomorphic cylinders (modulo R)
from ě to ȟ, corresponding to the two Morse flows of Hρ̄ from maxHρ̄ to minHρ̄.

Now for the given (λ, J), consider deforming it to (λ̄, J̄) via (λr, Jr) for r ∈ [0, 1]. Consider
the moduli space of Jr-holomorphic curvesMJr(α, β). It is possible that at discrete values of
r, the moduli space contains a broken holomorphic curve. However, by the equality condition
of Lemma 2.2.1, all components must stay within R× (x(ρ̄)− ε, x(ρ̄) + ε)× T 2. Since each
component C ′ of the broken holomorphic curve has I(C ′) = I(α′, β′) ≥ 0, any component
C ′ with I(C ′) = 0 must have the same positive and negative end, i.e. it is trivial cylinder.
Hence, this moduli count stays the same and #M(α, β)/R = 0.

Combining the results of Proposition 2.2.10, Proposition 2.2.21 and Lemma 2.2.22 proves
the necessity part of the theorem.

2.3 Proof of sufficiency

In this section, we show that if admissible orbit sets α and β satisfy the conditions of Theorem
1.4.1, then the mod 2 count of M(α, β)/R is indeed nonzero. By Corollary 2.2.8, we may
assume that Rα,β is indecomposable and positive. We use induction on the number of edges
ofRα,β where each step involves partitioning an IP region into two smaller IP regions. Before
we proceed with the induction, we need to establish the invariance of the moduli count under
certain deformations of (λ, J).

Invariance of the moduli count

For this section, we fix I = [Xw, Xe], a decorated positive IP region R and L > 0 and
consider various contact forms λ̄ and λ on I × T 2.

Definition 2.3.1. Let λ̄ = −gdt1 + fdt2 be a contact form on I × T 2 and R is a fixed
decorated IP region on I. We say that λ̄ supports R (via φ) if there is a reparametrization
φ of I such that:

(i) R is positive with respect to φ∗λ̄ and

(ii) R is associated to a pair of orbit sets α and β of a good perturbation of φ∗λ̄ with an
induced decoration.

Lemma 2.3.2. Let λ̄0 and λ̄1 be two contact forms on I × T 2 which support R via φ0 and
φ1, respectively. Then, there is a path r 7→ λ̄r, r ∈ [0, 1] from λ̄0 to λ̄1 of contact forms
supporting R.
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Figure 2.6: Part of the graph of (F,G).

Before proving this lemma, we describe an auxiliary function ψ : [xw, xe]→ R+ associated
to a contact form λ̄ = −gdt1 + fdt2 on [xw, xe]×T 2 whose Reeb vector field R̄ satisfies that:
there is a vector 0 6= σ ∈ Z2 such that R̄(x) × σ ≥ 0 for all x ∈ [xw, xe]. For simplicity, we
assume σ = (−1, 0). Hence, λ̄ being a contact form with R̄(x)×σ ≥ 0 translates to g(x) being
an increasing function and the graph of (f, g) rotating clockwise in R2 \ {negative τ1-axis}.
Let xm ∈ (xw, xe) be any point where R̄(xm) is a multiple of R̄(xw) + R̄(xe) ∈ R2. Consider
the tangent line l to (f, g) at pm := (f(xm), g(xm)). We claim that there is a continuous
path (F,G) : [0, T ] → R2 for some T > 0, consisting of three linear paths connecting the
four distinct points pw, p

′
w, p

′
e, pe ∈ R2 defined as follows:

(i) Start at pw := (cwf(xw), cwg(xw)) for some cw ∈ R+ and travel in R̄(xw)-direction to a
point p′w ∈ l.

(ii) Then, travel in R̄(xm) direction to p′e ∈ l so that pm lies between p′w and p′e.

(iii) Then, travel in R̄(xe) direction to pe := (cef(xe), ceg(xe)) for some ce ∈ R+.

To prove the claim, suppose l intersects lw := {(cf(xw), cg(xw)|c ∈ R+} at (c0f(xw), c0g(xw))
for some c0 ∈ R+. Then, we set cw to be slightly smaller, equal to, or slightly larger than
c0 depending on whether R̄(xw) × R̄(xm) is positive, zero, or negative. See Figure 2.6 (a),
where the three short red segments illustrate these three possibilities. If l does not intersect
lw, any sufficiently large cw ∈ R+ will work: (1.2.1) and R̄(xw)×σ ≥ 0 ensures that the path
starting at cw in the direction R̄(xw) intersects l. See Figure 2.6 (b). We have described the
path (F,G) from pw to pm and we similarly construct the path (F,G) from pm to pe. Obtain
a smooth path (F̃ , G̃) : [0, T ] → R2 from (F,G) by smoothing the corners of (F,G) at p′w
and p′e and define ψ̃ : [xw, xe]→ R+ so that the image of (ψ̃f, ψ̃g) agrees with the image of
(F̃ , G̃). Finally, let ψ be a smooth C1-small perturbation of ψ̃ so that:
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(i) ψ′ ≡ 0 in a small neighborhood of xw and xe and

(ii) (ψg) is a strictly increasing function on [xw, xe].

These conditions will be used in part (c) of the proof of Lemma 2.3.2 to ensure that the new
contact form λ̃ obtained using these auxiliary functions satisfies that: (i) there are orbit sets
whose associated decorated IP paths are ∂+R and ∂−R, and (ii) R is positive with respect
to λ̃. Note that −ψgdt1 +ψfdt2 is “minimally fluctuating” in the sense that it does not have
any extra Reeb orbits except those that are absolutely necessary to be able to support R.
We proceed with the proof now.

Proof. (of Lemma 2.3.2) We consider the following four type of paths r 7→ λ̄r of contact forms
supporting R. We will show that any two contact forms supporting R can be constructed
as a composition of these.

(a) If φ is a re-parametrization of I, then we can deform λ̄ to φ∗λ̄ via

λ̄r := [rφ+ (1− r) id]∗λ̄.

We note that each (I × T 2, λ̄r) is contactomorphic to another, but the distinguished
J̄r defined by (2.1.11) depends on the parametrization of I, so it is nontrivial that the
moduli count of J̄r-holomorphic curves is the same.

(b) If vw and ve are west and east extreme edges of R, then using a path of diffeomorphisms
φr : [Xw, Xe]→ [xw(r), xe(r)] where

xw(r) = (1− r)Xw + r(x(vw)− ε), xe(r) = (1− r)Xe + r(x(ve) + ε)

and where each φr|[x(vw),x(ve)] = id, we can deform λ̄ to φ∗1λ̄, which is “uninteresting”
outside of [x(vw), x(ve)].

(c) Let λ̄ = −gdt1 + fdt2 be a contact form supporting R via id and let R̄(x) be the Reeb
vector field of λ̄. We deform λ̄ to a “minimally fluctuating” contact form supporting R
using auxiliary functions ψ. Write

I \ {x(v)|v ∈ ∂±R} = [Xw, x1) ∪ (x1, x2) ∪ · · · ∪ (xk−1, xk) ∪ (xk, Xe].

For each 1 ≤ i ≤ k−1, obtain an auxiliary function ψi : [xi, xi+1]→ R+ for λ̄|[xi,xi+1] with
σ = σ(xi + ε) as described above. Also, let ψ0 : [Xw, x1] → R+ and ψk : [xk, Xe] → R+

be constant. Re-scale ψi for each 1 ≤ i ≤ k so that ψi(xi) = ψi−1(xi). Patching these ψi
gives a smooth function ψ : [Xw, Xe] → R+. The properties of each auxiliary function
ψi implies that −ψgdt1 + ψfdt2 defines a contact form supporting R. For r ∈ [0, 1], let

λ̄r := [(1− r) + rψ](−gdt1 + fdt2).

Since λ̄0 and λ̄1 are both contact forms supporting R, so is λ̄r for every r ∈ [0, 1].
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Figure 2.7: Interpolating two “minimally fluctuating” contact forms.

(d) Let λ̄0 = −g0dt1 +f0dt1 and λ̄1 = −g1dt1 +f1dt1 be two “minimally fluctuating” contact
forms supporting R as constructed in (c). Suppose that, for all x ∈ I, the angle between
R̄0(x) and R̄1(x) is small, i.e.

∣∣R̄0(x)× R̄1(x)
∣∣ / ∣∣R̄0(x)

∣∣ ∣∣R̄1(x)
∣∣ < ε0 for some small

ε0 > 0. Then, for sufficiently small ε0,

λ̄r := (1− r)λ̄0 + rλ̄1

is a contact from supporting R. Figure 2.7 illustrates this interpolation on [xi, xi+1] with
σ(xi + ε) = (−1, 0).

Given any contact form λ̄ supporting R, we may assume that it supports R via φ = id using
part (a). We assume that λ̄ does not have any Reeb orbits (of action less than L) outside
of the interval [x(vw), x(ve)] where vw and ve are east and west extreme edges of R, using
part (b). We can also assume that λ̄ satisfies the conditions of (d): use part (c) with each
auxiliary ψi sufficiently close to id and re-parametrize I if necessary, using (a) again. Hence,
we can connect any two λ̄0 and λ̄1 using (d) after these simplifying assumptions.

We now define J̄r for each λ̄r by (2.1.11), and choose a path of good perturbations (λr, Jr)
of (λ̄r, J̄r). Let r0 ∈ [0, 1] be such that λr0 supports R via φ = id. If ρ is an embedded orbit
of λr0 , then (φr)∗ρ is an embedded orbit of λr for all r ∈ [0, 1]. Let α and β be a pair of
orbit sets of λr0 whose associated IP region with an induced decoration is R. We define the
moduli space

Mr :=MJr((φr)∗α, (φr)∗β)

of Jr-holomorphic currents from (φr)∗α to (φr)∗β. The following is an adaptation of [11,
Lemma 3.15]:
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Lemma 2.3.3. Consider R, α, β, λr and Mr as above. Suppose R is nonlocal, indecompos-
able and minimal and has exactly two R-loose edges. Then

#(M0/R) = #(M1/R).

Remark 2.3.4. A key assumption in Lemma 2.3.3 is that λ̄r never violates positivity with
respect toR. If λ̄r+ε violates positivity, it is possible to have #(Mr−ε/R) 6= 0 andMr+ε = ∅.
See equation (2.3.2) for where this assumption is used.

Proof. Away from a discrete set {ri} ⊂ (0, 1), the moduli space

M̃ =
⋃

r∈[0,1]

Mr

forms a two-dimensional manifold with an R-action. There are two types of (possible)
bifurcation points: the first type is where λ̄ri has a Reeb orbit of action less than L and
whose linearized return map is id. This happens if (f ′, g′) ∈ Q∪{∞} at a point of inflection,
which was avoided for a generic (f, g) but which cannot be avoided for a generic path (fr, gr).
The other type occurs where Jr′j is not generic for ({r′j} × Y, λr′j) so that a Jr′j -holomorphic

curve C with I(C) = 0 can exist. We can arrange that at each bifurcation point ri of the
first type, the almost complex structure Jri is generic and there is exactly one S1-family ρ̄ri
of Reeb orbits of λ̄ri whose linearized return map is id.

Case 1. Let r0 ∈ (0, 1) be a bifurcation point of the first type and suppose there is a broken
Jr0-holomorphic curve C from α to β. Similarly to J̄-holomorphic buildings, C partitions R
into (Ri

j), but here, Lemma 2.2.19 needs to be modified since an intermediate edge v may
occur at x = x(ρ̄r0) in which case v may be extreme for both IP regions of (Ri

j) sharing v.
We claim that (Ri

j) cannot contain such an edge so that the conclusion of Lemma 2.2.19
still holds.

Suppose that there are two distinct nonlocal IP regions R1 and R2 of (Ri
j) which share

an edge v and that v is extreme for both R1 and R2. Let x0 := x(ρ̄r0) and without loss of
generality, suppose v is a positive edge for R1 and a negative edge for R2. Since both R1

and R2 are positive IP regions, v must be east extreme for one and west extreme for the
other. By symmetry, assume v is east extreme for R1 and west extreme for R2 and let R̄r

denote the Reeb vector field of λ̄r. Positivity of R1 and R2 with respect to λ̄r0 implies that

R̄r0(x)× v > 0 for x0 − ε < x < x0,

R̄r0(x)× v = 0 for x = x0, (2.3.1)

R̄r0(x)× v > 0 for x0 < x < x0 + ε.

Also, since v is the slice class of R at x = x0 for all r near r0, positivity of R with respect
to λ̄r implies that, for all r 6= r0 near r0,

R̄r(x)× v > 0 for x0 − ε < x < x0 + ε. (2.3.2)
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For a generic path r 7→ (λ̄r, J̄r), equations (2.3.1) and (2.3.2) cannot all be satisfied and this
proves the claim.

Hence, by Lemma 2.2.19, C contains exactly one nonlocal component C ′ which must
be somewhere injective since each of its extreme ends has multiplicity one. We have that
I(C ′) ≥ 1 by genericity of Jr0 and any other non-trivial local components C ′′ must also have
I(C ′′) ≥ 1. Therefore, C does not have any other non-trivial components and we do not
have a bifurcation at r = r0.

Case 2. Let r′0 ∈ (0, 1) be a bifurcation point of the second type and let C ∈ Mr0 be a
broken Jr0-holomorphic curve. This time, a standard application of Lemma 2.2.19 implies
that C contains one nonlocal (somewhere injective) component C ′. By genericity of the
path r 7→ (λ̄r, J̄r), I(C ′) ≥ 0. Suppose C contains a nontrivial local component C ′′ with
I(C ′′) = 1. Since I(C ′) = 0, the IP region RC′ associated to the positive and negative
orbit sets of C ′ are admissible and so are α and β. Hence, by Proposition 2.2.7, C ′′ must
be a cylinder with positive and negative ends of multiplicity one. As in Lemma 2.2.22, C ′′

corresponds to an auxiliary Morse flow of Hρ̄ for some ρ̄. These flows occur in pairs and by
the standard gluing arguments as in [17], we have that the mod 2 count of Mr/R does not
change during this bifurcation.

Base cases for induction

Here, we list some IP regions Rα,β for the cases where we already know the differential
coefficient:

Proposition 2.3.5. Let α and β be admissible orbit sets and suppose Rα,β is indecomposable
and minimal. Further suppose that Rα,β has exactly one S1-loose edge and that it is of one
of the following types:

(i) A nonlocal bigon with one positive and one negative edge.

(ii) A nonlocal bigon with two positive edges.

(iii) A triangle formed by the two positive extreme edges with all the edges labeled convex.
If there are multiple non-extreme edges, they are all elliptic.

(iv) A triangle formed by the two negative extreme edges with all the edges labeled concave.
If there are multiple non-extreme edges, they are all elliptic.

Then, M(α, β)/R ∼= {pt} and, in particular, 〈∂α, β〉 6= 0.

Proof. Each of the above cases except for case (i) is a special case of the main results
in [11,12]. We include the proof from there for completeness.
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τ1

τ2

Figure 2.8: A graph of (f, g) for λ̄ for case (i).

(i) Using Lemma 2.3.3, assume λ̄ = −gdt1 + fdt2 where

f(x) = x(1 +H(x))

g(x) = (x− 1)(1 +H(x))

for x ∈ (0, 1) and
H(x) = ±ηx(x− 1/2)(x− 1)

with a plus sign if x(α1) < x(β1) and minus otherwise. See Figure 2.8 for the graph of
(f, g) for H(x) with the plus sign and compare this with (0, 1)×T 2 ⊂ S3 with λstd as in
Example 1.2.1. Let H̃(x, θ) be a perturbation of the Morse function H(x, θ) := H(x)
on (0, 1)× R/Z such that:

• H̃(x, θ) has four critical points at (xM , δ), (xM , 0), (xm, 0) and (xm,−δ) where xM
and xm are the local maximum and minimum of H(x) and

• H̃(xM , ·) and H̃(xm, ·) satisfy the same conditions of Definition 2.1.2 as Hρ̄ for a
convex ρ̄ and Hρ̄ for a concave ρ̄, respectively.

Then, using Lemma 2.3.3 and by changing coordinates (t1, t2) if necessary, we may
regard λ as a perturbation of λstd by the auxiliary Morse function H̃. By a standard
Morse-Bott argument as in [2], the unique (R × I × S1)-family of Jstd-holomorphic
cylinders gives a unique J-holomorphic curve from the orbit at (xM , δ) to the orbit at
(xm, 0) as well as one from the orbit at (xM , 0) to the orbit at (xm,−δ).

(ii) We compareM(α, β) with the moduli space of holomorphic cylinders in (R×S2×S1, J̄0)
considered by Taubes in [23, Theorem A.1(c)], where J̄0 is an R × S1 × S1-invariant
almost complex structure. More precisely, we identify

R× [Xw, Xe]× T 2 = R× (x1, x2)× S1 × S1 ⊂ R× S2 × S1

and deform our J to a perturbation of J̄0 using Lemma 2.3.3. Then, the unique member
of M(α, β)/R is obtained from the unique (R × S1)-family of J̄0-holomorphic curves
by the usual Morse-Bott argument [2].
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(iii) Let C ∈ M(α, β). The partition condition (2.2.5) on elliptic convex negative ends
implies that C has only one negative puncture so C has three punctures regardless of
the number of non-extreme edges of Rα,β. Therefore, we can compare M(α, β) with
the moduli space of three-punctured spheres in (R×S2×S1, J̄0) in [23, Theorem A.2].
By a Morse-Bott argument, the unique member of M(α, β)/R comes from the unique
(R× S1 × S1)-family of J̄0-holomorphic spheres. The auxiliary Morse flow occurs at ρ̄
where, either β = β1 is the hyperbolic orbit from ρ̄, or one of αi’s is the elliptic orbit
from ρ̄.

(iv) This case is similar to (c) but with the identification

(−R)× [Xe, Xw]× T 2 = R× [x1, x2]× S1 × S1 ⊂ R× S2 × S1.

Induction step

In this section, we complete the proof of Theorem 1.4.1 using induction.

Proof. (of sufficiency part of Theorem 1.4.1) Let α and β be as in the hypothesis of Theorem
1.4.1 and assume Rα,β is indecomposable using Corollary 2.2.8. If Rα,β is a bigon, the
theorem holds by Proposition 2.3.5. Let n > 2 and suppose we have shown the theorem
holds whenever Rα,β has less than n edges. Let w1 and w2 be edges of Rα,β so that x(w1)
and x(w2) are the two smallest entries from (x+

i ) ∪ (x−j ). Since Rα,β has one west extreme
edge and one east extreme edge, w2 is not extreme. In particular, x(w1) < x(w2). We also
have that w1 6= ±w2 ∈ Z2: otherwise, Rα,β is forced to be a bigon by Corollary 2.2.3. By
symmetry, we assume that w1 is labeled convex and consider the two cases depending on the
convexity of w2.

Case 1. (w2 is labeled convex.) Since w1 is R-loose by the hypothesis, w1 ∈ Pα. Since w2 is
not extreme, it must be R-tight by condition (d) of the hypothesis, and hence w2 ∈ Pβ. After
a change of basis, we may assume w1 = (1, 1) and w2 = (0, 1). For convenience, let us use the
slope of the underlying vector as the subscript, i.e. write v1, x1, v∞ and x∞ for w1, x(w1), w2

and x(w2), respectively. See Figure 2.9 (a) for the graph of (f, g) for λ̄ = −gdt1 + fdt2.
Using Lemma 2.3.3, we assume that there are no points of inflection between x1 and x∞.

We may also assume that λ|[Xw,x1] is convex. Let Xw < x−1 < x0 < x1 be x-coordinates so
that R̄(x−1) ∈ R2 is a positive multiple of (1,−1) and R̄(x0) is a positive multiple of (1, 0)
(See Figure 2.9 (a).) With an abuse of notation, let v−1 denote the IP path with one edge
at x = x−1, and let it also denote the edge itself. Similarly, let v0 denote the IP path with
one edge at x = x0 as well as the edge itself.

Write Pα = v1P+ and Pβ = v∞P− and let P0 := v−1v1P+ and P2 := v0P−. Let α̃ and
β̃ be two orbit sets of λ such that Pα̃ = P0 and Pβ̃ = P2. We examine each of the nonzero
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(0, 0)

v−1

v0 v′0
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Figure 2.9: Case 1 of the induction step.

summands of
〈∂2α̃, β̃〉 =

∑
γ

〈∂α̃, γ〉〈∂γ, β̃〉 = 0. (2.3.3)

Consider an IP path P1 = Pγ for an orbit set γ such that there is a holomorphic curve
from α̃ to γ as well as one from γ to β̃. Since the IP region R between P0 and P2 is
minimal with three R-loose edges, by Lemma 2.2.19, P1 partitions R into two nonlocal IP
regions R1

j1
and R2

j2
, each with two extreme edges, and they share a single edge v. Since

each Ri
ji

is nonlocal, x(v) > x−1. We claim that, in fact, x(v) ≥ x0. Suppose otherwise,
i.e. x−1 < x(v) < x0. Then, v has slope between −1 and 0 and it must be the first edge
of P1. Hence, as is clear from Figure 2.9, the realization of P1 starting at (0, 0) ∈ Z2

necessarily intersects the realization of P0 starting at (0, 0). This contradicts positivity of
R1
j1

. Hence, x(v) ≥ x0 and, in particular, both v−1 and v0 must belong to the same IP region
R′ ∈ (R1

j1
,R2

j2
).

Next, suppose that the east extreme edge w′e of R′ has x(w′e) > x∞. Then, any edge w′

of R′ with x−1 < x(w′) ≤ x∞ is a negative edge and hence,

σR′(x∞ + ε) = −v−1 +
∑

x−1<x(w′)≤x∞

w′ = (p, q) 6= 0

with p ≥ 0. This violates positivity of R′ at x = x∞ + ε, and we conclude x(w′e) ≤ x∞.
Recall also that (R1

j1
,R2

j2
) contains exactly four R-loose edges: v−1, v1, the east extreme

edge of R and one instance of v. Hence, w′e must be either v1 or the R-loose instance of v.
To summarize, if γ is from a nonzero summand in (2.3.3), one of the IP regions R′ in the
partition of R by Pγ must look like the following:

(i) (Case w′e = v1.) ∂−R′ cannot be just v0, so ∂−R′ = v0v
′
0 with v′0 = (1, 0) ∈ Z2 and

x(v′0) = x0.

(ii) (Case w′e = v.) ∂−R′ must be just v0, so v = v∞.
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ě ȟ

ȟ
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ě ě
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Figure 2.10: (a) and (b) are two possible decorations of (Ri
ji

). (c) illustrates an extra
induction step required for the decoration as in (b).

See Figure 2.9 where both v1 and v∞ are indicated. This completely describes all possible
IP paths Pγ for nonzero summands of (2.3.3).

We now consider decorations of R and (Ri
ji

). We can make I(R) = 2 by extending the
induced decorations of Pα and Pβ as follows:

• Label v0 as ě.

• Label v−1 as ě if any edge of Pβ at x = x∞ is labeled ȟ. Label it ȟ otherwise.

Imposing I(R′) = 1 determines the label of v in the above two cases as follows:

(i) (Case w′e = v1.) v = v′0 is labeled ȟ if both v1 and v−1 are labeled ȟ; it is labeled ě
otherwise.

(ii) (Case w′e = v.) v = v∞ is labeled ě if v−1 is ȟ; it is labeled ȟ otherwise.

See Figure 2.10 (a) and (b) for two possible decorations.
Let η and η′ be orbit sets whose associated decorated IP paths are Pη = v0v

′
0P+ and Pη′ =

v−1v∞P− with prescribed decorations as above. We have shown that if 〈∂α̃, γ〉〈∂γ, β̃〉 6= 0 in
(2.3.3), then γ = η or γ = η′. If v′0 is labeled ě as in Figure 2.10 (a), then by the induction
hypothesis and Proposition 2.3.5,

〈∂α̃, η〉 6= 0, 〈∂η, β̃〉 6= 0, 〈∂η′, β̃〉 6= 0

so we have
〈∂α̃, η′〉 = 〈∂α, β〉 6= 0.

If v′0 is labeled ȟ as in Figure 2.10 (b), then we apply another induction step with αnew = v−1v1

and βnew = v0v
′
0. After another change of basis, Rαnew,βnew looks like Figure 2.10 (c). Now

〈∂α̃, η〉 6= 0 follows from the above case.
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Figure 2.11: Case 2 of the induction step.

Case 2. (w2 is labeled concave.) In this case, both w1 and w2 are from Pα. After a change
of basis, we assume w1 = (1, 0) and w2 = (0, 1) and write v0, x0, v̂∞ and x̂∞ for w1, x(w1), w2

and x(w2), respectively. Also let x1 ∈ (x0, x∞) be such that R̄(x1) is a multiple of (1, 1) ∈ Z2.
Using Lemma 2.3.3, we may assume that there is exactly one point of inflection xpoi

between x0 and x∞ and that f ′(xpoi)/g
′(xpoi) ≈ 0. Let v̌∞ = (0, 1) and x̌∞ be the unique

point between x0 and x̂∞ with R̄(x̌∞) ∈ R2 proportional to (0, 1). See Figure 2.11 (a). Write
Pα = v0v̂∞P+ and let P0 := v0v̌∞P+ with x(v̌∞) = x̌∞ and P2 := Pβ. We examine each of
the nonzero summands of

〈∂2α̃, β〉 =
∑
γ

〈∂α̃, γ〉〈∂γ, β〉 = 0 (2.3.4)

where α̃ is an orbit set such that Pα̃ = P0, i.e. it is obtained from α by replacing one orbit
at x̂∞ with an orbit at x̌∞.

Consider an IP path P1 = Pγ for an orbit set γ such that there is a holomorphic curve
from α̃ to γ, as well as one from γ to β. By Lemma 2.2.19, there are two nonlocal Ri

ji
,

each with two extreme edges, and they share a single edge v. As before, the IP region R
between P0 and P2 has exactly three R-loose edges and so v̌∞ must be an extreme edge of
R′ ∈ (R1

j1
,R2

j2
). There are two cases:

(i) (v̌∞ is the west extreme edge of R′.) Positivity of R′ at x = x̂∞ + ε forces that R′ is a
bigon with the extreme east edge v = v̂∞.

(ii) (v̌∞ is the east extreme edge of R′.) Note v0 is the only other edge of R with x(·) < x̌∞.
Since v0 and v̌∞ do not form a bigon, we need x(v) < x̌∞ and R′ must be a triangle
formed by v0, v and v̌∞. In particular, v = v1 := (1, 1) ∈ Z2 with x(v1) = x1.

This completely describes all possible IP paths Pγ for nonzero summands of (2.3.4).
We now consider decorations of R and (Ri

ji
). Note that R differs from Rα,β by replacing

the edge at x̂∞ to the one at x̌∞. Hence, we can make I(R) = 2 by:
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ê
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Figure 2.12: A decoration for Case 2.

• Label v̌∞ as ě if v̂∞ is labeled ĥ; label it ȟ otherwise.

• Use an induced decoration of Rα,β for all other edges of R.

See Figure 2.12 for one possible decoration. Imposing I(R′) = 1 determines the label of v
in each of the above two cases as follows:

(i) (v̌∞ is the west extreme edge of R′) v = v̂∞ is labeled ĥ if v̌∞ is labeled ě; v is labeled
ê otherwise.

(ii) (v̌∞ is the east extreme edge of R′) v = v1 is labeled ȟ if both v0 and v̌∞ are labeled ě;
v is labeled ě otherwise.

Let η be the orbit set whose associated decorated IP path Pη is v1P+ decorated as above.
We have shown that if γ is an orbit set with 〈∂α̃, γ〉〈∂γ, β〉 6= 0, then γ = η or γ = α. By
the induction hypothesis and Proposition 2.3.5,

〈∂α̃, η〉 6= 0, 〈∂η, β〉 6= 0, 〈∂α̃, α〉 6= 0

so we have
〈∂α, β〉 6= 0.
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Chapter 3

ECC of T 3

In the previous section, we have considered a contact manifold (I × T 2, λ). In this section,
we show that, after small modifications, the same combinatorial description applies to the
closed manifold T 3 = R/Z × T 2 with a contact form λ, which is a small perturbation of a
T 2-invariant contact form.

3.1 Preliminaries

Consider (f, g) : R → R2 satisfying (f, g) × (f ′, g′) > 0 as before so that λ̃ = −gdt1 + fdt2
is a contact form on R × T 2. Suppose further that (f, g) is Z-periodic and regard it as a
function on R/Z with coordinate x. Consider λ̄ = −gdt1 + fdt2 on T 3 = R/Z × T 2 with
coordinates (x, t1, t2). Then, (T 3, λ̄) is a contact manifold similar to (I × T 2, λ̄) previously
discussed. In this section, we discuss some differences from the previous treatment.

Definition 3.1.1. For each S1-family ρ̄ of Reeb orbits of (T 3, λ̄) with action less than L,
consider slightly modified Morse functions Hρ̄ on ρ̄ as follows: Let δ̃ = δ/N for some N � 0.
Then,

• Hρ̄ attains the maximum at −δ̃ and the minimum at +δ if ρ̄ is convex.

• Hρ̄ attains the maximum at −δ and the minimum at +δ̃ if ρ̄ is concave.

We say that a contact form λ on T 3 is a good perturbation of λ̄ if it satisfies conditions
(ii) - (iv) of Definition 2.1.2 and condition (i) with the above Morse functions Hρ̄ instead.
Let J̄ be defined using (2.1.11), as before. We say that a pair (λ, J) of a contact form on
R/Z×T 2 and a generic admissible almost complex structure J on R× (R/Z×T 2) is a good
perturbation of (λ̄, J̄) if λ is a good perturbation of λ̄ and (λ, J) is sufficiently close to (λ̄, J̄)
in the sense of Lemma 3.2.2 in addition to Lemma 2.2.1, Proposition 2.2.21 and Proposition
2.3.5.
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Throughout this section, assume λ is a good perturbation of λ̄ and (λ, J) is a good
perturbation of (λ̄, J̄). We will also use the same notation λ̄ and λ for a Z-periodic contact
form on R× T 2 and a contact form on R/Z× T 2.

We induce order on R/Z from ([0, 1), <). Then, similarly to the ordered product notation
of an orbit set of (I × T 2, λ) we can write an orbit set α of (R/Z × T 2, λ) in the ordered
product notation. Also, consider the covering map π : R× T 2 → R/Z× T 2. Any orbit ρ̃ of
(R× T 2, λ) projects to an orbit ρ of (R/Z× T 2, λ).

Definition 3.1.2. Let α = α1 · · ·αn be an orbit set of (R/Z × T 2, λ). We say that an
orbit set α̃ of (R × T 2, λ̄) is a lift of α if there is a bijection between embedded orbits α̃i′
appearing in the ordered product notation of α̃ and embedded orbits αi appearing in the
ordered product notation of α so that, for each such pair, α̃i′ projects to αi under π. If β is
another orbit set of λ, we say that the pair (α̃, β̃) is an admissible lift of (α, β) under π if α̃
and β̃ are orbit sets of (I × T 2, λ) ⊂ (R× T 2, λ) where I has length less than 1 + 2ε.

Let C̃ ∈ M(α̃, β̃) be a holomorphic curve in (R × (R × T 2), J). Then, it projects to
a holomorphic curve C ∈ M(α, β) so that (α̃, β̃) is a lift of (α, β). We point out that if
a holomorphic curve C in R × (R/Z × T 2) has genus zero, then it necessarily lifts to a
holomorphic curve C̃ in R× (R× T 2).

We modify the definitions of combinatorial objects in the following way. Refer to Section
1.3 for more details. By genericity of (f, g), assume that f ′(0)/g′(0) 6∈ Q ∪ {∞} and recall
the order on R/Z induced from ([0, 1), <).

Definition 3.1.3. (a) An IP path P on R/Z is an n-tuple of edges (vi), satisfying the
conditions of Definition 1.3.1 except that x(v) ∈ R/Z.

(b) If P+ = (v+
i ) and P− = (v−j ) are two IP paths with

∑
i v

+
i =

∑
j v
−
j and σ0 ∈ Z2 is a

vector, then an IP region on R/Z with a reference slice class σ0 is the triple (P+,P−, σ0).

(c) If (vk) is an ordering of ∂±R with non-decreasing x(vk), a realization of an IP region R
is a continuous map Φ from [0, 1]× ∪k∈Z[k, k + 1] to R2 such that:

• Φ(0, 0)− Φ(1, 0) = σ0 ∈ Z2.

• If vk is a positive edge, then Φ(1, k) = Φ(1, k − 1) + vk and Φ(0, k) = Φ(0, k − 1).

• If vk is a negative edge, then Φ(0, k) = Φ(0, k − 1) + vk and Φ(1, k) = Φ(1, k − 1).

Here vk for k ∈ Z is interpreted as modulo m where m is the number of edges of R.

(d) The slice class of R = (∂+R, ∂−R, σ0) is

σ(x) := σ0 −
∑
v∈∂+R

0<x(v)≤x

v +
∑

w∈∂−R
0<x(w)≤x

w.
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Figure 3.1: Two IP regions R and R′ with ∂±R = ∂±R′ but σ0 = 0 and σ0 = (0, 1)

(e) If Φ([0, 1] × {k}) is a single point for some realization Φ and some 0 ≤ k ≤ m, we say
that R is simply connected.

Note that a realization Φ of R with ∂+R = (v+
i ) is “periodic with monodromy”

∑
i v

+
i ∈

Z2: if R has m edges, then Φ(·, ·+m) = Φ(·, ·) +
∑

i v
+
i ∈ R2.

Definition 3.1.4. Given an orbit set α = α1 · · ·αn in (R/Z × T 2, λ), the IP path R/Z
associated to α is the n-tuple (vi) where vi = ([αi], x(αi)). We denote it by Pα. Given a
holomorphic curve C ∈M(α, β), the IP region on R/Z associated to C is (Pα,Pβ, [σC(x0)])
denoted RC .

Note that, as opposed to RC , Rα,β lacks the information about the reference slice class
and hence, ambiguous. This is related to the index ambiguity, which we discuss below. Figure
3.1 shows realizations of two IP regions R and R′ with the same positive and negative edges,
but σ0 = 0 in (a), whereas σ0 = (0, 1) in (b).

Definition 3.1.5. (ECH index) Let I(R) be the combinatorial ECH index whereArea(R) :=
Area(im(Φ|[0,1]×[0,m])) in (1.3.4). Here, Φ is a realization of R. Note this depends on σ0.

We recall that for Z,Z ′ ∈ H2(R/Z× T 2, α, β), the index ambiguity

I(α, β, Z)− I(α, β, Z ′) = 〈2PD(Γ), Z − Z ′〉

may be nonzero if Z−Z ′ ∈ H2(R/Z×T 2) projects to a nonzero class in H1(R/Z)⊗H1(T 2).

Lemma 3.1.6. Let α and β be orbit sets and let C and C ′ be holomorphic curves from α to
β. Let σ0 = [SC(0)] and σ′0 = [SC′(0)]. Then,

I(RC) = I(C), I(RC′) = I(C ′)

and they reflect the index ambiguity by

I(RC)− I(RC′) = (σ0 − σ′0)× (2[α]).
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Proof. Since τ is still the restriction of a global trivialization of T (R/Z × T 2), we have
cτ (Z) = 0 for any Z ∈ H2(R/Z × T 2, α, β) in (2.1.1) and (2.1.3). Then, the rest is a
straightforward modification of Proposition 2.2.6 using a surface S whose slice S(0) is a
disjoint union of straight curves in {0} × T 2 in homology class σ0. The second part is
straightforward.

In Figure 3.1, σ0 = 0, σ′0 = (0, 1) and [α] = [β] = (−1, 0), resulting in I(RC) = 3 and
I(RC′) = 1.

3.2 The theorem

Theorem 3.2.1. Let λ̄ = −gdt1 + fdt2 be a T 2-invariant contact form on R × T 2 and J̄
be the almost complex structure on R × (R × T 2) defined by (2.1.11). Let (λ, J) be a good
perturbation of (λ̄, J̄). Given a pair of admissible orbit sets α and β of (R/Z × T 2, λ) with
I(α, β) = 1, any holomorphic curve C ∈M(α, β) lifts to a holomorphic curve C̃ ∈M(α̃, β̃)
in R× (I × T 2) ⊂ R× (R× T 2) for an admissible lift (α̃, β̃). In particular,

〈∂α, β〉 =
∑
(α̃,β̃)

〈∂α̃, β̃〉

where the summation is over distinct (modulo Z) admissible lifts (α̃, β̃) of (α, β).

The +2ε term allows that the east extreme end and the west extreme end of C̃ may occur
at the same orbit of λ.

Let C ∈M(α, β). We define

Ia(RC) = Area(Φ)− 2#{edges of R} − 2n

and
Ic(RC) =

∑
v∈∂±RC

(cz(v) + 1)

so
I(RC) = Ia(RC) + Ic(RC) + 2n.

To aid computation, let R′ be a decorated simply connected IP region obtained by “slicing”
RC along σ0 and labeling each new edge as S1-tight and R-loose: if σ0 = nw for a primitive
vector w and n ≥ 0 and ∂+RC = (vi), then let

∂+R′ := (−w, · · · ,−w, (vi), w · · · , w)

∂−R′ := ∂−RC

where −w is repeated n times at the beginning and w is repeated n times at the end, each
labeled ȟ. It is easy to verify

I(RC) = I(R′), Ia(RC) = Ia(R′), Ic(RC) + 2n = Ic(R′).



53

Since RC and R′ have the same slice classes and RC satisfies the positivity condition, we
have Ia(RC) ≥ −2 and Ic(RC) + 2n ≤ 3.

The following two lemmas show that RC must be simply connected. Suppose RC is not
simply connected. Since RC is minimal with I(RC) = 1, we are forced to have n = 1 and
RC has exactly one edge v with cz(v) = 0. Similarly to the Morse-Bott argument in Section
2.2, we claim the following:

Lemma 3.2.2. Consider R/Z × T 2 with a T 2-invariant contact form λ̄ and the admissi-
ble almost complex structure J̄ on R × (R/Z × T 2) by (2.1.11). Let λn be a sequence of
good perturbations of λ̄ and let Jn be a generic admissible almost complex structures for
λn and suppose (λn, Jn) converges to (λ̄, J̄). Fix a non-simply connected IP region R with
I(R) = 1 and one R-loose edge. If (λn, Jn) is sufficiently close to (λ̄, J̄), then there is no
Jn-holomorphic curve whose associated region is R.

Proof. If there is a sequence of Jn-holomorphic curves Cn whose associated IP region is R,
then after passing to a subsequence, Cn converges to a J̄-holomorphic building C̄ as before
and we can consider the partition (Ri

j) of R associated to C̄. Suppose that each Ri
j is simply

connected. Consider the collapsed dual graph Γ that contains a vertex for each realization
of nonlocal IP regions appearing in

Φ([0, 1]× ∪k∈Z[k, k + 1]).

Note that Γ is connected and it does contain a cycle since R is minimal. Since Z acts on the
vertices and edges of Γ by a deck transform, Γ/Z contains one cycle. Then, a modification
of Lemma 2.2.19 for the collapsed dual graph with one cycle implies that

2m ≤ m+ l (3.2.1)

where m is the number of nonlocal IP regions in the partition of R and l = 1 is the number
of R-loose edges of R. Hence, m = l = 1, contradicting the assumption that R1

1 is simply
connected. Hence, there is a R′ ∈ (Ri

j) which is not simply connected. We claim that

all other Ri
j are simply connected. Suppose R′ = Ri′

j′ and R′′ = Ri′′

j′′ are two non-simply
connected IP regions in (Ri

j). Since i 6= i′ necessarily, we assume i′ < i′′ without loss of

generality. Since ∂+R′′ is a nontrivial IP path, P i′′−1 = ∂+Ri′′ is nontrivial as well, and all
the lattice points on the realization of P i′′−1 must be internal to the corresponding realization
of R. This contradicts the minimality of R. Hence, the partition (Ri

j) contains (m − 1)
nonlocal IP regions, each with at least two R-loose edges. Moreover, the collapsed dual
graph of (Ri

j) contains no cycle since R is minimal. Another modification of Lemma 2.2.19
for such a partition implies

2(m− 1) ≤ m− 1 + l, (3.2.2)

so we have that m ≤ l + 1 = 2.
By the Θ-constraint, there must be a nonconstant Morse flow in C̄ and since all positive

and negative edges of R are S1 tight, m must be 2. The argument proceeds similarly to the
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v1

vi(x)

β

σ0

R̄(x)

Figure 3.2: ∂+R on the interval where R̄(x)× vi(x) > 0.

last step of the proof of Theorem 1.4.1. Let w be the shared edge between the two nonlocal
IP regions R1

i1
and R2

i2
and by symmetry, assume the S1-family of orbits ρ̄ at x = x(w)

is convex. By (3.2.2), the non-simply connected IP region has no R-loose edges. Hence,
R1
i1

is not simply connected, and R2
i2

is simply connected. Let C̄1 and C̄2 be the nontrivial
components of C̄ with a negative end and a positive end at ρ̄(θ−) and ρ̄(θ+), respectively.
Then,

Θ(C̄1) = a1δ̃ − θ− = 0,

Θ(C̄2) = a2δ̃ + δ + θ+ = 0

where ai � N are the total number of elliptic edges of Ri. Since Hρ̄ has the maximum at
θ = −δ̃ and the minimum at θ = δ, there can be no Morse flow from θ− to θ+ on ρ̄.

Lemma 3.2.3. There does not exist any non-simply connected IP region R such that:

• R contains no R-loose edges, and

• ∂+R = Pα , ∂−R = Pβ for some admissible orbit sets α and β with 〈∂α, β〉 6= 0.

Proof. Suppose 0 < M < ∞ is the smallest number such that there is a IP region with
M positive edges, satisfying the above conditions. Let RM be any such IP region and let
∂+RM = v1 · · · vM be an IP path with an induced decoration. For x(v1) < x < 1, let i(x)
denote the largest i with x(vi) < x and let x0 be the smallest x(v1) < x < 1 satisfying

A(x) := R̄(x)× vi(x) = 0.

Such x0 exists for the following reason: A(x) is continuous except at each x = x(vi), but
since every vi is concave, A(x(vi) + ε) > 0. Hence, if x0 does not exist, A(x) > 0 for all
x(v1) < x < 1, and vi × vi+1 < 0 for each 1 ≤ i < M and contradicts that (f, g) rotates
around the origin n ≥ 1 times. See Figure 3.2 for v1 · · · vi(x) for any x(v1) < x < x0. For
simplicity, we denote i(x0) by i0.
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By the choice of x0, λ is convex at x0 so we can replace vi0 of RM with an edge v̌0 at
x = x0. We replace the label on this edge from concave to convex, while keeping S1-tightness.
The new decorated IP region R̃ has I(R̃) = 2 and is associated to admissible orbit sets α̃
and β. We examine each nonzero summand of

〈∂2α̃, β〉 =
∑
γ

〈∂α̃, γ〉〈∂γ, β〉 = 0. (3.2.3)

Let γ be an orbit set which corresponds to a nonzero summand of (3.2.3). Since R̃ is
minimal with exactly one R-loose edge, we may apply similar analysis as in Lemma 3.2.2 to
the partition (Ri

j) of R̃ by Pγ. Here, we have m ≥ 2 and since (3.2.1) cannot be satisfied,
(Ri

j) must contain a non-simply connected IP region. By (3.2.2), there are exactly two

nonlocal regions R′ and R′′ in (Ri
j) and since R̃ is minimal, without loss of generality R′ is

simply connected and R′′ is not. By the equality condition of (3.2.2), R′ and R′′ share one
edge w and since R′ has two R-loose edges, v̌0 must be an edge of R′, while all edges of R′′
are R-tight.

By the minimality of M , R′′ must have at least M positive edges and hence, R′ must be
a bigon. One such bigon is between v̌0 and vi0 . In order to have another nonzero summand
in (3.2.3), there must be a bigon between v̌0 and an edge v′i0 with x(v′i0) > x(v̌0). Replace vi0
of RM with v′i0 while keeping S1-tightness and call the new decorated IP region Rnew

M . Note
that Rnew

M is identical to RM except x(v′i0) > x(vi0). We can repeat the above analysis with
RM replaced by Rnew

M : the conclusion is that there must be yet another simply connected
IP region with M positive edges. Since R̄(x) takes on a multiple of vi0 finitely many times,
this cannot continue indefinitely and, at some point, there is only one nonlocal bigon with
an edge v̌0. This is a contradiction and completes the proof of the claim.

Proof. (of Theorem 3.2.1) Lemma 3.2.2 and Lemma 3.2.3 show that RC is simply connected,
i.e. there is x0 ∈ R/Z such that R̄(x0)× σ(x0) = 0. If σ(x0 + ε) or σ(x0− ε) is zero, then we
are done by the equality condition of Lemma 2.2.1. Otherwise, by analyzing the ends of C
at x = x0 similarly to Proposition 2.2.7, we find that ind(C) has a contribution of at least
three to

∑
ρ(cz

ind(ρ) + 1) and conclude that g(C) = 0.

The genus zero condition implies that C lifts to a holomorphic curve C̃ in R× (R× T 2).
Since all ends of C at ρ with x(ρ) 6= x0 have czind(ρ) = −1, C̃ must have the west extreme
end at some lift x̃0 of x0 and the east extreme end at x̃0 + n for some integer n ≥ 1. Note
that R̄(x0)× [SC̃(x̃0 + i+ ε)] ≥ 0, for all i by positivity, and

0 = R̄(x0)× σ(x0) = R̄(x0)×

(∑
i

[SC̃(x̃0 + i+ ε)]

)
≥ 0.

Hence, R̄(x0)× [SC̃(x̃0 + 1 + ε)] = 0 and C̃ must have an R-loose edge at x̃0 + 1 by Corollary
2.2.3. Since C has only two R-loose ends, the only R-loose ends of C̃ occur at extreme ends,
which means C̃ has the east extreme end at x̃0 + 1. This complete the proof.
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Part II

Symplectic embeddings into
four-dimensional concave toric

domains
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Chapter 4

Introduction

4.1 ECH capacities

Let (X,ω) be a symplectic four-manifold, possibly with boundary or corners, noncompact,
and/or disconnected. Its ECH capacities are a sequence of real numbers

0 = c0(X,ω) ≤ c1(X,ω) ≤ c2(X,ω) ≤ · · · ≤ ∞. (4.1.1)

The ECH capacities were introduced in [8], see also the exposition in [10]; we will review the
definition in the cases relevant to this paper in §6.1.

The following are some key properties of ECH capacities:

(Monotonicity) If there exists a symplectic embedding (X,ω) → (X ′, ω′), then ck(X,ω) ≤
ck(X

′, ω′) for all k.

(Conformality) If r > 0 then
ck(X, rω) = rck(X,ω).

(Disjoint union)

ck

(
n∐
i=1

(Xi, ωi)

)
= max

k1+···+kn=k

n∑
i=1

cki(Xi, ωi).

(Ellipsoid) If a, b > 0, define the ellipsoid

E(a, b) =

{
(z1, z2) ∈ C2

∣∣∣∣ π|z1|2

a
+
π|z2|2

b
≤ 1

}
.

Then ck(E(a, b)) = N(a, b)k, where N(a, b) denotes the sequence of all nonnegative in-
teger linear combinations of a and b, arranged in nondecreasing order, indexed starting
at k = 0.
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Here we are using the standard symplectic form on C2 = R4. In particular, define the ball

B(a) = E(a, a).

It then follows from the Ellipsoid property that

ck(B(a)) = ad (4.1.2)

where d is the unique nonnegative integer such that

d2 + d

2
≤ k ≤ d2 + 3d

2
. (4.1.3)

It was shown by McDuff [18], see also the survey [9], that there exists a symplectic
embedding int(E(a, b)) → E(c, d) if and only if N(a, b)k ≤ N(c, d)k for all k. Thus ECH
capacities give a sharp obstruction to symplectically embedding one (open) ellipsoid into
another. It follows from work of Frenkel-Müller [5], see [9, Cor. 11], that ECH capacities
also give a sharp obstruction to symplectically embedding an open ellipsoid into a polydisk

P (a, b) =
{

(z1, z2) ∈ C2
∣∣ π|z1|2 ≤ a, π|z2|2 ≤ b

}
.

On the other hand, ECH capacities do not give sharp obstructions to embedding a poly-
disk into an ellipsoid. For example, if there is a symplectic embedding P (1, 1) → E(a, 2a),
then ECH capacities only imply that a ≥ 1, but the Ekeland-Hofer capacities imply that
a ≥ 3/2, see [8, Rmk. 1.8]. Another example is that if there is a symplectic embedding
from P (1, 2) into the ball B(c), then both ECH capacities and Ekeland-Hofer capacities only
imply that c ≥ 2; but in fact it was recently shown by Hind-Lisi [6] that c ≥ 3. In particular,
the inclusions P (1, 1)→ E(3/2, 3) and P (1, 2)→ B(3) are “optimal” in the following sense:

Definition 4.1.1. A symplectic embedding φ : (X,ω) → (X ′, ω′) is optimal if there does
not exist a symplectic embedding (X, rω)→ (X ′, ω′) for any r > 1.

Remark 4.1.2. It follows from the Monotonicity and Conformality properties that if 0 <
ck(X,ω) = ck(X

′, ω′) for some k, and if a symplectic embedding (X,ω) → (X ′, ω′) exists,
then it is optimal.

4.2 Concave toric domains

We would like to compute more examples of ECH capacities and find more examples of
sharp embedding obstructions and optimal symplectic embeddings. An interesting family of
symplectic four-manifolds is obtained as follows. If Ω is a domain in the first quadrant of
the plane, define the “toric domain”

XΩ =
{
z ∈ C2

∣∣ π(|z1|2, |z2|2) ∈ Ω
}
.
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For example, if Ω is the triangle with vertices (0, 0), (a, 0), and (0, b), then XΩ is the ellipsoid
E(a, b).

The ECH capacities of toric domains XΩ when Ω is convex and does not touch the axes
were computed in [8, Thm. 1.11], see [10, Thm. 4.14]. Also, the assumption that Ω does not
touch the axes can be removed in some and conjecturally all cases. In this paper we consider
the following new family of toric domains:

Definition 4.2.1. A concave toric domain is a domain XΩ where Ω is the closed region
bounded by the horizontal segment from (0, 0) to (a, 0), the vertical segment from (0, 0) to
(0, b), and the graph of a convex function f : [0, a]→ [0, b] with f(0) = b and f(a) = 0. The
concave toric domain XΩ is rational if f is piecewise linear and f ′ is rational wherever it is
defined.

McDuff showed in [18, Cor. 2.5] that the ECH capacities of an ellipsoid E(a, b) with a/b
rational are equal to the ECH capacities of a certain “ball packing” of the ellipsoid, namely
a certain finite disjoint union of balls whose interior symplectically embeds into the ellipsoid
filling up all of its volume. These balls are determined by a “weight expansion” of the pair
(a, b). In the present work, we generalize this to give a similar formula for the ECH capacities
of any rational concave toric domain. In §4.6 we will give a different formula for the ECH
capacities of concave toric domains which are not necessarily rational.

4.3 Weight expansions

Let XΩ be a rational concave toric domain. The weight expansion of Ω is a finite unordered
list of (possibly repeated) positive real numbers w(Ω) = (a1, . . . , an) defined inductively as
follows.

If Ω is the triangle with vertices (0, 0), (a, 0), and (0, a), then w(Ω) = (a).
Otherwise, let a > 0 be the largest real number such that the triangle with vertices (0, 0),

(a, 0), and (0, a) is contained in Ω. Call this triangle Ω1. The line x + y = a intersects the
graph of f in a line segment from (x2, a−x2) to (x3, a−x3) with x2 ≤ x3. Let Ω′2 denote the
portion of Ω above the line x+ y = a and to the left of the line x = x2. By first applying the

translation (x, y) 7→ (x, y − a) to Ω′2 and then multiplying by

(
1 0
1 1

)
∈ SL2(Z), we obtain

a new domain Ω2 (which we interpret as the empty set if x2 = 0). Let Ω′3 denote the portion
of Ω above the line x + y = a and to the right of the line x = x3. By first applying the

translation (x, y) 7→ (x− a, y) and then multiplying by

(
1 1
0 1

)
∈ SL2(Z), we obtain a new

domain Ω3 (which we interpret as the empty set if x3 = a). See Figure 4.1 for an example
of this decomposition. Observe that each XΩi is a rational concave toric domain. We now
define

w(Ω) = w(Ω1) ∪ w(Ω2) ∪ w(Ω3). (4.3.1)
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Ω Ω1

Ω′2

Ω′3
x2 x3

Ω2

Ω3

Figure 4.1: The inductive step in the decomposition of a concave toric domain

Here the symbol ‘∪’ indicates “union with repetitions”, and we interpret w(Ωi) = ∅ if Ωi = ∅.
See §4.4 below for examples of weight expansions.

When Ω is a rational triangle, the weight expansion is determined by the continued
fraction expansion of the slope of the diagonal, and in particular w(Ω) is finite, see [18, §2].
If the upper boundary of Ω has more than one edge, then the upper boundary of each Ωi

will have fewer edges than that of Ω, so by induction w(Ω) is still finite.

Theorem 4.3.1. The ECH capacities of a rational concave toric domain XΩ with weight
expansion (a1, . . . , an) are given by

ck(XΩ) = ck

(
n∐
i=1

B(ai)

)
.

Remark 4.3.1. It follows from the Disjoint Union property of ECH capacities, together
with the formulas (4.1.2) and (4.1.3) for the ECH capacities of a ball, that

ck

(
n∐
i=1

B(ai)

)
= max

{
n∑
i=1

aidi

∣∣∣∣ n∑
i=1

d2
i + di

2
≤ k

}
, (4.3.2)

where d1, . . . , dn are nonnegative integers. To compute the maximum on the right hand side
of (4.3.2), if we order the weight expansion so that a1 ≥ · · · ≥ an, then we can assume
without loss of generality that di = 0 whenever i > k.

Remark 4.3.2. One can extend Theorem 4.3.1 to concave toric domains which are not
rational; in this case the weight expansion is defined inductively as before, but is now an
infinite sequence. To prove this extension of Theorem 4.3.1, one can approximate an arbitrary
concave toric domain XΩ by rational concave toric domains whose weight expansion is the
portion of the weight expansion of XΩ obtained from the first n steps, and then use the
continuity of the ECH capacities in Lemma 5.2.1 below.
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One inequality in Theorem 4.3.1 has a quick proof:

Lemma 4.3.2. If XΩ is a rational concave toric domain with weight expansion (a1, . . . , an),
then

ck(XΩ) ≥ ck

(
n∐
i=1

B(ai)

)
. (4.3.3)

To prove Lemma 4.3.2, we will use the following version of the “Traynor trick”. Call
two domains Ω1 and Ω2 in the first quadrant affine equivalent if one can be obtained from
the other by the action of SL2(Z) and translation. Let 4(a) denote the open triangle with
vertices (0, 0), (a, 0), and (0, a).

Lemma 4.3.3. If T is an open triangle in the first quadrant which is affine equivalent to
4(a), then there exists a symplectic embedding int(B(a))→ XT .

Proof. It follows from [26, Prop. 5.2] that there exists a symplectic embedding

int(B(a))→ X4(a).

On the other hand, if Ω1 and Ω2 are affine equivalent and do not contain any points on the
axes, then XΩ1 is symplectomorphic to XΩ2 . Thus X4(a) is symplectomorphic to XT and we
are done.

Proof of Lemma 4.3.2. It follows from the definition of the weight expansion that Ω has a
decomposition into open triangles T1, . . . , Tn such that Ti is affine equivalent to 4(ai) for
each i. By Lemma 4.3.3, for each i there is a symplectic embedding int(B(ai))→ XTi . Hence
there is a symplectic embedding

n∐
i=1

int(B(ai))→ XΩ.

It then follows from the Monotonicity property of ECH capacities that (4.3.3) holds.

4.4 Examples and first applications

We now give some examples of how Theorem 4.3.1 can be used to prove that certain sym-
plectic embeddings are optimal.

The following lemma will be helpful. If ` is a nonnegative integer, define w`(Ω) ⊂ w(Ω) to
be the list of positive real numbers obtained from the first ` steps in the inductive construction
of the weight expansion. That is, w0(Ω) = ∅ and

w`(Ω) = w(Ω1) ∪ w`−1(Ω2) ∪ w`−1(Ω3)

for ` > 0.
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Lemma 4.4.1. If w`(Ω) = (a1, . . . , am), then for any k ≤ `,

ck(XΩ) = ck

(
m∐
i=1

B(ai)

)
.

Proof. Let (a1, . . . , an) be the weight expansion for Ω. By Theorem 4.3.1, it is enough to
prove that

ck

(
n∐
i=1

B(ai)

)
= ck

(
m∐
i=1

B(ai)

)
. (4.4.1)

By Remark 4.3.1, the left hand side of (4.4.1) is determined by the k largest numbers in
w(Ω), and the right hand side of (4.4.1) is determined by the k largest numbers in w`(Ω). It
follows from the definition of the weight expansion and induction that the k largest numbers
in w(Ω) are a subset of wk(Ω); and the latter is a subset of w`(Ω) since k ≤ `. Thus the two
sides of (4.4.1) are equal.

We now have the following corollary of Theorem 4.3.1.

Corollary 4.4.2. If XΩ is a rational concave toric domain, let a be the largest real number
such that B(a) ⊂ XΩ. Then the inclusion B(a) ⊂ XΩ is optimal, so the Gromov width of
XΩ equals a.

Proof. Note that a is just the largest real number such that 4(a) ⊂ Ω. It follows from
Lemma 4.4.1 with ` = 1 that c1(XΩ) = a. Since c1(B(a)) = a, we are done by Remark 4.1.2.

Here is a simple example of obstructions to symplectic embeddings in which XΩ is the
domain rather than the target:

Example 4.4.1. Let a ∈ (0, 1), and let Ω be the quadrilateral with vertices (0, 0), (1, 0),
(a, 1− a) and (0, 1 + a). Then the inclusion XΩ ⊂ B(1 + a) is optimal.

Proof. The weight expansion is w(Ω) = (1, a). It then follows from equation (4.3.2) that
c2(XΩ) = 1 + a. Since c2(B(1 + a)) = 1 + a, the claim follows from Remark 4.1.2.

Another interesting example is the (nondisjoint) union of a ball and a cylinder. Given
0 < a < b, define Z(a, b) to be the union of the ball B(b) with the cylinder

Z(a) = P (∞, a).

That is, Z(a, b) = XΩ where Ω is bounded by the axes, the line segment from (0, b) to
(b− a, a), and the horizontal ray extending to the right from (b− a, a).
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Proposition 4.4.3. The ECH capacities of the union of a ball and a cylinder are given by

ck(Z(a, b)) = max

{
db+ a

(
k − d(d+ 1)

2

) ∣∣∣∣ d(d+ 1) ≤ 2k

}
(4.4.2)

where d is a nonnegative integer.

Proof. Recall from [8, §4.2] that for any symplectic four-manifold (X,ω), we have

ck(X,ω) = sup
{
ck
(
X−, ω|X−

)}
(4.4.3)

where the supremum is over certain compact subsets X− ⊂ int(X) (namely those for which
(X−, ω|X−) is a four-dimensional “Liouville domain” in the sense of [8, §1]). It follows
immediately that ECH capacities have the following “exhaustion property”: if {Xi}i≥1 is a
sequence of open subsets of X with Xi ⊂ Xi+1 and

⋃∞
i=1 Xi = int(X), then

ck(X,ω) = lim
i→∞

ck (Xi, ω|Xi) . (4.4.4)

To apply this in the present situation, given a positive integer i, let Ωi be the quadrilateral
with vertices (0, 0), (0, b), (b− a, a), and (b + ia, 0). Then the interiors of the domains XΩi

exhaust the interior of Z(a, b). Also, XΩi has the same ECH capacities as its interior; this
follows for example from (4.4.3). It then follows from the exhaustion property (4.4.4) that

ck(Z(a, b)) = lim
i→∞

ck(XΩi). (4.4.5)

Assume that i ≥ k. We now compute ck(XΩi) using Theorem 4.3.1. The weight expansion
of Ωi is

w(Ωi) = (b, a, . . . , a︸ ︷︷ ︸
i times

). (4.4.6)

Since i ≥ k, to compute the maximum in (4.3.2), we can assume that each a weight in
(4.4.6) is multiplied by 0 or 1, and the b weight in (4.4.6) is multiplied by (d2 +d)/2 for some
nonnegative integer d. It then follows that ck(XΩi) equals the right hand side of (4.4.2). It
now follows from (4.4.5) that (4.4.2) holds.

It is interesting to ask when the ellipsoid E(a, b) symplectically embeds into Z(c, d). By
scaling, it is equivalent to ask, given a, b ≥ 1, for which λ > 0 there exists a symplectic
embedding E(a, 1) → Z(λ, λb). Of course this trivially holds if λ is sufficiently large that
E(a, 1) is a subset of Z(λ, λb). In some cases this sufficient condition is also necessary:

Corollary 4.4.4. Suppose that (i) a ∈ {1, 2} and b ≥ 1, or (ii) a is a positive integer and
1 ≤ b ≤ 2. Then there exists a symplectic embedding E(a, 1) → Z(λ, λb) if and only if
E(a, 1) ⊂ Z(λ, λb).
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Proof. We first compute that E(a, 1) ⊂ Z(λ, λb) if and only if

λ ≥ a

a+ b− 1
. (4.4.7)

Assuming (i) or (ii), we need to show that if there exists a symplectic embedding E(a, 1)→
Z(λ, λb), then the inequality (4.4.7) holds. By the Monotonicity and Conformality properties
of ECH capacities, it will suffice to show that

ca(E(a, 1)) = a, (4.4.8)

ca(Z(1, b)) = a+ b− 1. (4.4.9)

Now (4.4.8) holds for any positive integer a by the Ellipsoid property. And in both cases (i)
and (ii), equation (4.4.9) follows from Proposition 4.4.3, because the maximum in (4.4.2) is
realized by d = 1.

Remark 4.4.2. There are many cases in which an ellipsoid E(a, 1) symplectically embeds
into Z(λ, λb) although E(a, 1) is not a subset of Z(λ, λb). For example, an ellipsoid E(a, 1)
may embed into a ball B(c) of slightly greater volume, and this is always possible when
a ≥ (17/6)2, see [19]; if we set c = λb, then the ellipsoid is not a subset of Z(λ, λb) if we
choose b sufficiently large. Moreover, the “symplectic folding” method from [22] can be used
to construct examples of symplectic embeddings E(a, 1)→ Z(λ, λb) where E(a, 1) 6⊂ Z(λ, λb)
and also vol(E(a, 1)) > vol(B(λb)), so that E(a, 1) does not symplectically embed into the
ball B(λb) alone.

Corollary 4.4.4 also has a generalization to symplectic embeddings of an ellipsoid into
the union of an ellipsoid and a cylinder, see §7.1.

4.5 Application to ball packings

As a more involved application, we obtain a sharp obstruction to ball packings of the union
of certain unions of a cylinder and an ellipsoid. Given positive real numbers a, b and c with
c > a, define

Z(a, b, c) = Z(a) ∪ E(b, c).

Theorem 4.5.1. Let b, c and w1 ≥ w2 ≥ · · · ≥ wn > 0 be positive real numbers. Assume
that c > 1 and b ≤ c

c−1
. Then there exists a symplectic embedding

n∐
i=1

int(B (wi))→ Z(λ, λb, λc)

if and only if
λ ≥ max{w1/c, λ1, . . . , λn},
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where we define

λk =

∑k
i=1 wi

k + b(c−1)
c

. (4.5.1)

For example, Theorem 4.5.1 gives a sharp obstruction to embedding a disjoint union of
balls into the union of a ball and a cylinder, Z(a, b) = Z(a, b, b), as long as b ≤ 2a.

The outline of the proof of Theorem 4.5.1 is as follows. In §7.2, we will give a symplectic
embedding construction to prove:

Proposition 4.5.2. Let b, c and w1 ≥ w2 ≥ · · · ≥ wn > 0 be positive real numbers. Assume
that c > 1. Define λk by (4.5.1). If

λ ≥ max{w1/c, λ1, . . . , λn},

then there exists a symplectic embedding

n∐
i=1

int(B (wi))→ Z(λ, λb, λc). (4.5.2)

This implies the sufficient condition for ball packings in Theorem 4.5.1. We will then use
ECH capacities to prove the necessary condition for ball packings in Theorem 4.5.1.

Remark 4.5.1. Unlike Theorem 4.5.1, Proposition 4.5.2 still holds when b > c
c−1

, but
in this case we generally do not know whether better symplectic embeddings are possible.
For example, Proposition 4.5.2 implies that one can symplectically embed three equal balls
int(B(a)) into Z(1, 3) whenever a ≤ 5/3. However ECH capacities only tell us that if such
an embedding exists then a ≤ 2.

4.6 ECH capacities and lattice points

We now give a different formula for the ECH capacities of a concave toric domain, which is
not assumed to be rational. This formula requires the following definitions.

Definition 4.6.1. A concave integral path is a polygonal path in the plane, whose vertices
are at lattice points, and which is the graph of a convex piecewise linear function F : [0, B]→
[0, A] for some nonnegative integers A,B.

Definition 4.6.2. If Λ is a concave integral path, define L(Λ) to be the number of lattice
points in the region bounded by Λ, the line segment from (0, 0) to (0, B), and the line segment
from (0, 0) to (A, 0), not including lattice points on Λ itself.

Definition 4.6.3. If XΩ is the concave toric domain determined by f : [0, b] → [a, 0], and
if Λ is a concave integral path, define the Ω-length of Λ, denoted by `Ω(Λ), as follows. For
each edge e of Λ, let ve denote the vector determined by e, namely the difference between
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the right and left endpoints. Let pe be a point on the graph of f such that the graph of f is
contained in the closed half-plane above the line through pe parallel to e. Then

`Ω(Λ) =
∑

e∈Edges(Λ)

ve × pe. (4.6.1)

Here × denotes the cross product. Note that pe fails to be unique only when the graph of f
contains an edge parallel to e, in which case ve × pe does not depend on the choice of pe.

Theorem 4.6.1. If XΩ is any concave toric domain, then its ECH capacities are given by

ck(XΩ) = max{`Ω(Λ) | L(Λ) = k}. (4.6.2)

Here the maximum is over concave integral paths Λ.

Remark 4.6.4. It is interesting to compare Theorem 4.6.1 with the formula for the ECH
capacities of convex toric domains in [10, Thm. 4.14], in which one minimizes a length
function over convex paths enclosing a certain number of lattice points.

Example 4.6.5. Let us check that Theorem 4.6.1 correctly recovers ck(XΩ) when Ω is the
triangle with vertices (0, 0), (a, 0) and (0, b), so that XΩ = E(a, b).

An equivalent statement of the Ellipsoid property is that ck(E(a, b)) = Lk where Lk is
the smallest nonnegative real number such that triangle bounded by the axes and the line
bx + ay = Lk encloses at least k + 1 lattice points. Call this triangle Tk, and call its upper
edge Dk.

To see that Lk agrees with the right hand side of (4.6.2), suppose first that a/b is irra-
tional. There is then a unique lattice point (xk, yk) on Dk. We need to show that

max{`Ω(Λ) | L(Λ) = k} = bxk + ayk. (4.6.3)

If Λ is a concave integral path, there is a unique vertex (x, y) ∈ Λ such that Λ is contained
in the closed half-plane above the line through (x, y) with slope −b/a. Then pe = (0, b) for
all edges to the left of (x, y), and pe = (a, 0) for all edges to the right of (x, y). Therefore

`Ω(Λ) = bx+ ay.

If L(Λ) ≤ k, then we must have bx+ay ≤ bxk +ayk, since otherwise every lattice point in Tk
would be counted by L(Λ). Thus the left hand side of (4.6.3) is less than or equal to the right
hand side. To prove the reverse inequality, observe that if Λ is the minimal concave integral
path which contains the point (xk, yk) and is contained in the closed half-plane above the
line Dk, then (x, y) = (xk, yk) and L(Λ) = k.

Suppose now that a/b is rational. Then Dk may contain more than one lattice point.
If Λ is a concave integral path, then there is a unique pair of (possibly equal) vertices
(x, y), (x′, y′) ∈ Λ with x ≤ x′ such that line segment from (x, y) to (x′, y′) is contained in Λ,
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and the rest of Λ is strictly above the line through (x, y) with slope −b/a. Now if p is any
point on the upper edge of Ω, then we have

`Ω(Λ) = bx+ (x′ − x, y′ − y)× p+ ay′.

We can choose p = (a, 0) for convenience, and this gives

`Ω(Λ) = bx+ ay.

The rest of the argument in this case is similar to the previous case.
One can also deduce the case when a/b is rational from the case when a/b is irrational

by a continuity argument using Lemma 5.2.2 below.

4.7 The rest of the paper

Theorems 4.3.1 and 4.6.1, which compute the ECH capacities of concave toric domains, are
proved in §5 and §6. The generalization of Corollary 4.4.4 to symplectic embeddings of an
ellipsoid into the union of an ellipsoid and a cylinder is given in §7.1. Proposition 4.5.2 and
Theorem 4.5.1 on ball packings of the union of an ellipsoid and a cylinder are proved in §7.2
and §7.3.

Acknowledgments. It is a pleasure to thank Daniel Irvine and Felix Schlenk for many
helpful discussions.
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Chapter 5

The lower bound on the capacities

In this section we use combinatorial arguments to prove half of Theorem 4.6.1, namely:

Lemma 5.0.1. If XΩ is any concave toric domain, then

ck(XΩ) ≥ max{`Ω(Λ) | L(Λ) = k}. (5.0.1)

Here the maximum is over concave integral paths Λ.

5.1 The lower bound in the rational case

The following lemma, together with Lemma 4.3.2, implies Lemma 5.0.1 in the rational case.

Lemma 5.1.1. LetXΩ be a rational concave toric domain with weight expansion (a1, . . . , an).
Then

ck

(
n∐
i=1

B(ai)

)
≥ max{`Ω(Λ) | L(Λ) = k}. (5.1.1)

Proof. The proof has four steps.
Step 1: Setup. We use induction on n. If n = 1, then XΩ is a ball and we know from

Example 4.6.5 that both sides of (5.1.1) are equal. If n > 1, let Ω1, Ω2, and Ω3 be as in the
definition of the weight expansion in §4.3. By induction, we can assume that the lemma is
true for Ω1, Ω2, and Ω3.

Let Λ be a concave integral path with L(Λ) = k. We need to show that

ck

(
n∐
i=1

B(ai)

)
≥ `Ω(Λ). (5.1.2)

To prove this, let Wi denote the disjoint union of the balls given by the weight expansion of
Ωi for i = 1, 2, 3. By the definition of the weight expansion we have

n∐
i=1

B(ai) =
3∐
i=1

Wi. (5.1.3)
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In Step 2 we will define concave integral paths Λi for i = 1, 2, 3, and we write ki = L(Λi).
By (5.1.3) and the Disjoint Union property of ECH capacities, we know that

ck1+k2+k3

(
n∐
i=1

B(ai)

)
≥

3∑
i=1

cki(Wi).

By the inductive hypothesis we know that

cki(Wi) ≥ `Ωi(Λi).

In Steps 3 and 4 we will further show that

k1 + k2 + k3 = k (5.1.4)

and
3∑
i=1

`Ωi(Λi) = `Ω(Λ). (5.1.5)

The above four equations and inequalities then imply (5.1.2).
Step 2: Definition of Λi. The paths Λi are obtained from Λ in the same way that the

domains Ωi are obtained from Ω. We now make this explicit in order to fix notation. Let
Λ1 be the maximal line segment with slope −1 from the y axis to the x axis such that
Λ is contained in the closed half-space above the line extending Λ1. Let (0, A) and (A, 0)
denote the endpoints of Λ1. Let Λ′2 denote the portion of Λ to the left of Λ1 ∩Λ, and let Λ′3
denote the portion of Λ to the right of Λ1 ∩ Λ. Let T2 : R2 → R2 be the map obtained by

first translating down by A and then multiplying by

(
1 0
1 1

)
∈ SL2Z. Then Λ2 = T2(Λ′2).

Similarly, Λ3 = T3(Λ′3), where T3 : R2 → R2 is the map obtained by first translating to the

left by A and then multiplying by

(
1 1
0 1

)
∈ SL2Z.

Step 3: Proof of equation (5.1.4). Since T2 preserves the lattice, L(Λ2) is the number of
lattice points counted by L(Λ) that are on or above Λ1 and below Λ′2. Likewise, L(Λ3) is
the number of lattice points counted by L(Λ) that are on or above Λ1 and below Λ′3. The
remaining lattice points counted by L(Λ) are those that are below Λ1, which are exactly the
lattice points counted by L(Λ1).

Step 4: Proof of equation (5.1.5). By construction, there is an injection

φ : Edges(Λ)→
3∐
i=1

Edges(Λi).

The complement of the image of this injection consists of those edges of Λ1 that are to the
left or to the right of Λ1 ∩ Λ. Denote these two sets of edges by Left(Λ1) and Right(Λ1)
respectively. We tautologically have

∑
e∈φ−1(Edges(Λ1))

ve × pe =

 ∑
ê∈Edges(Λ1)

−
∑

ê∈Left(Λ1)

−
∑

ê∈Right(Λ1)

 vê × pê. (5.1.6)
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Here if ê is an edge of Λi, then pê denotes the (not necessarily unique) point on the upper
edge of Ωi that appears in the formula (4.6.1) for `Ωi(Λi). To prove equation (5.1.5), it is
enough to show in addition to (5.1.6) that∑

e∈φ−1(Edges(Λ2))

ve × pe =
∑

ê∈Edges(Λ2)

vê × pê +
∑

ê∈Left(Λ1)

vê × pê (5.1.7)

and ∑
e∈φ−1(Edges(Λ3))

ve × pe =
∑

ê∈Edges(Λ3)

vê × pê +
∑

ê∈Right(Λ1)

vê × pê. (5.1.8)

We will just prove equation (5.1.7), as the proof of (5.1.8) is analogous. Let e ∈
φ−1(Edges(Λ2)) and let ê = φ(e). We then have

vê =

(
1 0
1 1

)
ve

and

pê =

(
1 0
1 1

)
(pe − (0, a))

where a is as in the definition of the weight expansion of Ω in §4.3. Consequently,

ve × pe = vê × pê + ve × (0, a).

Summing over all e ∈ φ−1(Edges(Λ2)) gives∑
e∈φ−1(Edges(Λ2))

ve × pe =
∑

ê∈Edges(Λ2)

vê × pê +
∑

e∈φ−1(Edges(Λ2))

ve × (0, a). (5.1.9)

But the rightmost sum in (5.1.9) agrees with the rightmost sum in (5.1.7), because for ê ∈ Λ1

one can take pê = (0, a), and the total horizontal displacement of the edges in φ−1(Edges(Λ2))
is the same as the total horizontal displacement of the edges in Left(Λ1).

5.2 Continuity

Having proved the lower bound (5.0.1) for rational concave toric domains, we now use a
continuity argument to extend this bound to arbitrary concave toric domains.

Recall that the Hausdorff metric on compact subsets of R2 is defined by

d(Ω1,Ω2) = max
p1∈Ω1

min
p2∈Ω2

d(p1, p2) + max
p2∈Ω2

min
p1∈Ω1

d(p2, p1).

Lemma 5.2.1. If k is fixed, then ck(XΩ) is a continuous function of Ω with respect to the
Hausdorff metric.
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Proof. Fix Ω, and given r > 0, consider the scaling rΩ = {(rx, ry) | (x, y) ∈ Ω}. Observe
that XrΩ is symplectomorphic to XΩ with the symplectic form multiplied by r. It then follows
from the Conformality property of ECH capacities that ck(XrΩ) = rck(XΩ). If {Ωi}i≥1 is a
sequence converging to Ω in the Hausdorff metric, then there is a sequence of positive real
numbers {ri}i≥1 converging to 1 such that

r−1
i Ω ⊂ Ωi ⊂ riΩ.

By the Monotonicity property of ECH capacities, we have

r−1
i ck(XΩ) ≤ ck(XΩi) ≤ rick(XΩ).

It follows that limi→∞ ck(XΩi) = ck(XΩ).

Lemma 5.2.2. If k is fixed, then max{`Ω(Λ) | L(Λ) = k} is a continuous function of Ω with
respect to the Hausdorff metric.

Proof. For k fixed, there are only finitely many concave integral paths Λ with L(Λ) = k.
Consequently, it is enough to show that if Λ is a fixed concave integral path, then `Ω(Λ) is
a continuous function of Ω. By (4.6.1), it is now enough to show that if e is an edge of Λ,
then ve × pe(Ω) is a continuous function of Ω. In fact there is a constant c > 0 depending
only on ve such that

|ve × pe(Ω)− ve × pe(Ω′)| ≤ cd(Ω,Ω′).

To see this, suppose that ve × pe(Ω) < ve × pe(Ω
′). Write pe(Ω) = (x0, y0). Every point

(x, y) ∈ Ω must have x ≤ x0 or y ≤ y0. The portion of the upper boundary of Ω′ with
x ≥ x0 and y ≥ y0 is a path from the line x = x0 to the line y = y0. Let p′ ∈ Ω′ denote
the intersection of this path with the line of slope 1 through the point (x0, y0). The above
path must stay above the triangle bounded by the line x = x0, the line y = y0, and the line
through pe(Ω

′) parallel to ve. It follows that there is a constant c′ depending only on ve such
that

min
p∈Ω

d(p′, p) ≥ c′ve × (pe(Ω
′)− pe(Ω)).

Proof of Lemma 5.0.1. By Lemmas 4.3.2 and 5.1.1, this holds for rational concave toric
domains. The general case now follows from Lemmas 5.2.1 and 5.2.2, since if XΩ is an
arbitrary concave toric domain, then Ω can be approximated in the Hausdorff metric by Ω′

such that XΩ′ is a rational concave toric domain.
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Chapter 6

The upper bound on the capacities

To complete the proofs of Theorems 4.3.1 and 4.6.1, we now prove:

Lemma 6.0.3. If XΩ is any concave toric domain, then

ck(XΩ) ≤ max{`Ω(Λ) | L(Λ) = k}. (6.0.1)

Here the maximum is over concave integral paths Λ.

Note that Theorem 4.3.1 follows by combining Lemmas 4.3.2, 5.1.1, and 6.0.3, while
Theorem 4.6.1 follows by combining Lemmas 5.0.1 and 6.0.3.

6.1 ECH capacities of star-shaped domains

The proof of Lemma 6.0.3 requires some knowledge of the definition of ECH capacities, which
we now briefly review; for full details see [8] or [10]. We will only explain the definition for
the special case of smooth star-shaped domains in R4, since that is what we need here.

Let Y be a three-manifold diffeomorphic to S3, and let λ be a nondegenerate contact
form on Y such that Ker(λ) is the tight contact structure. The embedded contact homology
ECH∗(Y, λ) is the homology of a chain complex ECC∗(Y, λ, J) over Z/2 defined as follows.
(ECH can also be defined with integer coefficients, see [13, §9], but that is not needed
for the definition of ECH capacities.) A generator of the chain complex is a finite set of
pairs α = {(αi,mi)} where the αi are distinct embedded Reeb orbits, the mi are positive
integers, and mi = 1 whenever αi is hyperbolic. The chain complex in this case has an
absolute Z-grading which is reviewed in §6.3 below; the grading of a generator α is denoted
by I(α) ∈ Z. The chain complex differential counts certain J-holomorphic curves in R× Y
for an appropriate almost complex structure J ; the precise definition of the differential is
not needed here. Taubes [25] proved that the embedded contact homology of a contact
three-manifold is isomorphic to a version of its Seiberg-Witten Floer cohomology as defined
by Kronheimer-Mrowka [15]. For the present case of S3 with its tight contact structure, this
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implies that

ECH∗(Y, λ) =

{
Z/2, ∗ = 0, 2, 4, . . . ,

0, otherwise.

We denote the nonzero element of ECH2k(Y, λ) by ζk.
The symplectic action of a chain complex generator α = {(αi,mi)} is defined by

A(α) =
∑
i

mi

∫
αi

λ.

We define ck(Y, λ) to be the smallest L ∈ R such that ζk has a representative in ECC∗(Y, λ, J)
which is a sum of chain complex generators each of which has symplectic action less than or
equal to L. It follows from [14, Thm. 1.3] that ck(Y, λ) does not depend on J . The numbers
ck(Y, λ) are called the ECH spectrum of (Y, λ).

If λ is a degenerate contact form on Y ≈ S3 giving the tight contact structure, we define

ck(Y, λ) = lim
n→∞

ck(Y, fnλ) (6.1.1)

where {fn}n≥1 is a sequence of positive functions on Y which converges to 1 in the C0

topology such that each contact form fnλ is nondegenerate. Lemmas from [8, §3.1] imply
that this is well-defined, as explained in [4, §2.5].

Now let X ⊂ R4 be a compact star-shaped domain with smooth boundary Y . Then

λstd =
1

2

2∑
i=1

(xidyi − yidxi)

restricts to a contact form on Y , and we define the ECH capacities of X by

ck(X) = ck(Y, λstd|Y ). (6.1.2)

6.2 The combinatorial chain complex

Let XΩ be a concave toric domain determined by a convex function f : [0, a] → [0, b]. We
assume below that the function f is smooth, f ′(0) and f ′(a) are irrational, f ′ is constant
near 0 and a, and f ′′(x) > 0 whenever f ′(x) is rational. Then ∂XΩ is smooth. As we will see
in §6.3 below, λstd restricts to a degenerate contact form on ∂XΩ. Similarly to [12], there is a
combinatorial model for the ECH chain complex of appropriate nondegenerate perturbations
of this contact form, which we denote by ECCcomb

∗ (Ω) and define as follows.

Definition 6.2.1. A generator of ECCcomb
∗ (Ω) is a quadruple Λ̃ = (Λ, ρ,m, n), where:

(a) Λ is a concave integral path from [0, B] to [A, 0] such that the slope of each edge is in
the interval [f ′(0), f ′(a)].
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(b) ρ is a labeling of each edge of Λ by ‘e’ or ‘h’.

(c) m and n are nonnegative integers.

Here an “edge” of Λ means a segment of Λ of which each endpoint is either an initial or a
final endpoint of Λ, or a point at which Λ changes slope.

We define the grading Icomb(Λ̃) ∈ Z of the generator Λ̃ = (Λ, ρ,m, n) as follows. Let Λm,n

denote the path in the plane obtained by concatenating the following three paths:

(1) The highest polygonal path with vertices at lattice points from (0, B + n+ b−mf ′(0)c)
to (m,B + n) which is below the line through (m,B + n) with slope f ′(0).

(2) The image of Λ under the translation (x, y) 7→ (x+m, y + n).

(3) The highest polygonal path with vertices at lattice points from (A+m,n) to (A+m+
b−n/f ′(a)c, 0) which is below the line through (A+m,n) with slope f ′(a).

Let L(Λm,n) denote the number of lattice points in the region bounded by Λm,n and the axes,
not including lattice points on the image of Λ under the translation (x, y) 7→ (x+m, y+ n).
We then define

Icomb(Λ̃) = 2L(Λm,n) + h(Λ̃) (6.2.1)

where h(Λ̃) denotes the number of edges of Λ that are labeled ‘h’.

We define the action Acomb(Λ̃) ∈ R of the generator Λ̃ = (Λ, ρ,m, n) by

Acomb(Λ̃) = `Ω(Λ) + an+ bm. (6.2.2)

One can also define a combinatorial differential on the chain complex ECCcomb
∗ (Ω) sim-

ilarly to [12], which agrees with the ECH differential for appropriate perturbations of the
contact form and almost complex structures, but we do not need this here. What we do
need is the following:

Lemma 6.2.1. For each ε > 0, there exists a contact form λ on ∂XΩ with the following
properties:

(a) λ is nondegenerate.

(b) λ = fλstd|∂XΩ
where ‖f − 1‖C0 < ε.

(c) There is a bijection between the generators of ECC(∂XΩ, λ) with A < 1/ε and the

generators of ECCcomb(Ω) with Acomb < 1/ε, such that if α and Λ̃ correspond under
this bijection, then

I(α) = Icomb(Λ̃)

and
|A(α)−Acomb(Λ̃)| < ε.
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Lemma 6.2.1 will be proved in §6.3. We can now deduce:

Lemma 6.2.2. For each nonnegative integer k, there exists a generator Λ̃ of ECCcomb(Ω)

such that Icomb(Λ̃) = 2k and Acomb(Λ̃) = ck(XΩ).

Proof. Fix k. For each positive integer n, let λn be a contact form provided by Lemma 6.2.1
for ε = 1/n. It follows from (6.1.1) and (6.1.2) that we can choose λn so that

|ck(XΩ)− ck(∂XΩ, λn)| < 1/n.

By definition, there exists a generator αn of ECC2k(∂XΩ, λn) with A(αn) = ck(∂XΩ, λn).
Assume n is sufficiently large that ck(XΩ) + 1/n < n. Then A(αn) < n, so αn corresponds

to a generator Λ̃n of ECCcomb(Ω) under the bijection in Lemma 6.2.1, with

Icomb(Λ̃n) = 2k (6.2.3)

and
|Acomb(Λ̃n)− ck(XΩ)| < 2/n. (6.2.4)

It follows from (6.2.1) that there are only finitely many generators Λ̃ of ECCcomb(Ω) with

Icomb(Λ̃) = 2k. Consequently, there exists such a generator Λ̃ which agrees with infinitely

many Λ̃n. It now follows from (6.2.3) and (6.2.4) that Icomb(Λ̃) = 2k andAcomb(Λ̃n) = ck(XΩ)
as desired.

Proof of Lemma 6.0.3. Fix k. By the continuity in Lemmas 5.2.1 and 5.2.2, we can assume
that Ω is determined by a function f : [0, a]→ [0, b] satisfying the conditions at the beginning
of §6.2, such that in addition

|f ′(0)|, |1/f ′(a)| > k. (6.2.5)

By Lemma 6.2.2, we can choose a generator Λ̃ = (Λ, ρ,m, n) of ECCcomb(Ω) with Icomb(Λ̃) =

2k and Acomb(Λ̃) = ck(XΩ). It follows from (6.2.5) that m = n = 0; otherwise the region
bounded by Λm,n and the axes would include at least k + 1 lattice points on the axes not in

the translate of Λ, so by (6.2.1) we would have Icomb(Λ̃) > 2k, which is a contradiction.
Let k′ = L(Λ). Then by (6.2.1) we have k′ ≤ k, and by (6.2.2) we have `Ω(Λ) = ck(XΩ).

Thus
ck(XΩ) ≤ max{`Ω(Λ) | L(Λ) = k′}.

To complete the proof of Lemma 6.0.3, one could give a combinatorial proof that the right
hand side of (6.0.1) is a nondecreasing function of k. Instead we will take a shortcut: by
Lemma 5.0.1 we have

max{`Ω(Λ) | L(Λ) = k′} ≤ ck′(XΩ),

and by (4.1.1) we have
ck′(XΩ) ≤ ck(Ω).

Thus the above three inequalities are equalities.
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6.3 The generators of the ECH chain complex

To complete the computations of ECH capacities, our remaining task is to give the:

Proof of Lemma 6.2.1. The proof has five steps.
Step 1. We first determine the embedded Reeb orbits of the contact form λstd|∂XΩ

and
their symplectic actions. Similarly to [10, §4.3], these are given as follows:

• The circle γ1 = {z ∈ ∂XΩ | z2 = 0} is an embedded elliptic Reeb orbit with action
A(γ1) = a.

• The circle γ2 = {z ∈ ∂XΩ | z1 = 0} is an embedded elliptic Reeb orbit with action
A(γ2) = b.

• For each x ∈ (0, a) such that f ′(x) is rational, the torus

{z ∈ ∂XΩ | π(|z1|2, |z2|2) = (x, f(x))}

is foliated by a Morse-Bott circle of Reeb orbits. Let v1 be the smallest positive integer
such that v2 = f ′(x)v1 ∈ Z, write v = (v1, v2), and denote this circle of Reeb orbits by
Ov. Then each Reeb orbit in Ov has symplectic action

A = v × (x, f(x)).

In particular, if α = {(αi,mi)} is a finite set of embedded Reeb orbits with positive
integer multiplicities, then α determines a triple (Λ,m, n) satisying conditions (a) and (c) in
Definition 6.2.1. The path Λ is obtained by taking the vector v for each Reeb orbit αi that
is in the Morse-Bott circle Ov, multiplied by the covering multiplicity mi, and concatenating
these vectors in order of increasing slope. The integer m is the multiplicity of γ2 if it appears
in α, and otherwise m = 0; likewise n is the multiplicity of γ1 if it appears in α and otherwise
n = 0. It follows from the above calculations that

A(α) = `Ω(Λ) + an+ bm.

Step 2. Given ε > 0, we can now perturb λstd|∂XΩ
to λ = fλstd|∂XΩ

where f is C0-close
to 1, so that each Morse-Bott circle Ov of embedded Reeb orbits with action less than 1/ε
becomes two embedded Reeb orbits of approximately the same action, namely an elliptic
orbit ev and a hyperbolic orbit hv; no other Reeb orbits of action less than 1/ε are created;
and the Reeb orbits γ1 and γ2 are unaffected.

Now the generators of ECC(∂XΩ, λ) withA < 1/ε correspond to generators ofECCcomb(Ω)
with Acomb < 1/ε. Given a generator α = {(αi,mi)} of ECC(∂XΩ, λ) with A(α) < 1/ε,

the corresponding combinatorial generator Λ̃ = (Λ, ρ,m, n) is determined as follows. The
triple (Λ,m, n) is determined as in Step 1. The labeling ρ is defined as follows. Suppose an
edge of Λ corresponds to the vector kv where v = (v1, v2) is an irreducible integer vector
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and k is a positive integer. Then either α contains the elliptic orbit ev with multiplicity k,
or α contains the elliptic orbit ev with multiplicity k − 1 and the hyperbolic orbit hv with
multiplicity 1. The labeling of the edge is ‘e’ in the former case and ‘h’ in the latter case.

To complete the proof of Lemma 6.2.1, we need to show that I(α) = Icomb(Λ̃).
Step 3. Let α = {(αi,mi)} be a generator of ECC(∂XΩ, λ). We now review the definition

of the grading I(α) in the present context; for details of the grading in general see [10, §3]
or [7, §2]. The formula is

I(α) = cτ (α) +Qτ (α) + CZI
τ (α) (6.3.1)

where the individual terms are defined as follows. First, τ is a homotopy class of symplectic
trivialization of ξ = Ker(λ) over each of the Reeb orbits αi. Next, cτ (α) is the relative first
Chern class, with respect to τ , of ξ restricted to a surface bounded by α. That is, if Σ is
a compact oriented surface with boundary and g : Σ → ∂XΩ is a smooth map such that
g(∂Σ) =

∑
imiαi, then cτ (α) is the algebraic count of zeroes of a section of g∗ξ which on

each boundary circle is nonvanishing and has winding number zero with respect to τ . The
relative first Chern class is additive in the sense that

cτ (α) =
∑
i

micτ (αi).

Next, Qτ (α) is the relative self-intersection number; in the present situation this is given by

Qτ (α) =
∑
i

m2
iQτ (αi) +

∑
i 6=j

mimj link(αi, αj). (6.3.2)

Here Qτ (αi) is the linking number of αi with a pushoff of itself via the trivialization τ , and
link(αi, αj) denotes the linking number of αi and αj. Finally,

CZI
τ (α) =

∑
i

mi∑
k=1

CZτ (α
k
i )

where CZτ (α
k
i ) denotes the Conley-Zehnder index of the k-fold iterate of αi with respect to

the trivialization τ . In particular, if γ is an elliptic orbit such that the linearized Reeb flow
around γ with respect to the trivialization τ is conjugate to a rotation by 2πθ for θ ∈ R/Q,
then

CZτ (γ
k) = 2bkθc+ 1.

Step 4. We now calculate the terms that enter into the grading formula (6.3.1) when α
is a generator of ECC(∂XΩ, λ) with A(α) < 1/ε.

We first choose a trivialization τ of ξ over each embedded Reeb orbit of action less than
1/ε. There is a distinguished trivialization τ of ξ over γ1 determined by the disk in the plane
z2 = 0 bounded by γ1. With respect to this trivialization, the linearized Reeb flow around γ
is rotation by −2π/f ′(a), so that

CZτ (γ
k
1 ) = 2b−k/f ′(a)c+ 1. (6.3.3)
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Likewise, there is a distinguished trivialization τ of ξ over γ2 determined by the disk in the
plane z1 = 0 bounded by γ2. With respect to this trivialization, we have

CZτ (γ
k
2 ) = 2b−kf ′(0)c+ 1. (6.3.4)

We also have
cτ (γi) = 1, Qτ (γi) = 0

for i = 1, 2.
We can choose the trivialization τ over the orbits ev and hv coming from the Morse-

Bott circles so that the linearized Reeb flow around ev is a slight negative rotation, and the
linearized Reeb flow around hv does not rotate the eigenspaces of the linearized return map.
This implies that

CZτ (e
k
v) = −1, CZτ (hv) = 0 (6.3.5)

whenever k is sufficiently small that ekv has action less than 1/ε. We also have

cτ (ev) = cτ (hv) = v1 − v2,

Qτ (ev) = Qτ (hv) = link(ev, hv) = −v1v2.

Finally, the linking numbers of pairs of distinct embedded Reeb orbits are given as follows.
Below, ov denotes either ev or hv.

link(γ1, γ2) = 1,

link(γ1, ov) = −v2,

link(γ2, ov) = v1,

link(ov, ow) = min(−v1w2,−v2w1).

Step 5. Let α and Λ̃ be as in Step 2; we compute the grading I(α) in terms of Λ̃ =
(Λ, ρ,m, n).

As in §6.2, let (0, B) and (A, 0) denote the endpoints of Λ. The Chern class calculations
in Step 4 then imply that

cτ (α) = A+B +m+ n. (6.3.6)

Next, let Λ′m,n be defined like Λm,n in §6.2, but with the first path replaced by a horizontal
segement from (0, B+n) to (m,B+n), and with the third path replaced by a vertical segment
from (A + m,n) to (A + m, 0). Let R′m,n denote the region bounded by Λ′m,n and the axes.
We then have

Qτ (α) = 2 Area(R′m,n).

This follows by expanding Qτ (α) using (6.3.2) and the formulas in Step 4, and then inter-
preting the result as the area of Rm,n computed by appropriately dissecting it into right
triangles and rectangles. Let L(Λ′m,n) denote the number of lattice points in R′m,n, not in-
cluding lattice points on the translate of Λ. Let E denote the number of lattice points on Λ.
By Pick’s formula for the area of a lattice polygon, we have

2 Area(R′m,n) = 2L(Λ′m,n) + E − 2m− 2n− A−B − 1.
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Let e(Λ̃) denote the total multiplicity of all elliptic orbits in α. Observe that

E = e(Λ̃) + h(Λ̃) + 1.

Combining the above three equations, we obtain

Qτ (α) = 2L(Λ′m,n) + e(Λ̃) + h(Λ̃)− 2m− 2n− A−B. (6.3.7)

Finally, it follows from (6.3.3) and (6.3.4) that

n∑
k=1

CZτ (γ
k
1 ) +

m∑
k=1

CZτ (γ
k
2 ) = 2(L(Λm,n)− L(Λ′m,n)) +m+ n.

By (6.3.5), the sum of the remaining Conley-Zehnder terms in CZI
τ (α) is −e(Λ̃). Thus

CZI
τ (α) = 2(L(Λm,n)− L(Λ′m,n)) +m+ n− e(Λ̃). (6.3.8)

Adding equations (6.3.6), (6.3.7), and (6.3.8) gives

I(α) = 2L(Λm,n) + h(Λ̃)

as desired.
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Chapter 7

The union of an ellipsoid and a
cylinder

In this section we study symplectic embeddings into Z(a, b, c), which is the union of the
cylinder Z(a) with the ellipsoid E(b, c). In §7.1 we give a generalization of Corollary 4.4.4,
and in §7.2 and §7.3 we prove Proposition 4.5.2 and Theorem 4.5.1.

7.1 Optimal ellipsoid embeddings

We now prove the following proposition which asserts that certain inclusions of an ellip-
soid into the union of an ellipsoid and a cylinder are optimal. This is a generalization of
Corollary 4.4.4, which is the case b = c.

Proposition 7.1.1. Let a be a positive integer and let b, c and λ be positive real numbers.
Assume c > 1, a ≥ b/c, and at least one of the following two conditions:

(i) a = bb/cc+ 1.

(ii) b ≤ c
c−1

.

Then there exists a symplectic embedding E(a, 1) → Z(λ, λb, λc) if and only if E(a, 1) ⊂
Z(λ, λb, λc).

Proof. Using c > 1 and a ≥ b/c, we calculate that E(a, 1) ⊂ Z(λ, λb, λc)) if and only if

λ ≥ ac

ac+ b(c− 1)
. (7.1.1)

Consequently, as in the proof of Corollary 4.4.4, Proposition 7.1.1 follows from the Ellipsoid
axiom and Lemma 7.1.2 below.
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Lemma 7.1.2. Let a be a positive integer and let b and c be positive real numbers with
c > 1 and a ≥ b/c. Assume that (i) or (ii) in Proposition 7.1.1 holds. Then

ca(Z(1, b, c)) = a+
b(c− 1)

c
. (7.1.2)

Proof. The proof has three steps.
Step 1. We first prove equation (7.1.2) in case (ii) when c ≥ b.
Referring back to the definition of the weight expansion in §4.3, we have

XΩ1 = B

(
b(c− 1)

c
+ 1

)
,

XΩ2 = E

(
b(c− 1)

c
,
(c− b)(c− 1)

c

)
,

XΩ3 = Z(1).

By Theorem 4.3.1 and the Disjoint Union property of ECH capacities, we have

ca(Z(1, b, c)) = max
k1+k2+k3=a

3∑
i=1

cki(XΩi).

Now ck3(XΩ3) = k3. Also, it follows from the Ellipsoid property that ck(E(α, β)) ≤ kα.

Since we are assuming that b(c−1)
c
≤ 1, we deduce that ck2(XΩ2) ≤ k2. Thus the maximum

is achieved with k2 = 0. Since 1 < b(c−1)
c

+ 1 ≤ 2, it follows as in (4.4.9) that the maximum
is achieved with k1 = 1. Equation (7.1.2) follows.

Step 2. We now prove equation (7.1.2) in case (ii) when b ≥ c.
Here, in the inductive definition of the weight expansion, the first bb/cc steps yield bb/cc

copies of the ball B(c). The remaining region is Z(1, b − cbb/cc, c). Here, if c divides b,
then we regard Z(1, b − cbb/cc, c) as Z(1). Thus by Theorem 4.3.1 and the Disjoint Union
property,

ca(Z(1, b, c)) = max
k1+k2=a

(ck1 (E (c, cbb/cc)) + ck2 (Z(1, b− cbb/cc, c))) . (7.1.3)

Step 1 applies to show that

ck2 (Z(1, b− cbb/cc, c)) = k2 +
(b− cbb/cc)(c− 1)

c
(7.1.4)

whenever k2 ≥ 1. Also, it follows from the Ellipsoid property that

ck1(E(c, cbb/cc)) = ck1 (7.1.5)

for k1 ≤ bb/cc. For larger values of k1, one has to increase k1 by at least bb/cc ≥ 2 to obtain
any increase in ck1(E(c, cbb/cc)), and this increase will always equal c. On the other hand,
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it follows from b ≥ c and (ii) that c ≤ 2. Hence the maximum is attained for k1 ≤ bb/cc.
Since a ≥ bb/cc and c > 1, the maximum is attained with k1 = bb/cc. Adding (7.1.4) and
(7.1.5) then proves (7.1.2).

Step 3. We now prove equation (7.1.2) in case (i). As in Step 2, the first a steps of the

weight expansion yield a−1 copies of the ballB(c), together with the ballB
(

(b−c(a−1))(c−1)
c

+ 1
)

.

It follows from Lemma 4.4.1 that

ca(Z(1, b, c)) = (a− 1)c+
(b− c(a− 1))(c− 1)

c
+ 1.

Simplifying this expression gives equation (7.1.2) again.

Remark 7.1.1. If c > 1 and a is a positive integer with a ≤ b/c, then

ca(Z(1, b, c)) = ac. (7.1.6)

This is because the first a steps in the weight expansion yield a copies of the ball B(c), and
we can then apply Lemma 4.4.1.

7.2 Construction of ball packings

Proof of Proposition 4.5.2. The proof has three steps.
Step 1. Choose k ∈ {1, . . . , n} maximizing λk. We claim that λk ≥ wi for all i > k.
To see this, use (4.5.1) to compute that

λk − wk+1 =

(
k +

b(c− 1)

c
+ 1

)
(λk − λk+1) .

Since λk is maximal, we deduce that λk ≥ wk+1. The rest follows from the fact that w1 ≥
· · · ≥ wn.

Step 2. Let Ω be the region for which XΩ = Z(λ, λb, λc). That is, Ω is bounded by the
axes, the line segment from (0, λc) to

(
b
c
(c− 1)λ, λ

)
, and the horizontal ray extending to

the right from the latter point. By Lemma 4.3.3, it suffices to embed disjoint open triangles
T1, . . . , Tn into Ω, such that T` is affine equivalent to 4(w`) for each `. If ` > k, then by
Step 1 we have λ ≥ w`, so we can simply take T` to be a translate of 4(w`) sufficiently far
to the right.

Step 3. For 1 ≤ ` ≤ k, we now define the triangle T` by starting with the triangle 4(w`),

multiplying by

(
1 −(`− 1)
0 1

)
∈ SL2Z, and then translating to the right by

∑`−1
i=1 wi. The

vertices of T` are(
`−1∑
i=1

wi, 0

)
,

(∑̀
i=1

wi, 0

)
, and

(
`−1∑
i=1

wi − (`− 1)w`, w`

)
.
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Figure 7.1: The union of the triangles T` is a subset of Ω

Observe that the right edge of T` has slope −1/`; and if ` > 1 then the left edge of T` is
a subset of the right edge of T`−1. In particular, the triangles T1, . . . , Tk are disjoint; and
the upper boundary of the union of their closures, call this path Λ, is the graph of a convex
function.

To verify that the triangles T1, . . . , Tk are contained in Ω, we need to check that the path
Λ does not go above the upper boundary of Ω, see Figure 7.1. The initial endpoint of Λ is
(0, w1), which is not above the upper boundary of Ω by our assumption that λ ≥ w1/c. Next,

Λ crosses the horizontal line of height λ at the point
(∑k

`=1(w` − λ), λ
)

. By convexity, it is

enough to check that this point is not to the right of the corner
(
b
c
(c− 1)λ, λ

)
of ∂Ω. This

holds because

λ ≥ λk =

∑k
`=1w`

k + b
c
(c− 1)

implies that
k∑
`=1

(w` − λ) ≤ b

c
(c− 1)λ.

7.3 The ECH obstruction to ball packings

We now complete the proof of Theorem 4.5.1. By Proposition 4.5.2, it is enough to prove:
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Lemma 7.3.1. Under the assumptions of Theorem 4.5.1, if there exists a symplectic em-
bedding

n∐
i=1

int(B (wi))→ Z(λ, λb, λc),

then λ ≥ max{w1/c, λ1, . . . , λn}.

Proof. By the Monotonicity and Conformality properties of ECH capacities, it is enough to
show that there is a positive integer k such that

ck

(
n∐
i=1

int(B (wi))

)
≥ max{w1/c, λ1, . . . , λn} · ck(Z(1, b, c)). (7.3.1)

By the Disjoint Union axiom, if 1 ≤ k ≤ n then

ck

(
n∐
i=1

int(B (wi))

)
≥

k∑
i=1

wi.

So to prove (7.3.1), it is enough to show that there exists k ∈ {1, . . . , n} with

k∑
i=1

wi ≥ max{w1/c, λ1, . . . , λn} · ck(Z(1, b, c)). (7.3.2)

We will prove this by considering two cases.
Case 1. Assume that b ≤ c. Then w1/c ≤ λ1. Hence

max {w1/c, λ1, . . . , λn} = max{λ1, . . . , λn}. (7.3.3)

We claim now that (7.3.2) holds for k ∈ {1, . . . , n} maximizing λk. To prove this, we need
to show that

k∑
i=1

wi ≥ λkck(Z(1, b, c)).

By equation (4.5.1), the above inequality is equivalent to

ck(Z(1, b, c)) ≤ k +
b(c− 1)

c
. (7.3.4)

Since b/c ≤ 1, it follows from Lemma 7.1.2 that equality holds in (7.3.4).
Case 2. Assume that b ≥ c. By Corollary 4.4.2, we have

c1(Z(1, b, c)) = c.

Consequently, we can assume without loss of generality that (7.3.3) holds, since otherwise
the inequality (7.3.2) holds for k = 1. As in Step 1, it is now enough to prove the inequality
(7.3.4), where k ∈ {1, . . . , n} maximizes λk.
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If k ≥ b/c, then equality holds in (7.3.4) by Lemma 7.1.2. If k < b/c, then the inequality
(7.3.4) follows from Remark 7.1.1, since in this case

kc < k +
b(c− 1)

c
.
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